材料物理与性能配套课后题答案精选
(完整)材料物理性能答案
)(E k →第一章:材料电学性能1 如何评价材料的导电能力?如何界定超导、导体、半导体和绝缘体材料?用电阻率ρ或电阻率σ评价材料的导电能力.按材料的导电能力(电阻率),人们通常将材料划分为:)()超导体()()导体()()半导体()()绝缘体(m .104m .10103m .10102m .1012728-828Ω〈Ω〈〈Ω〈〈Ω〈---ρρρρ2、经典导电理论的主要内容是什么?它如何解释欧姆定律?它有哪些局限性?金属导体中,其原子的所有价电子均脱离原子核的束缚成为自由电子,而原子核及内层束缚电子作为一个整体形成离子实。
所有离子实的库仑场构成一个平均值的等势电场,自由电子就像理想气体一样在这个等势电场中运动.如果没有外部电场或磁场的影响,一定温度下其中的离子实只能在定域作热振动,形成格波,自由电子则可以在较大范围内作随机运动,并不时与离子实发生碰撞或散射,此时定域的离子实不能定向运动,方向随机的自由电子也不能形成电流。
施加外电场后,自由电子的运动就会在随机热运动基础上叠加一个与电场反方向的平均分量,形成定向漂移,形成电流。
自由电子在定向漂移的过程中不断与离子实或其它缺陷碰撞或散射,从而产生电阻。
E J →→=σ,电导率σ= (其中μ= ,为电子的漂移迁移率,表示单位场强下电子的漂移速度),它将外加电场强度和导体内的电流密度联系起来,表示了欧姆定律的微观形式.缺陷:该理论高估了自由电子对金属导电能力的贡献值,实际上并不是所有价电子都参与了导电。
(?把适用于宏观物体的牛顿定律应用到微观的电子运动中,并且承认能量的连续性)3、自由电子近似下的量子导电理论如何看待自由电子的能量和运动行为?自由电子近似下,电子的本证波函数是一种等幅平面行波,即振幅保持为常数;电子本证能量E 随波矢量的变化曲线 是一条连续的抛物线.4、根据自由电子近似下的量子导电理论解释:准连续能级、能级的简并状态、简并度、能态密度、k 空间、等幅平面波和能级密度函数.n 决定,并且其能量值也是不连续的,能级差与材料线度L ²成反比,材料的尺寸越大,其能级差越小,作为宏观尺度的材料,其能级差几乎趋于零,电子能量可以看成是准连续的。
材料物理性能课后习题答案解析北航出版社田莳主编
材料物理习题集第一章 固体中电子能量结构和状态(量子力学基础)1. 一电子通过5400V 电位差的电场,(1)计算它的德布罗意波长;(2)计算它的波数;(3)计算它对Ni 晶体(111)面(面间距d =2.04×10-10m )的布拉格衍射角。
(P5)12341311921111o '(2)6.610 =(29.1105400 1.610)=1.67102K 3.7610sin sin 2182hh pmE md dλπλθλλθθ----=⨯⨯⨯⨯⨯⨯⨯=⨯==⇒=解:(1)=(2)波数=(3)22. 有两种原子,基态电子壳层是这样填充的;;s s s s s s s 2262322626102610(1)1、22p 、33p (2)1、22p 、33p 3d 、44p 4d ,请分别写出n=3的所有电子的四个量子数的可能组态。
(非书上内容)3. 如电子占据某一能级的几率是1/4,另一能级被占据的几率为3/4,分别计算两个能级的能量比费米能级高出多少k T ?(P15)1()exp[]11ln[1]()()1/4ln 3()3/4ln 3FF F F f E E E kT E E kT f E f E E E kT f E E E kT=-+⇒-=-=-=⋅=-=-⋅解:由将代入得将代入得4. 已知Cu 的密度为8.5×103kg/m 3,计算其E 0F 。
(P16) 2203234262333118(3/8)2(6.6310)8.510 =(3 6.0210/8)291063.5=1.0910 6.83Fh E n m J eVππ---=⨯⨯⨯⨯⨯⨯⨯⨯=解:由5. 计算Na 在0K 时自由电子的平均动能。
(Na 的摩尔质量M=22.99,.0ρ⨯33=11310kg/m )(P16)22323426233311900(3/8)2(6.6310) 1.01310 =(3 6.0210/8)291022.99=5.2110 3.253 1.085F F h E n mJ eVE E eVππ---=⨯⨯⨯⨯⨯⨯⨯⨯===解:由由 6. 若自由电子矢量K 满足以为晶格周期性边界条件x x L ψψ+()=()和定态薛定谔方程。
材料物理性能课后习题答案-北航出版社-田莳主编【范本模板】
材料物理习题集第一章 固体中电子能量结构和状态(量子力学基础)1. 一电子通过5400V 电位差的电场,(1)计算它的德布罗意波长;(2)计算它的波数;(3)计算它对Ni 晶体(111)面(面间距d =2。
