希尔伯特Hilbert空间演示文稿

合集下载

第4章 希尔伯特空间 研究生 数值分析 教学课件

第4章 希尔伯特空间 研究生 数值分析 教学课件

范数
n
x (x, x)
xi 2 ,
i 1
则 n 按范数是完备的内积空间,即 Hilbert 空间。
n
n
特别的,在 Rn 中,内积(x, y)
xi yi ,范数 x
xi2 。
i 1
i 1
例 2 在 L2[a,b]中,x(t), y(t) L2[a,b],
b
定义内积 (x, y) a x(t) y(t)dt (满足三条公理)
M {y y M , y U}。
(5)设 M 为 U 的线性子空间,x U , 若x0 M , x1 M ,
使得
x x0 x1
(*)
则称 x0 为 x 在 M 上的正交投影,(*)式称为 x 关于 M 的
正交分解。
2) 性质 (1)设 U 是内积空间, x, y U , 若x y,则
内积 (x, y) xi yi (满足三条公理) i 1
1
范数 x ( xi 2)2 ,
i1
则l 2 是 Hilbert 空间。
例 4 C[a,b]是按范数 x max x(t) 不是内积空间(因为 t[ a ,b ]
不满足平行四边形U 是内积空间,x, y U, M , N U
证: ①当 X 为实赋范线性空间时,定义
(x, y) 1 ( x y 2 x y 2 ) 4
则由平行四边形公式验证其满足内积的三条公理;
② 当 X 为复赋范线性空间时,定义
(x, y) 1 ( x y 2 x y 2 ) i ( x iy 2 x iy 2 )
4
4
则由平行四边形公式验证其满足内积的三条公理。
x 2 2 Re(x, y) y 2
x 2 2 x y y 2 ( x y )2

5 内积空间与希尔伯特空间(讲稿)教学内容

5 内积空间与希尔伯特空间(讲稿)教学内容

其中的投影定理是一个理论和应用上都极其重要的定理,利用投影
定理可以将内积空间分解成两个字空间的正交和。这是内积看所特
有的性质,这个定理在一般的巴拿赫空间中并不成立(因为巴拿赫
空间中没有正交性的概念)。在实际应用中,投影定理还常被用来
判定最佳逼近的存在性和唯一性。
机动 目录 上页 下页 返回 结束
第11页
许瓦兹不等式 x,y x y. (2) 内积与由内积诱导的范数的等式关系:
x ,y 1 ( x y 2 x y 2 ix i2 y ix i2 y ) 4
(3) 由内积诱导的范数满足范数公理内积空间按照由内积导 出的范数,是线性赋范空间。但反之不然
机动 目录 上页 下页 返回 结束
例3 L2[a,b]空间按照内积 x,ybx(t)y(t)dt是内积空间。 a
L2[a,b]按照由内积导出的范数
x b x(t)2dt12
a
是Banach空间,因而是Hilbert空间。
L2[a,b]中由内积导出的距离为
(x ,y ) x y ,x y bx (t) y (t)2 1 2
机动 目录 上页 下页 返回 结束
第9页
6 内积空间的完备化 定义5 (内积空间的同构) 设X,Y是同一数域K上的内积空间,若存
在映射T: XY,保持线性运算和内积不变,即x,yX, , K,有 (1) T(x+y)=Tx+Ty, (2) <Tx,Ty>=<x,y>
则称内积空间X与Y同构,而称T为内积空间X到Y的同构映射。
定理3 设X是内积空间,则必存在一个Hilbert空间H,使X与H的稠 密子空间同构,而且在同构意义下,满足上述条件的Hilbert空间是 唯一的。

高等量子力学演示文稿1

高等量子力学演示文稿1
{1 , 1 , 2 ,, i 1}
线性无关
23{Leabharlann 1 , 1 , 2 ,, i 1 , i } 线性相关
{1 , 1 , 2 ,, i 1 , i } 线性相关
现在把 i 去掉,加入 i 1 , 使集合成为
{1 , 1 , 2 ,, i 1 , i 1}
440????????对任意都成立??则由关系2可知0???????所以有?????2两条定理定理1若三个右矢和?满足????????????????????则?证用任意左矢与第一式作内积有???????得?????????????????????两边取复共轭两边取复共轭得???????????45?0???????因为为任意右矢所以有?????????0????????定理2若二右矢满足????a?????则必有?????a证用任意左矢与式????作内积有???a????????a?两边取复共轭得????即?????????????aa460????????a因为为任意右矢所以有???a?????0???????a这两条定理建立了左矢空间和右矢空间的对应关系也就是在左
f ( x), g ( x) f * ( x) g ( x)dx
a
b
这样的函数全体构成一个内积空间---函数空间。 不同的函数都是此空间中的矢量。
14
§1.2 正交性和模
一、正交归一性 1. 正交:若干矢量 和 的内积满足关系 则称矢量 和 正交。 2. 模方:矢量 同它自己的内积 ( , )是一个大于0 的实数,称为矢量 的模方。记作
本章中,矢量空间通常指在复数域上的 内积空间。

7
二、矢量空间的简单性质
1.零矢量是唯一的
[证明]

5 内积空间与希尔伯特空间(讲稿)ppt课件

5 内积空间与希尔伯特空间(讲稿)ppt课件
<x-xn ,ei>=0 (i=1,2,…,n). x-xnMn x-xn,e1,…,en两两正交, 且x-xnxn. ||xn||2=||<x,e1>e1+…+<x,en>en||2
=||<x,e1>e1||2 +…+||<x,en>en||2=|<x,e1>|2+…+|<x,en>|2
||x||2=||(x-xn)+xn||2=||x-xn||2+||xn||2 ||x-xn||2= ||x||2- ||xn||2
e1,…,en线性无关{e1,…,en,…}是线性独立系。
定理8 (Gram-Schmidt正交化定理)设H是内积空间,{x1,x2,..,xn,…}H 是H中任一个线性独立系,则可将其进行标准正交化,得到一个标准 正交系。
定理8 设H是内积空间,{e1,e2,..,en,…}H是标准正交系, 记 Mn=span{e1,…,en}.
注:1)在一般的内积空间中,若xy,则有勾股定理 ||x+y||2=||x||2+||y||2成立,但反之不然。 事实上, ||x+y||2=||x||2+||y||2+2Re(x,y)
2)在实内积空间中,xy||x+y||2=||x||2+||y||2,即勾股定理成立
定义6 (正交补) 设H是内积空间,MH, 称集合 M={x| xy, yM} 为M在H中的正交补。
(1) 若

(2) 若

(3) 即为x在Mn上的正交投影。
(最佳逼近定理)
证 (1) <x,ei> =<1e1+…+nen, ei> =i<ei,ei> =i

内积空间和希尔伯特(Hilbert)空间

内积空间和希尔伯特(Hilbert)空间

内积空间是希尔伯特空间的特例
完备的内积空间具有完备的几何结构,使得向量可以 按照内积进行长度和角度的度量,并且存在一个完备 的基底来表示空间中的任意向量。
内积空间是一个具有内积运算的线性空间,其满足正 定性、对称性和线性等性质。希尔伯特空间是内积空 间的特殊情况,它是一个完备的内积空间。
希尔伯特空间是内积空间的推广
Annual Work Summary Report
2021
2022
2023
目录
Байду номын сангаас
O1
引言
coOnte2nts
内积空间的基 本性质
O3
希尔伯特空间 的基本性质
O4
内积空间与希 尔伯特空间的 关系
O5
希尔伯特空间 的几何解释
O6
希尔伯特空间 的应用
#O1
引言
#2022
什么是内积空间
内积运算用于计算向量之间的角度和长度,是线性 代数和泛函分析中的基本概念。 内积空间是一个向量空间,其中定义了一个内积运 算,满足非负性、正交性、对称性和三角不等式等 性质。
希尔伯特空间的例子
$L^2$空间
01
函数空间,其元素是平方可积函数,通常用于描述物理系统的
状态。
$L^2$空间的子空间
02
例如,$L^2(0,1)$的闭子空间,通常用于描述量子力学中的束
缚态。
有限维空间
03
例如,$R^n$(实数向量空间),其具有有限个维度。
#O4
内积空间与希尔 伯特空间的关系
#2022
描述算子
在量子力学中,概率幅可以通过希尔伯 特空间中的内积计算。
计算概率幅
在信号处理和图像处理中的应用

高等量子力学第一章希尔伯特空间 PPT课件

高等量子力学第一章希尔伯特空间 PPT课件

完全集 一个矢量空间中的一组完全集,是一个线性
无关的矢量集合 i ,这个空间中的每个矢量都能表为完
全集中矢量的线性叠加,即每一矢量都能写成
i ai
i
的形式,其中ai 是一组复数。
如果一个空间中有一个线性无关的矢量集 1, 2 ,...n ,
但还不是完全集,这时可以把不能表为其线性叠加的一个矢量
命名为 n1,加入这个矢量集。这时 1, 2 ,...n , n1,肯定是
证明: 设在空间中有1和2 ,对所有矢量 都满足 1 , 2
取第一式的 为2 ,第二式中的 为1,分别得 2 1 2,1 2 1
于是,根据条件(1),
2 2 1 1 2 1 即1 2 ,只有唯一的零矢量。
(2)每个矢量的逆元是唯一的。
证明: 若 1,2 都是 的逆元,即
1 , 2
如果 少 多,即 m n ,则把全部 用完后,仍有 未
被顶掉。这就是说,要加上一些 才是完全集 ,与是
完全集相矛盾。所以 m n 是不可能的。
如果 多 少,即 m n,那么把全部 顶掉后,还有一些 没
有用到,这就是说, 中的一部分就是完全集,也与 是完全集
相矛盾。所以 m n也是不可能的。
这是一个复数域上的内积空间。
如果内积定义为:
(l,
m)
l1*
m12
l2*
m
23l
* 3
m34
l 4*
m4
空间是否仍然是一个内积空间?
第四个例子 数学对象为在 a x b 区间定义的实变
量 x 的“行为较好”的复函数 f (x) 的全体,而且都是平方可
积的。所谓“行为较好”是指满足一定数学要求,如单值性、 连续性及导数存在等等,这里我们不去详细讨论。规定加法

hilbert空间

hilbert空间

一百年前的数学界有两位泰斗:庞加莱和希尔伯特,而尤以后者更加出名,我想主要原因是他曾经在1900年的世界数学家大会上提出了二十三个著名的希尔伯特问题,指引了本世纪前五十年数学的主攻方向,不过还有一个原因呢,我想就是著名的希尔伯特空间了。

