大体积混凝土测温点布置原则教程文件
大体积混凝土测温方案
(三)、测温点布置基础大体积砼内测温点的布置,应真实地反映出砼浇筑体内最高温升、里表温差、降温速率及环境温度。
1、测温点位置该基础砼计划以后浇带为界分区段浇筑,各区段内混凝土一次浇注成型。
因此,在平面上的温度测点为梅花形布置,间距10m,并综合考虑电梯井的位置(测温点布置平面图见附图)。
由于底板混凝土最高温度多出现在厚度中部,故每个测温点按厚度方向沿厚度中部、混凝土表面和底部处布置三根测温线。
2、注意事项(1)所有测温线的埋设,必须按测温点布置图进行编号,并在埋设前进行测试检验。
(2)测温线必须在钢筋绑扎完毕和混凝土浇注前安好,测温线采用钢丝或胶布绑在一根Φ14的钢筋上,其感温头应处于测温点位置,不得与钢筋直接接触(测温点测温线布置示意图见图1)。
图1?测温点测温线布置示意图(3)测温线插头留在外面,并用塑料袋罩好,避免潮湿,保持清洁,留在外面的测温线长度应大于20cm,?并按上中下顺序分别绑扎,每组测温线在线的上段做上标记,?便于区分深度。
(4)砼表面测温线感温头位置在砼外表以内5cm处,砼底部测温线感温头位置在砼底面上5cm处。
三、测温(一)、测温要求1、一般在砼浇注完毕后10h开始测温,每班定时测定大气温度、砼内部温度,砼浇筑时,还应测砼的入模温度。
2、测温工作不分昼夜24h连续进行,第1天至第5天,每2h测温一次;第6天至第10天,?每4h测温一次;第11天至第28天,每8h测温一次。
3、测温数据应认真仔细记录分析,及时汇报结果,以便对混凝土的温控实施更及时的养护措施。
(二)、温控指标依据《YBJ224-91块体基础大体积施工技术规程》、《JGJ6-99?高程建筑箱型与筏型基础技术规范》的有关规定:混凝土结构内部中心温度与混凝土表面温度的差值小于25℃,温度场中的断面各测点温度陡降控制在10℃以内;大气温度与混凝土表面温度之差应控制在30℃以内;大体积混凝土的降温速率一般不宜大于2℃/d。
大体积混凝土测温方案(一)2024
大体积混凝土测温方案(一)引言概述:大体积混凝土测温方案是为了监测大体积混凝土构件内部的温度变化而设计的一种方案。
本文将从以下五个方面展开讨论,包括温度采集点的选取、温度传感器的选择、温度采集系统的搭建、数据处理分析以及方案的优点和应用前景。
一、温度采集点的选取:1. 考虑到混凝土构件的尺寸,应分布合理的选取温度采集点。
2. 需要在混凝土内部和表面设置温度采集点以获取全面准确的温度数据。
3. 选择合适的传感器与采集点的位置相对应。
二、温度传感器的选择:1. 选择适用于大体积混凝土的温度传感器,如热电偶、热敏电阻等。
2. 需要考虑传感器的耐高温性能、响应速度和准确度等方面的因素。
三、温度采集系统的搭建:1. 通过有线或无线方式与温度传感器进行连接。
2. 设置数据采集设备,实现对温度数据的实时采集和存储。
3. 系统的搭建需要考虑信号传输的稳定性、采样频率等方面的问题。
四、数据处理分析:1. 采集到的温度数据需要进行预处理,包括滤波、去除异常值等。
2. 可以利用统计学方法对温度数据进行分析,如计算平均值、方差等。
3. 利用数据可视化工具生成温度变化曲线以便进行进一步的分析和研究。
五、方案的优点和应用前景:1. 该方案可以准确监测大体积混凝土构件内部的温度变化,有助于预防混凝土结构的开裂和变形。
2. 该方案具有实时性和高精度性能,适用于各类大型混凝土工程。
3. 随着无线通信技术的不断发展,该方案的应用前景将更加广阔。
总结:大体积混凝土测温方案采用合理的温度采集点、适用的温度传感器和稳定可靠的温度采集系统,通过数据处理和分析,可以准确、实时地监测混凝土构件的温度变化。
该方案的优点包括准确性高、实时性强和广泛应用前景。
未来,随着无线通信技术的发展,该方案在混凝土工程中的应用将更加广泛和便捷。
大体积混凝土测温点如何布置
大体积混凝土测温点如何布置大体积混凝土测温点布置一、引言在大体积混凝土的施工过程中,为了监测混凝土的温度变化,需要合理布置测温点。
本文将介绍大体积混凝土测温点布置的具体方案。
二、测温点布置原则1. 全覆盖原则:测温点应覆盖整个混凝土体积,以全面了解混凝土的温度分布情况。
2. 均匀分布原则:测温点应均匀地分布在混凝土中,避免过于集中或分散,以保证测得的温度数据的可靠性。
3. 深度试探原则:测温点要放置在混凝土的不同深度处,以了解混凝土内部温度的变化情况。
4. 监测需求原则:根据具体的工程需求,确定测温点的数量和位置。
三、测温点布置方案1. 基本布置方案:a. 混凝土梁、板测温点布置:一般在混凝土梁、板的上表面、中部和下表面各设置2-3个测温点,距离边缘应有一定距离,保持一定间距。
b. 混凝土柱测温点布置:沿柱周边等间距分布4-6个测温点,混凝土柱端部也需要布置测温点。
c. 混凝土墙测温点布置:沿墙高等间距分布4-6个测温点,墙端部也需要布置测温点。
d. 混凝土基础测温点布置:根据基础的形状和尺寸,在基础表面均匀布置4-6个测温点。
2. 特殊情况下的布置方案:a. 弯曲构件:按照基本布置方案进行布置,并在构件的内、外侧表面各布置一个测温点。
b. 层间楼板:按照基本布置方案进行布置,并在每个楼板层间布置一个测温点。
c. 大体积混凝土结构:根据具体情况,在结构不同部位增加测温点,以保证监测的全面性。
四、附件本所涉及的附件如下:1. 布置方案图纸2. 测温设备清单3. 测温数据报告模板五、法律名词及注释1. 大体积混凝土:体积大于X立方米的混凝土结构。
注释:大体积混凝土具有很高的温度升高和收缩变形风险,需要进行温度监测以保证结构的安全性。
2. 温度变化监测:通过布置测温点,记录混凝土中温度的变化情况。
注释:温度变化监测可以施工人员了解混凝土的硬化情况,及时调整施工工艺,避免温度引起的质量问题。
大体积混凝土测温点布置原则
大体积混凝土测温点布置原则标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]大体积混凝土测温点布置原则:一、大体积砼温度的控制不仅要控制内表温差(指砼中心最高温度与之相对应的砼表面温度之间的温差)和表面温差(指砼中心最高温度相对应的表面温度与环境温度之间的温差),更要控制砼的综合降温差(指砼内部的平均降温差)和降温速率(指砼中心温度或表面温度每天的降温幅度)。
