概率论与数理统计期末考试之置信区间与拒绝域(含问题详解)
《概率论与数理统计》期末考试试题B卷答案
华中农业大学本科课程考试参考答案与评分标准考试课程:概率论与数理统计 学年学期: 试卷类型:B 考试日期:一、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其字母代号写在该题【 】内。
答案错选或未选者,该题不得分。
每小题2分,共10分。
)1. 设随机变量X 的概率密度)1(1)(2x x p +=π,则X Y 2=的分布密度为 . 【 b 】 (a))41(12x +π; (b) )4(22x +π; (c) )1(12x +π; (d) x arctan 1π.2. 设随机变量序列x 1, x 2,…, x n …相互独立,并且都服从参数为1/2的指数分布,则当n 充分大时,随机变量Y n =∑=ni i x n 11的概率分布近似服从 . 【 b 】(a) N(2,4) (b) N(2,4/n) (c) N(1/2,1/4n) (d) N(2n,4n) 3. 设总体X 服从正态分布),(N 2σμ,其中μ已知,2σ未知,321X ,X ,X 是总体X 的一个 简单随机样本,则下列表达式中不是统计量的是 . 【 C 】(a )321X X X ++; (b ))X ,X ,X min(321; (c )∑=σ31i 22i X ; (d )μ+2X .4.在假设检验问题中,检验水平α意义是 . 【 a 】 (a )原假设H 0成立,经检验被拒绝的概率; (b )原假设H 0成立,经检验不能拒绝的概率; (c )原假设H 0不成立,经检验被拒绝的概率; (d )原假设H 0不成立,经检验不能拒绝的概率.5.在线性回归分析中,以下命题中,错误的是 . 【 d 】(a )SSR 越大,SSE 越小; (b )SSE 越小,回归效果越好; (c )r 越大,回归效果越好; (d )r 越小,SSR 越大.二、填空题(将答案写在该题横线上。
答案错选或未选者,该题不得分。
每小题2分,共10分。
2020-2021某大学《概率论与数理统计》期末课程考试试卷合集(含答案)
2020-2021《概率论与数理统计》期末课程考试试卷A适用专业:信计 考试日期:试卷类型:闭卷 考试时间:120分钟 试卷总分:100分一.填空题(每题2分,共10分)1.设事件B A ,互不相容,若()(),5.0,3.0==B P A P 则()AB P 为__________. 设事件B A ,相互独立,若()(),5.0,3.0==B P A P 则()AB P 为__________.2.设n ξξξ,,21 为取自母体服从正态分布()2,σμN 的子样,ξ为子样均值,2nS为子样方差。
则ξ服从的分布为____________,()nS n 1--μξ服从的分布为_____________.A3. 设n ξξξ,,21 为取自母体服从正态分布()1,0N 的子样,则∑=ni i12ξ服从的分布为_____________.4. 设ξ与η相互独立,分别是服从自由度为n 及m 的2x 分布的随机变量,则mn ηξς=服从的分布为_____________.5. 将一枚硬币重复掷N 次,以X 和Y 分别表示正面向上和反面向上的次数,则X 和Y 的相关系数等于__________.二、选择题(每小题2分共10分)1.设B A ,为互不相容事件,且()(),0,0>>B P A P 则结论正确的有( ) (A )()0>B A P (B )())(A P B A P > (C) ()0=B A P (D) ()()()B P A P B A P = 2、设随机变量ξ的概率密度函数为()x ϕ,且有()x ϕ()x -=ϕ,()x F 是ξ的分布函数,则对任意实数a ,有( ) (A )()()dx x a F a⎰-=-01ϕ (B )()()dx x a F a⎰-=-021ϕ (C)()()a F a F =- (D)()()12-=-a F a F3、设随机变量X 服从正态分布()2,σμN ,则随着σ的增大,()σμ<-X P ( )(A )单调增大 (B )单调减少 (C )保持不变 (D )增减不定4、任一连续型随机变量的概率密度函数()x ϕ一定满足( )(A )()10≤≤x ϕ;(B )定义域内单调不减;(C )()1=⎰+∞∞-dx x ϕ;(D )()1lim =+∞→x x ϕ。
《概率分析与数理统计》期末考试试题及解答(DOC)
《概率分析与数理统计》期末考试试题及
解答(DOC)
概率分析与数理统计期末考试试题及解答
选择题
1. 以下哪个选项不是概率的性质?
- A. 非负性
- B. 有界性
- C. 可加性
- D. 全备性
答案:B. 有界性
2. 离散随机变量的概率分布可以通过哪个方法来表示?