希尔伯特空间是希尔伯特在解决无穷维线性方程组时提出的概念,原来的线性代数理论都是基于有限维欧几里得空间的,无法适用,这迫使希尔伯特去思考无穷维欧几里得空间,也就是无穷序列空间的性质。

大家知道,在一个欧几里得空间R^n上,所有的点可以写成为:X=(x1,x2,x3,...,xn)。

那么类似的,在一个无穷维欧几里得空间上点就是:X= (x1,x2,x3,....xn,.....),一个点的序列。

欧氏空间上有两个重要的性质,一是每个点都有一个范数(绝对值,或者说是一个点到原点的距离),||X||^2=∑xn^2,可是这一重要性质在无穷维时被破坏了:对于无穷多个xn,∑xn^2可以不存在(为无穷大)。

于是希尔伯特将所有∑xn^2为有限的点做成一个子空间,并赋以X*X'=∑xn*xn' 作为两点的内积。

这个空间我们现在叫做l^2,平方和数列空间,这是最早的希尔伯特空间了。

注意到我只提了内积没有提范数,这是因为范数可以由点与自身的内积推出,所以内积是一个更加强的条件,有内积必有范数,反之不然。

只有范数的空间叫做Banach空间,(以后有时间再慢慢讲:-)。

如果光是用来解决无穷维线性方程组的话,泛函就不会被称为现代数学的支柱了。

Hilbert空间中我只提到了一个很自然的泛函空间:在无穷维欧氏空间上∑xn^2为有限的点。

这个最早的Hilbert space叫做l^2(小写的l 上标2,又叫小l2空间),非常类似于有限维的欧氏空间。

数学的发展可以说是一部抽象史。

最早的抽象大概是一个苹果和一头牛在算术运算中可以都被抽象为“一”,也就是“数学”本身的起源(脱离具体物体的数字运算)了,而Hilbert space理论发展就正是如此:“内积+ 线性”这两个性质被抽象出来,这样一大类函数空间就也成为了Hilbert space。

现代分析报告基础结课作业——Hilbert空间性质介绍

现代分析报告基础结课作业——Hilbert空间性质介绍

Hilbert空间性质介绍摘要在这篇文章中,主要是为了介绍Hilbert空间的一些性质,并且把线性分析中各个空间的性质进行了描述,这也是为了更好的描述Hilbert空间及其性质做好基础,并且把各个空间的性质关系进行了讲述,总结了在线性分析基础这门课程中的收获与感悟。

引言学习了线性分析基础的课程之后,我对于空间的理解有个更加深刻的认识,同时也对各种空间的应用与关系有着许多的困惑与不解,老师的课程十分精彩,介绍了许多原来没有接触过的知识,同时我感觉到了线性分析基础这门课程的重要性。

在接下来的文章中,我们主要想对Hilbert空间及其性质进行介绍,在介绍Hilbert空间之前,必须把Hilbert建立的基础进行描述,甚至文章的一大部分都在描述可测空间、测度空间、赋线性空间和Banach空间等,但是这些空间的性质也在Hilbert空间中得以体现,可以认为Hilbert空间是这些空间基础上比较特殊的一类空间,它在满足这些空间所具有的性质的同时也有着自己特殊的性质以及应用。

Hilbert空间是在一个复向量空间H上的给定的积并导出一种数,如果其对于这个数来说是完备的,那么这个复向量空间就是希尔伯特空间。

这里已经说明了希尔伯特空间是一个积空间,其上有距离和角的概念(及由此引伸而来的正交性与垂直性的概念),可以根据它的特点和性质来进行扩展,得到我们想要得到的可以加以利用的空间。