二、二、砼的任一降温差都可以分解为平均降温差及非均匀降温差,前者产生外约束应力,是产生贯穿性裂缝的主要原因,后者引起自约束应力,主要引起表面裂缝。
非均匀降温差主要是控制砼的内表温差。
规范规定大体积砼的内表温差应控制在25摄氏度,该控制值是比较严格的,根据我们的工程实践,该值可根据工程实际情况适当放宽,这主要取决于砼的一些实际物理指标,如:不同龄期的弹性模量、松弛系数和抗拉强度。
因此,在大体积砼施工前,对温度控制指标进行一些理论计算,对施工大有指导意义。
三、三、测温点的平面布置原则:1)平面形状中心;2)中心对应的侧边及容易散发热量的拐角处。
3)主风向部位。
总之测温点的位置应选择在温度变化大,容易散热、受环境温度影响大,绝热温升最大和产生收缩拉应力最大的地方。
四、四、测温点的竖向布置:一般每个平面位置设置一组3个,分别布置在砼的上、中、下位置,上下测点均位于砼表面10厘米处,另外在空气,保温层中各埋设1个测温点测量环境温度、保温层内的温度。
大体积混凝土养护一般不少于 7 d,并根据板中心混凝土温度变化及同条件养护的混凝土试块强度确定养护周期。
混凝土的养护应采用保温,保湿及缓慢降温的技术措施,一般在浇筑在厚度大于 3 m 时,要求考虑在大体积混凝土内部设置冷却水循环降温措施,设冷却水管,并通过温度检测控制混凝土中心与表面的温度或混凝土内部与冷却水的温度控制在 25℃以内。
降低水泥水化热和变形(1)在厚大无筋的或少筋的大体积混凝土中,掺加总量不超过 20%的大石块,减少混凝土的用量,以达到降低水化热和节省水泥的目的。
大体积混凝土测温点布置原则
大体积混凝土测温点布置原则:一、大体积砼温度的控制不仅要控制内表温差(指砼中心最高温度与之相对应的砼表面温度之间的温差)和表面温差(指砼中心最高温度相对应的表面温度与环境温度之间的温差),更要控制砼的综合降温差(指砼内部的平均降温差)和降温速率(指砼中心温度或表面温度每天的降温幅度)。
二、砼的任一降温差都可以分解为平均降温差及非均匀降温差,前者产生外约束应力,是产生贯穿性裂缝的主要原因,后者引起自约束应力,主要引起表面裂缝。
非均匀降温差主要是控制砼的内表温差。
规范规定大体积砼的内表温差应控制在25摄氏度,该控制值是比较严格的,根据我们的工程实践,该值可根据工程实际情况适当放宽,这主要取决于砼的一些实际物理指标,如:不同龄期的弹性模量、松弛系数和抗拉强度。
因此,在大体积砼施工前,对温度控制指标进行一些理论计算,对施工大有指导意义。
三、测温点的平面布置原则:1)平面形状中心;2)中心对应的侧边及容易散发热量的拐角处。
3)主风向部位。
总之测温点的位置应选择在温度变化大,容易散热、受环境温度影响大,绝热温升最大和产生收缩拉应力最大的地方。
四、测温点的竖向布置:一般每个平面位置设置一组3个,分别布置在砼的上、中、下位置,上下测点均位于砼表面10厘米处,另外在空气,保温层中各埋设1个测温点测量环境温度、保温层内的温度。
大体积混凝土养护一般不少于7 d,并根据板中心混凝土温度变化及同条件养护的混凝土试块强度确定养护周期。
混凝土的养护应采用保温,保湿及缓慢降温的技术措施,一般在浇筑在厚度大于3 m 时,要求考虑在大体积混凝土内部设置冷却水循环降温措施,设冷却水管,并通过温度检测控制混凝土中心与表面的温度或混凝土内部与冷却水的温度控制在25℃以内。
2.3 降低水泥水化热和变形(1)在厚大无筋的或少筋的大体积混凝土中,掺加总量不超过20%的大石块,减少混凝土的用量,以达到降低水化热和节省水泥的目的。
(2)改善配筋。
大体积混凝土测温点布置原则
大体积混凝土测温点布置原则:一、大体积砼温度的控制不仅要控制内表温差(指砼中心最高温度与之相对应的砼表面温度之间的温差)和表面温差(指砼中心最高温度相对应的表面温度与环境温度之间的温差),更要控制砼的综合降温差(指砼内部的平均降温差)和降温速率(指砼中心温度或表面温度每天的降温幅度)。
二、砼的任一降温差都可以分解为平均降温差及非均匀降温差,前者产生外约束应力,是产生贯穿性裂缝的主要原因,后者引起自约束应力,主要引起表面裂缝。
非均匀降温差主要是控制砼的内表温差。
规范规定大体积砼的内表温差应控制在25摄氏度,该控制值是比较严格的,根据我们的工程实践,该值可根据工程实际情况适当放宽,这主要取决于砼的一些实际物理指标,如:不同龄期的弹性模量、松弛系数和抗拉强度。
因此,在大体积砼施工前,对温度控制指标进行一些理论计算,对施工大有指导意义。
三、测温点的平面布置原则:1)平面形状中心;2)中心对应的侧边及容易散发热量的拐角处。
3)主风向部位。
总之测温点的位置应选择在温度变化大,容易散热、受环境温度影响大,绝热温升最大和产生收缩拉应力最大的地方。
四、测温点的竖向布置:一般每个平面位置设置一组3个,分别布置在砼的上、中、下位置,上下测点均位于砼表面10厘米处,另外在空气,保温层中各埋设1个测温点测量环境温度、保温层内的温度。
大体积混凝土养护一般不少于 7 d,并根据板中心混凝土温度变化及同条件养护的混凝土试块强度确定养护周期。
混凝土的养护应采用保温,保湿及缓慢降温的技术措施,一般在浇筑在厚度大于 3 m 时,要求考虑在大体积混凝土内部设置冷却水循环降温措施,设冷却水管,并通过温度检测控制混凝土中心与表面的温度或混凝土内部与冷却水的温度控制在 25℃以内。
2.3 降低水泥水化热和变形(1)在厚大无筋的或少筋的大体积混凝土中,掺加总量不超过 20%的大石块,减少混凝土的用量,以达到降低水化热和节省水泥的目的。
(2)改善配筋。
大体积筏板基础混凝土测温
大体积筏板基础混凝土测温1测温点布置测温点布置必须具有代表性和可比性。
沿浇筑高度布置在底部、中部和表面。
垂直测点间距为500--800mm,平面布置应在边缘和中间,平面测点间距不大于IOm e本工程采用人工布点测温,根据代表性和可比性布置测温点,在筏板基础上共布置15个点,每仓平均5个点。
具体布置平面图见附图,每个测点沿深度方向埋置3个侧温度管,水平距离为5m,分别布置在距离底板面100mm处、承台中部和距离承台上部100mm处(I在磅浇筑初期,磅温度上升较快前3天每2~3小时测一次,温度下降阶段每8小时测一次,同时应测大气温度。
测温数据应做好记录。
