安徽大学期末试卷离散数学(上)试卷及参考答案.doc
离散数学期末考试题及详细答案
离散数学期末考试题及详细答案一、选择题(每题5分,共20分)1. 在离散数学中,下列哪个概念用来描述元素与集合之间的关系?A. 并集B. 交集C. 子集D. 元素答案:D2. 布尔代数中,下列哪个运算符表示逻辑“与”?A. ∨B. ∧C. ¬D. →答案:B3. 下列哪个命题的否定是正确的?A. 如果今天是周一,则明天是周二。
B. 如果今天是周一,则明天不是周二。
答案:B4. 在图论中,一个图的顶点数为n,边数为m,下列哪个条件可以保证该图是连通的?A. m > nB. m ≥ nC. m = nD. m > n-1答案:D二、填空题(每题5分,共20分)1. 在集合论中,一个集合的幂集包含该集合的所有______。
答案:子集2. 如果一个函数f: A → B是单射的,那么对于任意的a1, a2 ∈ A,如果a1 ≠ a2,则f(a1) ≠ f(a2)。
这种性质称为函数的______。
答案:单射性3. 在图论中,一个图的直径是指图中任意两个顶点之间的最短路径的最大值。
如果一个图的直径为1,则该图被称为______。
答案:完全图4. 一个布尔表达式可以表示为一系列逻辑运算符和变量的组合。
布尔表达式(A ∧ B) ∨ (¬ A ∧ C)的真值表中,当A为真,B为假,C为真时,整个表达式的值为______。
答案:真三、简答题(每题10分,共30分)1. 请简述什么是图的哈密顿回路,并给出一个例子。
答案:哈密顿回路是图中的一个回路,它恰好访问每个顶点一次。
例如,在一个完全图中,任意一个顶点出发,依次访问其他顶点,最后回到出发点的路径就是一个哈密顿回路。
2. 请解释什么是二元关系,并给出一个二元关系的例子。
答案:二元关系是定义在两个集合上的一个关系,它关联了第一个集合中的元素和第二个集合中的元素。
例如,小于关系是实数集合上的一个二元关系,它关联了每一对实数,如果第一个数小于第二个数。
安徽大学期末试卷离散数学(上)试卷及参考答案.doc
安徽大学20 09 — 20 10 学年第 1 学期 《 离散数学 》考试试卷(A 卷)(时间120分钟)院/系 专业 姓名 学号一、单项选择题(每小题2分,共20分)1. 设:P 天没下雪,:Q 我去镇上,则命题“天正在下雪,我没去镇上”可符号化为( )A.Q P ⌝→⌝;B. P Q ⌝→⌝;C.Q P ⌝∧;D. Q P ⌝∧⌝。
2.下列命题是重言式的是( )A.)()(P Q Q P →∧→;B. )()(Q P P Q P ↔↔↔∧;C. )(Q P Q P →→∧;D. Q P R Q P ∧⌝∧⌝∨→))((。
3. 设解释R 如下:论域D 为实数集,0=a ,y x y x f -=),(,y x y x f <=),(。
下列公式在R 下为真的是( )A.))),(),,((),((z y f z x f A y x A z y x →∀∀∀;B.)),,((a x a f xA ∀;C.)),,((x y x f yA x ∀∀;D.))),,((),((a a x f A y x A y x →∀∀。
4. 对任意集合,,A B C ,下列结论正确的是( )A. C A C B B A ∉⇒∉∧∉][;B. C A C B B A ∈⇒⊆∧∈][;C. C A C B B A ∉⇒∉∧∈][;D. C A C B B A ∈⇒∈∧⊆][。
5. 关于},,{c b a X =到}3,2,1{=Y 的函数{,1,,1,,3}f a b c =<><><>,下列结论不正确的是( )A 、1({3}){}fc -=; B 、1(3)f c -=; C 、({}){3}f c =; D 、()3f c =。
6. 设I 为整数集合,则I 上的二元关系}4|||,{=-><=y x y x R 具有( )A.自反性和对称性;B.反自反性和对称性;C.反自反性和传递性;D.反对称性和传递性。
离散数学期末考试试题及答案
离散数学期末考试试题及答案一、选择题(每题3分,共30分)1. 设集合A={1, 2, 3, 4, 5},B={2, 4, 6, 8},则A∩B是()A. {1, 2, 3, 4, 5}B. {2, 4}C. {1, 3, 5}D. {2, 4, 6, 8}2. 下列关系中,哪个是等价关系?()A. 小于关系B. 大于等于关系C. 模2同余关系D. 整除关系3. 设P(x)是谓词逻辑公式,下列哪个命题与∀xP(x)等价?()A. ∃x¬P(x)B. ¬∀xP(x)C. ¬∃xP(x)D. ∃x¬P(x)4. 一个图的欧拉回路是指()A. 经过每一条边的路径B. 经过每一个顶点的路径C. 经过每一条边的环D. 经过每一个顶点的环5. 设G是一个无向图,下列哪个说法是正确的?()A. G的每个顶点的度数都相等B. G的每个顶点的度数都不相等C. G的任意两个顶点之间都有一条边D. G的任意两个顶点之间都不一定有边6. 下列哪个图是哈密顿图?()A. K3,3B. K5C. K4,4D. K67. 设G是一个具有n个顶点的连通图,则G的最小生成树至少包含()A. n个顶点B. n-1条边C. n+1条边D. 2n条边8. 下列哪个算法可以用来求解最短路径问题?()A. Dijkstra算法B. Kruskal算法C. Prim算法D. Floyd算法9. 设P和Q是两个命题,下列哪个命题与(P→Q)∧(Q→P)等价?()A. P∧QB. P∨QC. P↔QD. ¬P∨¬Q10. 设A是一个有限集合,A的幂集是指()A. A的所有子集B. A的所有真子集C. A的所有非空子集D. A的所有非空真子集二、填空题(每题3分,共30分)11. 设集合A={1, 2, 3, 4, 5},B={2, 4, 6, 8},则A-B=______。
12. 设P(x)是谓词逻辑公式,∃xP(x)表示“存在一个x使得P(x)成立”,那么∀x¬P(x)表示“______”。
大学试卷《离散数学》及答案.docx
离散数学一、填空题(本大题共48分,共16小题,每小题3分)1.--公式为之充分必要条件是其合取范式之每一合取项中均必同时包含一命题变元及其否定2.无向图G具有是生成树,当且仅当的,若G为(n,m)连通图,要确定G的一棵生成树必删掉G的条边。
3.一个无向图的欧拉回路要求经过图中一次且仅一次,汉密顿图要求经过图中一次且仅一次。