另外,希尔伯特空间还是一个完备的空间。

在下面的文章中,我们将详细的对所学的知识进行整理和阐释。

关键词可测测度空间数完备性Banach空间积空间Hilbert空间1.可测空间及其性质首先我们要对拓扑空间进行一定的了解。

假设X是一个集合,如果有一个子集族,我们定义为τ,满足以下的几点性质:(1).空集ø和集合X是在子族集当中。

(2)在这个子集族τ的元素满足交运算封闭。

(3) τ中元素族集的并运算封闭。

那么我们称τ为X上的一个拓扑,称X为拓扑空间,而τ中的元素成为拓扑的开集,在X中,如果一个集合是这个开集的余集,那么称为闭集。

第一章 希尔伯特空间与施斗姆刘维尔算子

第一章 希尔伯特空间与施斗姆刘维尔算子

第二篇 数学物理方程第一章 希尔伯特空间[]2,L a b 与施斗姆-刘维尔算子§2.2.1希尔伯特(Hilbert )空间],[2b a L 希尔伯特空间[]2,L a b 是一个函数空间,这里简单地介绍一下,不作专门的理论研究. 2.1.1.1连续函数空间],[b a C 定义在区间[],a b 上的所有连续的复值函数的集合记为,这里区间],[b a C [],a b 可以是无限的. 是一个线性空间,现在在空间引入内积运算.],[b a C ],[b a C 定义1.设()(),f x g x 为空间内的任意两个函数,称在黎曼(Riemann )意义下的积分],[b a C x x g x f bad ∫)()(为,f g 的内积,记作x x g x f g f bad ∫=)()(),(这里()g x 表示取()g x 的复共轭.根据定义,内积满足以下性质: 1.()(),,f g g f =. 2.对任意复数,αβ都有()()(),,,f g h f h g h αβαβ+=+这里[],,,a b f g h C ∈.3.≥0,当且仅当(f f ,)0f =时,(),0f f =. 可见是一内积空间. [],a b C 引入空间内的范数.[],a b C 定义2.设()f x 为[],a b C ()f x 的范数,记为f .显然范数与内积满足关系式()g f ,≤g f ⋅,它就是Cauchy-Schwarz 不等式.范数⋅具有以下明显的性质. 1.f ≥0,当且仅当0f =时,0f =. 2.对任意复数α,有f f ⋅=αα. 3.成立三角不等式g f +≤g f +.现在引入连续函数空间中函数序列收敛的概念.[],a b C 定义3.设中的一个函数序列[],a b C (){}n f x ,如果有函数()f x ,使得0lim lim 212=⎟⎟⎠⎞⎜⎜⎝⎛−=−∫+∞→+∞→x f f f f ba n n n n d ,则称函数()f x 为函数序列{}n f 的极限,记为lim n n f f →+∞=.这种收敛的概念与高等数学中的序列收敛(点点收敛)的定义是不同的,通常称{}n f 为以范数收敛或平均收敛,为方便,也可简称平均收敛为收敛.高等数学中有一个判定序列收敛的著名的哥西(Cauchy )准则.称凡是满足哥西准则的中的函数序列[],a b C (){}n f x 为基本列,即如果(){}nf x 是基本列,那么对于任意给定的0ε>,总存在自然数()N N ε=,当时都有,n m N >n m f f ε−<,反之亦然.应当指出,在空间中,基本列[],a b C {}n f 的极限未必是连续函数,即基本列{}n f 在中未必收敛.不能使得每一个基本列都收敛的空间称为不完备空间.可见,空间是不完备的.[,a b C ][],a b C 为了便于极限运算,可以将不完备的内积空间完备化,并且称的完备化空间为[],a b C [],a b C []2,L a b 空间.所谓完备化,就是在中增加所有基本列的极限函数.设函数序列{[],a b C }n f 是中的基本列,则定义函数[],a b C ()f x 为)(lim )(x f x f n n +∞→=.这样,若{}n f 本身在中为收敛于[],a b C 0f 的基本列,则取0f f =.若中两个基本列[],a b C {}n f 与{}n g 满足0→−n n g f (当时),则n →+∞规定lim lim n n n n f g →+∞→+∞=.2.1.1.2[]2,L a b 空间由此可见,函数空间[]2,L a b 中所有函数()f x 都可以表示为连续函数序列{}n f 的极限.于是,可以这样来引入[]2,L a b 中的线性运算与内积运算.定义4.设{}n f ,{}n g 是中的两个基本列,记[],a b C lim n n f f →+∞=,,则定义lim n n g →+∞=g ()lim n n n f g f αβαβ→+∞+=+g ,这里,αβ为复数,()(),lim ,n n n f g f →+∞=g由于{}n n f g αβ+仍是中的基本列,[],a b C (){},n n f g 是复数域中的基本列,因此上面的定义是合理的.由此,[]2,L a b 空间中函数f 的范数定义为f =.显然,成立定理1.定理1.设{}n f 是空间中的基本列,则数列是复平面上的基本列,这里区间[],a b C ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧∫x x f b a n d 11)([]11,a b 是区间[],a b 的任意一个子区间.这样,数列是复平面上的基本列,并且有复数⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧∫x x f ba n d 11)(A 为x x fA b a nn d ∫+∞→=11)(lim.于是我们定义定义5.设{}n f 是空间中的基本列,[],a b C [][]11,a b a b ⊂,,记()()lim n n f x f →+∞=x ,那么我们称数列的极限⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧∫x x f b a n d 11)(A 为函数()f x 在[]11,a b 上的勒贝格(Lebesgue )积分,记为,并说⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧∫x x f ba d 11)(()f x 在[]11,a b 上勒贝格可积.显然,若()f x 在[],a b 上黎曼可积则它的黎曼积分与它的勒贝格积分相等.今后如不特别声明,本书中的积分均指勒贝格积分.注意到中基本列的有界性,因此数列[],a b C {}2nf 也是基本列,这样[]2,L a b 中函数f 的范数也可用积分表示:+∞<⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛=∫∫+∞→212212lim x f x f f ba ba n n d d . 同样,[]2,L ab 中的内积用勒贝格积分表示为x x g x f g f bad ∫=)()(),(,其中()()[]2,,f x g x L a b ∈.若函数()f x 的模数()2f x 在[],a b 上勒贝格可积,则称函数()f x 是平方可积的.由此可见,[]2,L a b 中的每一个函数都是平方可积函数.凡是平方可积的函数也必都属于[]2,L a b ,因此也可以把它作为空间[]2,L a b 的定义.如果两个函数[]2,,f g L a b ∈,在[],a b 的任一子区间[]11,a b 上有x x g x x f b a b a d d ∫∫=1111)()(,则说两个函数,f g 是在[],a b 上几乎处处相等的,仍记为f g =.于是,在此意义下,在[]2,L a b 空间中(),f f 0=的必要且充分的条件是.0f =显然,[]2,L a b 是内积空间,满足内积的三条性质与范数的三条性质,同样,保持哥西不等式及内积连续性等性质,是完备的内积空间,因此[]2,L a b 空间是希尔伯特空间. 2.1.1.3[]2,L a b 空间的傅里叶(Fourier )级数有人曾经指出,希尔伯特空间[]2,L a b 是无穷维的欧氏空间.这反映了[]2,L a b 具有许多类似于欧氏空间的性质:一个n 维欧氏空间n R 中存在标准正交基,对于n R 中的任一向量均可由这组标准正交基线性表示,对于[]2,L a b 空间也有这方面的类似性质.定义6.设[]122,,f f L a b ∈,如果()12,f f 0=则称函数12,f f 是正交的.定义7.若[]2,L a b 中一个可列无穷的函数列{}n ϕ满足{})3,2,1,()(1)(0,L =⎩⎨⎧=≠==j i j i j i ijjiδϕϕ 则称函数列{}n ϕ为[]2,L a b 中的标准正交系.例1:在复的[]2,L ππ−+空间里,函数系()0,1,2,inx n ⎫[] =±±⋅⋅⋅⋅⎬⎭是2,L π−π+中的一个标准正交系.例2:在[]2,L a b 空间里,这里是实数,函数系,a b ()2,1,2n x a n b a π−, =⋅⋅⋅⋅−是[]2,L a b 的一个标准正交系.对于欧氏空间n R 的任一向量均可由它的标准正交基线性表出,也就是说,欧氏空间的标准正交基是完全的.对于[]2,L a b 空间,也可以讨论其标准正交系是否完全的问题以及[]2,L a b 空间中的任一函数由标准正交系线性表示问题.定义8.设{}n ϕ是[]2,L a b 空间的一个标准正交系,如果存在一个非零函数[]2,f L a b ∈,使f 与{}n ϕ中的每一个函数都正交,则称{}n ϕ是不完全的,否则称{}n ϕ是完全的.例3:函数系()()21,2,3,n x a n b a π⎫−⎪=⋅⋅⋅⎬−⎪⎭[是]2,L a b 上一个不完全的标准正交函数系.事实上,函数系()()21,2,3,n x a n b a π⎫−⎪ =⋅⋅⋅⎬−⎪⎭是[]2,L a b 上的一个标准正交系是显然的.因此只要证明它不是完全的.取()[]21,f x L a =∈b,且()21bbaan x a b aπ−−∫0=)(1,2,3,n =⋅⋅⋅⋅,所以函数系()2n x a b a π⎫−⎪⎬−⎪⎭是[]2,L a b 上一个不完全的标准正交系.例4:函数系()()1,2,3,n x a n b a π⎫−⎪ =⋅⋅⋅⎬−⎪⎭[是]2,L a b 上一个完全的标准正交系.应当指出,标准正交系{}n ϕ中任意有限个函数12,,,m n n n ϕϕϕ⋅⋅⋅⋅是线性无关的.定义9.设{}()1,2,n n ϕ =⋅⋅⋅是[]2,L a b 中的一个标准正交系,则把数列(){}(),1,n f n ϕ2, =⋅⋅⋅叫做函数f 关于标准正交系{}n ϕ的傅里叶系数,这里[]2,f L a b ∈.我们不加证明给出傅里叶级数的收敛定理.定理:如果{}n ϕ是[]2,L a b 空间中一个完全标准正交系,则()[]2,f x L a b ∈的傅里叶级数∑收敛于+∞=1)(),(n n n x f ϕϕ()f x ,即()f x =()(1,n n n )f x ϕϕ+∞=∑,并且成立巴塞伐尔(Parseval )等式()221,n n ff ϕ+∞==∑,即[]2,L a b 空间中的勾股定理.类似地,推广到二维上去.设函数系(){}()1,2,n x n ϕ =⋅⋅⋅是[]2,L a b 中的一个标准正交的完全系.那么函数系()(){}m n x y ϕϕ是[][]2,,L a b a b ×上的一个标准正交的完全系,这里,1,2,m n =⋅⋅⋅⋅.于是对于在[][],,a b a b ×上平方可积的函数(,)f x y 有二维傅里叶级数的收敛定理()()(,1,mnm n m n )f x y ax y ϕϕ+∞==∑并且成立()22,1,mn m n f x y a +∞==∑,这里()()()(),,mn m n a f x y x y ϕϕ=是二维的傅里叶系数.2.1.1.4 施斗姆(Sturm )-刘维尔(Liouville )算子通常称算子⎥⎦⎤⎢⎣⎡+⎟⎠⎞⎜⎝⎛−≡)()()()(1x y x q x y x p x x r Ly d d d d 为施斗姆−刘维尔算子.这里系数()(),p x q x 在[],a b 上定义,并且≥)(x p 0const 0>=p ,≥0,≥)(x q )(x r 0const 0>=r .我们考虑空间[]()()2,,L a b r x ,其内积为带权因子()r x 的积分定义,记为 x x g x f x r g f bar d ∫=)()()(),(,从而其范数为212)()(⎟⎟⎠⎞⎜⎜⎝⎛=∫x x f x r fba rd . 若(),0f g r =则记,f g 带权因子正交,r 1r =就是通常意义下的正交.2.1.1.5施斗姆−刘维尔本征值问题 称方程Ly y λ=即0)()()()()(=+−⎟⎠⎞⎜⎝⎛x y x r x y x q x y x p x λd d d d为施斗姆−刘维尔方程,是数学物理问题中常见的一种微分方程,这里λ是参数.施斗姆−刘维尔方程Ly y λ=在不同情况下应与如下几种边界条件构成本征值问题:(1)若在端点x a =有()0p a ≠,则在x a =点要附加三类齐次边界条件0)()(=+′a y a y βα,这里220αβ+≠,若0,0αβ=≠为第一类边界条件;若0,0αβ≠=为第二类边界条件.(2)若()0,p a =而0)(≠′a p ,则在x a =有()y a 为有限的条件称之为自然边界条件.