2测温措施大体积险为防止由于内部温差超过25。
C而发生裂缝,必须监测佐内部的温度,并及时采取不同的保温措施,控制验内部温差不超过25℃f这是大体积佐施工的重要环节,要充分准备、认真监测并做好记录。
①、混凝土浇筑时应设专人配合预埋测温管。
测温线应按测温平面布置图进行预埋,预埋时测温管与钢筋绑扎牢固,以免位移或损坏。
每组测温线有3根(即不同长度的测温线)在线的上断用胶带做上标记,便于区分深度。
测温线用塑料带罩好,绑扎牢固,不准将测温端头受潮。
测温线位置用保护木框作为标志,便于保温后查找。
②、测温孔的布置:平面点位控制测量,每个平面测点埋设上、中、下三根测温线,各测点平面距离约5mβ③、上下表面测点距底板顶、底面Ioomm,中点设在板厚的中间.④、配备专职测温人员,按两班考虑。
对测温人员要进行培训和技术交底。
测温人员要认真负责,按时按孔测温,不得遗漏或弄虚作假。
测温记录要填写清楚、整洁,换班时要进行交底。
⑤、测温工作应连续进行,每测一次,持续测温及混凝土强度达到时间,强度并经技术部门同意后方可停止测温。
⑥、在测温过程中,当发现内部温度差超过25。
C应及时加强保温,防止硅产生温差应力和裂缝。
大体积混凝土测温布置(一)2024
大体积混凝土测温布置(一)引言概述:大体积混凝土测温布置对于混凝土结构的温度控制和预防裂缝的形成至关重要。
本文将从测温原理、布置原则、传感器选择、布置方式和监测数据处理五个方面,详细阐述大体积混凝土测温布置的相关内容。
正文内容:
1. 测温原理
- 热传导原理:介绍混凝土中温度传导的基本原理。
- 温度传感器工作原理:介绍常见的混凝土温度传感器的工作原理,例如电阻温度计、热电偶等。
2. 布置原则
- 布置密度:根据混凝土浇筑的体积和形状,确定布置传感器的密度。
- 布置位置:根据混凝土中温度变化的特点,选择合适的位置进行布置,如表面布置、内部布置等。
3. 传感器选择
- 温度传感器类型:根据混凝土测温的要求,选择合适的温度传感器,考虑精度、稳定性等因素。
- 抗干扰能力:选择具有良好抗干扰能力的温度传感器,以保证测温准确性。
4. 布置方式
- 表面布置:介绍表面布置方式,包括传感器的安装方法和注意事项。
- 内部布置:介绍内部布置方式,如通过预埋法和后加装法来实现温度传感器的布置。
5. 监测数据处理
- 数据采集:介绍大体积混凝土测温数据的采集方法,如使用数据采集仪器等。
- 数据分析:阐述对测温数据进行分析和处理的方法,例如曲线分析、异常数据处理等。
总结:大体积混凝土测温布置的合理与否直接影响混凝土结构的性能和使用寿命。
通过本文的介绍,我们可以了解到测温原理、布置原则、传感器选择、布置方式和监测数据处理等方面的知识,从而有效地实施大体积混凝土测温布置,提高混凝土结构的安全性和可靠性。
大体积砼测温方案(终极版)
大体积混凝土测温方案一、概述大体积混凝土是指混凝土结构物实体最小尺寸不小于1m的大体量混凝土,或预计会因混凝土中胶凝材料水化引起的温度变化和收缩而导致有害裂缝产生的混凝土。
随着我国建筑技术的不断提高,大体积混凝土结构的应用也越来越广泛。
大体积混凝土的截面尺寸较大,由荷载引起裂缝的可能性较小,但由于温度产生的变形对大体积混凝土却极为不利。
在混凝土硬化初期,水泥水化的同时释放出较多热量,而混凝土与周围环境的热交换较慢,所以混凝土内部的热量不断增加,使其内部温度不断升高,混凝土的体积膨胀变大。
随着混凝土水化速度减慢,释放的热量也越来越少,积聚在混凝土中的热量由于热交换的进行逐渐减少,混凝土的温度降低,因而产生收缩。
当此收缩受到约束时,混凝土内部产生拉应力(简称主温度应力),此时混凝土的强度较低,如不足抵抗拉应力时,混凝土内部就产生了裂缝。
此外,混凝土的导热系数相对较小。
其内部的热量不易散失,而表面热量易与周边环境进行热交换而减少,从而温度降低,就形成混凝土内外的温差。
如温差较大,则混凝土表里收缩不一致,也使混凝土开裂。
因此,在大体积混凝土中,必须考虑温度应力和温差引起的不均匀收缩应力(简称温差应力)的影响。
而温度应力和温差应力大小,又涉及到结构物的平面尺寸、结构厚度、约束条件、周边环境情况、含筋率、混凝土各种组成材料和物理力学性能、施工工艺等许多因素影响。
故为了保证大体积钢筋混凝土施工质量,国家建设部于2010年颁布的《高层建筑混凝土结构技术规程》(JGJ 3-2010)中第13.9.6条规定:“大体积混凝土浇筑后,应在12h内采取保湿、控温措施。
混凝土浇筑体的里表温差不宜大于25℃,混凝土浇筑体表面与大气温差不宜大于20℃”。
中华人民共和国住房和城乡建设部颁发的《大体积混凝土施工规范》(GB 50496-2009)中第5.5.1、5.5.3、6.0.1、6.0.2、6.0.3、6.0.6条及《混凝土结构工程施工规范》(GB 50666-2011)中第8.5.2、8.5.4、8.5.6、8.7.3、8.7.4、8.7.6、8.7.7条中都对大体积混凝土浇筑后的养护和测温作了明确的规定。
大体积混凝土施工规范测温要求(2024)
引言概述:大体积混凝土施工规范测温要求是在大型基础建设项目中关键的一环,它直接影响到混凝土的质量与性能。
混凝土的温度是一个关键参数,在混凝土养护过程中起到了至关重要的作用。
本文将详细介绍大体积混凝土施工规范中对测温要求的各个方面。
正文内容:一、测温工具选择1.温度传感器的类型必须使用符合国家标准的热电阻温度传感器;热电阻温度传感器的使用范围应覆盖施工过程中常见的温度范围。
2.传感器的校准与检测温度传感器应在使用前进行校准,确保其准确度符合标准要求;定期对温度传感器进行检测,确保其测量精度。
3.测温设备的选择应使用专业的测温设备,保证测温不受外界环境的干扰;测温设备应具备合适的尺寸,便于在混凝土中定位和使用。
二、测点布置与测量方法1.测点布置测点应均匀分布在混凝土中,以保证测温数据的准确性;测点应尽量远离任何外部热源,如阳光直射、机械设备等。
2.测点尺寸与深度测点的尺寸应适当,既能满足测温的要求,又不会引起混凝土的破坏;测点的深度应足够达到混凝土温度的有效范围。
3.测量方法测温首先需要将温度传感器插入混凝土中,确保与混凝土充分接触;随后,使用专业的测温设备对温度传感器进行读数。
三、测温时间点的选择1.初始测温初始测温的时间点为混凝土浇筑后的30分钟内,测量混凝土的初始温度;初始温度能为施工及后续阶段的温度控制提供依据。