04×10—10m )的布拉格衍射角。
(P5)12341311921111o '(2)6.610 =(29.1105400 1.610)=1.67102K 3.7610sin sin 2182hh pmE md dλπλθλλθθ----=⨯⨯⨯⨯⨯⨯⨯=⨯==⇒=解:(1)=(2)波数=(3)22. 有两种原子,基态电子壳层是这样填充的;;s s s s s s s 2262322626102610(1)1、22p 、33p (2)1、22p 、33p 3d 、44p 4d ,请分别写出n=3的所有电子的四个量子数的可能组态。
(非书上内容)3. 如电子占据某一能级的几率是1/4,另一能级被占据的几率为3/4,分别计算两个能级的能量比费米能级高出多少k T?(P15)1()exp[]11ln[1]()()1/4ln 3()3/4ln 3FF F F f E E E kT E E kT f E f E E E kT f E E E kT=-+⇒-=-=-=⋅=-=-⋅解:由将代入得将代入得4. 已知Cu 的密度为8.5×103kg/m 3,计算其E 0F 。
(P16) 2203234262333118(3/8)2(6.6310)8.510 =(3 6.0210/8)291063.5=1.0910 6.83Fh E n m J eVππ---=⨯⨯⨯⨯⨯⨯⨯⨯=解:由5. 计算Na 在0K 时自由电子的平均动能。
(Na 的摩尔质量M=22.99,.0ρ⨯33=11310kg/m )(P16)22323426233311900(3/8)2(6.6310) 1.01310 =(3 6.0210/8)291022.99=5.2110 3.253 1.085F F h E n mJ eVE E eVππ---=⨯⨯⨯⨯⨯⨯⨯⨯===解:由由 6. 若自由电子矢量K 满足以为晶格周期性边界条件x x L ψψ+()=()和定态薛定谔方程。
材料物理性能课后习题答案
《材料物理性能》第一章材料的力学性能1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至 2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。
解:由计算结果可知:真应力大于名义应力,真应变小于名义应变。
1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。
若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。
解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。
则有当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。
1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。
0816.04.25.2ln ln ln 22001====A A l l T ε真应变)(91710909.4450060MPa A F =⨯==-σ名义应力0851.0100=-=∆=A A l l ε名义应变)(99510524.445006MPa A F T =⨯==-σ真应力)(2.36505.08495.03802211GPa V E V E E H =⨯+⨯=+=上限弹性模量)(1.323)8405.038095.0()(112211GPa E V E V E L =+=+=--下限弹性模量解:Maxwell 模型可以较好地模拟应力松弛过程:Voigt 模型可以较好地模拟应变蠕变过程:以上两种模型所描述的是最简单的情况,事实上由于材料力学性能的复杂性,我们会用到用多个弹簧和多个黏壶通过串并联组合而成的复杂模型。
如采用四元件模型来表示线性高聚物的蠕变过程等。
材料物理性能课后答案
材料物理性能课后答案【篇一:《材料物理性能》王振廷版课后答案106页】磁化强度、磁导率、磁化率、剩余磁感应强度、磁各向异性常数、饱和磁致伸缩系数。
a、磁化强度:一个物体在外磁场中被磁化的程度,用单位体积内磁矩的多少来衡量,成为磁化强度mc、饱和磁化强度:磁化曲线中随着磁化场的增加,磁化强度m或磁感强度b开始增加较缓慢,然后迅速增加,再转而缓慢地增加,最后磁化至饱和。
ms成为饱和磁化强度,bs成为饱和磁感应强度。
e、磁化率:从宏观上来看,物体在磁场中被磁化的程度与磁化场的磁场强度有关。
h、磁晶各向异性常数:磁化强度矢量沿不同晶轴方向的能量差代表磁晶各向异性能,用ek表示。