- A. 概率分布函数
- B. 累积分布函数
- C. 概率密度函数
- D. 方差公式
答案:B. 累积分布函数
计算题
3. 一批产品有10% 的不合格品。
从该批产品中随机抽查5个,计算至少有一个不合格品的概率。
解答:
设事件 A 为至少有一个不合格品的概率,事件 A 的对立事件
为没有不合格品的概率。
不合格品的概率为 0.1,合格品的概率为 0.9。
则没有不合格品的概率为 (0.9)^5。
至少有一个不合格品的概率为 1 - (0.9)^5,约为 0.409。
4. 一个骰子投掷两次,计算至少一次出现的点数大于3的概率。
解答:
设事件 A 为至少一次出现的点数大于3的概率,事件 A 的对立事件为两次投掷点数都小于等于3的概率。
一个骰子点数大于3的概率为 3/6 = 1/2。
两次投掷点数都小于等于3的概率为 (1/2)^2 = 1/4。
至少一次出现的点数大于3的概率为 1 - 1/4,约为 0.75。
以上是《概率分析与数理统计》期末考试的部分试题及解答。
希望对你有帮助!。
概率论与数理统计习题解答(第8章)
第八章 假 设 检 验三、解答题1. 某种零件的长度服从正态分布,方差σ2 = 1.21,随机抽取6件,记录其长度(毫米)分别为32.46,31.54,30.10,29.76,31.67,31.23在显著性水平α = 0.01下,能否认为这批零件的平均长度为32.50毫米? 解:这是单个正态总体均值比较的问题,若设该种零件的长度),(~2σμN X ,则需要检验的是:00:μμ=H 01:μμ≠H由于2σ已知,选取nX Z σμ0-=为检验统计量,在显著水平α = 0.01下,0H 的拒绝域为:}|{|}|{|005.02Z z Z z ≥=≥α查表得 2.575829005.0=Z ,现由n =6, 31.1266711∑===ni i x n x ,1.1=σ, 50.320=μ计算得:3.0581561.132.5-31.126670==-=nX z σμ005.0Z z >可知,z 落入拒绝域中,故在0.01的显著水平下应拒绝0H ,不能认为这批零件的平均长度为32.50毫米。
EXCEL 实验结果:2. 正常人的脉搏平均每分钟72次,某医生测得10例“四乙基铅中毒”患者的脉搏数如下:54,67,68,78,70,66,67,65,69,70已知人的脉搏次数服从正态分布,问在显著水平α = 0.05下,“四乙基铅中毒”患者的脉搏和正常人的脉搏有无显著差异?解:这是单个正态总体均值比较的问题,若设“四乙基铅中毒”患者的脉搏数),(~2σμN X ,则需要检验的是:00:μμ=H 01:μμ≠H由于方差未知,选取ns X T 0μ-=为检验统计量,在显著水平α = 0.05下,0H 的拒绝域为:)}9(|{|)}1(|{|2/05.02t t n t t ≥=-≥α查表得 2.26215716)9(025.0=t ,现由n =10, 67.411∑===n i i x n x , ()35.155555611122∑==--=n i i x x n s , 计算得2.45335761035.1555556724.670=-=-=nsX t μ)9(025.0t t >可知,t 落入拒绝域中,故在0.05的显著水平下应拒绝0H ,“四乙基铅中毒”患者的脉搏和正常人的脉搏有显著差异。
概率论与数理统计期末试卷及答案
一、选 择 题 (本大题分5小题, 每小题4分, 共20分) (1)设A 、B 互不相容,且P(A)>0,P(B)>0,则必有( )(A)0)(>A B P (B))()(A P B A P = (C)0)(=B A P (D))()()(B P A P AB P = (2)将3粒黄豆随机地放入4个杯子,则杯子中盛黄豆最多为一粒的概率为( )3311()()()()328168A B C D(3)),4,(~2μN X ),5,(~2μN Y }5{},4{21+≥=-≤=μμY P p X P p ,则( ) (A)对任意实数21,p p =μ (B )对任意实数21,p p <μ (C)只对μ的个别值,才有21p p = (D )对任意实数μ,都有21p p >(4)设随机变量X 的密度函数为)(x f ,且),()(x f x f =-)(x F 是X 的分布函数,则对任意 实数a 成立的是( ) (A )⎰-=-adx x f a F 0)(1)( (B )⎰-=-adx x f a F 0)(21)( (C ))()(a F a F =- (D )1)(2)(-=-a F a F(5)已知1250,,,X X X L 为来自总体()2,4X N :的样本,记5011,50i i X X ==∑ 则 50211()4i i X X =-∑服从分布为( ) (A )4(2,)50N (B) 2(,4)50N (C )()250χ (D) ()249χ 二、填 空 题 (本大题5小题, 每小题4分, 共20分)(1) 4.0)(=A P ,3.0)(=B P ,4.0)(=⋃B A P ,则___________)(=B A P(2) 设随机变量X 有密度⎩⎨⎧<<=其它010,4)(3x x x f , 则使)()(a X P a X P <=>的常数a =(3) 设随机变量),2(~2σN X ,若3.0}40{=<<X P ,则=<}0{X P (4)设()221xx f x -+-=, 则EX = , DX =(5)设总体~(,9)X N μ,已知样本容量为25,样本均值x m =;记0.1u a =,0.05u b =;()0.124t c =,()0.125t d =;()0.0524t l =,()0.0525t k =,则μ的置信度为0.9的置信区间为三、解答题 (共60分)1、(10分)某工厂由甲、乙、丙三个车间生产同一种产品,每个车间的产量分别占全厂的25%,35%,40%,各车间产品的次品率分别为5%,4%,2%, 求:(1)全厂产品的次品率(2) 若任取一件产品发现是次品,此次品是甲车间生产的概率是多少?2、(10分)设X 与Y 两个相互独立的随机变量,其概率密度分别为⎩⎨⎧≤≤=.,0;10,1)(其它x x f X ⎩⎨⎧≤>=-.0,0;0,)(y y e y f y Y求:随机变量Y X Z +=的概率密度函数.3、(10分)设随机变量X 服从参数2λ=的指数分布,证明:21XY e-=-服从()0,1上的均匀分布。
概率论与数理统计置信区间
这个不等式就是我们所求的置信区间 ( , ) .
下面我们就来正式给出置信区间的定义, 并通过例子说明求
置信区间的方法.
一、 置信区间的概念
定义4
设 是总体 X 的待估参数, X1, X2, …, Xn
是取自总体 X 的样本, 对给定值 0 < < 1, 若统计量 (X1, X2,, Xn)
X
n
u / 2
─
总体分布的形式是否已知,是怎样
(X
n
u / 2
,
X
n
u / 2 )
的类型,至关重要.
例1 某乡农民在联产承包责任制前人均纯收入 X(单
位:元), 且 X ~ N (µ, 252). 推行联产承包责任制后, 在该乡抽得
n=16 的样本, 得 ─x =325元, 假设 2 = 25 2 没有变化, 求 的置信水
P( ) 1 ?
我们选取未知参数的某个估计量 ^
,①根据置信水平1-
,
可以
找到一个正数 , 使得 P(|ˆ | ) 1 ,
只要知道^ 的概率分布就可以确定 . 分布的分位数 ②
由不等式 |ˆ | 可以解出 :ˆ ˆ ③
置信水平的概率意义: 置信水平为 0.95 是指 100 组样本值所得置信区间的实现
中, 约有95个能覆盖 , 而不是一个实现以 0.95 的概率覆盖了 .
并非一个实现以 1- 的概率覆盖了
估计的可靠度:
估计要尽量可靠,
即 P( < <─ )= 1- ─
要尽可能大.