2.日常测温在混凝土养护过程中,每日固定时间段内测量混凝土温度,以了解混凝土的发展趋势;日常测温为及时调整养护措施提供基础,确保混凝土早期强度和耐久性。
3.最终测温在混凝土养护周期结束时,进行最终测温;最终测温用于判定混凝土是否达到设计要求的强度与性能。
四、测温记录与数据处理1.测温记录每次测温都应准确记录,包括测点的位置、深度和测量的时间;2.数据处理测温数据的处理应借助计算机软件进行,确保数据的准确性与可靠性;将测温数据进行分析与比较,以提供混凝土质量与性能的评估依据。
3.异常情况处理对于测温数据中出现的异常情况,如突然升高或降低的温度值,应及时进行分析与处理;如果是测温设备或传感器的问题,应及时修复或更换。
大体积混凝土测温方案及测温方法
大体积混凝土测温方案及测温方法大体积混凝土测温方案及测温方法X交通大学第一医院l号、2号高层住宅楼采用筏板混凝土基础,剪力墙结构,地上33层.地下2层(含夹层),建筑高度97.8 m,建筑面积72,469rn2。
1号、20楼筏板混凝土总方量分别约为1 250m 3,筏板强度等级C35,抗渗等级P6。
筏板混凝土厚度为600mm,基础梁l400mm,核心承台1 800mm。
本筏板工程属于大体积混凝土。
大体积混凝土施二r中要求控制混凝土内外温差,混凝土厚度小于2. 0m时,内外温差不宜大于25℃;对于厚度超过2.0m的混凝土,根据已有的经验,只要控制温度梯度小于12.5℃/m。
可适当放宽内外温差至30~ 33℃,否则会产生温差裂缝。
1 大体积混凝土施工的技术要求1.1 本工程大体积混凝±筏板的特点(1)筏板要求具有足够的强度,达到设计强度等级C35。
水泥、粉煤灰、膨胀剂等胶凝材料在水化过程中将放出大量的热量。
(2)筏板要求具有良好的抗渗性,因此,原材料要严格控制含泥量。
在混凝土配合比设计中要加入优质的泵送减水剂,提高混凝土密实度,同时掺入膨胀剂,以补偿混凝土收缩。
(3)筏板要求具有良好的整体性,防止贯穿性裂缝产生,同时尽量减少浅层裂缝的出现。
1.2 大体积混凝±施工技术要求本工程采用商品混凝土,l号楼于2O04年5月3日(16:30)至5日(16:00)一次浇筑完毕,混凝土浇筑期间环境温度为10~28℃。
混凝土入模温度15—22℃。
2号楼于2004年6月1日(4:30)至2日(16:00)一次浇筑完毕,混凝土浇筑期间环境温度为16~29 ℃,混凝土入模温度22~3l℃。
白天温度较高的时候只覆盖塑料布保湿,晚上温度较低的时候及时增加覆盖棉毡进行保湿保温养护;如遇大雨天则在混凝土上面再加盖塑料布,防止积水太多(不超过20mm)导致混凝土表面温度太低而加大温差。
经过9d的温度监测,1号楼大体积混凝土筏板的内部最高温度从59.9 ℃降至40℃以下,表面温度相应降至30℃左右;2号楼大体积混凝土筏板的内部最高温度从64. 8℃降至40℃以下,表面温度相应降至30℃左右,已达到安全温度,可不对筏板混凝土进行温度监控。
大体积混凝土测温方案
大体积混凝土测温方案一、背景介绍在大体积混凝土工程中,混凝土温度的控制是至关重要的。
混凝土内部的温度变化会影响其强度发展、收缩等性能,因此需要对混凝土进行温度监测。
本文档旨在提供一个详细的大体积混凝土测温方案,以确保混凝土工程的质量可控性。
二、测温设备选择针对大体积混凝土的温度监测,需要选择合适的测温设备。
根据工程实际需求和监测精度要求,建议选用高精度的无线温度传感器,并配备数据采集器。
此类设备具有灵便布置、实时监测和数据记录等特点,方便工程人员进行监测与分析。
三、测温点布置1. 根据混凝土结构特点确定温度监测点的数量和位置,应充分考虑混凝土的体积、凝结过程及变形情况等因素。
2. 通常情况下,建议每一个监测平面布置不少于3个监测点,以获取更准确的温度变化数据。
3. 温度监测点应尽量布置在混凝土断面的不同位置,包括表面、内部和边缘等,以便全面了解混凝土的温度变化情况。
四、测温操作步骤1. 安装好无线温度传感器及数据采集器,并确保设备能正常工作。
2. 根据测温点布置方案,在混凝土的不同位置插入温度传感器,尽量保证传感器插入深度一致。
3. 对测温设备进行参数设置,包括采样间隔、数据存储方式等,以满足实际需求。
4. 启动数据采集器,并进行实时监测,记录温度数据。
5. 在混凝土凝结过程中,定期检查温度传感器的工作状态,确保数据采集的准确性。
五、数据处理与分析1. 将采集到的温度数据导入计算机进行处理,得到温度随时间的变化曲线。
2. 根据混凝土的具体要求,分析温度变化的规律,评估混凝土的温度发展情况。
3. 如果温度变化不符合设计要求,需要及时采取措施进行调整,以确保混凝土工程的质量。
六、安全注意事项在进行大体积混凝土温度监测时,需要注意以下安全事项:1. 操作人员应具备相关的温度测量知识和操作经验。
2. 在安装和更换温度传感器时,应注意避免损坏混凝土结构。
3. 使用的测温设备应符合相关的安全标准,并经过定期维护和检查。
大体积混凝土测温点布置原则教程文件
大体积混凝土测温点布置原则教程文件1.测温点布置密度:大体积混凝土结构的测温点布置应根据混凝土结构的尺寸、形状、厚度和特点等因素确定。
一般来说,大体积混凝土结构的测温点布置密度较高,以确保可以全面、准确地监测混凝土的温度变化。
具体的布置密度可以根据经验和相关规范进行确定。
2.测温点布置位置:测温点应尽可能均匀地布置在混凝土结构的各个部位,以反映整个结构的温度变化情况。
通常情况下,测温点应布置在混凝土结构的表面、内部和周边,包括顶部、底部、侧面、中部等位置。
同时,应注意避开混凝土中的钢筋和中空位置,以免测温点的准确性受到干扰。
3.测温点布置深度:测温点的布置深度应根据混凝土结构的厚度和特点等考虑。
一般来说,测温点的布置深度应大于混凝土表面的深度,以确保可以准确测量混凝土内部的温度变化。
具体的布置深度可以根据经验和相关规范进行确定。
4.测温点布置方法:在大体积混凝土结构中,常用的测温点布置方法包括埋设式、贴壁式和贴面式等。
埋设式测温点是将测温点埋设在混凝土结构中,通常使用传感器或电缆等设备进行监测;贴壁式测温点是将测温点贴在混凝土结构的表面,通常使用贴片式温度计进行监测;贴面式测温点是将测温点贴在混凝土结构的侧面或其他部位,也通常使用贴片式温度计进行监测。