4.设P:我生病,Q:我去学校(1)命题“我虽然生病但我仍去学校”符号化为o (2)命题“只有生病的时候,我才不去学校”符号化为o (3)命题"如果我生病,那么我不去学校”符号化为o5.设有33盏灯,拟公用一个电源,则至少需要5个插头的接线板数6.若HlAH2A-AHn是 ,则称Hl, H2, -Hn是相容的,若HlAH2A-AHn是 ,则称H1.H2, -Hn是不相容的7.设f,g,h 是N 到N上的函数(N 为自然数集合),f(n)=n+l;g(n)=2n;h(n)=0;贝lj(fdg)oh=8.K5的点连通度为 ,边连通度为o9.A={1, 2, 3, 4, 5, 6, 8, 10, 24, 36}, R 是A 上的整除关系。
子B={1, 2, 3, 4},那么B的上界是; B的下界是;:6的上确界是; B的下确界为10.命题公式P-*QAR的对偶式为11.设入={1, {2}, <t>},则A的幕集有元素个。
12.设A={0, 1,2, 3}, B={4,6, 7}, C={8, 9, 12, 14}, R1 是由A 到B 的关系,R2 是由B到C原关系,分别定义为Rl={<2, 6>, <3, 4>, <0, 7>} ;R2={<4, 8>, <4, 12>, <6, 12>,〈7, 14〉},则复合关系RloR2 为:13.设A= {<i)}, B={<t>, (<!>}},贝i]P(A) nP(B)= 。
安徽大学期末试卷离散数学期末试卷及答案.doc
一.判断题(共10小题,每题1分,共10分)在各题末尾的括号内画 表示正确,画 表示错误:1.设p、q为任意命题公式,则(p∧q)∨p ⇔ p ( )2.∀x(F(y)→G(x)) ⇔ F(y)→∃xG(x)。
( )3.初级回路一定是简单回路。
( )4.自然映射是双射。
( )5.对于给定的集合及其上的二元运算,可逆元素的逆元是唯一的。
( )6.群的运算是可交换的。
( )7.自然数集关于数的加法和乘法<N,+, >构成环。
( )8.若无向连通图G中有桥,则G的点连通度和边连通度皆为1。
( )9.设A={a,b,c},则A上的关系R={<a,b>,<a,c>}是传递的。
( )10.设A、B、C为任意集合,则A⨯(B⨯C)=(A⨯B)⨯C。
( )二、填空题(共10题,每题3分,共30分)11.设p:天气热。
q:他去游泳。
则命题“只有天气热,他才去游泳”可符号化为。
12.设M(x):x是人。
S(x):x到过月球。
则命题“有人到过月球”可符号化为。
13.p↔q的主合取范式是。
14.完全二部图K r,s(r < s)的边连通度等于。
15.设A={a,b},,则A上共有个不同的偏序关系。
16.模6加群<Z6,⊕>中,4是阶元。
17.设A={1,2,3,4,5}上的关系R={<1,3>,<1,5>,<2,5>,<3,3>,<4,5>},则R的传递闭包t(R) = 。
.18.已知有向图D的度数列为(2,3,2,3),出度列为(1,2,1,1),则有向图D的入度列为。
19.n阶无向简单连通图G的生成树有条边。
20.7阶圈的点色数是。
三、运算题(共5小题,每小题8分,共40分)21.求∃xF(x)→∃yG(x,y)的前束范式。
22.已知无向图G有11条边,2度和3度顶点各两个,其余为4度顶点,求G 的顶点数。
安徽大学离散数学期末考试试卷 (5)
安徽大学20 11 —20 12 学年第 1 学期《 离散数学(上) 》考试试卷(B 卷)(闭卷 时间120分钟)考场登记表序号一、单项选择题(每小题2分,共20分)1. 在下述公式中是重言式为( ) A .()()P Q P Q ∧→∨; B .()(()())P Q P Q Q P ↔↔→∧→; C .()P Q Q ⌝→∧;D .()P P Q ↔∨。
2. 设{,{1},{1,2}}S =∅,则2S有( )个元素。
A .3;B .6;C .7;D .8 。
3.下列各项中,右侧结论不能从其左侧前提有效推出的是( ) A. )()()),()((x xG x xM x G x M x ∃⇒∃→∀; B. )()()),()((x xF x B x x B x F x ∃⇒⌝∀→⌝∀;C. )()())()((x xQ x xP x Q x P x ∀→∀⇒→∀;D. )()())()((x xQ x xP x Q x P x ∀∨∀⇒∨∀。
4.对任意集合D C B A ,,,,下列结论不正确的是( )A.)()()(C B C A C B A ---=--;B.)()()(C A B A C B A ⋂⋃-=--; C.)()()()(D B C A D C B A ⋃-⋂=-⋂-; D.)()()()(D B C A D C B A -⋃-=⋃-⋃。
5. 量词的约束范围称为量词的( )A. 定义域;B. 个体域;C. 辖域;D. 值域。
6. 设个体域为{,}A a b = ,公式()()xP x xS x ∀∧∃在A 上消去量词后应为( ) A.()()P x S x ∧; B.()()()()()P a P b S a S b ∧∧∨; C.()()P a P b ∧; D.()()()()P a P b S a S b ∧∧∨。
7.设},,{c b a X =,X I 是X 上恒等关系,要使R c a a c c b b a I X ⋃><><><><⋃},,,,,,,{为X 上的等价关系,R 应取( )A. },,,{><><c b a b ;B. },,,{><><a c a b ;C. },,,{><><b c a b ;D. },,,{><><a b c a 。
安徽大学期末试卷2005-2006(1A)离散数学期末试卷.doc
安徽大学期末试卷安徽大学2005-2006学年第一学期 《离散数学》期末考试试卷(A 卷)(时间120分钟)年级 院系专业 姓名 学号 座位号一、选择题(每小题2分,共20分)1.下列语句中哪个是真命题? ( C )A .我正在说谎。
B .严禁吸烟。
C .如果521=+,那么雪是黑的。
D .如果321=+,那么雪是黑的。
2.命题公式R Q P ∧→的对偶式为: ( A ) A .)(R Q P ∨→ B .)(R Q P ∨∧⌝ C .)(R Q P ∧∨⌝ D .)(R Q P ∨∧3.命题公式R Q P →∧⌝)(的主析取范式中含极小项的个数为: ( C ) A .0 B .3 C .5 D .8 4.谓词公式(,)x yP x y ∀∃的否定式是:( B ) A .(,)x y P x y ∀∀⌝ B .(,)x y P x y ∃∀⌝C .(,)x y P x y ∀∃⌝D .(,)x y P x y ∃∃⌝ 5.下列命题中,假命题的是: ( D )A .}}{{}{x x x Y ∈B .}}{{}{}{x x x -⊆C .若x x A Y }{=,则A x ∈且A x ⊆D .φ=-B A ⇔B A =6.设集合A 上有n 个元素,则A 上的既对称又反对称的二元关系共有( D ) A .0个 B .2n 个 C .2n 个 D .2n个7.下列},,{c b a X =上的关系式中,不具有传递性质的是: ( B ) A .},{1><=b a R B .},,,{2><><=c a b a R C .},,,{3><><=a a b a R D .},,,{4><><=c b b a R8.设}2,1,0{=A ,},{b a B =,则从A 到B 的全函数有多少个? ( A ) A .32+个 B .32个 C .32⨯个 D .23个9.I 是整数集合,函数f 定义为:I I →,x x x f 2)(-=,则f 是: ( ) A .单射 B .满射 C .双射 D .非单射也非满射 10.下列无限集合中,哪个集合的基数不等于c 。