(3)若在端点x a =,x b =有()()p a p b =,则在x a =,x b =有称之为周期性的边界条件)()(b y a y =,)()(b y a y ′=.在上述三类条件之一下,求使得方程Ly y λ=有非零解()y x 的值λ的问题称之为本征值问题(又叫固有值问题).对于此,在空间[]()2,,L a b r 内有① 有可列无穷多个非负的本征值(固有值)0≤1λ≤2λ≤≤L n λ≤L 和相应的本征函数()()()12,,,,n x x x ϕϕϕ⋅⋅⋅⋅⋅⋅满足n n L n ϕλϕ=.② 这些本征函数()()()12,,,,n x x x ϕϕϕ⋅⋅⋅⋅⋅⋅构成[]()2,,L a b r 空间内的标准正交完全系,且有,...)3,2,1,,(,0)()()(=≠=∫m n m n x x x x r bam nd ϕϕ③若()[]()2,,f x L a b r ∈,则有(广义)傅里叶级数()()1n n n f x C ϕ+∞==∑x ,其中 x x x f x r C b anr nn d ∫=)()()(12ϕϕ.例5: 证明施斗姆−刘维尔本征值问题⎩⎨⎧≠+≠+=+′=+′≠≠=0,0,0)()(0)()(0)(,0)(222221212211βαβαβαβαλb y b y a y a y b p a p y Ly 这里的本征函数系{}()1,2,n n ϕ =⋅⋅⋅在区间[],a b 上是带权因子()r x 正交的.证:设(),n m n m λλ≠为两个不相等的本征值,()(,n m )x x ϕϕ分别是它们的对应的本征函数,即n n L n ϕλϕ=,m m L m ϕλϕ=,并且满足0)()(,0)()(2211=+′=+′b b a a n n n nϕβϕαϕβϕα,0)()(,0)()(2211=+′=+′b b a a m m m mϕβϕαϕβϕα. 注意到()()(),,p x q x r x 都是实值函数,所以有,n n n m m rL r rL r m ϕλϕϕλϕ= =用m ϕ乘以第一式,n ϕ乘以第二式,相减,并在[],a b 上积分,注意到算子的特点得:L ()∫−bam n m n x x x x r d )()()(ϕϕλλx x x p x x x x p x x ba n m m n d d d d d d d d d ∫⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛=ϕϕϕϕ)()()()( ⎟⎠⎞⎜⎝⎛′−′−⎟⎠⎞⎜⎝⎛′−′=⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛′−′=)()()()()()()()()()()()()()()(a a a a a p b b b b b p x x x x x p n m m n n m m n ba n m m n ϕϕϕϕϕϕϕϕϕϕϕϕ注意到边界条件中11,αβ不同时为零,2,2αβ不同时为零,所以系数行列式0)()()()(=′′a a a a m m n n ϕϕϕϕ, 0)()()()(=′′b b b b m m n nϕϕϕϕ 因此,得: ()0)()()(=−∫ba m n m n x x x x r d ϕϕλλ,而n m λλ≠,故得本征函数系(){}n x ϕ带权因子()r x 正交,即0)()()(=∫bam nx x x x r d ϕϕ.§2.1.2线性常微分方程的级数解法二阶线性齐次常微分方程的一般形式是0)()()()()(=+′+′′z w z q z w z p z w ,其中自变量是复数.z如果函数()(),p z q z 在0z z =点解析,则称此点为方程的常点.如果是0z 0z ()p z 的至多一阶极点,是()q z 的至多二阶极点,即()()()()()20,z z p z q z z z z z ϕψ==−−其中()(),z z ϕψ在点解析,那么点称为方程的正则点. 0z 0z 我们仅讨论方程在常点邻域、正则点邻域内的级数解,给出幂级数的解法.2.1.2.1常点邻域内幂级数解法不失一般性,只讨论0x =点为常点的幂级数解法,如果, 00≠x 就令,化为在原点内讨论了.0x x t −=例6:在0x =点的邻域内求解艾里方程0)()(=−′′x xy x y 的幂级数解.解:设()0,n n n y x c x c +∞=n = ∑是待定的常数.,()111−+∞=−+∞=∑∑==′n n n n n n x nc xnc x y ()()()222111−+∞=−+∞=∑∑−=−=′′n n n n n n x c n n xc n n x y代入方程,有 ()21210n n n n n n n n c xc x +∞+∞−+==−−=∑∑合并同类项,得 ()()()22121210n n n n c n n c c x +∞+−=1⋅+++−∑=3,比较两边同次幂项的系数得:()()0221:20:210,1,2,n n n x c x n n c c n +− = ++−= =⋅⋅⋅由此得 20c =,还有递推关系式 ()()12,1,2,3,21n n c c n n n −+==⋅⋅⋅++当1n =时 0301323!c c c ==⋅ 当2n =时 1412434!c c c ==⋅ 当3n =时 25054c c ==⋅ 当4n =时 36014656!c c c ⋅==⋅ 当5n =时 47125767!c c c ⋅==⋅ 当6n =时 58087c c ==⋅ 于是,易得()()()()303114322531,3!31!m m m m c c c m m +⋅⋅⋅⋅−⋅⋅⋅⋅−==+1c故得艾里方程的通解:()()()()()330111147322583113!31!m m m m m m y x c x c x x m m +∞+∞+==⎛⎞⎛⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−=+++⎜⎟⎜⎜⎟⎜+⎝⎠⎝∑∑1⎞⎟⎟⎠其中为任意实常数.艾里方程的两个线性无关解为:01,c c ()()()()()()3113121147321,3!25831,31!nn n n n y x x x n n y x x x x n +∞=+∞+=⋅⋅⋅⋅⋅−=+ <+∞⋅⋅⋅⋅⋅−=+ <+∞+∑∑例7:在0x =点的邻域内,求解方程()()()()012=−′+′′−x y x y x x y x解:0x =点是此方程的常点,设()0n n n y x c x +∞==∑ ,()11−+∞=∑=′n n n xnc x y ()()221−+∞=∑−=′′n n n x c n n x y代入方程,有()()222111n nnnn n n n n n n n c xn n c x nc x c x +∞+∞+∞+∞−====0n n −−−+−∑∑∑∑=0合并同类项,得()()()()220322232211n n n n c c c x n n c n c x +∞+=⎡⎤−+⋅+++−−=⎣⎦∑比较两边对应次幂的系数,得()()()0120322:20,:60:2110,2,3,4nn n x c c x c x n n c n c n + −= = ++−−= =⋅⋅⋅由此有 2031,02c c c = =递推公式 ()()()()22,12,3,4,21n n n c c n n n + −==⋅++⋅⋅当2n =时 2401434!c c c ==⋅ 当3n =时 2532054c c ==⋅ 当4n =时 22264313656!c c ⋅==⋅0c 当5n =时 2754076c c ==⋅ 当6n =时 0222628!8531785c c c ⋅⋅=⋅= 所以一般地有 ()()()2212023!!0,,2,3,4,2!n n n c c c n n +−⎡⎤⎣⎦= = =⋅⋅⋅ 得解为 ()()()222100223!!1,2!2!nn n x y x c x c x c c n +∞=⎛⎞−⎡⎤⎣⎦⎜⎟=+++ ⎜⎟⎝⎠∑1,为任意常数,此方程的两个线性无关的解是()()()()22212223!!,12!2!n n n x y x x y x x n +∞=−⎡⎤⎣⎦= =++∑.2.1.2.2正则点邻域内的幂级数解法不失一般性,只讨论0x =点为方程正则点的方程的幂级数解法. 例8:在0x =点的邻域内求方程()()()()0124=−′−+′′x y x y x x y x的幂级数解.解:显然0x =是方程的正则点.为此设方程的解为()0,n n n y x c x ρ+∞+==∑ 不妨设00c ≠求导有()()10−++∞=∑+=′ρρn n n xn c x y , ,()()()201−++∞=∑−++=′′ρρρn n n x n n c x y 代入方程得()()()()110041220n n nn n n n n n n n n c n n xc n x c n x c x ρρρρρρρρ+∞+∞+−+==+∞+∞++==++−++−+−=∑∑∑∑−消去x ρ,合并同类项,得()()()()01122122212210nn n n c n n c n c x ρρρρρ+∞−=−+++−−+−=⎡⎤⎣⎦∑比较同次幂的系数,得()()()()(01221022212210,1,2,3,n n c n n c n c n ρρρρρ−−=++−−+−= =⋅⋅⋅)由于,得到关于00c ≠ρ的一元二次方程()21ρρ0−=,这个方程称之为指标方程,通常取实部较大的那个根为1ρ,较小的那个根为2ρ,这里有121,02ρρ= =将112ρ=代入第二式得递推关系式:1,1,2,321n n c c n n −,= =⋅⋅⋅+当时,有1n =101,3c c =当2n =时有00211,5535!!c c c c ===⋅⋅⋅⋅,一般地有()21!n c c n =+! 从而得 ()()1021!nn x y x c n +∞==+!. 由于1211022ρρ−=−=不为整数,因此找方程的与()1y x 线性无关的解可设为 ()220n n n n n n y x d xd x ρ+∞+∞+====∑∑.这样 , , ()112−+∞=∑=′n n n x nd x y ()()2121−+∞=∑−=′′n n n x d n n x y 代入方程,得()()()()()11211101141222222121n n nnn n n n n n n nn n n n n d xnd xnd x d x d d n n d n d x +∞+∞+∞+∞−−====+∞+=0n −+−−−+++−+=⎡⎤⎣⎦∑∑∑∑∑=比较同次幂的系数得()()()()10120,2221210,1,2,3,n n d d n n d n d n +−= ++−+= =⋅⋅⋅由此得到系数的递推关系式:()()11,2,1,2,3,21nn d d d d n n +== =⋅⋅⋅+当时,有 1n =01244!d d d ==! 当时,有 2n =02366!d d d ==!一般地, 有 ()()0,1,2,32!!n d d n n ,==⋅⋅⋅ 这样得 ()()0202!!nn d y x n +∞==∑, 故得方程通解()()()()()1212000021!!2!n nn n !x x y x y x y x c d n n ++∞+∞===+=++∑∑,这里为任意常数.00,c d 例9:在0x =点邻域内求方程 ()()()0=+′−′′x y x y x x y x 的幂级数解.解:显然0x =是方程的正则点,设方程的解为()0n n n y x c x ρ+∞+==∑,这里,n c ρ都是待定的常数,不失一般性,总假定00c ≠,否则把不为零的那项的x 的幂指数并入ρ内.()()10−++∞=∑+=′ρρn n n xn c x y , ,()()()201−++∞=∑−++=′′ρρρn n n x n n c x y 为方便起见,方程两边乘以x ,得()()()022=+′−′′x xy x y x x y x ,代入上式得()()()11010n n n n n n n c n n xc n xc x ρρρρρ+∞+∞+∞++−==0n n ρ++=++−−++=∑∑∑消去x ρ,合并同类项,化简得()()()()011112nn n n c c n n n c ρρρρρ+∞−=0x −+++−−+−⎡⎤⎣⎦∑=注意到,得指标方程00c ≠()10ρρ−=,与递推关系式()()12,1,2,3,1n n n c c n n n ρρρ−+−==⋅⋅⋅⋅++−指标方程有两个根121,0ρρ= =,将11ρ=代入递推关系式得 ()11,1,2,3,1n n n c c n n n −−==⋅⋅⋅⋅+当时,得1n =10c =,于是得0,1,2,3,n c n = =⋅⋅⋅ 因此得 ()10y x c x =.