要求 以很大的可能被包含在置信区间内 .
概率论与数理统计期末试卷与答案(最新5)
概率论与数理统计期末试卷及答案一、填空题:1、一袋中有50个球,其中20个红球,30个白球,现两人从袋中各取一球,取后不放回,则第二个人取到白球的概率为 3/5 。
2、设P(A)=1/2, P(B|A)=1/3, P(A|B)=1/2,那么()P AB = 2/3 。
3、若随机变量X 的概率密度为2(),11,f x Ax x =-<<那么A= 3/2 。
4、若二维随机变量(X,Y )在以原点为圆心的单位圆内的概率密度函数是1/π,其它区域都是0,那么221()2P X Y +<= 1/2 。
5、掷n 枚骰子,记所得点数之和为X ,则EX = 3.5n 。
6、若X ,Y ,Z 两两不相关,且DX=DY=DZ=2,则D(X+Y+Z) = 6 。
7、若随机变量12,,,n X X X 相互独立且同分布于标准正态分布N(0,1),那么它们的平方和22212n X X X +++服从的分布是2()n χ。
8、设A n 是n 次相互独立的试验中事件A 发生的次数,p 是事件A 在每次试验中发生的概率,则对任意的0>ε,lim {||}An n p n→+∞-≥ε= 0 。
9、设总体2(,)XN μσ,其中2σ已知,样本为12,,,n X X X ,设00:H =μμ,10:H <μμ,则拒绝域为z α<-。
10、设总体X 服从区间[1,a ]上的均匀分布,其中a 是未知参数。
若有一个来自这个总体的样本2, 1.8, 2.7, 1.9, 2.2, 那么参数a 的极大似然估计值a = 12max{,,,} 2.7n x x x =。
二、选择题1、设10张奖券只有一张中奖,现有10个人排队依次抽奖,则下列结论正确的是( A ) (A )每个人中奖的概率相同; (B )第一个人比第十个人中奖的概率大;(C )第一个人没有中奖,而第二个人中奖的概率是1/9; (D )每个人是否中奖是相互独立的 2、设随机变量X 与Y 相互独立,且21(,)X N μσ,22(,)Y N μσ,则X Y -服从的分布是( B )(A )212(,)N -μμσ;(B )212(,2)N -μμσ;(C )212(,)N +μμσ;(D )212(,2)N +μμσ3、设事件A 、B 互斥,且()0P A >,()0P B >,则下列式子成立的是( D )(A )(|)()P A B P A =; (B )(|)0P B A >; (C )(|)()P A B P B =; (D )(|)0P B A =;4、设随机变量X 与Y 独立同分布,P(X= -1) = P(Y= -1) =1/2,P(X= 1) = P(Y= 1) =1/2,则下列成立的是( A )(A )()1/2P X Y ==; (B )()1P X Y ==; (C )(0)1/4P X Y +==; (D )(1)1/4P XY ==;5、有10张奖券,其中8张2元,2张5元。
概率论与数理统计习题含解答,答案)
概率论与数理统计复习题(1)一.填空.1.3.0)(,4.0)(==B P A P 。
若A 与B 独立,则=-)(B A P ;若已知B A ,中至少有一个事件发生的概率为6.0,则=-)(B A P 。
2.)()(B A p AB p =且2.0)(=A P ,则=)(B P 。
3.设),(~2σμN X ,且3.0}42{ },2{}2{=<<≥=<X P X P X P ,则=μ ;=>}0{X P 。
4.1)()(==X D X E 。
若X 服从泊松分布,则=≠}0{X P ;若X 服从均匀分布,则=≠}0{X P 。
5.设44.1)(,4.2)(),,(~==X D X E p n b X ,则==}{n X P6.,1)(,2)()(,0)()(=====XY E Y D X D Y E X E 则=+-)12(Y X D 。
7.)16,1(~),9,0(~N Y N X ,且X 与Y 独立,则=-<-<-}12{Y X P (用Φ表示),=XY ρ 。
8.已知X 的期望为5,而均方差为2,估计≥<<}82{X P 。
9.设1ˆθ和2ˆθ均是未知参数θ的无偏估计量,且)ˆ()ˆ(2221θθE E >,则其中的统计量 更有效。
10.在实际问题中求某参数的置信区间时,总是希望置信水平愈 愈好,而置信区间的长度愈 愈好。
但当增大置信水平时,则相应的置信区间长度总是 。
二.假设某地区位于甲、乙两河流的汇合处,当任一河流泛滥时,该地区即遭受水灾。
设某时期内甲河流泛滥的概率为0.1;乙河流泛滥的概率为0.2;当甲河流泛滥时,乙河流泛滥的概率为0.3,试求:(1)该时期内这个地区遭受水灾的概率;(2)当乙河流泛滥时,甲河流泛滥的概率。
三.高射炮向敌机发射三发炮弹(每弹击中与否相互独立),每发炮弹击中敌机的概率均为0.3,又知若敌机中一弹,其坠毁的概率是0.2,若敌机中两弹,其坠毁的概率是0.6,若敌机中三弹则必坠毁。
2021年大二概率论与数理统计期末考试题及答案(精品)
2021年大二概率论与数理统计期末考试题及答案(精品)一、单选题1、设81,,X X 和101,,Y Y 分别来自两个相互独立的正态总体)2,1(2-N 和)5,2(N 的样本, 21S 和22S 分别是其样本方差,则下列服从)9,7(F 的统计量是( ))(A 222152S S )(B 222145S S )(C 222154S S )(D 222125S S 【答案】B2、设X 的密度函数为)(x f ,分布函数为)(x F ,且)()(x f x f -=。