安徽大学期末试卷离散数学期末试卷及答案.doc
安徽⼤学期末试卷离散数学期末试卷及答案.doc⼀.判断题(共10⼩题,每题1分,共10分)在各题末尾的括号内画表⽰正确,画表⽰错误:1.设p、q为任意命题公式,则(p∧q)∨p ? p ( )2.?x(F(y)→G(x)) ? F(y)→?xG(x)。
( )3.初级回路⼀定是简单回路。
( )4.⾃然映射是双射。
( )5.对于给定的集合及其上的⼆元运算,可逆元素的逆元是唯⼀的。
( )6.群的运算是可交换的。
( )7.⾃然数集关于数的加法和乘法构成环。
( )8.若⽆向连通图G中有桥,则G的点连通度和边连通度皆为1。
( )9.设A={a,b,c},则A上的关系R={,}是传递的。
( )10.设A、B、C为任意集合,则A?(B?C)=(A?B)?C。
( )⼆、填空题(共10题,每题3分,共30分)11.设p:天⽓热。
q:他去游泳。
则命题“只有天⽓热,他才去游泳”可符号化为。
12.设M(x):x是⼈。
S(x):x到过⽉球。
则命题“有⼈到过⽉球”可符号化为。
13.p?q的主合取范式是。
14.完全⼆部图K r,s(r < s)的边连通度等于。
15.设A={a,b},,则A上共有个不同的偏序关系。
16.模6加群中,4是阶元。
17.设A={1,2,3,4,5}上的关系R={<1,3>,<1,5>,<2,5>,<3,3>,<4,5>},则R的传递闭包t(R) = 。
.18.已知有向图D的度数列为(2,3,2,3),出度列为(1,2,1,1),则有向图D的⼊度列为。
19.n阶⽆向简单连通图G的⽣成树有条边。
20.7阶圈的点⾊数是。
三、运算题(共5⼩题,每⼩题8分,共40分)21.求?xF(x)→?yG(x,y)的前束范式。
22.已知⽆向图G有11条边,2度和3度顶点各两个,其余为4度顶点,求G 的顶点数。
23.设A={a,b,c,d,e,f},R=I A?{,},则R是A上的等价关系。
离散数学期末考试试题(有几套带答案)
离散数学试题(A卷及答案)一、证明题(10分)1)(⌝P∧(⌝Q∧R))∨(Q∧R)∨(P∧R)⇔R证明:左端⇔(⌝P∧⌝Q∧R)∨((Q∨P)∧R)⇔((⌝P∧⌝Q)∧R))∨((Q∨P)∧R)⇔(⌝(P∨Q)∧R)∨((Q∨P)∧R)⇔(⌝(P∨Q)∨(Q∨P))∧R⇔(⌝(P∨Q)∨(P∨Q))∧R⇔T∧R(置换)⇔R2)∃x(A(x)→B(x))⇔∀xA(x)→∃xB(x)证明:∃x(A(x)→B(x))⇔∃x(⌝A(x)∨B(x))⇔∃x⌝A(x)∨∃xB(x)⇔⌝∀xA (x)∨∃xB(x)⇔∀xA(x)→∃xB(x)二、求命题公式(P∨(Q∧R))→(P∧Q∧R)的主析取范式和主合取范式(10分)证明:(P∨(Q∧R))→(P∧Q∧R)⇔⌝(P∨(Q∧R))∨(P∧Q∧R))⇔(⌝P∧(⌝Q∨⌝R))∨(P∧Q∧R)⇔(⌝P∧⌝Q)∨(⌝P∧⌝R))∨(P∧Q∧R)⇔(⌝P∧⌝Q∧R)∨(⌝P∧⌝Q∧⌝R)∨(⌝P∧Q∧⌝R))∨(⌝P ∧⌝Q∧⌝R))∨(P∧Q∧R)⇔m0∨m1∨m2∨m7⇔M3∨M4∨M5∨M6三、推理证明题(10分)1)C∨D, (C∨D)→⌝E, ⌝E→(A∧⌝B), (A∧⌝B)→(R∨S)⇒R∨S证明:(1) (C∨D)→⌝E ﻩﻩ(2)⌝E→(A∧⌝B) ﻩ(3)(C∨D)→(A∧⌝B)(4)(A∧⌝B)→(R∨S)(5) (C∨D)→(R∨S) ﻩ(6) C∨D(7) R∨S2)∀x(P(x)→Q(y)∧R(x)),∃xP(x)⇒Q(y)∧∃x(P(x)∧R(x))证明(1)∃xP(x)(2)P(a)(3)∀x(P(x)→Q(y)∧R(x))(4)P(a)→Q(y)∧R(a)(5)Q(y)∧R(a)(6)Q(y)(7)R(a)(8)P(a)(9)P(a)∧R(a)(10)∃x(P(x)∧R(x))(11)Q(y)∧∃x(P(x)∧R(x))四、设m是一个取定的正整数,证明:在任取m+1个整数中,至少有两个整数,它们的差是m的整数倍证明设1a,2a,…,1+m a为任取的m+1个整数,用m去除它们所得余数只能是0,1,…,m-1,由抽屉原理可知,1a,2a,…,1+m a这m+1个整数中至少存在两个数sa和t a,它们被m除所得余数相同,因此s a和t a的差是m的整数倍。
安徽大学离散数学(上)试卷及参考答案-推荐下载
2.下列命题是重言式的是( )
A. (P Q) (Q P) ;
C. P Q (P Q) ;
姓名
四
B. (P Q P) (P Q) ;
D. (P (Q R)) P Q 。
3. 设解释 R 如下:论域 D 为实数集, a 0 , f (x, y) x y , f (x, y) x y 。下列公式在 R 下为
2. 给定集合 A {1,2,3,4,5,6}上的偏序关系
R { 6,2 , 2,1 , 6,1 , 4,2 , 4,3 , 4,1 , 3,1 , 5,3 , 5,1 } I A 。 求:(1)给出了偏序集合 A, R 的哈斯图;(2 分)
6. 设 I 为整数集合,则 I 上的二元关系 R { x, y || x y | 4}具有( )
A.自反性和对称性; B.反自反性和对称性; C.反自反性和传递性; D.反对称性和传递性。
7. 设 R 为非空集合 A 上的关系 R 的逆关系,则下列结论不成立的是(
A.若 R 为偏序,则 R 为偏序;
五
B. xA( f (a, x), a) ;
B.若 R 为拟序,则 R 为拟序;
《 离散数学 》试卷 第 1 页 共 4 页
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
2011~2012.1.《离散数学上》试卷A卷