选择合适的测温点布置方法需要考虑混凝土结构的特点、施工条件和监测要求等因素。
5.测温点布置数量:大体积混凝土结构的测温点数量应根据混凝土的体积和结构的特点确定。
一般来说,测温点的数量应足够多,以确保可以全面、准确地监测到混凝土的温度变化。
具体的布置数量可以根据经验和相关规范进行确定。
以上是大体积混凝土测温点布置的一些原则。
在实际施工中,应根据具体情况进行合理布置,以确保测温点的数量、位置、深度和方法等能够满足监测和控制混凝土温度的要求,从而保证混凝土的质量和性能。
大体积混凝土测温点布置原则副本
大体积混凝土测温点布置原则副本范本一:大体积混凝土测温点布置原则一:引言1.1 目的本文档旨在规范大体积混凝土工程中测温点的布置原则,确保混凝土在施工过程中的温度控制和质量控制。
1.2 适用范围本文档适用于大体积混凝土工程的施工过程中,包括混凝土搅拌、运输、浇筑和养护等各个环节。
二:测温点布置原则2.1 测温点数量根据混凝土工程的规模和要求,确定测温点的数量。
一般情况下,每10m³混凝土设置一个测温点,确保测温点的分布均匀。
2.2 测温点位置2.2.1 表面测温点在混凝土的表面布置测温点,可通过在混凝土表面钻孔或粘贴测温片等方式布置。
2.2.2 内部测温点在混凝土内部布置测温点,可以采用钢筋穿孔、磁粉探伤等方式布置。
内部测温点的数量应根据混凝土工程的要求进行评估。
2.3 测温点布置的原则2.3.1 测温点的分布均匀测温点应在混凝土结构中分布均匀,以反映整体温度变化情况。
避免将多个测温点设置在同一位置,导致测温结果误差较大。
2.3.2 测温点的代表性测温点应具有代表性,能够准确反映混凝土的温度变化。
避免将测温点设置在混凝土温度分布不均匀的区域,以免影响测温结果的准确性。
2.3.3 测温点的便捷性测温点应布置在施工操作方便的位置,以便进行实时监测和后续数据分析。
三:附件本文档涉及的附件如下:附件1:大体积混凝土测温点布置示意图四:法律名词及注释1. 混凝土:指水泥、骨料、粉煤灰等原料经过一定配比、搅拌、浇筑或成型后,经过一定时间的养护、固化而成的人工石材。
五:结束语本文档详细介绍了大体积混凝土测温点布置的原则,通过合理布置测温点可以准确控制混凝土的温度,保证施工质量。
附件中提供了测温点布置示意图。
以上是本文档的所有内容。
---范本二:大体积混凝土测温点布置建议一:引言1.1 目的本文档旨在给出大体积混凝土工程中测温点布置的建议,以确保混凝土的温度控制和工程质量。
1.2 适用范围本文档适用于各类大体积混凝土工程,包括但不限于水坝、桥梁、地下结构等。
大体积混凝土设置测温点的要求
大体积混凝土设置测温点的要求(原创实用版)目录1.引言2.大体积混凝土的特点3.测温点的设置要求4.测温点的布置方式5.测温点的维护与管理6.结论正文【引言】大体积混凝土是指一次浇筑的混凝土体积大于或等于 100 立方米,或者无论浇筑体积多少,由于混凝土浇筑部位的结构特点和工艺条件,使混凝土在浇筑和硬化过程中,由于热应力和其它因素可能引起裂缝的混凝土。
大体积混凝土的施工过程中,温度控制是关键,而温度控制的前提是正确设置测温点。
本文将对大体积混凝土设置测温点的要求进行详细解析。
【大体积混凝土的特点】大体积混凝土的特点主要包括:体积大、浇筑速度快、热收缩裂缝控制难度大、水泥用量大、水泥热释放量大、混凝土热应力大等。
这些特点使得大体积混凝土在施工过程中,温度控制尤为重要。
【测温点的设置要求】设置测温点应满足以下要求:1.测温点应具有足够的代表性,能够反映混凝土整体的温度变化趋势。
2.测温点应设置在混凝土结构的关键部位,如浇筑交界处、骨料集中部位、混凝土热收缩裂缝易发部位等。
3.测温点的布置应均匀,间距适当,以保证测量数据的准确性。
4.测温点应设置在便于观测和维护的位置,以便于实时监测温度变化和进行温度调控。
【测温点的布置方式】测温点的布置方式主要包括网格布置、辐射布置和同心圆布置。
其中,网格布置适用于结构规则、浇筑面积较大的混凝土结构;辐射布置适用于结构不规则、浇筑面积较小的混凝土结构;同心圆布置适用于圆形或近似圆形的混凝土结构。
在实际工程中,可以根据具体情况选择合适的布置方式。
【测温点的维护与管理】测温点的维护与管理主要包括以下几点:1.确保测温设备完好,定期检查和校准,保证测量数据的准确性。
2.定期清理测温点周围的杂物和灰尘,避免影响测量精度。
3.对测温点进行定期维护,确保测温点正常工作。
4.对测温数据进行实时记录和分析,根据温度变化趋势,及时调整施工方案和温度调控措施。
【结论】大体积混凝土的温度控制是保证混凝土质量和施工顺利的关键,而正确设置测温点是实现温度控制的前提。
大体积混凝土测温方案
基础底板大体积混凝土测温方案财税综合楼工程建筑面积66567m²底板承台砼量达12138m²之多,砼底板厚度为1.5m,和2.2m采用泵送浇筑工艺。
为了解底板大面积砼内部由于水泥水化热引起的温度升降规律,及时掌握底板砼中心与承台砼表面及砼表面层与大气温度间温差变化。
为此,必须通过测温进行监测,监测中如发现温差超过规定要求时,可采取措施严防砼产生温差而引起的裂缝。
一、测温设备采用JXC-54系列巡回测温仪和WEC-010铜热电阻为测温元件,每个测温元件,必须用环氧树脂封闭后作浸水监验,以确保不渗水。
二、测温点布置根据本工程底板的平面尺寸、形状、板厚度,宜在1/3布置测温点,按板厚分三层,每层平面布置16个测点,砼表面布置3个测温点,共设测温点51个。
具体布点见附图。
三、测温点的埋设1、经封闭后的热电阻元件安装在Dg32钢套管内,每个热电阻元件埋设标高按布点图要求(Dg32钢套管另附详图)。
2、钢套管应事先按标高要求焊接在φ12-φ14钢筋上备用。
3、待热电阻元件埋入钢套管后,即按测点布置要求将钢筋插入底板,并与底板钢筋焊接以固定。
四、测温前准备工作1、在基坑测温区边搭设3.5m×3.00m简易测温操作室。
2、测温设备校验正确,热电阻元件按布置图要求埋入底板,然后将导线引至测温操作室,并与测温仪连接。
3、在浇捣砼前,测量好各热电阻元件的粗始温度,并作好书面记录。
4、对测温人员作好测温技术交底。
五、测温要求1、砼入模前应测定砼入模温度。