那么对任意给定的a 都有A )()1()af a f x dx-=-⎰ B )01()()2a F a f x dx -=-⎰C ))()(a F a F -=D ) 1)(2)(-=-a F a F 【答案】B3、下列函数中,可作为某一随机变量的分布函数是A )21()1F x x =+B ) xx F arctan 121)(π+=C )=)(x F 1(1),020,0xe x x -⎧->⎪⎨⎪≤⎩ D ) ()()x F xf t dt -∞=⎰,其中()1f t dt +∞-∞=⎰【答案】B4、若X ~()t n 那么2χ~(A )(1,)F n (B )(,1)F n (C )2()n χ (D )()t n【答案】A5、对总体的均值和作区间估计,得到置信度为95%的置信区间,意义是指这个区间 (A)平均含总体95%的值 (B)平均含样本95%的值(C)有95%的机会含样本的值 (D)有95%的机会的机会含的值 【答案】D6、在一次假设检验中,下列说法正确的是___ ____ (A)第一类错误和第二类错误同时都要犯2~(,)X N μσμμ(B)如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误 (C)增大样本容量,则犯两类错误的概率都要变小(D)如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误 【答案】C 7、1X ,2X 独立,且分布率为 (1,2)i =,那么下列结论正确的是A )21X X = B)1}{21==X X P C )21}{21==X X P D)以上都不正确【答案】C8、设 ()2~,X N μσ,其中μ已知,2σ未知,1234,,,X X X X 为其样本, 下列各项不是统计量的是____(A)4114i i X X ==∑ (B)142X X μ+-(C)42211()i i K X X σ==-∑ (D)4211()3i i S X X ==-∑【答案】C9、设X ,Y 是相互独立的两个随机变量,它们的分布函数分别为F X (x),F Y (y),则Z = max {X,Y} 的分布函数是A )F Z (z )= max { F X (x),F Y (y)}; B) F Z (z )= max { |F X (x)|,|F Y (y)|} C) F Z (z )= F X (x )·F Y (y) D)都不是 【答案】C10、设离散型随机变量(,)X Y 的联合分布律为 (,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)1/61/91/181/3X Y P αβ且Y X ,相互独立,则A ) 9/1,9/2==βαB ) 9/2,9/1==βαC ) 6/1,6/1==βαD ) 18/1,15/8==βα 【答案】A 二、填空题1、θˆ和βˆ都是参数a 的无偏估计,如果有 成立 ,则称θˆ是比βˆ有效的估计。
概率论与数理统计期末试卷含答案
概率论与数理统计期末试卷含答案一、选择题(本大题共8小题,每题3分,共24分)1.设表示三个随机事件,则表示------------------------- ( C ) (A)都发生 (B)都不发生 (C)不都发生 (D)中至少有一个发生2. 同时抛掷3枚均匀的硬币,则恰好有两枚正面朝上的概率为---------- ( C ) (A).0.125 (B)0.25 (C)0.375 (D)0.50 3.设,,其中、为常数,且,则 ----------------------------------------------------------( D ); ; ;4.设随机变量X 的概率密度为,则P(0.2<X<0.8)= ( A )(A)0.3 (B)0.6 (C)0.66 (D)0.75.设是一随机变量,则下列各式中错误的是----------------------- ( B ) (A) (B) (C) +1 (D)6.设总体,其中已知,未知,为来自的一个样本,则下列各式不是统计量的是-------------------------------( D ) (A)(B)(C)(D)7.设总体,未知,为来自的样本,样本均值为,样本标准差为,则的置信水平为的置信区间为--( C ) (A) (B)(C)(D)8.总体中已知,是其样本均值,是其样本方差,则假设检验问题所取的检验统计量为----------------------( A )(A) (B) (C) (D) 二、填空题(本大题共4小题,每题4分,共16分)1.已知P (A )=3/4,P (B )=1/4,B A ,则有P (B|A )=1/3 2.设随机变量X ~B ,则P{X 1}=3.设随机变量X 的数学期望是方差为 则根据切比雪夫不等式4.设是来自正态总体的一个简单随机样本,则样本均值服从 ,,A B C ABC ,,A B C ,,A B C ,,A B C ,,A B C ()2,~σμN X b aX Y -=a b 0≠a ~Y ()A ()222,b a b a N +-σμ()B ()222,b a b a N -+σμ()C ()22,σμa b a N +()D ()22,σμa b a N -⎪⎩⎪⎨⎧≤<-≤<=其它021210)(x x x xx f X )(5)5(X E X E -=-)()5(X D X D -=-)(5)15(X E X E =+)()5(X D X D =+2~(,)X N μσμ2σ12,,,n X X X X ∑=ni iX11()nii Xμ=-∑1()nii XX =-∑221()ni i X σ=-∑2~(,)X N μσ2,μσn X X X ,,,21 X X S μα-1),(22αασσZ nX Z n X +-22((1),(1))X n X n αα---))1(),1((22-+--n t ns X n t ns X αα))(),((22n t nsX n t ns X αα+-)2(,)N μσ2σX 2S 0010:,:H H μμμμ=≠XX 22(1)n S σ-211()1n i i X n μ=--∑⊂⎪⎭⎫⎝⎛31,3≥2719μ2σ{||2}P X μσ-≤≥41n X X X ,,,21 ),(~2σμN X 11n i i X X n ==∑),(2nN σμ三、计算题(本大题共4小题,每题7分,共28分)1.设是样本空间中的两个事件,且 求(1) ;(2) 解:-------- (1) -------- (2) -------- 2.设离散型随机变量X 的分布律为且已知E (X )=0.3,试求:(1)p 1 p 2;(2)D (-3X +2);(3)X 的分布函数F (x )解: -------- (2)--------(3) --------3、设随机变量的概率密度为求(1)常数; (2)解:(1) ∴ --------(2). --------4、设总体X 的概率密度为其中>0为未知参数,x 1 x 2 … x n 为来自总体X 的样本,试求的最大似然估计。