安徽大学20 11 ~20 12 学年第 1 学期《 离散数学(上) 》考试试卷(A 卷)(闭卷 时间120分钟)考场登记表序号一、单项选择题(每小题2分,共20分)1.若P :他聪明;Q :他用功;则“他虽聪明,但不用功”,可符号化为( )A.Q P ∨B.Q P ⌝∨C.Q P ⌝→D.Q P ⌝∧2.下列命题公式的真值与它们的命题变元无关的是( ) A.P Q P Q →→∧)(;B. P Q Q ∨⌝→;C.)()()(R P R Q Q P →→→∧→;D. )()(P Q P Q P ↔∧↔↔。
3.下列各项中,右侧结论不能从其左侧前提有效推出的是( )A. )()()),()((x xG x xM x G x M x ∃⇒∃→∀;B. )()()),()((x xF x B x x B x F x ∃⇒⌝∀→⌝∀;C. )()())()((x xQ x xP x Q x P x ∀→∀⇒→∀;D. )()())()((x xQ x xP x Q x P x ∀∨∀⇒∨∀。
4.对任意集合D C B A ,,,,下列结论不正确的是( )A.)()()(C B C A C B A ---=--;B.)()()(C A B A C B A ⋂⋃-=--;C.)()()()(D B C A D C B A ⋃-⋂=-⋂-; D.)()()()(D B C A D C B A -⋃-=⋃-⋃。
5.自然数集合N 上的二元关系}(|,{kx y N k k y x R =∧∈∃><=具有( )A.自反性和对称性;B.反自反性和对称性;C.反对称性和传递性;D.反自反性和传递性。
6.设},,{c b a A =,A 上二元关系},,,,,{><><><=c c b a a a R ,则R 的传递闭包)(R t 是( )A.A I R ⋃B.RC.},{><⋃b b RD.A I R ⋂7.设},,{c b a X =,X I 是X 上恒等关系,要使R c a a c c b b a I X ⋃><><><><⋃},,,,,,,{为X 上的等价关系,R 应取( )A. },,,{><><c b a bB. },,,{><><a c a bC. },,,{><><b c a bD. },,,{><><a b c a8.设1R ,2R 为非空集合A 上的二元关系,则下列结论不成立的是( ) A. )()(11R ts R st =;B. )()()(2121R s R s R R s ⋂=⋂;C. )()()(2121R t R t R R t ⋂=⋂;D. )()(11R tr R rt =。
大学《离散数学》期末考试试卷及答案(1)
大学《离散数学》期末考试试卷及答案(1)一、选择题1. 离散数学的主要研究对象是()。
A. 连续的数学结构B. 有限的数学结构C. 数学的综合应用D. 数学的哲学思考2. 命题逻辑是离散数学的一个重要组成部分,它主要研究()。
A. 命题之间的真假关系B. 变量之间的关系C. 函数之间的关系D. 集合之间的关系3. 集合的基本运算包括()。
A. 并、交、差、补B. 加、减、乘、除C. 包含、相等、不等、自反D. 大于、小于、等于、不等于二、填空题1. 若集合A={m|2m-1>3},则A中的元素为______。
2. 有一个集合A={1,2,3},则集合A的幂集为______。
3. 若命题p为真,命题q为假,则复合命题“p∧q”的真值为______。
三、解答题1. 请写出离散数学中常用的数学符号及其含义。
2. 请解释命题逻辑中的充分必要条件及其符号表示,并给出一个例子。
3. 请定义集合的笛卡尔积,并给出两个集合进行笛卡尔积运算的例子。
四、问答题1. 离散数学在计算机科学中有着重要的应用,请列举三个与计算机科学相关的离散数学应用领域并简要介绍。
2. 请简要解释归纳法在离散数学中的作用,并给出一个使用归纳法证明的例子。
3. 什么是有向图?请给出一个有向图的例子,并解释该图中的关系。
参考答案:一、选择题1. B2. A3. A二、填空题1. A={m|2m-1>3}2. {{}, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}3. 假三、解答题1. 常用数学符号及含义:- ∪:并,表示集合的合并操作。
- ∩:交,表示集合的交集操作。
- ∖:差,表示减去一个集合中的元素。
- ⊆:包含,表示一个集合包含于另一个集合。
- =:相等,表示两个集合具有相同的元素。
2. 充分必要条件是指一个命题的成立与另一个命题的成立互为必要条件,若A是B的充分必要条件,那么当A成立时B一定成立,且当A不成立时B也一定不成立。
离散数学期末复习试题及答案(一)
离散数学期末复习试题及答案(一)离散数学习题参考答案第一章集合1.分别用穷举法,描述法写出下列集合(1)偶数集合(2)36的正因子集合(3)自然数中3的倍数(4)大于1的正奇数(1)E={?,-6,-4,-2,0,2,4,6,?}={2 i | i∈I }(2) D= { 1, 2, 3, 4, 6, } = {x>o | x|36 }(3) N3= { 3, 6, 9, ```} = { 3n | n∈N }(4) A d= {3, 5, 7, 9, ```} = { 2n+1 | n∈N }2.确定下列结论正确与否(1)φ∈φ ×(2)φ∈{φ}√(3)φ?φ √(4)φ?{φ}√(5)φ∈{a}×(6)φ?{a}√(7){a,b}∈{a,b,c,{a,b,c}}×(8){a,b}?{a,b,c,{a,b,c}}√(9){a,b}∈{a,b,{{a,b}}}×(10){a,b}?{a,b,{{a,b}}}√3.写出下列集合的幂集(1){{a}}{φ, {{ a }}}( 2 ) φ{φ}(3){φ,{φ}}{φ, {φ}, {{φ}}, {φ,{φ}} }(4){φ,a,{a,b}}{φ, {a}, {{a,b }}, {φ}, {φ, a }, {φ, {a,b }},{a, {a b }}, {φ,a,{ a, b }} }(5)P(P(φ)){φ, {φ}, {{φ}}, {φ,{φ}} }4.对任意集合A,B,C,确定下列结论的正确与否(1)若A∈B,且B?C,则A∈C√(2)若A∈B,且B?C,则A?C×(3)若A?B,且B∈C,则A∈C×(4)若A?B,且B∈C,则A?C×5.