2、自砼入模至砼浇捣完毕起七天内每隔二小时测温一次,第八天起至第十四天,每隔四小时测温一次,十四天以后一般情况下,可停止测温。
3、每测温一次,应及时计算出每个测温点的升温值及与砼表面的温差,并计算出砼表面与大气温度之差。
4、按委托单位要求凡底板砼中心区砼与砼表面温度差超过30℃时,必须报告委托方,超过30℃时,必须采取有效技术措施,严防底板砼产生水化引起裂缝事故。
大体积混凝土测温点布置原则
大体积混凝土测温点布置原则:一、大体积砼温度的控制不仅要控制内表温差(指砼中心最高温度与之相对应的砼表面温度之间的温差)和表面温差(指砼中心最高温度相对应的表面温度与环境温度之间的温差),更要控制砼的综合降温差(指砼内部的平均降温差)和降温速率(指砼中心温度或表面温度每天的降温幅度)。
二、砼的任一降温差都可以分解为平均降温差及非均匀降温差,前者产生外约束应力,是产生贯穿性裂缝的主要原因,后者引起自约束应力,主要引起表面裂缝。
非均匀降温差主要是控制砼的内表温差。
规范规定大体积砼的内表温差应控制在25 摄氏度,该控制值是比较严格的,根据我们的工程实践,该值可根据工程实际情况适当放宽,这主要取决于砼的一些实际物理指标,如:不同龄期的弹性模量、松弛系数和抗拉强度。
因此,在大体积砼施工前,对温度控制指标进行一些理论计算,对施工大有指导意义。
三、测温点的平面布置原则:1 )平面形状中心;2 )中心对应的侧边及容易散发热量的拐角处。
3)主风向部位。
总之测温点的位置应选择在温度变化大,容易散热、受环境温度影响大,绝热温升最大和产生收缩拉应力最大的地方。
四、测温点的竖向布置:一般每个平面位置设置一组3 个,分别布置在砼的上、中、下位置,上下测点均位于砼表面10 厘米处,另外在空气,保温层中各埋设1个测温点测量环境温度、保温层内的温度大体积混凝土养护一般不少于7 d,并根据板中心混凝土温度变化及同条件养护的混凝土试块强度确定养护周期。
混凝土的养护应采用保温,保湿及缓慢降温的技术措施,一般在浇筑在厚度大于3 m时,要求考虑在大体积混凝土内部设置冷却水循环降温措施,设冷却水管,并通过温度检测控制混凝土中心与表面的温度或混凝土内部与冷却水的温度控制在25 C以内。
2.3降低水泥水化热和变形(1)在厚大无筋的或少筋的大体积混凝土中,掺加总量不超过20%的大石块,减少混凝土的用量,以达到降低水化热和节省水泥的目的。
(2 )改善配筋。
大体积混凝土测温布置(二)2024
大体积混凝土测温布置(二)引言概述:大体积混凝土测温布置是指在大体积混凝土工程中,合理布置温度测量点,以监测混凝土的温度变化情况。
本文将从测温点的选取、布置方式、测温设备、数据采集及分析等五个大点进行详细阐述。
正文:一、测温点的选取1. 根据混凝土结构和尺寸选取主要测温点,如混凝土心温度点、混凝土表面温度点等。
2. 考虑混凝土温度变化的不均匀性,选取分布均匀的测温点。
3. 针对特殊部位,如跨梁、钢筋浇筑区域,选取靠近该部位的测温点。
二、布置方式1. 根据混凝土工程结构特点,采用直线型、网格型或环形布置方式。
2. 确保测温点之间的距离适当,通常不超过2米。
3. 避免测温点过于集中或过于分散,保证整体布置的有效性。
三、测温设备1. 选择适合大体积混凝土测温的传感器,如热电偶、光纤光栅等。
2. 确保传感器的测温范围和精度满足实际需求。
3. 防止传感器受到混凝土浇筑过程中的损坏,采取保护措施。
四、数据采集1. 使用专业的数据采集设备,确保测温数据的准确性和稳定性。
2. 定期校准传感器,避免测温数据产生偏差。
3. 建立完备的数据采集记录系统,确保数据存档和备份。
五、数据分析1. 对测温数据进行实时监测和记录。
2. 通过数据分析,判断混凝土的温度变化趋势,及时发现异常情况。
3. 结合混凝土的温度变化情况,优化施工方案,确保混凝土的质量和安全。
总结:大体积混凝土测温布置是保障工程质量的重要环节。
合理选取测温点、科学布置方式、使用适当的测温设备、精确进行数据采集和深入分析,可以有效监测和控制混凝土温度变化,在工程施工中起到重要作用。
大体积混凝土测温规范
大体积混凝土测温规范大体积混凝土测温规范1. 引言大体积混凝土是指单个施工部位需浇筑的混凝土体积大于3m³的混凝土。
由于大体积混凝土在硬化过程中温度变化较大,会对混凝土的强度、收缩、裂缝等性能产生影响,因此需要对混凝土进行温度监测。
本规范旨在规范大体积混凝土测温的方法和要求,保证混凝土施工的质量和安全。
2. 测温仪器2.1 温度计应选择精确、灵敏,并能满足施工要求的仪器。
2.2 常用的测温仪器包括接触式温度计、红外线测温仪和电子数据采集系统等。
3. 测点设置3.1 测温点应平均分布在混凝土体积中,覆盖混凝土体积的不同高度和位置。
3.2 测量剂的设置应在施工前确定,并进行标记和记录,以便后续的数据采集和分析。
4. 测温方法4.1 接触式测温方法4.1.1 将温度计的探头插入混凝土内部,直接测量混凝土的温度。
4.1.2 测温过程中应保证温度计与混凝土接触良好,排除外界环境对测温结果的干扰。
4.1.3 测温时间应根据混凝土的特性和测温点的位置确定,确保测量结果准确可靠。
4.2 红外线测温方法4.2.1 使用红外线测温仪对混凝土表面进行测温。
4.2.2 测温过程中应保证测温仪与混凝土表面保持一定距离,并保持仪器的稳定性。
4.2.3 测温时间应根据混凝土的特性和测温点的位置确定,确保测量结果准确可靠。
4.3 电子数据采集系统4.3.1 使用电子数据采集系统对混凝土进行实时温度监测。
4.3.2 数据采集系统应具备多点测温、数据存储和分析功能。
4.3.3 测温数据应及时传输到数据采集系统,并进行实时监测和分析。
5. 数据记录与分析5.1 测温数据应及时、准确地记录下来,并进行编号和标记。
5.2 数据记录应包括测温时间、测温点位置、测温方法和温度数值等信息。
5.3 测温数据的分析应结合混凝土的强度、收缩、裂缝等性能要求,评估混凝土的质量和工程安全性。
6. 结论大体积混凝土测温是保证混凝土施工质量和安全的重要环节。
大体积混凝土如何测温(一)2024
大体积混凝土如何测温(一)引言概述:大体积混凝土指的是混凝土结构中具有较大体积和较厚混凝土构件的结构。
在混凝土的浇筑和养护过程中,及时准确地监测混凝土温度是确保混凝土质量的重要环节。
本文将介绍大体积混凝土测温的方法和步骤。