概率论与数理统计期末考试之置信区间与拒绝域(含问题详解)
概率论与数理统计期末置信区间问题八〔1〕、从某同类零件中抽取9件,测得其长度为〔 单位:mm 〕: 6.0 5.7 5.8 6.5 7.0 6.3 5.6 6.1 5.0 设零件长度X 服从正态分布N (μ,1)。
求μ的置信度为0.95的置信区间。
0.050.050.025((9)=2.262, (8)=2.306, 1.960 )t t U =已知:解:由于零件的长度服从正态分布,所以~(0,1)x U N =0.025{||}0.95P U u <=所以μ的置信区间为0.0250.025(x u x u -+ 经计算 91916ii x x===∑μ的置信度为0.95的置信区间为 1133(6 1.96,6 1.96)-⨯+⨯ 即(5.347,6.653)八〔2〕、某车间生产滚珠,其直径X ~N (μ, 0.05),从某天的产品里随机抽出9个量得直径如下〔单位:毫米 〕:14.6 15.1 14.9 14.8 15.2 15.1 14.8 15.0 14.7假如该天产品直径的方差不变,试找出平均直径μ的置信度为0.95的置信区间。
0.050.050.025((9)=2.262, (8)=2.306, 1.960 )t t U =已知:解:由于滚珠的直径X 服从正态分布,所以~(0,1)x U N =0.025{||}0.95P U u <=所以μ的置信区间为:0.0250.025(x u x u -+ 经计算 919114.911ii x x===∑μ(14.911 1.96 1.96-+ 即(14.765,15.057)八〔3〕、工厂生产一种零件,其口径X (单位:毫米)服从正态分布2(,)N μσ,现从某日生产的零件中随机抽出9个,分别测得其口径如下:零件口径X 的标准差0.15σ=,求μ的置信度为0.95的置信区间。
0.050.050.025((9)=2.262, (8)=2.306, 1.960 )t t U =已知:解:由于零件的口径服从正态分布,所以~(0,1)x U N =0.025{||}0.95P U u <=所以μ的置信区间为:0.0250.025(x u x u -+ 经计算 919114.9ii x x===∑μ的置信度为0.95的置信区间为 0.150.1533(14.9 1.96,14.9 1.96)-⨯+⨯ 即(14.802 ,14.998)八〔4〕、随机抽取某种炮弹9发做实验,测得炮口速度的样本标准差S =3(m/s),设炮口速度服从正态分布,求这种炮弹的炮口速度的方差2σ的置信度为0.95的置信区间。
2020年大学必修课概率论与数理统计期末考试题及答案(精选版)
2020年大学必修课概率论与数理统计期末考试题及答案(精选版)一、单选题1、在假设检验问题中,犯第一类错误的概率α的意义是( )(A)在H 0不成立的条件下,经检验H 0被拒绝的概率(B)在H 0不成立的条件下,经检验H 0被接受的概率(C)在H 00成立的条件下,经检验H 0被拒绝的概率(D)在H 0成立的条件下,经检验H 0被接受的概率【答案】C2、 设123,,X X X 相互独立同服从参数3λ=的泊松分布,令1231()3Y X X X =++,则2()E Y =A )1.B )9.C )10.D )6.【答案】C3、设 ()2~,X N μσ,其中μ已知,2σ未知,1234,,,X X X X 为其样本, 下列各项不是统计量的是____ (A)4114i i X X ==∑ (B)142X X μ+- (C)42211()i i K X X σ==-∑ (D)4211()3i i S X X ==-∑ 【答案】C4、假设随机变量X 的分布函数为F(x),密度函数为f(x).若X 与-X 有相同的分布函数,则下列各式中正确的是A )F(x) = F(-x); B) F(x) = - F(-x);C) f (x) = f (-x); D) f (x) = - f (-x).【答案】C5、若X ~()t n 那么2χ~A )(1,)F nB )(,1)F nC )2()n χD )()t n【答案】A6、在单因子方差分析中,设因子A 有r 个水平,每个水平测得一个容量为的样本,则下列说法正确的是____ _(A)方差分析的目的是检验方差是否相等 i m(B)方差分析中的假设检验是双边检验(C) 方差分析中包含了随机误差外,还包含效应间的差异(D) 方差分析中包含了随机误差外,还包含效应间的差异【答案】D 7、以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为(A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”(C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销”。
概率论与数理统计期末考试之计算题、解答题(经典含答案)
16. 从某大学到火车站途中有六个路口,假设在各路口遇到红灯的事件 相互独立,且概率都是,求:
(1)以X表示途中遇到的红灯次数,求X的分布律; (2)以Y表示汽车行驶途中在停止前所通过的路口数,求Y的分布律; (3)求从该大学到火车站途中至少遇到一次红灯的概率。 解:(1) (2),,…, (3)
(注:) 解::, : 检验统计量为,
计算得,, 对,自由度n-1=4,得 因为,所以拒绝H0,即可以认为该日的方差与往常的方差有显著差
异。
(1)最小号码为5的概率; (2)最大号码为5的概率; (3)一个号码为5,另外两个号码一个大于5,一个小于5的概率。 解:,
,
(1) 所求概率;(2)所求概率; (3)所求概率
26. 袋中装有5枚正品硬币、3枚次品硬币(次品硬币两面均印有国 徽)。从袋中任取一枚硬币,将它投掷3次,已知每次均出现国 徽,问这枚硬币是正品硬币的概率是多少?