对任意集合A,B,C,证明右分配差差左=--=--)C A ()B A ()C B (A M .D )C B (A )C B (A )C A ()B A ()C B (A )1( 右差分配差左右差的结论差左=--=-------=-)C A ()B A ()C A ()B A ()C B (A M .D )C B (A )2)C A ()B A ()C A ()B A ()1()C B (A )1)C A ()B A ()C B (A )2( 右交换结合幂等差左=--=-)C A ()B A (,)C B ()A A ()C B (A M .D )C B (A )C A ()B A ()C B (A )3( ))B )B (A ())B B ()B A ((,)B )B A (()B )B A ((B )B A (BA B )B A )(4( --⊕=⊕+结合分配对称差差左右零一互补==φ-φ-)B A ()B A ()A ()U )B A (( )C B (A )C B (A M .D )C B (A C )B A ()C B (A C )B A )(5( --=--差结合差左右差结合交换结合差左=----=--B )C A (B )C A ()B C (A )C B (A C )B A (B)C A (C )B A )(6( 左交换零一互补分配差右=------------=--C )B A ()5()C B (A )B C (A )U )B C ((A ))C C ()B C ((A ))C B (C (A ))C B (C (A )5()C B ()C A (C )B A )(7(6.问在什么条件下,集合A,B,C满足下列等式时等式成立须左若要右右左A C ),C B (A C ,)C A ()B A (C)B A ()C B (A )1(?∴==时等式成立是显然的右左φ=∴?=-??=-B A ,B A ,B A B A A , AB A )2(时等式成立代入原式得φ==∴φ=φ-φ=?==-B A ,A ,B ,B B ,B B A BB A )3(时等式成立只能B A ,A B ,A B ,B A ,B A ,A B B A AB B A )4(=∴?φ=-?φ=-φ==-=-矛盾当矛盾当若A B A b ,A b ;A B A b ,A b ,B b ,B ,B AB A )5(=⊕∈?=⊕?∈∈?φ≠φ==⊕}时等式成立是显然的左右B A BA AB ,B A B BA ,B A A ,B A B A ,BA B A )6(=∴==时等式成立左φ=∴=-=====--C B A A )C B (A )C B (A )C B (A )C A ()B A (A)C A ()B A )(7(时等式成立左C A ,B A ),C B (A )C B (A )C B (A )C B (A )C A ()B A ()C A ()B A )(8(??∴?φ=-====φ=--时等式成立左)C B (A )C B (A )C B (A )C B (A )C A ()B A ()C A ()B A )(9(?∴φ=-====φ=--时等式成立知由C A B A ,C A B A ),C A ()B A (,)6()C A ()B A ()C A ()B A ())C A ()B A (())C A ()B A (()C A ()B A )(10(=∴-=--=---=--φ=-----φ=-⊕-时等式成立B A B )B A (U )B A ()A A ()B A ()A B (A B)A B (A )11(?∴=====-7.设A={a,b,{a,b},},求下列各式(1)φ∩{φ}=φ(2){φ}∩{φ}={φ}(3){φ,{φ}}-φ={φ,{φ}}(4){φ,{φ}}-{φ}= {{φ}}(5){φ,{φ}}-{{φ}}={φ}(6)A-{a,b}={{a,b}, φ}(7)A-φ = A(8)A-{φ}={a,b,{a,b}}(9)φ-A=φ(10){φ}-A=φ8.在下列条件下,一定有B=C吗?(1) C A B A =否,例:A={1,2,3},B={4},C={3,4},C B ,}4,3,2,1{C A B A ≠==而。
离散数学期末考试题及答案
离散数学期末考试题及答案一、单项选择题(每题2分,共20分)1. 集合{1, 2, 3}的子集个数是:A. 3B. 4C. 8D. 2^3答案:C2. 命题逻辑中,命题p∧(q∨¬p)的真值表中,真值个数为:A. 1B. 2C. 3D. 4答案:B3. 函数f: A→B中,若A={1, 2},B={a, b},则f是单射的必要条件是:A. |A| ≤ |B|B. |A| < |B|C. |A| = |B|D. |A| > |B|答案:B4. 以下哪个图是无向图?A. 有向图B. 无向图C. 完全图D. 树答案:B5. 在图论中,一个图的生成树是:A. 包含图中所有顶点的最小连通子图B. 包含图中所有边的最小连通子图C. 包含图中所有顶点和边的连通子图D. 包含图中所有顶点和边的无环子图答案:A6. 以下哪个命题是真命题?A. 所有偶数都是整数B. 所有整数都是偶数C. 所有奇数都是整数D. 所有整数都是奇数答案:A7. 在布尔代数中,以下哪个运算符表示逻辑与?A. ∨B. ∧C. ¬D. →答案:B8. 有限状态机中,状态的转移是由以下哪个决定的?A. 当前状态B. 输入符号C. 当前状态和输入符号D. 输出符号答案:C9. 以下哪个是图的遍历算法?A. 深度优先搜索B. 广度优先搜索C. 动态规划D. 分治算法答案:A10. 在集合论中,以下哪个符号表示集合的交集?A. ∪B. ∩C. ×D. ÷答案:B二、填空题(每题2分,共20分)1. 集合{1, 2, 3}的幂集是{∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}},其中包含元素个数最多的子集是_。
答案:{1, 2, 3}2. 在命题逻辑中,如果p和q都为真,则p∨q的真值为_。
答案:真3. 函数f: A→B中,若A={1, 2},B={a, b, c},则f是满射的必要条件是_。
(完整版)《离散数学》试题及答案解析,推荐文档
4. 设 I 是如下一个解释:D = {2, 3},
a
b
f (2) f (3)
3
2
3
2
试求 (1) P(a, f (a))∧P(b, f (b));
WORD 整理版
一、填空题 1 设集合 A,B,其中 A={1,2,3}, B= {1,2}, 则 A - B=____________________;
(A)
- (B)= __________________________ . 2. 设有限集合 A, |A| = n, 则 |(A×A)| = __________________________. 3. 设集合 A = {a, b}, B = {1, 2}, 则从 A 到 B 的所有映射是 __________________________ _____________, 其中双射的是
专业资料学习参考
WORD 整理版
0 1 1 1 1
15. 设图 G 的相邻矩阵为 1 0 1 0 0 ,则 G 的顶点数与边数分别为(
).