正文:一、传感器选择和布置1.选择适合的传感器类型,常用的有热电偶、铂电阻温度传感器等。
2.根据混凝土的布置及结构尺寸,合理布置传感器,保证温度监测的全面性和准确性。
3.传感器与混凝土的接触面应充分接触,避免气隙和空洞,以确保测量结果的准确性。
二、测量仪器准备1.选择合适的温度测量仪器,如数字温度计、多功能温度计等。
2.校准测量仪器,确保测量结果的准确性和可靠性。
3.检查测量仪器的操作指南并熟悉操作步骤,以确保正确使用测温设备。
三、测温操作步骤1.根据实际需要确定监测时间间隔,例如每小时或每日进行测温。
2.在混凝土浇筑后的一定时间内进行测温,例如浇筑后的1小时、3小时等。
3.将温度传感器插入混凝土内部,确保传感器与混凝土结构充分接触。
4.记录测得的温度数值,并标注测量时间,确保数据的准确性和完整性。
5.重复以上操作,持续测温直至混凝土养护结束。
四、监测数据处理1.将测得的温度数据整理并记录。
2.根据监测数据分析混凝土的温度变化趋势,判断混凝土的养护状态及质量。
3.如发现温度异常情况,及时采取措施进行调整或纠正。
4.将监测数据整合为报告,方便后续参考和研究。
五、安全注意事项1.在进行测温操作时,需严格按照相关安全规范进行,并佩戴好相应的防护设备。
2.要保证测温设备和传感器的安全,避免破坏或损坏。
3.在对混凝土进行测温时,需注意周围环境和施工现场的安全,避免发生意外。
总结:通过合理选择和布置传感器,准备好合适的测量仪器,严格按照操作步骤进行测温操作,并合理处理监测数据,可以有效地测量大体积混凝土的温度。
在整个测温过程中,要注意安全事项,确保操作人员和设备的安全。
混凝土温度的及时监测可以帮助我们了解混凝土的养护情况,进而保证混凝土的质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大体积混凝土测温点布置原则大体积混凝土测温点布置原则:一、大体积砼温度的控制不仅要控制内表温差(指砼中心最高温度与之相对应的砼表面温度之间的温差)和表面温差(指砼中心最高温度相对应的表面温度与环境温度之间的温差),更要控制砼的综合降温差(指砼内部的平均降温差)和降温速率(指砼中心温度或表面温度每天的降温幅度)。
二、二、砼的任一降温差都可以分解为平均降温差及非均匀降温差,前者产生外约束应力,是产生贯穿性裂缝的主要原因,后者引起自约束应力,主要引起表面裂缝。
非均匀降温差主要是控制砼的内表温差。
规范规定大体积砼的内表温差应控制在25摄氏度,该控制值是比较严格的,根据我们的工程实践,该值可根据工程实际情况适当放宽,这主要取决于砼的一些实际物理指标,如:不同龄期的弹性模量、松弛系数和抗拉强度。
因此,在大体积砼施工前,对温度控制指标进行一些理论计算,对施工大有指导意义。
三、三、测温点的平面布置原则:1)平面形状中心;2)中心对应的侧边及容易散发热量的拐角处。
3)主风向部位。
总之测温点的位置应选择在温度变化大,容易散热、受环境温度影响大,绝热温升最大和产生收缩拉应力最大的地方。
四、四、测温点的竖向布置:一般每个平面位置设置一组3个,分别布置在砼的上、中、下位置,上下测点均位于砼表面10厘米处,另外在空气,保温层中各埋设1个测温点测量环境温度、保温层内的温度。
大体积混凝土养护一般不少于 7 d,并根据板中心混凝土温度变化及同条件养护的混凝土试块强度确定养护周期。
混凝土的养护应采用保温,保湿及缓慢降温的技术措施,一般在浇筑在厚度大于 3 m 时,要求考虑在大体积混凝土内部设置冷却水循环降温措施,设冷却水管,并通过温度检测控制混凝土中心与表面的温度或混凝土内部与冷却水的温度控制在25℃以内。
2.3 降低水泥水化热和变形(1)在厚大无筋的或少筋的大体积混凝土中,掺加总量不超过 20%的大石块,减少混凝土的用量,以达到降低水化热和节省水泥的目的。
(2)改善配筋。
为了保证每个浇筑层上下均有温度筋,可建议设计人员将分布筋做适当调整。
温度筋宜分布细密,一般用ф 8 钢筋,双向配筋,间距 15 cm.这样可以增强抵抗温度应力的能力。
2.4 其他方面(1)改善约束条件,削减温度应力。
采取分层或分块浇筑大体积混凝土,合理设置水平或垂直施工缝,或在适当的位置设置施工后浇带,以放松约束程度,减少每次浇筑长度的蓄热量,防止水化热的积聚,减少温度应力。
对大体积混凝土基础与厚大的混凝土垫层之间设置滑动层,如采用平面浇沥青或铺卷材。
在垂直面、键槽部位设置缓冲层,如铺设 30~50 mm 后沥青木丝板或聚苯乙烯泡沫塑料,以消除嵌固作用,释放约束应力。
(2)提高混凝土的极限拉伸强度。
选择良好继配的粗骨料,严格控制含泥量,加强混凝土的振捣,提高混凝土密实度和抗拉强度,减小收缩变形,保证施工质量。
采取二次投料法,二次振捣法,浇筑后及时排除表面积水,加强早期养护,提高混凝土早期或相应龄期的抗拉强度和弹性模量。
在大体积混凝土的基础内设置必要的温度配筋,在截面变形和转折处,底、顶板与墙转折处,孔洞转角及周边,增加斜向构造配筋,以改善应力集中,防止裂缝出现。
3 、大体积混凝土的信息化施工大体积混凝土施工应加强测温和温度控制,实行信息化控制,随时控制混凝土内的温度变化,以便及时调整保温及养护措施,使混凝土的温度梯度和湿度不至过大,以有效控制裂缝的出现。
3.1 温度监测为掌握基础内部混凝土实际温度变化情况,了解冷却水管进出水温度,对基础内外部以及进出水管进行测温记录,密切监视温差波动,来指导混凝土的养护工作,并同时控制冷却水流量以及流向。
测温设备可采用“大体积混凝土温度微机自动测试仪”,温度传感器预先埋设在测点位置上,基础承台测点位置分承台内部、薄膜下温度、室内室外温度、冷却水管进、出水温度设置。
测点温度、温差以及环境温度的数据与曲线用电脑打印绘制。
当混凝土内外温差超过控制要求时,系统马上报警。
测温点的布置应考虑由于大体积混凝土浇筑顺序时间不一致,应由各区域均匀布置,核心区、中心区为重点。
3.2 监测结果及其分析根据各测点所测温度汇总混凝土温度情况表,并绘制基础混凝土升降温曲线,了解本工程大体积混凝土测温情况和特点。
根据一般规律,大体积混凝土浇捣结束后,在基础的中心部位将形成一高温区,升温时间为 60~70 h,高温持续时间较长,均在 30~40 h.混凝土的入模温度较高,会加快水泥水化的进行,故早期水化热积聚上升,将造成混凝土的升温速度加快。