6. 某卷烟厂生产甲、乙两种香烟,分别对他们的尼古丁含量(单位: 毫克)作了六次测定,得子样观察值为: 甲:25,28,23,26,29,22; 乙:28,23,30,25,21,27。
假定这两种烟的尼古丁含量都服从正态分布,且方差相等,试问这两种 香烟的尼古丁平均含量有无显著差异(显著水平α=0.05,)? (注) 解:
设事件abc分别表示甲乙丙火炮命中目标盒中有10个合格品3个次品从盒中一件一件的抽取产品检验每件检验后不再放回盒中以x表示直到取到第一件合格品为止所需检验次数求
概率论与数理统计期末考试之计算题、解答题(含答案)
1. 设A,B是两个事件,,求。 解:
2. 有甲、乙、丙三门火炮同时独立地向某目标射击,命中率分别为 0.2,0.3,0.5,求(1)至少有一门火炮命中目标的概率;(2)恰有 一门火炮命中目标的概率。
2020年大学公共课概率论与数理统计期末考试题及答案(含解析)
2020年大学公共课概率论与数理统计期末考试题及答案(含解析)一、单选题 1、1X ,2X 独立,且分布率为 (1,2)i =,那么下列结论正确的是A )21X X = B)1}{21==X X P C )21}{21==X X P D)以上都不正确【答案】C2、设 ()2~,X N μσ,其中μ已知,2σ未知,1234,,,X X X X 为其样本, 下列各项不是统计量的是____(A)4114i i X X ==∑ (B)142X X μ+-(C)42211()i i K X X σ==-∑ (D)4211()3i i S X X ==-∑【答案】C3、设X 1,X 2,…X n ,X n+1, …,X n+m 是来自正态总体2(0,)N σ的容量为n+m 的样本,则统计量2121ni i n mi i n m V n =+=+X =X ∑∑服从的分布是(A) (,)F m n (B) (1,1)F n m -- (C) (,)F n m (D)(1,1)F m n -- 【答案】C4、设X ~2(,)N μσ其中μ已知,2σ未知,123,,X X X 样本,则下列选项中不是统计量的是 A )123X X X ++ B )123max{,,}X X X C )2321i i X σ=∑ D )1X μ-【答案】C5、掷一颗均匀的骰子600次,那么出现“一点”次数的均值为 A ) 50 B ) 100 C )120 D ) 150 【答案】B6、对总体的均值和作区间估计,得到置信度为95%的置信区间,意义是指这个区间 (A)平均含总体95%的值 (B)平均含样本95%的值2~(,)X N μσμ(C)有95%的机会含样本的值 (D)有95%的机会的机会含的值 【答案】D7、设X ~2(,)N μσ其中μ已知,2σ未知,123,,X X X 样本,则下列选项中不是统计量的是 A )123X X X ++ B )123max{,,}X X X C )2321i i X σ=∑ D )1X μ-【答案】C 8、1X ,2X 独立,且分布率为 (1,2)i =,那么下列结论正确的是A )21X X = B)1}{21==X X P C )21}{21==X X P D)以上都不正确【答案】C9、已知n X X X ,,,21 是来自总体的样本,则下列是统计量的是( )X X A +)( +A ∑=-n i i X n B 1211)( a X C +)( +10 131)(X a X D ++5 【答案】B10、假设随机变量X 的分布函数为F(x),密度函数为f(x).若X 与-X 有相同的分布函数,则下列各式中正确的是 A )F(x) = F(-x); B) F(x) = - F(-x); C) f (x) = f (-x); D) f (x) = - f (-x). 【答案】C 二、填空题1、设]1,[~a U X ,n X X ,,1 是从总体X 中抽取的样本,求a 的矩估计为 。
《概率论与数理统计》期末考试试题及答案
《概率论与数理统计》期末考试试题及答案)B 从中任取3),(8a k k ==则Y X =产品中有12件是次品四、(本题12分)设⼆维随机向量(,)X Y 的联合分布律为\01210.10.20.12Y X a 试求: (1) a 的值; (2)X 与Y 的边缘分布律; (3)X 与Y 是否独⽴为什么五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤=-≤≤其他求()(),E X D X⼀、填空题(每⼩题3分,共30分) 1、ABC 或AB C 2、 3、2156311C C C 或411或 4、1 5、13 6、2014131555kX p 7、1 8、(2,1)N - ⼆、解设12,A A 分别表⽰取出的产品为甲企业和⼄企业⽣产,B 表⽰取出的零件为次品,则由已知有 1212606505121101(),(),(|),(|)1101111011605505P A P A P B A P B A ========..... 2分 (1)由全概率公式得112261511()()(|)()(|)1151155P B P A P B A P A P B A =+=?+?=................ 7分 (2)由贝叶斯公式得22251()()5115()1()115P A P B A P A B P B ?=== ............................... 12分三、(本题12分)解 (1)由概率密度的性质知34=+-=+=故16k =. .......................................................... 3分 (2)当0x ≤时,()()0x F x f t dt -∞==?; 当03x <<时, 2011()()612xxF x f t dt tdt x -∞===??; 当34x ≤<时, 320311()()223624x x t F x f t dt tdt dt x x -∞==+-=-+-;当4x ≥时, 34031()()2162x t F x f t dt tdt dt -∞?==+-=;故X 的分布函数为220,01,0312()123,3441,4x x x F x x x x x ≤< .................................. 9分(3) 77151411(1)22161248P X F F<≤=-=-=?? ????? .......................... 12分四、解 (1)由分布律的性质知01.0.20.10.10.21a +++++=故0.3a = ........................................................... 4分0.40.30.3Xp ............................................... 6分120.40.6Y p ................................................... 8分(3)由于{}0,10.1P X Y ===,{}{}010.40.40.16P X P Y ===?=,故{}{}{}0,101P X Y P X P Y ==≠==所以X 与Y 不相互独⽴. .............................................. 