由于这里121ρρ−=为整数,为了求得与()1y x 线性无关的第二个解,这时设()()()221010ln ln n n n nn n y x gy x x d x gy x x d x ρ+∞+=+∞==+ =+∑∑由于为简单起见,记()1,y x c x =00A gc =,于是有()20ln n n n y x Ax x d x +∞==+∑, ,n A d 为待定常数,于是,()∑+∞=−++=′112ln n n n x nd A x A x y ()()∑+∞=−−+=′′2221n n n x d n n x A x y , 代入变形后的方程中,得()22121211ln ln nn n n n n Ax n n d x Ax Ax x nd xAx x d x +∞+∞+∞++==+−−−−++∑∑0n n n ==∑0合并同类项,化简有()()()()20213212nn n n A d x A d xn n d n d x +∞−=+−−+−−−=⎡⎤⎣⎦∑ 比较同次幂系数得()0210,202,3,4,1n n A d A d n d d n n n −5,+= −=−==⋅⋅⋅−这里,(否则0A ≠()2y x 与()1y x 就线性相关)取1,A =得0211,2d d =− =当时, 3n =32113223!d d ==⋅⋅ 当时 4n =43214334!d d ==⋅⋅ 依次类推得,一般式 ()1,2,3,41!n d n n n ,==⋅⋅⋅−⋅于是得 ()()22ln 11!nn x y x x x n n +∞==−+−⋅∑.故方程的通解为 ()()02ln 11!nn x y x c x A x x n n +∞=⎛⎞=+−+⎜⎟⎜⎟−⋅⎝⎠∑, 这里为任意常数.0,c A 例10: 在0x =点邻域内求方程 ()()()02122=−′′+x y x y x x 的幂级数解.解:显然0x =是方程的正则点,设方程的解为()0,n n n y x c x ρ+∞+==∑ 不妨设00c ≠.()()1−++∞=∑+=′ρρn n n xn c x y , ,()()()201−++∞=∑−++=′′ρρρn n n x n n c x y 因满足方程,代入得()()()()211n n nn n n n n n c xn n c xc x ρρρρρρ+∞+∞+∞+++==++−+++−−=∑∑∑020n n ρ+=消去因子x ρ,合并同类项得()()()()()()()220122222223n n n n c c x n n c n n c x ρρρρρρρρ+∞−=−−++−+⎡⎤0+−+−++−+−=⎣⎦∑由于,得指标方程00c ≠220ρρ−−=,与系数的递推关系式:()()()()()2122320,,2,3,4,21n n n n c c c n n n ρρρρρρ−+−+−+−= ==⋅⋅⋅+−++解指标方程得两个根:122,1ρρ= =−. 将12ρ=代入系数的递推关系式中,有1210,,2,3,4,3n n n c c c n n −−= =−=⋅⋅⋅+ 当时,有 2n =2013553c c =−=−0c ⋅ 当时,有 3n =31206c c =−=当时,有 4n =()24233177c c =−=−05c ⋅当时,有 5n =50c = 依次类推得()()()222022131;232321mm m m m c c c c m m m −+10−=−=− =+++ 由此得()()()()2222212001312321n n n n n n y x c xc x x n n +∞+∞++==⎛⎞==+−⎜⎟⎜⎟++⎝⎠∑∑. 由于123ρρ−==整数,为求一个与()1y x 线性无关的第二个解, 设 ,()()()∑∑+∞=−+∞=++=+=011012ln ln 2n n n n n n x d x x gy xd x x gy x y ρ()()()()∑+∞=−−++′=′021121ln n n n x d n x y x gx x y g x y , ()()()()()()∑+∞=−−−+−′+′′=′′0321112212ln n n n x d n n x x y g x y x gx x y g x y , 代入方程有()()()[]()()()()x y x g x y x x g x x gy x y g x x 12131122122ln 21+−′++−′′+()()()()02212101011=−−−+−−+∑∑∑+∞=−+∞=++∞=−n n n n n n n n n x d xd n n xd n n ,注意到()1y x 是方程的解,故上式中含有ln x 的那一项为零,又 , , ()22021++∞=∑=n n n xc x y ()()1202122++∞=∑+=′n n n x c n x y 于是得到()()()()()22241220001043433120n n n n n n n n n n g n c xn c x n n d x n n d x +∞+∞+∞n n ++−===+∞+=⎡⎤++++−⎢⎥⎣⎦+−−=∑∑∑∑合并同类项,有()()()()()()220222111234341312n n n n n n n n n n g c x n c n c x d n n d x n n d x +∞+−=+∞+∞−+==⎡⎤+++−−⎢⎥⎣⎦+−+−−=∑∑∑2120于是()()()()()()()()()222022211212024343412220334n n n n n n n n g c x n c n c x d d d x x n n d n n d x +∞+−=+∞−−=⎡⎤+++−+−⎢⎥⎣⎦+−++⋅+−+−−=∑∑上式中关于2x 项的系数有030,gc =而c 00,≠得0,g =从而有()011022012:20,0:20,4:,4,5,6,7,n n n x d d x d d d d n x d d n n−− −= = −= =− =−=⋅⋅⋅当时, 4n =40,d =当时, 5n =5313553d d 3d −=−=⋅依次类推()()()()1221330;1,2,3,4,2121m m m d d d m m m ++= =− =⋅⋅⋅+−由此得解()24682031333537597y x d x d x x x x x ⎛⎞⎛⎞=++−+−+⋅⋅⋅⎜⎟⎜⋅⋅⋅⎝⎠⎝⎟⎠,最后得方程的通解为:()()()()2220013112321n n n y x c x x d x n n x +∞+=⎛⎞⎛⎞=+−++⎜⎟⎜⎟⎜⎟++⎝⎠⎝⎠∑, 这里为任意常数.00,c d 例11:在0x =点的邻域求方程()()()()()041121=+′−+′′−x y x y x x y x x 的幂级数解.解:0x =点是方程的正则点.设方程的解为()0n n n y x c x ρ+∞+==∑这里,n c ρ都是待定的常数,不失一般性设00c ≠()()10−++∞=∑+=′ρρn n n xn c x y ,()()()201−++∞=∑−++=′′ρρρn n n x n n c x y 代入方程,有()()()()()()110112104n n n nn n n n n n n n n n n n n c xn n c xn c x n c xc x ρρρρρρρρρρρ+∞+∞+∞++−+===+∞+∞+−+==++−−++−++−++=∑∑∑∑∑消去因子x ρ,得()()()22100104n n n n n n n n c x n c x ρρρ+∞+∞−==⎡⎤++++−+=⎢⎥⎣⎦∑∑ 上式两边乘以x ,有()222011102n n n n c n c n c x ρρρ+∞−=⎡⎤⎛⎞−++−−+⎢⎥⎜⎟⎝⎠⎢⎥⎣⎦∑=由于,得到指标方程 00c ≠20ρ=, 与系数的递推关系式()()()22112212212,1,2,3,2n n n n n c c c n n n ρρρρ−−⎛⎞+−⎜⎟+−⎝⎠== =⋅⋅⋅++⎡⎤⎣⎦由此得指标方程的两个根:120ρρ==,将10ρ=代入上式有()()21221,1,2,32n n n c c n n −−= =⋅⋅⋅从而得到,()()2021!!,1,2,32!!n n c c n n ⎛⎞−= =⋅⋅⋅⎜⎟⎜⎟⎝⎠于是有()()()221!!1nn y x c x +∞⎛⎞⎡⎤−⎜⎟=+⎢⎥∑1012!!n n =⎜⎟⎣⎦⎝⎠,这里由于120ρρ==;要求一个与()1y x 线性无关的解()2y x ,可设()()()∑∑+∞=+∞=++=+=01012ln ln 2n n n n n n x d x x gy xd x x gy x y ρ,其中,为待定的常数.,n g d ()()()∑+∞=−++′=′11112ln n n n x nd x y x gx x y g x y , ()()()()()∑+∞=−−+−′+′′=′′222111212ln n n n x d n n x x y g x y x gx x y g x y , 代入方程,有()()()()()()()()[]x y x y x g x x y x y x x y x x g 1111112ln 1121+′−+⎥⎤⎢⎡+′−+′′−4⎦⎣ ()()0412110111212=+−+−−−+∑∑∑∑∑+∞=+∞=−+∞=+∞=−+∞=n n n n n n n nn n n n n nn x d xnd x nd xd n n x d n n 注意到()1y x 是方程的解,所以上式中含有ln x 的那一项实际上是零,而含有的那一项,由于g ()()()210121!!12!!nn n y x c x n +∞=⎛⎞⎡⎤−⎜⎟=+⎢⎥⎜⎟⎣⎦⎝⎠∑,()()()12101!!2!!12−∞+=∑⎦⎤⎢⎣⎡−=′n n nx n n c x y 有 ()()()[]()()⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−+++=+′−∑∞+=n n x n n n n gc x y x y x g 12011!!2!!1222122112 ()()⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−++++=∑∞+=n n x n n n n x gc 2220!!2!!1222124321 这样,得到()()()2002222121221!!1321124222!!4914142nn n n n n n n gc x x d d n n d d x n d n d x +∞=+∞+=⎛⎞⎛⎞−+⎛⎞⎜⎟+++−⎜⎟⎜⎟⎜⎟⎜⎟+⎝⎠⎝⎠⎝⎠⎡⎤⎛⎞⎛⎞+−++−+=⎢⎥⎜⎟⎜⎟⎝⎠⎝⎠⎢⎥⎣⎦∑∑10合并同类项,有()()()()00120122222201211024********21!!212110,2,3,4222!!2n n gc d d gc d d n n n gc d n d n n n ++−=⋅+−=⎛⎞−++,+−+==⋅⋅⎜⎟⎜⎟+⎝⎠⋅于是,得()()()()()10022222201102222222222102211221343313432442243242121!!121,2,3,4,222!!221n n d gc d d gc d d gc n n n d d gc n n n n n +=+=⋅+⋅=⋅+⋅⋅⋅⋅⎛⎞+−+=+⋅ =⎜⎟⎜⎟+++⎝⎠⋅⋅⋅当时2n =222232010225153!!5!!5!!2246364!!6!!6!!2335d d gc d gc ⎛⎞⎛⎞⎛⎞⎛=+⋅=⋅++⎜⎟⎜⎟⎜⎟⎜⎞⎟⋅⋅⎝⎠⎝⎠⎝⎠⎝⎠当时3n =222243010227175!!7!!7!!22248486!!8!!8!!23354d d gc d gc ⎛⎞⎛⎞⎛⎞⎛=+⋅=⋅+++⎜⎟⎜⎟⎜⎟⎜7⎞⎟⋅⋅⋅⎝⎠⎝⎠⎝⎠⎝⎠()()依次类推,得()()()221021!!21!!1111422!!2!!23354721n n n d d gc n n n n ⎛⎞⎛⎞⎛⎞−−=⋅++++⋅⋅⋅+⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⋅⋅⋅⋅−⎝⎠⎝⎠⎝⎠于是有()()()()()()()22101120221!!ln 42!!21!!11112233547212!!nn n n n y x gy x x d d x n n gc x n n n +∞=+∞=⎛⎞−=++⎜⎟⎜⎟⎝⎠⎛⎞− ++++⋅⋅⋅+⎜⎟⎜⎟⋅⋅⋅−⎝⎠∑∑⎛⎞⎜⎟⎜⎟⎝⎠所以方程的通解为 ()()()12y x y x y x =+.§2.1.3勒让德方程与勒让德多项式2.1.3.1勒让德(Legendre )方程形如 ()()()()0212=+′−′′−x y x y x x y x μ的方程称为勒让德方程,这里μ是一个参数.0x =点是勒让德方程的常点.