1 1 0 1 1
1 0 1 0 1
1 0 1 1 0
(A)4, 5 (B)5, 6 三、计算证明题
(C)4, 10
(D)5, 8.
1.设集合 A={1, 2, 3, 4, 6, 8, 9, 12},R 为整除关系。
则在解释 I 下取真值为 1 的公式是( ).
(A)xyP(x,y) (B)xyP(x,y) (C)xP(x,x) (D)xyP(x,y). 6. 若供选择答案中的数值表示一个简单图中各个顶点的度,能画出图的是( ).
(完整word版)离散数学期末练习题(带答案)
离散数学复习注意事项:1、第一遍复习一定要认真按考试大纲要求将本学期所学习内容系统复习一遍。
2、第二遍复习按照考试大纲的要求对第一遍复习进行总结.把大纲中指定的例题及书后习题认真做一做。
检验一下主要内容的掌握情况。
3、第三遍复习把随后发去的练习题认真做一做,检验一下第一遍与第二遍复习情况,要认真理解,注意做题思路与方法。
离散数学综合练习题一、选择题1.下列句子中,()是命题。
A.2是常数。
B.这朵花多好看呀!C.请把门关上!D.下午有会吗?2.令p: 今天下雪了,q:路滑,r:他迟到了。
则命题“下雪路滑,他迟到了”可符号化为()。
A. p q r∨→∧→B。
p q rC。
p q r∨↔∧∧ D. p q r3.令:p今天下雪了,:q路滑,则命题“虽然今天下雪了,但是路不滑"可符号化为()。
A.p q∧⌝ B.p q∧C。
p q→⌝∨⌝ D. p q4.设()Q x:x会飞,命题“有的鸟不会飞”可符号化为()。
P x:x是鸟,()A. ()(()())Q x⌝∀∧())x P x⌝∀→B。
()(()x P x Q xC。
()(()())⌝∃∧())x P xQ x⌝∃→ D. ()(()x P x Q x5.设()L x y:x大于等于y;命题“所有整数的绝对值大于等f x:x的绝对值,(,)P x:x是整数,()于0”可符号化为()。
A。
(()((),0))x P x L f x∀→∀∧B。
(()((),0))x P x L f xC. ()((),0)∀→xP x L f xxP x L f x∀∧D。
()((),0)6。
设()G x:x犯错误,命题“没有不犯错误的人”符号化为()。
F x:x是人,()A.(()())⌝∃→⌝x F x G x∀∧B.(()())x F x G xC.(()())⌝∃∧⌝x F x G x⌝∃∧D.(()())x F x G x7.下列命题公式不是永真式的是()。
大学《离散数学》期末考试试卷及答案 (6)
《离散数学》试卷 共3页第1页安徽大学2005-2006学年第一学期 《离散数学》期末考试试卷(A 卷)(时间120分钟)年级 院系专业 姓名 学号 座位号一、选择题(每小题2分,共20分)1.下列语句中哪个是真命题? ( C )A .我正在说谎。
B .严禁吸烟。
C .如果521=+,那么雪是黑的。
D .如果321=+,那么雪是黑的。
2.命题公式R Q P ∧→的对偶式为: ( A ) A .)(R Q P ∨→ B .)(R Q P ∨∧⌝ C .)(R Q P ∧∨⌝ D .)(R Q P ∨∧3.命题公式R Q P →∧⌝)(的主析取范式中含极小项的个数为: ( C ) A .0 B .3 C .5 D .8 4.谓词公式(,)x yP x y ∀∃的否定式是:( B ) A .(,)x y P x y ∀∀⌝ B .(,)x y P x y ∃∀⌝C .(,)x y P x y ∀∃⌝D .(,)x y P x y ∃∃⌝ 5.下列命题中,假命题的是: ( D )A .}}{{}{x x x ∈B .}}{{}{}{x x x -⊆C .若x x A }{=,则A x ∈且A x ⊆D .φ=-B A ⇔B A = 6.设集合A 上有n 个元素,则A 上的既对称又反对称的二元关系共有( D ) A .0个 B .2n 个 C .2n 个 D .2n个7.下列},,{c b a X =上的关系式中,不具有传递性质的是: ( B ) A .},{1><=b a R B .},,,{2><><=c a b a R C .},,,{3><><=a a b a R D .},,,{4><><=c b b a R8.设}2,1,0{=A ,},{b a B =,则从A 到B 的全函数有多少个? ( A ) A .32+个 B .32个 C .32⨯个 D .23个9.I 是整数集合,函数f 定义为:I I →,x x x f 2)(-=,则f 是: ( ) A .单射 B .满射 C .双射 D .非单射也非满射 10.下列无限集合中,哪个集合的基数不等于c 。
离散数学期末考试试题及答案
离散数学期末考试试题及答案一、选择题(每题4分,共40分)1.下列哪一个不是集合操作? A. 并 B. 交 C. 补 D. 叉积正确答案:D2.下列哪一个不是真命题? A. 1 + 1 = 2 B. 所有的猫都会飞 C. 所有的数都是整数 D. 狗是哺乳动物正确答案:B3.设A = {1, 2, 3},B = {3, 4, 5},则A ∩ B的结果是:A. {1, 2}B. {3}C. {1, 3}D. {4, 5}正确答案:B4.设A = {1, 2, 3},B = {3, 4, 5},则A × B的结果是:A. {(1, 3), (2, 4), (3, 5)}B. {(1, 1), (2, 2), (3, 3)}C. {(3, 3), (3,4), (3, 5)} D. {(3, 1), (3, 2), (3, 3)}正确答案:A5.若n为正整数,则n是偶数的充要条件是: A. n可以被2整除 B. n除以2的余数为1 C. n大于2 D. n的绝对值是偶数正确答案:A6.若A = {1, 2, 3, 4},B = {3, 4, 5},则A - B的结果是:A. {1, 2}B. {3}C. {1, 3, 4}D. {4, 5}正确答案:A7.已知命题P和命题Q,下列哪个是它们的逻辑等价式?A. P ∧ (P ∨ Q) = P B. P ∧ (P ∨ Q) = Q C. P ∨ (P ∨ Q) = P D. P ∨ (P ∨ Q) = Q正确答案:A8.设n为奇数,则n + n的结果是: A. 2n B. n^2 C.n(n+1) D. n(n-1)正确答案:C9.已知集合A = {1, 2, 3, 4},B = {4, 5, 6},C = {6, 7, 8},则(A ∩ B)∩ C的结果是: A. {1, 2, 3} B. {4} C. {6} D. 空集正确答案:D10.若命题P为真,则下列哪个推理是正确的? A. 如果P为真,则Q为真(反证法) B. P与Q都为真(析取引理)C. P蕴含Q(推理法则) D. P等价于Q(假设法)正确答案:A二、解答题(每题10分,共60分)1.证明:任取集合A和B,有(A ∪ B) - B = A - B解答:运用集合的基本运算性质:对任意元素x,x∈ (A ∪ B) - B,即x ∈ (A ∪ B)且x ∉ B。