12分五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤=-≤≤其他求()(),E X D X .解 2131223201011()()d d (2)d 1.33x E X xf x x x x x x x x x +∞-∞??==+-=+-=?........... 6分122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=.......................... 9分 221()()[()].6D XE X E X =-= ......................................... 12分⼀、填空题(每空3分,共45分)1、已知P(A) = , P(B) = , P(B|A ) = , 则P(A|B ) = P( A ∪B)=2、设事件A 与B 独⽴,A 与B 都不发⽣的概率为19,A 发⽣且B 不发⽣的概率与B 发⽣且A 不发⽣的概率相等,则A 发⽣的概率为:;3、⼀间宿舍内住有6个同学,求他们之中恰好有4个⼈的⽣⽇在同⼀个⽉份的概率:没有任何⼈的⽣⽇在同⼀个⽉份的概率4、已知随机变量X 的密度函数为:,0()1/4,020,2x Ae x x x x ??, 则常数A= , 分布函数F (x )= , 概率{0.51}P X -<<= ;5、设随机变量X~ B(2,p)、Y~ B(1,p),若{1}5/9P X ≥=,则p = ,若X 与Y 独⽴,则Z=max(X,Y)的分布律:;6、设~(200,0.01),~(4),X B Y P 且X 与Y 相互独⽴,则D(2X-3Y)= ,1、 (12分)设连续型随机变量X 的密度函数为:1,02()20,x x x ??≤≤?=其它求:1){|21|2}P X -<;2)2Y X =的密度函数()Y y ?;3)(21)E X -;2、(12分)设随机变量(X,Y)的密度函数为1)1/4,||,02,(,)0,y x x x y ?<<其他求边缘密度函数(),()X Y x y ??;2)问X 与Y 是否独⽴是否相关计算Z = X + Y 的密度函数()Z1、(10分)设某⼈从外地赶来参加紧急会议,他乘⽕车、轮船、汽车或飞机来的概率分别是3/10,1/5,1/10和2/5。
概率论与数理统计期末考试试题及解答
概率论与数理统计期末考试试题及解答概率论与数理统计》期末试题一、填空题(每小题3分,共15分)1.设事件A,B仅发生一个的概率为0.3,且P(A)+P(B)=0.5,则A,B至少有一个不发生的概率为0.9.解:由题意可得P(AB+AB)=0.3,即0.3=P(AB)+P(AB)=P(A)-P(AB)+P(B)-P(AB)=0.5-2P(AB),所以P(AB)=0.1,P(A∪B)=P(AB)=1-P(AB)=0.9.2.设随机变量X服从泊松分布,且P(X≤1)=4P(X=2),则P(X=3)=1-e^(-6)。
解:由P(X≤1)=P(X=0)+P(X=1)=e^(-λ)+λe^(-λ),P(X=2)=λ^2e^(-λ)/2,且P(X≤1)=4P(X=2),可得λ=1,因此P(X=3)=λ^3e^(-λ)/3!=1-e^(-6)。
3.设随机变量X在区间(0,2)上服从均匀分布,则随机变量Y=X在区间(0,4)内的概率密度为f_Y(y)=1/2,0<y<2;f_Y(y)=1,2<y<4;其它为0.解:设Y的分布函数为F_Y(y),X的分布函数为F_X(x),密度为f_X(x),则F_Y(y)=P(Y≤y)=P(X≤y)=P(-y≤X≤y)=F_X(y)-F_X(-y)。
因为X~U(0,2),所以F_X(-y)=0,即F_Y(y)=F_X(y)。
又因为f_Y(y)=F_Y'(y)=f_X(y),所以f_Y(y)=1/2,0<y<2;f_Y(y)=1,2<y<4;其它为0.另解:在(0,2)上函数y=x严格单调,反函数为h(y)=y,所以f_Y(y)=f_X(y)/h'(y)=f_X(y)/2y=1/2,0<y<2;f_Y(y)=f_X(y)/h'(y)=f_X(y)/2y=1,2<y<4;其它为0.4.设随机变量X,Y相互独立,且均服从参数为λ的指数分布,P(X>1)=e^(-2),则λ=2,P{min(X,Y)≤1}=1-e^(-2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论与数理统计期末置信区间问题八(1)、从某同类零件中抽取9件,测得其长度为( 单位:mm ): 6.0 5.7 5.8 6.5 7.0 6.3 5.6 6.1 5.0 设零件长度X 服从正态分布N (μ,1)。
求μ的置信度为0.95的置信区间。
0.050.050.025((9)=2.262, (8)=2.306, 1.960 )t t U =已知:解:由于零件的长度服从正态分布,所以~(0,1)/x U N nμσ-=0.025{||}0.95P U u <=所以μ的置信区间为0.0250.025(,)x u x u nnσσ-+ 经计算 91916ii x x===∑μ的置信度为0.95的置信区间为 1133(6 1.96,6 1.96)-⨯+⨯ 即(5.347,6.653)八(2)、某车间生产滚珠,其直径X ~N (μ, 0.05),从某天的产品里随机抽出9个量得直径如下(单位:毫米 ):14.6 15.1 14.9 14.8 15.2 15.1 14.8 15.0 14.7若已知该天产品直径的方差不变,试找出平均直径μ的置信度为0.95的置信区间。
0.050.050.025((9)=2.262, (8)=2.306, 1.960 )t t U =已知:解:由于滚珠的直径X 服从正态分布,所以~(0,1)/x U N nμσ-=0.025{||}0.95P U u <=所以μ的置信区间为:0.0250.025(,)x u x u nnσσ-+ 经计算 919114.911ii x x===∑μ的置信度为0.95的置信区间为 0.050.0533(14.911 1.96,14.911 1.96)-⨯+⨯即(14.765,15.057)八(3)、工厂生产一种零件,其口径X (单位:毫米)服从正态分布2(,)N μσ,现从某日生产的零件中随机抽出9个,分别测得其口径如下:14.6 14.7 15.1 14.9 14.8 15.0 15.1 15.2 14.7已知零件口径X 的标准差0.15σ=,求μ的置信度为0.95的置信区间。
0.050.050.025((9)=2.262, (8)=2.306, 1.960 )t t U =已知:解:由于零件的口径服从正态分布,所以~(0,1)/x U N nμσ-=0.025{||}0.95P U u <=所以μ的置信区间为:0.0250.025(,)x u x u nnσσ-+ 经计算 919114.9ii x x===∑μ 的置信度为0.95的置信区间为 0.150.1533(14.9 1.96,14.9 1.96)-⨯+⨯ 即(14.802 ,14.998)八(4)、随机抽取某种炮弹9发做实验,测得炮口速度的样本标准差S =3(m/s),设炮口速度服从正态分布,求这种炮弹的炮口速度的方差2σ的置信度为0.95的置信区间。