设方程0x =点领域内的解为()0n n n y x c x +∞==∑求导数()∑+∞=−=′11n n n nxc x y ,()()∑+∞=−−=′′221n n n x n n c x y 代入方程中,有()()2221112n nnn n n n n n n c n n xc n n x c nx c x μ+∞+∞+∞+∞−====0n n −−−−+∑∑∑∑=()()[]()()()()[]0112122312221302=−+−++−⋅−⋅++⋅∑∞+=+n n n n x c n n c n n xc c c c μμμ比较两边同次幂的系数得()()()()20312210322102110,2,3,n n c c c c n n c n n c n μμμ+⋅+=⋅−⋅−=++−+−= =⋅⋅⋅⎡⎤⎣⎦由此得到()()()20321021,21321,2,3,21n n c c c n n c c n n n 1c μμμ+⋅−⋅= =⋅⋅+⋅−−= =⋅⋅⋅+⋅+当时,有2n =m ()()()()()2021223210,0,1,2,2!m m m c c m μμμ−⋅−−⋅⋅⋅⋅−⋅−⎡⎤⎣⎦= =⋅⋅⋅m 1 当时,有2n m =+()()()()2112214321,21!m m m c c m μμ+⋅−−⋅⋅⋅⋅−⋅−⎡⎤⎣⎦=+μ因此,勒让德方程的通解可写为()()()()()()()()()()2002110212232102!221432121!m m m m m m y x c m m m c x m μμμμμμ+∞=+∞+=−−−⋅⋅⋅⋅−⋅−⎡⎤⎣⎦=−−⋅⋅⋅⋅−⋅−⎡⎤⎣⎦ ++∑∑不难证明,勒让德方程的两个线性无关的特解()()12,y x y x()()()()()()()()()()()2102120212232102!221432121!mm m m m m y x m m m y x x m μμμμμμ+∞=+∞+=−−−⋅⋅⋅⋅−⋅−⎡⎤⎣⎦=−−⋅⋅⋅⋅−⋅−⎡⎤⎣⎦=+∑∑当 时,级数都是发散的,即1x →±1x =±这两点一般是勒让德方程 的解的奇点.2.1.3.2勒让德方程的本征值与本征函数显然,由()()12,y x y x 的表达式可知,勒让德方程的本征值问题的提法是,求在闭区间[]1,1−+上有有界解,只有当其中的参数时,()1,0,1,2,l l l μ=+ =⋅⋅⋅()()12,y x y x 中将有一个退化为多项式,成为[]1,1−+上的有界解.因此,()1,0,1,2,3,l l l μ=+ =⋅⋅⋅是勒让德方程在有界条件下的本征值,相应的多项式解是本征函数.对于每一个确定的值就有唯一的一个多项式,通常把这种多项式的最高次方l l x 的系数规定为()()22!2!l l l c l =⋅称为勒让德多项式,记作.的明显表达式为)(x P l )(x P l nl l n lnl x n l n l n n l x P 220)!2()!(!2)!22()1()(−⎥⎦⎤⎢⎣⎡=∑−−⋅−−=其中2l ⎡⎤⎢⎥⎣⎦表示不大于2l 的最大整数.勒让德多项式还可以作为称之的生成函数())(x P l 12212xt t −−+关于展开式的系数,即l t ∑+∞=−=+−0212)()21(l l l t x P t xt .利用牛顿二项式展开式可以将勒让德多项式表示为微分形式-罗巨格(Rodrigues )公式lll l l x xl x P )1(!21)(2−⋅=d d 事实上,()()()()()()()()()222222220!!111!1!!!1!!1!!!!lrl l rll l r r l l g x x x x x l r l l l x l l r r l r −−−==−=−+⋅⋅⋅+−−−− +−=−−∑l rr因此)()!2()!(!)!22()1(21])12(2[)122)(22()!(!!)1(!21)1(!212202202x P x r l r l r r l x l r l r l r l r l r l l x xl l r l l r rlr l l r r l ll l =−−−−=−−−−−−−−⋅=−⋅−⎥⎦⎤⎢⎣⎡=−⎥⎦⎤⎢⎣⎡=∑∑L d d 由勒让德多项式的表达式,显然有)()1()(x P x P l n l −=−, 0)0(12=+n P222)!(2)!2()1()0(n n P n nn ⋅−=0)()()12()()1(11=++−+−+x lP x xP l x P l l l l ,)3,2,1(L =l )()1()()(1x P l x P x x P l l l ++′=′+)()12()()(11x P l x P x P l l l +=′−′−+, )3,2,1(L =l给出勒让德多项式的前八个的表达式: 1)(0=x P , ,x x P =)(1)13(21)(22−=x x P , )35(21)(33x x x P −=,)33035(81)(244+−=x x x P ,)157063(81)(355x x x x P +−=,)5105315231(161)(2466−+−=x x x x P ,)35315693429(161)(3577x x x x x P −+−=2.1.3.3勒让德多项式的完全性、正交性、以及它的范数不难证明,勒让德多项式, )(x P l ),2,1,0(L =l 构成[]21,1L −+空间 内的一个完全的正交的函数系.函数系的完全性证明从略.现在证明它的正交性.设()f x 是一个次多项式,如果m m l <时,则()f x 与正交:)(x P l 0)()(11=∫+−x x p x f ld事实上,记()()21lg x x =−,显然1x =±是()g x 的阶零点,即,而l 0)1()1()1()1(=±==±′=±−l g g g L )(!21)()(x g l x P l ll ⋅=.利用分部积分法,有[])()1()()()()(!21)()(!21)()(11)1()2()1()(1111=−++′−⋅=⋅=+−−−−−+−+−∫∫x g x g x f x g x f l x x g x f l x x P x f k l k l l l l l L d d 由此得...2,1,0,,,0)()(11=≠=∫+−l m l m x x P x P lmd现在计算的范数)(x P l []()])()()1()()()1()()()()([)!2(1)()(!21)()(11)2(11)12(1)2()1()1()(211)()(22112x x g x g x g x g x g x g x g x g l x x g x g l x x P x P l ll l l l l l l l l l l l d d d ∫∫∫+−+−−−−+−+−+−−+−+−⋅=⎟⎠⎞⎜⎝⎛⋅==L 2112211221122)1()1()2)(1()1(11)1()!(2)!2()1()1()1()!(2)!2()1()()!2()1()!(21+−++−+−+−++−⎜⎜⎝⎛⎢⎣⎡++⋅−−=+−−=−=∫∫l l l l l ll l l l l l x x l l l x l x l l x x x l l x x g l l d d12212)1()!2()!()!(2)!2()1()2()2)(1(!)1()1()2()2)(1(1)1(2)1(11122221121121+=++⋅⋅=⎟⎟⎠⎞+++−+⎥⎦⎤+++−−+++−++−+−−∫l l x l l l l x x l l l l x l l l x l l l l ll l d L L L L 得 122)(+=l x P l , ),2,1,0(L =l 展开定理:设()[]21,1f x L ∈−+,则有傅里叶级数)()(0x P f x f l l l ∑+∞==这里傅里叶系数xx P x f l l x x P x f x p f ll l d d ∫∫+−+−⎟⎠⎞⎜⎝⎛+===1121121)()(2122,1,0,)()()(1L§2.1.4连带的勒让德方程和连带的勒让德函数 连带的勒让德方程()011222=⎟⎟⎠⎞⎜⎜⎝⎛−−+⎥⎦⎤⎢⎣⎡−y x m x y x x μd d d d , 显然时它就是勒让德方程.0m =连带的勒让德方程的本征值问题,就是求出它在[]1,1−+上的有界解那些μ的值.同样,()L 2,1,0,1=+=l l l μ是它的本征值,它的相应的本征函数系可以通过变换()()()221m y x xv x =−得()v x 的方程0)]1([)1(2)1(2=+−+′+−′′−v m m v x m v x μ上式两边对x 求导数,得0))](2)(1([)()2(2))(1(2=′++−+′′+−′′′−v m m v x m v x μ与前一式比较,只是将m 变成1m +,变成v v ′.注意到时,就是勒让德方程,由此可知,前一式可以从勒让德方程通过求导次推得,也就是它的解就是勒让德方程的解的阶导数.由于0m =m m ()1l l μ=+,因此它的一个解是),()(x P xx v l m md d =0(≤≤m )l 于是得到连带勒让德方程在[]1,1−+上有界的解:l m x P x x x P l mmm ml L ,2,1,0),()1()(22=−=d d通常称为阶次(第一类)连带勒让德函数.)(x P m l m l 容易知道,有连带勒让德函数的正交性:L 2,1,0,,0)()(11=≠=∫+−n l n l x x P x P m n m ld并且[]12)!(1−l m l 2)!()()(122+⋅−+==∫+m l x x Px P mlml d .§2.1.5贝塞耳(Bessel )方程和贝塞耳函数2.1.5.1贝塞耳方程所谓贝塞耳方程是 011222=⎟⎟⎠⎞⎜⎜⎝⎛−++y x x y x x y νd d d d 2, 它是应用中常见的常微分方程,这里是参数.显然,v 0x =是方程的 正则点,为了便于求它的幂级数解,把方程化为0)()()()(222=−+′+′′x y x x y x x y x ν设方程的解 ()00,0n n n y x c x c ρ+∞+== ≠∑求导有∑+∞=−++=′01)()(n n n xc n x y ρρ,∑+∞=−+−++=′′02)1)(()(n n n x c n n x y ρρρ代入方程,得()()()22010n n n n n n n n n n c n n xn c xc xc x ρρρρρρν+∞+∞+∞+∞+++===++−++−+=∑∑∑∑0n n ρ++=消去因子x ρ得:()222000n n n n n n n c x c x ρν+∞+∞+==⎡⎤+−+⎣⎦∑∑= 合并同类项,有()()()()22222201210n n n n cc x n c c ρνρνρν+∞−=⎡⎤⎡⎤−++−++−+=⎣⎦⎣⎦∑2x 由此得到0)(022=−c νρ, ()0)1(122=−+c νρ,[]0)(222=−−+−n n c c n νρ,),4,3,2(L =n由于,得指标方程00c ≠220ρν−=它的两个根是ρν=±,设νRe ≥0,取12,ρνρν= =−(1)设122ρρν−=≠整数,将νρ=1代入上面的系数的递推关系式,有()1210c ν,+=得, 10c =并且 ()()2,2,3,4,2n n c c n n n ν−−==⋅⋅⋅+因,便得10c =020202)2(2)1()1()1(2)1()22(21c ΓΓc ΓΓc c ++−=+++−=+=νννννν04202224)12(2!2)1()1()2(22)2(4)1()1()42(41c ΓΓc ΓΓc c νννννν++⋅+−=+⋅+⋅+−=+−=02m 222)1(!2)1()1()22(21c m Γm Γc m m c m m m ννν++⋅+−=+−=−,),5,4,3(L =m 这里用了公式)()1(z Γz z Γ=+,其中∫+∞−−>=010Re ,)(z t t e z z t d Γ便得到nn nx n ΓΓn c x x y 20012)1()1(!1)1()(⎟⎠⎞⎜⎝⎛+++−=∑+∞=ννν.同样,在122ρρν−=≠整数时,与()1y x 线性无关的解()2y x 可设为()20nn n y x xd xν+∞−==∑类似得到nn n x n ΓΓn d x x y 20022)1()1(!1)1()(⎟⎠⎞⎜⎝⎛−+−−=∑+∞=−ννν,通常取νν⎟⎠⎞⎜⎝⎛+=21)1(10Γc ,νν−⎟⎠⎞⎜⎝⎛−=21)1(10Γd 得到的称为ν±阶贝塞耳函数:ννν++∞=⎟⎠⎞⎜⎝⎛++−=∑n n n x n Γn x J 202)1(1!1)1()(,ννν−∞+=−⎟⎠⎞⎜⎝⎛−+−=∑n n nx n Γn x J 202)1(1!1)1()(.因νν−≠,故与线性无关.显然,在方程的正则点处,)(x J ν)(x J ν−0x =()00J ν,=而()0J ν−=∞.(2)对于==−νρρ221整数时,除了第一个解()1y x (或者)相同外,第二个解则一般应为()J x ν()()210ln nn n y x gy x x xd xν+∞−==+∑同样也可以求得,这里从略.2.1.5.2贝塞耳方程的本征值问题和本征函数对于贝塞耳方程在第一、二、三类边界条件下的本征值问题提法是求⎪⎪⎪⎩⎪⎪⎪⎨⎧=⎟⎠⎞⎜⎝⎛+=⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎠⎞⎜⎝⎛==0)(0)(10222a r r R rR r R r R r m k r R r r r βαd d d d d d 有界其中k 是待定参数,是固定的非负整数,m βα,不同时为零的非负实数.令x kr =,求贝塞耳方程在0r =(即0x =)的有界解应是m 阶贝塞耳函数,即()()m R r J kr =,由满足边界条件得k 满足的超越方程r a =()()0=+′ka J ka J k m mβα, 所以这个本征值问题的本征值应是这个超越方程的根的平方.可以证明它有可列无穷多个单根,用()1,2,i k i =⋅⋅⋅表示正数根,有120i k k k <<<⋅⋅⋅<<⋅⋅⋅相应的本征函数为)()(r k J r R i m i =,),3,2,1(L =i2.1.5.3本征函数()i R r 在区间[]0,a 上带权因子r 正交的完全系 现在来证明带权因子r 的正交性,即。