离散数学期末考试试题及答案
离散数学期末考试试题及答案一、选择题(每题5分,共25分)1. 设A={1,2,3,4,5},B={2,3,5,7,11},则A∩B等于()A. {1,2,3,4,5}B. {2,3,5}C. {1,4}D. {2,3,5,7,11}2. 下面哪一个图是连通图?()A. 无向图B. 有向图C. 平面图D. 连通图3. 若一个图G有n个顶点,e条边,则以下哪个条件是图G 为连通图的必要条件?()A. n ≥ eB. n ≤ eC. n = eD. n + e = 24. 在一个简单图中,若每个顶点的度数都等于n-1,则该图是()A. 无向图B. 有向图C. 完全图D. 平面图5. 以下哪一个命题是正确的?()A. 每个图都有欧拉回路B. 每个连通图都有哈密顿回路C. 每个图都有哈密顿路径D. 每个连通图都有欧拉路径二、填空题(每题5分,共25分)6. 设A={a,b,c},B={1,2,3},则A×B的结果是______。
7. 一个连通图的生成树包含______条边。
8. 在一个n阶完全图中,任意两个不同顶点之间的距离是______。
9. 一个图G的顶点集为V,边集为E,则图G的邻接矩阵表示为______。
10. 在一个简单图中,若每个顶点的度数都等于n-1,则该图的边数是______。
三、判断题(每题5分,共25分)11. 一个图的子图包含原图的所有顶点和边。
()12. 一个连通图的所有顶点都连通。
()13. 在一个简单图中,每个顶点的度数都小于等于n-1。
()14. 每个图都有哈密顿路径。
()15. 一个图G的生成树是原图G的子图。
()四、解答题(共50分)16. (10分)设A={1,2,3,4,5},B={2,3,5,7,11},求A∪B 和A-B。
17. (10分)证明:一个连通图的每个顶点的度数都大于等于2。
18. (10分)给定一个图G,顶点集V={a,b,c,d,e},边集E={ab,bc,cd,de,ac,ad},求图G的所有连通分支。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安徽大学20 09 — 20 10 学年第 1 学期 《 离散数学 》考试试卷(A 卷)(时间120分钟)院/系 专业 姓名 学号一、单项选择题(每小题2分,共20分)1. 设:P 天没下雪,:Q 我去镇上,则命题“天正在下雪,我没去镇上”可符号化为( )A.Q P ⌝→⌝;B. P Q ⌝→⌝;C.Q P ⌝∧;D. Q P ⌝∧⌝。
2.下列命题是重言式的是( )A.)()(P Q Q P →∧→;B. )()(Q P P Q P ↔↔↔∧;C. )(Q P Q P →→∧;D. Q P R Q P ∧⌝∧⌝∨→))((。
3. 设解释R 如下:论域D 为实数集,0=a ,y x y x f -=),(,y x y x f <=),(。
下列公式在R 下为真的是( )A.))),(),,((),((z y f z x f A y x A z y x →∀∀∀;B.)),,((a x a f xA ∀;C.)),,((x y x f yA x ∀∀;D.))),,((),((a a x f A y x A y x →∀∀。
4. 对任意集合,,A B C ,下列结论正确的是( )A. C A C B B A ∉⇒∉∧∉][;B. C A C B B A ∈⇒⊆∧∈][;C. C A C B B A ∉⇒∉∧∈][;D. C A C B B A ∈⇒∈∧⊆][。
5. 关于},,{c b a X =到}3,2,1{=Y 的函数{,1,,1,,3}f a b c =<><><>,下列结论不正确的是( )A 、1({3}){}fc -=; B 、1(3)f c -=; C 、({}){3}f c =; D 、()3f c =。
6. 设I 为整数集合,则I 上的二元关系}4|||,{=-><=y x y x R 具有( )A.自反性和对称性;B.反自反性和对称性;C.反自反性和传递性;D.反对称性和传递性。
7. 设R 为非空集合A 上的关系R 的逆关系,则下列结论不成立的是( )A.若R 为偏序,则R 为偏序;B.若R 为拟序,则R 为拟序;C.若R 为线序,则R 为线序;D.若R 为良序,则R 为良序。
8. 设1π和2π是非空集合A 的划分,则下列结论正确的是( )A. 1π细分21ππ•;B. 1π细分21ππ+;C. 非空集合A 的划分12ππ细分1π;D. 1π细分非空集合A 的划分12ππ。
9. 设},,{c b a X =,X I 是X 上恒等关系,要使R a b a c c b b a I X ⋃><><><><⋃},,,,,,,{为X 上的等价关系,R 应取( )A. },,,{><><c a a c ;B. },,,{><><a b b c ;C. },,,{><><a b a c ;D. },,,{><><b c c a 。
10. 设N 和R 分别为自然数和实数集合,则下列集合中与其他集合的基数不同的集合是( )A.R ;B.N N ;C.()N ρ;D.n N (n N ∈)。
二、判断题(每小题2分,共10分。
对的打√,错的打×)1.( )P Q P ⌝∧∧)(为矛盾式。
2.( )A 、B 、C 是任意集合,如果B A C A ⋃=⋃,一定有C B =。
3.( )若集合A 上的二元关系R 是对称的,R 的绝对补R 一定是对称的。
4.( )有理数集是可数的。
5.( )若函数f ,g 为单射,则它们的复合函数也为单射的。