磁晶各向异性能是磁化矢量方向的函数。
2、计算gd3+和cr3+的自由离子磁矩?gd3+的离子磁矩比cr3+离子磁矩高的原因是什么?gd3+有7个未成对电子, cr3+ 3个未成对电子.3、过渡族金属晶体中的原子(或离子)磁矩比它们各自的自由离子磁矩低的原因是什么?4、试绘图说明抗磁性、顺磁性、铁磁性物质在外场b=0的磁行为。
5、分析物质的抗磁性、顺磁性、反铁磁性及亚铁磁性与温度之间的关系?答:(1) 抗磁性是由外磁场作用下电子循轨运动产生的附加磁矩所造成的,与温度无关,或随温度变化很小。
(2) 根据顺磁磁化率与温度的关系,可以把顺磁体分为三类,一是正常顺磁体,其原子磁化率与温度成反比;二是磁化率与温度无关的顺磁体;三是存在反铁磁体转变的顺磁体,当温度高于一定的转变温度tn时,它们和正常顺磁体一样服从局里-外斯定律,当温度低于tn时,它们的原子磁化率随着温度下降而减小,当t→0k时,磁化率趋于常数。
(3) 反铁磁性物质的原子磁化率在温度很高时很小,随着温度逐渐降低,磁化率逐渐增大,温度降至某一温度tn时,磁化率升至最大值;再降低温度,磁化率又减小。
(4 ) 亚铁磁性物质的原子磁化率随温度的升高而逐渐降低。
6、什么是自发磁化?铁磁体形成的条件是什么?有人说“铁磁性金属没有抗磁性”,对吗?为什么?a、组成铁磁性材料的原子或离子有未满壳层的电子,因此有固有原子磁矩。
材料物理性能课后习题答案_北航出版社_田莳主编
材料物理习题集第一章 固体中电子能量结构和状态(量子力学基础)1. 一电子通过5400V 电位差的电场,(1)计算它的德布罗意波长;(2)计算它的波数;(3)计算它对Ni 晶体(111)面(面间距d =2.04×10-10m )的布拉格衍射角。
(P5)12341311921111o '(2)6.610 =(29.1105400 1.610)=1.67102K 3.7610sin sin 2182hh pmE m d dλπλθλλθθ----=⨯⨯⨯⨯⨯⨯⨯=⨯==⇒=解:(1)=(2)波数=(3)22. 有两种原子,基态电子壳层是这样填充的;;s s s s s s s 2262322626102610(1)1、22p 、33p (2)1、22p 、33p 3d 、44p 4d ,请分别写出n=3的所有电子的四个量子数的可能组态。
(非书上内容)3. 如电子占据某一能级的几率是1/4,另一能级被占据的几率为3/4,分别计算两个能级的能量比费米能级高出多少k T ?(P15)1()exp[]11ln[1]()()1/4ln 3()3/4ln 3FF F F f E E E kT E E kT f E f E E E kT f E E E kT=-+⇒-=-=-=⋅=-=-⋅解:由将代入得将代入得4. 已知Cu 的密度为8.5×103kg/m 3,计算其E 0F 。
(P16)2203234262333118(3/8)2(6.6310)8.510 =(3 6.0210/8)291063.5=1.0910 6.83Fh E n m J eVππ---=⨯⨯⨯⨯⨯⨯⨯⨯=解:由5. 计算Na 在0K 时自由电子的平均动能。
(Na 的摩尔质量M=22.99,.0ρ⨯33=11310kg/m )(P16)220323426233311900(3/8)2(6.6310) 1.01310 =(3 6.0210/8)291022.99=5.2110 3.253 1.085FF h E n mJ eVE E eVππ---=⨯⨯⨯⨯⨯⨯⨯⨯===解:由由 6. 若自由电子矢量K 满足以为晶格周期性边界条件x x L ψψ+()=()和定态薛定谔方程。
材料物理性能课后习题答案 北航出版社 田莳主编
材料物理习题集第一章 固体中电子能量结构和状态(量子力学基础)1. 一电子通过5400V 电位差的电场,(1)计算它的德布罗意波长;(2)计算它的波数;(3)计算它对Ni 晶体(111)面(面间距d =2.04×10-10m )的布拉格衍射角。
(P5)12341311921111o '(2)6.610 =(29.1105400 1.610)=1.67102K 3.7610sin sin 2182hh pmE m d dλπλθλλθθ----=⨯⨯⨯⨯⨯⨯⨯=⨯==⇒=解:(1)=(2)波数=(3)22. 有两种原子,基态电子壳层是这样填充的;;s s s s s s s 2262322626102610(1)1、22p 、33p (2)1、22p 、33p 3d 、44p 4d ,请分别写出n=3的所有电子的四个量子数的可能组态。