22220.0250.9750.0250.975((8)17.535, (8) 2.18(9)19.02, (9) 2.7)χχχχ====已知:;因为炮口速度服从正态分布,所以222(1)~(1)n S W n χσ-=- 220.0250.975{(8)(8)}0.95P W χχ≤≤=2σ的置信区间为:()()22220.0250.975(1)(1),11n S n S n n χχ⎛⎫--⎪ ⎪--⎝⎭2σ的置信度0.95的置信区间为 8989,17.535 2.180⨯⨯⎛⎫⎪⎝⎭即()4.106,33.028八(5)、设某校女生的身高服从正态分布,今从该校某班中随机抽取9名女生,测得数据经计算如下:162.67, 4.20x cm s cm ==。
求该校女生身高方差2σ的置信度为0.95的置信区间。
22220.0250.9750.0250.975((8)17.535, (8) 2.18(9)19.02, (9) 2.7)χχχχ====已知:;解:因为学生身高服从正态分布,所以222(1)~(1)n S W n χσ-=- 220.0250.975{(8)(8)}0.95P W χχ≤≤=2σ的置信区间为:()()22220.0250.975(1)(1),11n S n S n n χχ⎛⎫-- ⎪ ⎪--⎝⎭2σ的置信度0.95的置信区间为 228 4.28 4.2,17.535 2.180⎛⎫⨯⨯ ⎪⎝⎭即()8.048,64.734八(6)、一批螺丝钉中,随机抽取9个, 测得数据经计算如下:16.10, 2.10x cm s cm ==。
设螺丝钉的长度服从正态分布,试求该批螺丝钉长度方差2σ的置信度为0.95的置信区间。
22220.0250.9750.0250.975((8)17.535, (8) 2.18(9)19.02, (9) 2.7)χχχχ====已知:;解:因为螺丝钉的长度服从正态分布,所以222(1)~(1)n S W n χσ-=- 220.0250.975{(8)(8)}0.95P W χχ≤≤=2σ的置信区间为:()()22220.0250.975(1)(1),11n S n S n n χχ⎛⎫--⎪ ⎪--⎝⎭2σ的置信度0.95的置信区间为 228 2.108 2.10,17.535 2.180⎛⎫⨯⨯ ⎪⎝⎭即()2.012,16.183八(7)、从水平锻造机的一大批产品随机地抽取20件,测得其尺寸 的平均值32.58x =,样本方差20.097S =。
假定该产品的尺寸X 服从正态分布2(,)N μσ,其中2σ与μ均未知。
求2σ的置信度为0.95的置信区间。
22220.0250.9750.0250.975((20)34.17, (20)9.591(19)32.852, (19)8.907)χχχχ====已知:;解:由于该产品的尺寸服从正态分布,所以222(1)~(1)n S W n χσ-=- 220.0250.975{(19)(19)}0.95P W χχ≤≤=2σ的置信区间为:()()22220.0250.975(1)(1),11n S n S n n χχ⎛⎫--⎪ ⎪--⎝⎭2σ的置信度0.95的置信区间为 190.097190.097,32.8528.907⨯⨯⎛⎫⎪⎝⎭即()0.056,0.207八(8)、已知某批铜丝的抗拉强度X 服从正态分布2(,)N μσ。
从中随机抽取9根,经计算得其标准差为8.069。
求2σ的置信度为0.95的置信区间。
(22220.0250.9750.0250.975(9)19.023, (9) 2.7(8)17.535, (8) 2.180χχχχ====已知:,)解:由于抗拉强度服从正态分布所以,222(1)~(1)n S W n χσ-=- 220.0250.975{(8)(8)}0.95P W χχ≤≤=2σ的置信区间为:()()22220.0250.975(1)(1)(,)11n S n S n n χχ----2σ的置信度为0.95的置信区间为2288.06988.069,17.535 2.180⎛⎫⨯⨯ ⎪⎝⎭,即 ()29.705,238.931八(9)、设总体X ~2(,)N μσ,从中抽取容量为16的一个样本,样本方差20.07S =,试求总体方差的置信度为0.95的置信区间。
22220.0250.9750.0250.975((16)28.845, (16) 6.908(15)27.488, (15) 6.262)χχχχ====已知:;解:由于 X ~()2,N μσ,所以222(1)~(1)n S W n χσ-=- 220.0250.975{(15)(15)}0.95P W χχ≤≤=2σ的置信区间为:()()22220.0250.975(1)(1)(,)11n S n S n n χχ----2σ的置信度0.95的置信区间为 150.07150.07,27.4886.262⨯⨯⎛⎫⎪⎝⎭,即()0.038,0.168八(10)、某岩石密度的测量误差X 服从正态分布2(,)N μσ,取样本观测值16个,得样本方差20.04S =,试求2σ的置信度为95%的置信区间。
22220.0250.9750.0250.975((16)28.845, (16) 6.908(15)27.488, (15) 6.262)χχχχ====已知:;解:由于 X ~()2,N μσ,所以222(1)~(1)n S W n χσ-=- 220.0250.975{(15)(15)}0.95P W χχ≤≤=2σ的置信区间为:()()22220.0250.975(1)(1)(,)11n S n S n n χχ----2σ的置信度0.95的置信区间为:150.04150.04,27.488 6.262⨯⨯⎛⎫⎪⎝⎭即()0.022,0.096拒绝域问题九(1)、某厂生产铜丝,生产一向稳定,现从其产品中随机抽取10段检查其折断力,测得1021287.5, ()160.5i i x x x ==-=∑。
假定铜丝的折断力服从正态分布,问在显著水平0.1α=下,是否可以相信该厂生产的铜丝折断力的方差为16?22220.050.950.050.95((10)18.31, (10) 3.94; (9)16.9, (9) 3.33)χχχχ====已知:解:待检验的假设是 20:16H σ= 选择统计量 22(1)n S W σ-=在0H 成立时 2~(9)W χ220.050.95{(9)(9)}0.90P W χχ>>=取拒绝域w ={16.92, 3.33W W ><}由样本数据知2(1)160.5n S -= 160.510.0316W == 16.9210.03 3.33>> 接受0H ,即可相信这批铜丝折断力的方差为16。
九(2)、已知某炼铁厂在生产正常的情况下,铁水含碳量X 服从正态分布,其方差为0.03。
在某段时间抽测了10炉铁水,测得铁水含碳量的样本方差为0.0375。
试问在显著水平0.05α=下,这段时间生产的铁水含碳量方差与正常情况下的方差有无显著差异?22220.0250.9750.0250.975((10)20.48, (10) 3.25, (9)19.02, (9) 2.7)χχχχ====已知:解:待检验的假设是 20:0.03H σ= 选择统计量 22(1)n S W σ-=在0H 成立时 2~(9)W χ220.0250.975{(9)(9)}0.95P W χχ>>=取拒绝域w ={19.023, 2.700W W ><}由样本数据知 22(1)90.037511.250.03n S W σ-⨯===19.02311.25 2.700>>接受0H ,即可相信这批铁水的含碳量与正常情况下的方差无显著差异。