三、填空题(每小空2分,共20分)1.设)(x R :x 是实数,)(x Q :x 是有理数,)(x Z :x 是整数,则“有理数都是实数,但实数并非都是有理数”符号化为: ; “不是这样情况:某些整数不是有理数”符号化为: 。
2. 设集合},,{c b a A =,},{b a B =, 那么 )()(A B ρρ-= ____ __ ;)(A B -ρ= ____ __。
3. 设}5,4,3,2,1,0{=A ,则定义在集合A 上二元关系}2(|,{<∧=∃><=k ky x k y x R 的关系矩阵为R M =__________ ;=)(R t M ___________________。
4. 设]1,0[=U ,]1,21[=A ,13(,)44B =,则()ABx ψ=__________,()A B x ψ⊕=__________。
5.设N 为自然数集合,Q 为有理数集合,R 为实数集合,则||Q N ⨯ ||N ,||Q R - ||Q (填=,>,<)。
三、解答题(每小题10分,共20分)1. 求))(()(R Q P R Q P ⌝∧⌝→⌝∧∧→的主析取范式和主合取范式。
2. 给定集合}6,5,4,3,2,1{=A 上的偏序关系A I R ⋃><><><><><><><><><=}1,5,3,5,1,3,1,4,3,4,2,4,1,6,1,2,2,6{。
求:(1)给出了偏序集合,A R <>的哈斯图;(2分) (2)完成下表。
(每空2分)四、证明题(每小题10分,共30分)1. 用推理规则证明:QxxRQxPx→⇒→∀。
∀→→⌝x⌝x))()(())()R((xPx(()())2.设R1是A上的等价关系,R2是B上的等价关系,A≠∅且B≠∅。
关系R满足:<<x1,y1>,<x2,y2>>∈R⇔<x1,x2>∈R1且<y1,y2>∈R2,证明R是A×B上的等价关系。
3. 设I 为整数集合,E 为偶数集合,函数E E I I f ⨯→⨯:定义为:>-+=<><y x y x y x f ,),(, 证明:f 是双射函数。
安徽大学20 07 —20 08 学年第 1 学期《 离散数学 》考试试题(A 卷)参考答案及评分标准一、单项选择题(每小题2分,共20分)1.D ;2.C ;3.A ;4.B ;5.B ;6.B ;7.D ;8.B ;9.D ; 10.D 。
二、判断题(每空2分,共10分)1. √,2. ×,3. √,4. √,5. √三、填空题(每小空2分,共20分)1.))()(())()((x Q x R x x R x Q x ⌝∧∃∧→∀或))()(())()((x Q x R x x R x Q x →⌝∀∧→∀;))()((x Q x Z x ⌝∧⌝∃或))()((x Q x Z x →∀。
2. }},,{},,{},,{},{{)()(c b a c b c a c A B =-ρρ;}}{,{)(c A B φρ=-。
3. R M =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡10000010*******0001011111;)(R t M =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡10000010000010000010111114. ⎩⎨⎧=⋃01)(x B A ψ)21,41(]1,21[]41,0[∈⋃∈x x 当当; ()A B x ψ⊕=⎩⎨⎧01)43,21[]41,0[]1,43[)21,41(⋃∈⋃∈x x 当当 5. ||Q N ⨯ = ||N ;||Q R - > ||Q 。
三、解答题(每小题10分,共30分)1. ))(()(R Q P R Q P ⌝∧⌝→⌝∧∧→)()(R Q P R Q P ⌝∧⌝∨∧∧∨⌝⇔ 2分 )()()()(R P Q P R P Q P ⌝∨∧⌝∨∧∨⌝∧∨⌝⇔ 4分 )()()(R Q P R Q P R Q P ⌝∨⌝∨∧∨⌝∨∧⌝∨∨⇔)()()(R Q P R Q P R Q P ∨⌝∨⌝∧⌝∨∨⌝∧∨∨⌝∧)6,5,4,3,2,1(π⇔(主合取范式) 8分 )7,0(∑⇔(主析取范式) 10分2. (1),A R <>的哈斯图为2分(2)(空2分)10分四、证明题(每小题10分,共30分)1. 根据CP 规则,上式等价于))()(())()(())()((x P x R x Q x R x x Q x P x ⌝→⇒⌝→∀∧→∀ 2分 而))()(())()((x Q x R x x Q x P x ⌝→∀∧→∀)))()(())()(((x Q x R x Q x P x ⌝→∧→∀⇔ 10Q 4分 )))()(())()(((x Q x R x P x Q x ⌝→∧⌝→⌝∀⇔ 245,E E 6分 ))()(())()((x Q x R x P x Q ⌝→∧⌝→⌝⇒ 1Q 8分 )()(x P x R ⌝→⇒ 6I 10分 所以,))()(())()(())()((x P x R x Q x R x x Q x P x ⌝→→⌝→∀⇒→∀52. 证明 对任意的<x ,y >∈A ×B ,由R 1是A 上的等价关系可得<x ,x >∈R 1,由R 2是B 上的等价关系可得<y ,y >∈R 2。
再由R 的定义,有<<x ,y >,<x ,y >>∈R ,所以R 是自反的。
2分对任意的<x ,y >、<u ,v >∈A ×B ,若<x ,y >R <u ,v >,则<x ,u >∈R 1且<y ,v >∈R 2。
由R 1对称得<u ,x >∈R 1,由R 2对称得<v ,y >∈R 2。
再由R 的定义,有<<u ,v >,<x ,y >>∈R ,即<u ,v >R <x ,y >,所以R 是对称的。
6分对任意的<x ,y >、<u ,v >、<s ,t >∈A ×B ,若<x ,y >R <u ,v >且<u ,v >R <s ,t >,则<x ,u >∈R 1且<y ,v >∈R 2,<u ,s >∈R 1且<v ,t >∈R 2。
由<x ,u >∈R 1、<u ,s >∈R 1及R 1的传递性得<x ,s >∈R 1,由<y ,v >∈R 2、<v ,t >∈R 2及R 2的传递性得<y ,t >∈R 1。