量子力学中的Hilbert空间

量子力学中的Hilbert空间

量子力学中的Hilbert空间罗XX(XX大学物理科学学院XX级光X班)摘要解偏微分时,需要解本征值方程,常用的方法是级数法。

这时需要有一个函数空间,其轴是一组正交完备系。

由一组正交完备的基底通过线性叠加组成方程的解。

本征解既是在一个具体表象(固定坐标轴)中只有一个轴表示。

这个空间叫做希尔伯特空间。

关键词Hilbert空间、态、态矢量、表象引言在量子力学的研究中用到了Hilbert空间来描述微观系统的态空间,为研究带来了理论基础及方便。

一、对Hilbert空间的描述在数学领域,希尔伯特空间是欧几里德空间的一个推广,其不再局限于有限维的情形。

与欧几里德空间相仿,希尔伯特空间也是一个内积空间,其上有距离和角的概念(及由此引伸而来的正交性与垂直性的概念)。

此外,希尔伯特空间还是一个完备的空间,其上所有的柯西列等价于收敛列,从而微积分中的大部分概念都可以无障碍地推广到希尔伯特空间中。

希尔伯特空间为基于任意正交系上的多项式表示的傅立叶级数和傅立叶变换提供了一种有效的表述方式,而这也是泛函分析的核心概念之一。

希尔伯特空间是公式化数学和量子力学的关键性概念之一。

[1]二、量子力学中对Hilbert空间的描述同一个态可以在不同的表象中用波函数来描述,所取的表象不同,波函数的形式也不同,但他们描写同一个态。

这和几何中一个矢量可以在不同的坐标系中描写类似。

矢量A可以在直角笛卡尔坐标中用三个分量(Ax,Ay,Az)来描写,也可以在球极坐标中用三个分量(Ar,Aθ,Aφ)来描写等等。

在量子力学中,我们可以把状态Ψ看成是一个矢量——态矢量。

选取一个特定的Q表象,就相当选取一个特定的坐标系。

Q的本征函数u1(x)u2(x)u3(x)···un(x)···是这个表象的基矢。

这相当于直角坐标系中单位矢量i,j,k。

波函数((a1(t)a2(t)···)是态矢量Ψ在Q表象中沿各基矢方向的“分量”。

偏微分方程_hilbert空间_概述及解释说明

偏微分方程_hilbert空间_概述及解释说明

偏微分方程hilbert空间概述及解释说明1. 引言1.1 概述引言部分将介绍本篇长文的主题以及所讨论的内容。

本文将着重探讨偏微分方程和Hilbert空间的概念,并比较解析解和数值解方法在偏微分方程求解中的优劣势。

通过对问题背景和相关领域的概况进行描述,引言部分将为读者提供整体上下文框架。

1.2 文章结构本文共分为五个主要部分,每个部分都有相应的子节。

以下是各个部分的简要介绍:第二部分“偏微分方程概述”将开始对偏微分方程的定义、常见类型以及与数学建模之间的关系进行全面阐述。

第三部分“Hilbert空间介绍”将详细描述Hilbert空间的定义、性质以及在数学和物理领域中的应用。

第四部分“解析解与数值解方法比较”将重点比较解析解和数值解方法对于偏微分方程求解所具有的特点和优势,并以实际案例进行深入探讨。

最后一部分“结论与展望”则会对整篇文章进行总结,展望未来可能的研究方向和发展趋势。

1.3 目的本文的目的是全面介绍偏微分方程和Hilbert空间,并探讨解析解与数值解方法在求解偏微分方程中的应用。

通过比较不同方法之间的优劣,读者可以对该领域有更深入的了解。

此外,我们还将提供一些未来可能的研究方向,以鼓励读者进一步探索相关领域,并对本文进行总结和结束语部分。

2. 偏微分方程概述:2.1 偏微分方程定义偏微分方程是描述多变量函数与其偏导数之间关系的方程。

它涉及未知函数的各种偏导数,以及独立变量(例如时间和空间)之间的关系。

一般而言,偏微分方程包含了函数本身及其对各个自变量的各阶偏导数。

2.2 常见类型的偏微分方程在实际问题中,我们常遇到几种类型的偏微分方程。

其中,常见的一类是椭圆型偏微分方程,如拉普拉斯方程;另一类是抛物型偏微分方程,如热传导方程;还有一类是双曲型偏微分方程,如波动方程。

每种类型的偏微分方程都具有不同的性质和解法。

2.3 数学建模与偏微分方程在科学研究和工程领域中,往往需要通过建立数学模型来描述实际现象或问题。

希尔伯特空间 柯西施瓦布不等式

希尔伯特空间 柯西施瓦布不等式

希尔伯特空间柯西施瓦布不等式
希尔伯特空间(Hilbert Space)是数学中的一个重要概念,它是一个完备的内积空间。

在这个空间中,向量之间的内积被定义为一个满足特定性质的函数,这个函数可以度量向量之间的“夹角”以及向量的“长度”。

希尔伯特空间为许多数学和物理领域提供了强大的工具,包括量子力学、调和分析、数值分析等。

柯西施瓦布不等式(Cauchy-Schwarz Inequality)是希尔伯特空间中的一个基本不等式,它表述为:对于任意两个向量x和y,在希尔伯特空间中,它们的内积的绝对值不超过它们各自模的乘积,即 |<x, y>| ≤ ||x|| ||y||,其中||x||和||y||分别表示向量x和y 的模。

柯西施瓦布不等式的应用非常广泛。

在数值分析中,它常用于估计误差界限;在优化理论中,它是很多优化算法的基础;在信号处理中,它被用来描述信号之间的相关性。

此外,这个不等式也是量子力学中许多重要结论的基础,如不确定性原理。

柯西施瓦布不等式不仅在数学中占据重要地位,还在实际应用中发挥着巨大作用。

它提供了一种度量向量之间关系的方式,同时也是许多数学定理和物理原理的基础。

在希尔伯特空间中,柯西施瓦布不等式是一个强有力的工具,它帮助我们理解和处理向量空间中的各种问题。

9-3希尔伯特空间中的指导规范正交系

9-3希尔伯特空间中的指导规范正交系
对任何 x X ,
lim
n
x , en
0
(5)

证明 因对 x X ,级数 | x, ei |2 || x ||2
i 1
收敛,所以 x, en 0 (n ) .
下面讨论一般规范正交系的Bessel不等式.
设 {ek , k } 是 X 中规范正交系,其中
引理2 设 {ek }为Hilbert空间 X 中可数规
范正交系,则


(1) 级数
| i |2 收敛;
iei 收敛的充要条件为级数
i 1
i1

(2) 若 x iei ,则i x, ei , i 1, 2, ,

i1

x x , ei ei
i 1

(3) 对任何 x X ,级数 x , ei ei 收敛.
其中等号右端级数是指在 L2 [0, 2 ] 中平方平叶系数.
引理3 设 {x1 , x2 , } 是内积空间 X 中有限
或可数个线性无关向量,则必有 X 中规范正交系
{e1 , e2 , } ,使对任何正整数 n ,有
span{e1 , , en } span{x1 , , xn }
若 M 为 X 中规范正交系, e1 , e2 , 是 M