当混凝土保温层揭除后,混凝土表面温度会明显受昼夜大气温度的影响,温度下降。
一般循环冷却水带走的中心部位混凝土的热量较四周表面和底部要多,因此,中心部位混凝土因冷却水所产生的降温数值大,混凝土四周表面和底部所产生的降温数值小。
在实际施工中可根据详细测温情况,进行分段计算。
1 工程概况马钢2号2500m3大高炉工程中的高炉本体基础、热风炉基础均属大体积混凝土施工。
高炉本体基础采用大直径挖孔扩底灌注桩和整板式钢筋砼承台的结构形式。
承台底部共有39根桩,承台底板尺寸为:25m*27.6m×2.5m(厚),底板下设0.5m 厚矿渣垫层,底板上为5.47m高直径17m 钢筋混凝土圆柱体,混凝土量约 3300m3。
热风炉基础为30m*53m*3.5m(厚)的整板式钢筋混凝土基础,混凝土量约5600 m3。
大体积混凝土施工时间为2002年1月11日至2002年2月1日。
2 大体积混凝土裂缝成因分析大体积混凝土施工易产生裂缝,产生裂缝有多方面原因,如约束情况,周围环境湿度,混凝土的均匀性,分段是否妥当,结构形式等,都可能引起大体积混凝土的裂缝。
就本工程的大体积混凝土而言,由于其截面尺寸较大,所以外荷载或次应力引起的裂缝可能性很小。
但正由于结构截面大,水泥水化时所释放的热量就会产生较大的温度变化和收缩作用,由此造成的温度梯度收缩应力是导致大体积砼产生裂缝的主要原因。
这种裂缝分为两类:一、表面裂缝,大体积混凝土由于其内部与表面散热速率不一样,在其表面形成温度梯度,从而表面产生拉应力,内部产生压应力。
而此时混凝土的龄期很短,抗拉强度很低,温差产生的表面拉应力,超过此时的混凝土极限抗拉强度,就会在混凝土表面产生裂缝。
此种裂缝一般出现在混凝土浇筑后的第3~4天里。
二、贯穿裂缝,混凝土浇数天后,水化热基本已释放,就开始进入降温阶段,由于逐渐降温而产生收缩,再加上混凝土硬化过程中,由于混凝土内部拌合水的水化和蒸发以及胶质体的胶凝等作用,促使混凝土硬化时收缩。
这两种收缩由于受到基底或结构本身的约束,也会产生很大的拉应力,当此拉应力超过砼此时的抗拉强度,砼整个截面就可能产生贯穿裂缝,这种收缩裂缝才是危害最大的裂缝。
3 大体积混凝土施工控制措施从控制裂缝的观点看,表面裂缝危害小,但也会影响结构使用或外观;而贯穿裂缝则要影响结构的整体性、耐久性和防水性,可能导致结构不能正常使用。
为了防止温度裂缝的出现或把温度裂缝控制在某个界限内,就必须进行温度控制。
根据以往施工经验和大体积砼的热工计算,为了防止出现有害裂缝,我们在马钢2#2500m 3高炉、热风炉基础施工中采用以下措施:①采用低热水泥——矿渣水泥,降低水化温升,强度富余大;②优化配合比设计,在砼掺入一定比例的粉煤灰、高效缓凝减水剂和膨胀剂,以减少水泥用量,降低水化热,并利用混凝土的60天强度;③砼表面采取蒸气保温养护,缩小砼内外温差。
④控制砼的入模温度,进行斜面薄层连续浇筑;⑤ 电子测温3.1 合理选择原材料石子选用5~31.5mm粒径碎石,连续级配,含泥量不超过1%;中砂(细度模数2. 5)含泥量不超过2%;桃冲水泥厂寨峰牌散装32.5号矿渣水泥;高效缓凝减水剂:1%(占水泥重);膨胀剂JM-Ⅲ:8~10%;Ⅱ级粉煤灰10~15%(占水泥重),原材料均须抽样试验。
3.2 优化混凝土配合比设计为减少水泥用量,降低水化热,减少混凝土收缩,延缓混凝土初凝时间,改善和易性,混凝土配制采用三掺技术(即混凝土中掺加粉煤灰、减水剂、膨胀剂)减水剂针对该工程的施工特点和正处于冬季的情况,实验室经过多次试配,最后选用的配合比为:水:水泥:中砂:石子:粉煤灰:减水剂:膨胀剂=178:275:770:1120:40:3:26。
3.3 大体积混凝土保温养护措施3.3.1 大体积混凝土的热工计算1)混凝土内部最高绝热升温值:T h=WQ /Cγ,本工程中采用32.5矿渣水泥,C20混凝土。
故T h=43.6℃2)、混凝土中心最高温度:T MAX=T j+T h*ξT j=10℃(入模温度),ξ散热系数取0. 8。
T MAX=44.9℃。
3)、混凝土表面温度:Tb=Tq+4h(H-h)△T/H2Tq为环境温度取5℃,△T= T MAX-Tq=39. 9℃,H=2.57m,h=0.07m。
故Tb=9.2℃。
4)、混凝土内表温差:△Tc= T MAX-Tb= 44.9-9.2=35.7℃>25℃显然混凝土内表最大温差超过规定要求值,若不采取措施,将必然会产生表面裂缝。
3.3.2 混凝土表面保温养护措施混凝土浇注完毕,开始三天采用两层草袋和一层塑料薄膜进行覆盖养护,并适当地洒些水在草袋上,以始终保持混凝土表面湿润为宜,塑料薄膜在顶层可以防止水分蒸发和热量散失。
在混凝土浇注后第三天,通过测温发现混凝土开始降温时,采用蒸气保温养护,现场有现成的蒸气,只需用橡胶管将蒸气引入养护薄膜内,根据上述混凝土的热工计算和采用电子测温仪(JDC-2)进行预埋测温来控制通气时间和通气量,混凝土表面温度一般保持在20 ℃左右,则混凝土内表温差为25℃左右,满足温差控制要求。
通过混凝土温度收缩应力计算,温差控制在25℃以下,一般来说,温度应力<f ce/1.15,不会出现温度裂缝。
并且通过蒸气保温养护可以提高混凝土早期强度,增强结构对混凝土收缩的抵抗,有效防止收缩裂缝的出现。
3.4 采用合理的浇筑工艺:本工程中混凝土采用水平循环、斜面分层浇注,每层厚度为30~40cm,上下层间隔时间不得超过初凝时间6小时,分层浇注增加散热面,加快热量释放,使浇注后的混凝土温度分布比较均匀,并可避免形成施工冷缝。
控制好混凝土的坍落度和入模温度,并加强混凝土的振捣,确保混凝土的连续浇注。
3.5 大体积混凝土测温在热风炉基础表面上布置8个测温点、高炉本体基础上布置5个测温点,分别监测中间、表面-0.10m位置处的温度;随时了解混凝土的内部和表面温度。
测温点采取将热电阻导线预埋的方式设置,混凝土浇注12h后开始测温,测温次数应先频后疏,开始3天内每4h一次,温度达到峰值后每8h一次,7天以后每天一次,一直持续2周。
测温时间从2002年2月2日开始到2月19日结束,该期间环境温度-5℃~10℃,混凝土入模温度5℃左右,混凝土内部温度最大为46.5℃,最高温升41. 5℃,第3天达到峰值,维持1-2天后,开始缓慢降温。