中有限或可数个向量,且 x iei ,则对每个 i 1
自然数 j ,由内积连续性,可得


x , ej iei , ej i ei , ej j
i1
i1
所以

x x , ej ej j 1
n
2
n
(1) x x , ei ei || x ||2 | x, ei |2 0

第四章 Hilbert 空间

第四章 Hilbert 空间

1.正交系及规范正交系 1) 定义 设在 U 空间中有一组非零的元素列 (或点列)
{en } ,
①若 (ei , e j ) = 0 (i ≠ j ) ,则称{en } 为正交系;
⎧0 , i ≠ j (ei , e j ) = ⎨ ②若 1 , i = j ,则称{en } 为规范正交系 ⎩
(或标准正交系) 。
x ⊥ L ,则 x=0(零元素) 。
(3)设 U 是内积空间, ∀M ⊂ U ,则 M ⊥ 为 U 的闭线 性子空间。
(4)设 U 是内积空间, x ∈ U , M ⊂ U 为线性子空间, 若 x0 为 x 在 M 上的投影,则
x − x0 = inf x − y
y∈M
(**)
而且 x0 是 M 中使(**)成立的唯一点。 ( x − x0 = inf x − y 说明 x0 是 M 中逼近 x 的最好元) y∈M

按内
积 ( x, y ) = ∑ xi yi 为规范正交系。
i =1
L[2−π ,π ] 中,若规定内积 例3 在
( x, y ) = ∫ x(t ) y (t )dt ,
−π
π
则三角函数系
1 1 1 , cos t , sin t , 2π π π
,
1
π
cos nt ,
1
π
sin nt ,
L[2−π ,π ] 中的规范正交系。 是
§4.1 内积空间和Hilbert空间
1)定义(内积空间) 设 U 是数域 K(实或复数域) 上的线性空间,若 ∀ x , y ∈ U ,存在唯一的数 ( x, y )∈ K , 满足下列三条(内积公理) : ① 对第一变元的线性性:

赫布曲线文档

赫布曲线文档

赫布曲线1. 介绍赫布曲线(Hilbert Curve),又称希尔伯特曲线,是一种空间填充曲线,最早由德国数学家大卫·希尔伯特在20世纪初提出。

赫布曲线具有许多有趣的性质,被广泛应用于图像压缩、空间索引以及可视化等领域。

赫布曲线的特点是通过逐步细分单元来构造一条连接起始点和结束点的连续曲线。

它具有自相似性,即无论是整条曲线还是曲线的一部分,其形状都与整体相似。

因此,赫布曲线的形状可以通过迭代生成的方式得到。

2. 构造赫布曲线赫布曲线的构造可以通过以下步骤进行:1.定义起始点和结束点。

2.以起始点作为左下角,根据规则确定下一次迭代的单位长度。

通常情况下,单位长度为整个空间的正方形的边长除以2的幂次。

3.对于当前迭代的单位长度,细分为4个小单位,分别表示赫布曲线的四个方向:向上、向右、向下和向左。

每个小单位的顺序是固定的,依次连接形成曲线。

4.迭代生成下一次的赫布曲线,直到达到所需的细分次数。

以下是一个示例的赫布曲线的生成过程:Hilbert Curve ConstructionHilbert Curve Construction3. 赫布曲线的应用3.1 图像压缩赫布曲线可以被用于图像的压缩算法中。

通过将图像的像素点按照赫布曲线的方式进行排序,可以提高压缩效率。

具体而言,将赫布曲线的每个像素点与图像中的像素点进行映射,从而创建一个有序的序列。

这种有序的序列可以更好地利用图像中的局部相关性,从而实现更好的压缩效果。

3.2 空间索引赫布曲线也可用作空间索引数据结构,例如在地理信息系统(GIS)中。

通过将地理空间中的坐标点映射到赫布曲线上,可以快速地进行空间查询。

这种索引方式可以有效地减少空间数据的存储和检索成本,提高空间数据查询的效率。

3.3 可视化赫布曲线的自相似性使其在可视化中具有独特的优势。

利用赫布曲线的特点,可以使用较少的曲线片段表示复杂的图形。

这种方法被广泛应用于计算机绘图、数据可视化和艺术创作等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5)举例
例 1 在 n ——n 维(实或复数)向量空间中,
x (x1, x2, , xn ), y ( y1, y2, , yn ) n , 定义
n
内积 (x, y) xi yi (满足三条公理) i 1
范数
n
x (x, x)
xi 2 ,
i 1
则 n 按范数是完备的内积空间,即 Hilbert 空间。
希尔伯特Hilbert空间演示文稿
优选希尔伯特Hilberቤተ መጻሕፍቲ ባይዱ空间ppt
在第 3 章中,我们建立了赋范线性空间,给向量赋 予了范数,即向量的长度,它是 Rn 中向量长度在抽象空 间中的推广。但在 Rn 中向量还有一个很重要的特征—— 向量之间的夹角、正交等概念。特别是有了正交概念以 后,由它可以得到勾股定理、正交投影定理,这是建立 某些数值算法的重要理论。本章将这些概念抽象推广到 一般的赋范线性空间,建立了内积空间和 Hilbert 空间。
即当 xn x, yn y (按范数)时,数列 (xn, yn ) (x, y)
4)希尔伯特(Hilbert)空间 定义 完备的内积空间 U 称为 Hilbert 空间,记作 H
(即内积空间 U 按距离 (x, y) x y (x y, x y) 是 完备的,亦是 Banach 空间)
§4.1 内积空间和Hilbert空间
1)定义(内积空间) 设 U 是数域 K(实或复数域) 上的线性空间,若x, y U ,存在唯一的数 (x, y) K , 满足下列三条(内积公理):
① 对第一变元的线性性:
( x y, z) (x, z) ( y, z), z U
② 共轭对称性: (x, y) ( y, x)
1
范数 x ( xi 2)2 ,
i1
则l 2 是 Hilbert 空间。
例 4 C[a,b]是按范数 x max x(t) 不是内积空间(因为 t[ a ,b ]
不满足平行四边形公式)。
§4. 2 正交分解与投影定理
1) 定义(正交性)设 U 是内积空间,x, y U, M , N U
(1)若(x, y) 0 ,称 x 与 y 正交,记作 x y ;
(2)判别定理 若赋范线性空间 X 的范数 满足平行 四边形公式 x y 2 x y 2 2( x 2 y 2 ) ,则 X 可成为 内积空间。
证: ①当 X 为实赋范线性空间时,定义
(x, y) 1 ( x y 2 x y 2 ) 4
则由平行四边形公式验证其满足内积的三条公理;
(x, y)U ,有 x, y x y
验证 x (x, x) 满足范数的三条公理。
① 显然
② x ( x, x) x
③ 因为 x y 2 (x y, x y) (x, x) (x, y) (x, y) ( y, y)
x 2 2 Re(x, y) y 2
x 2 2 x y y 2 ( x y )2
( Re(x, y) (x, y) x y )

x y x y
3)内积空间的性质 (1)在内积空间 U 中,按内积导出的范数满足平行四边 形公式
证明:
x y 2 x y 2 2( x 2 y 2 )
x y 2 x y 2 (x y, x y) (x y, x y) x 2 (x, y) ( y, x) y 2 x 2 (x, y) ( y, x) y 2 2( x 2 y 2 )
若 L2[a,b]为复值函数,则定义内积
b
(x, y) a x(t) y(t)dt (满足三条公理)
例 3 在l2 {x x (x1, x2, ), xi2 , xi为复数}中, i 1
x (x1, x2, ), y ( y1, y2, ) l2,定义
内积 (x, y) xi yi (满足三条公理) i 1
③ 正定性:(x, x) 0, (x, x) 0 x 0
则称 (x, y) 为 x, y 的内积,U 为内积空间。
当 K 是实数域时,称 U 为实内积空间;K 为复数 域时,称 U 为复内积空间。通常 U 指的是复内积 空间。
当 U 为内积空间时,推得:x, y, z U,, 有
① (x, y) (x, y) ② (x, y z) (x, y) (x, z)
使得
x x0 x1
(*)
则称 x0 为 x 在 M 上的正交投影,(*)式称为 x 关于 M 的
② 当 X 为复赋范线性空间时,定义
(x, y) 1 ( x y 2 x y 2 ) i ( x iy 2 x iy 2 )
4
4
则由平行四边形公式验证其满足内积的三条公理。
注:若赋范线性空间 X 的范数不满足平行四边形公式, 则 X 不能成为内积空间。
(3)内积的连续性
在内积空间 U 中,内积(x, y) 是两个变元 x, y 的连函数,
(2)若y N, 有(x, y) 0 ,称 x 与 N 正交,记作 x N ;
(3)若x M ,y N, 有(x, y) 0 ,称 M 与 N 正交,
记作 M N ;
(4) U 中与 M 正交的所有元素的全体称为 M 的正交 补,记作 M ,即
M {y y x,x M}。
(5)设 M 为 U 的线性子空间,x U , 若x0 M , x1 M ,
2)内积空间中的范数 在内积空间 U 中,若令
x (x, x) ,即 x 2 (x, x)
可验证满足范数的三条公理,故 U 是按内积导出的赋 范线性空间。进一步也可由范数导出距离
(x, y) x y (x y, x y) ,则 U 也是距离空间。
引理(柯西—许瓦兹不等式 Cauchy—Schwarz):
n
n
特别的,在 Rn 中,内积(x, y)
xi yi ,范数 x
xi2 。
i 1
i 1
例 2 在 L2[a,b]中,x(t), y(t) L2[a,b],
b
定义内积 (x, y) a x(t) y(t)dt (满足三条公理)
范数
x(t)
(
b
x2
(t
)dt
)
1 2

a
则 L2[a,b]按范数是完备的内积空间。
相关文档
最新文档