(非书上内容)3. 如电子占据某一能级的几率是1/4,另一能级被占据的几率为3/4,分别计算两个能级的能量比费米能级高出多少k T ?(P15)1()exp[]11ln[1]()()1/4ln 3()3/4ln 3FF F F f E E E kT E E kT f E f E E E kT f E E E kT=-+⇒-=-=-=⋅=-=-⋅解:由将代入得将代入得4. 已知Cu 的密度为8.5×103kg/m 3,计算其E 0F 。
(P16)2203234262333118(3/8)2(6.6310)8.510 =(3 6.0210/8)291063.5=1.0910 6.83Fh E n m J eVππ---=⨯⨯⨯⨯⨯⨯⨯⨯=解:由5. 计算Na 在0K 时自由电子的平均动能。
(Na 的摩尔质量M=22.99,.0ρ⨯33=11310kg/m )(P16)220323426233311900(3/8)2(6.6310) 1.01310 =(3 6.0210/8)291022.99=5.2110 3.253 1.085FF h E n mJ eVE E eVππ---=⨯⨯⨯⨯⨯⨯⨯⨯===解:由由 6. 若自由电子矢量K 满足以为晶格周期性边界条件x x L ψψ+()=()和定态薛定谔方程。
材料物理性能课后习题答案_北航出版社_田莳主编
材料物理习题集第一章 固体中电子能量结构和状态(量子力学基础)1. 一电子通过5400V 电位差的电场,(1)计算它的德布罗意波长;(2)计算它的波数;(3)计算它对Ni 晶体(111)面(面间距d =2.04×10-10m )的布拉格衍射角。
(P5)12341311921111o '(2)6.610 =(29.1105400 1.610)=1.67102K 3.7610sin sin 2182hh pmE m d dλπλθλλθθ----=⨯⨯⨯⨯⨯⨯⨯=⨯==⇒=解:(1)=(2)波数=(3)22. 有两种原子,基态电子壳层是这样填充的;;s s s s s s s 2262322626102610(1)1、22p 、33p (2)1、22p 、33p 3d 、44p 4d ,请分别写出n=3的所有电子的四个量子数的可能组态。
(非书上内容)3. 如电子占据某一能级的几率是1/4,另一能级被占据的几率为3/4,分别计算两个能级的能量比费米能级高出多少k T ?(P15)1()exp[]11ln[1]()()1/4ln 3()3/4ln 3FF F F f E E E kT E E kT f E f E E E kT f E E E kT=-+⇒-=-=-=⋅=-=-⋅解:由将代入得将代入得4. 已知Cu 的密度为8.5×103kg/m 3,计算其E 0F 。
(P16)2203234262333118(3/8)2(6.6310)8.510 =(3 6.0210/8)291063.5=1.0910 6.83Fh E n m J eVππ---=⨯⨯⨯⨯⨯⨯⨯⨯=解:由5. 计算Na 在0K 时自由电子的平均动能。
(Na 的摩尔质量M=22.99,.0ρ⨯33=11310kg/m )(P16)220323426233311900(3/8)2(6.6310) 1.01310 =(3 6.0210/8)291022.99=5.2110 3.253 1.085FF h E n mJ eVE E eVππ---=⨯⨯⨯⨯⨯⨯⨯⨯===解:由由 6. 若自由电子矢量K 满足以为晶格周期性边界条件x x L ψψ+()=()和定态薛定谔方程。
材料物理性能部分课后习题..
课后习题第一章1.德拜热容的成功之处是什么?答:德拜热容的成功之处是在低温下,德拜热容理论很好的描述了晶体热容,CV.M∝T的三次方2.何为德拜温度?有什么物理意义?答:HD=hνMAX/k 德拜温度是反映晶体点阵内原子间结合力的一个物理量德拜温度反映了原子间结合力,德拜温度越高,原子间结合力越强3.试用双原子模型说明固体热膨胀的物理本质答:如图,U1(T1)、U2(T2)、U3(T3)为不同温度时的能量,当原子热振动通过平衡位置r0时,全部能量转化为动能,偏离平衡位置时,动能又逐渐转化为势能;到达振幅最大值时动能降为零,势能打到最大。
由势能曲线的不对称可以看到,随温度升高,势能由U1(T1)、U2(T2)向U3(T3)变化,振幅增加,振动中心就由r0',r0''向r0'''右移,导致双原子间距增大,产生热膨胀第二章1.300K1×10-6Ω·m4000K时电阻率增加5%由于晶格缺陷和杂质引起的电阻率。
解:按题意:p(300k) = 10∧-6 则: p(400k) = (10∧-6)* (1+0.05) ----(1)在400K温度下马西森法则成立,则: p(400k) = p(镍400k) + p(杂400k) ----(2) 又: p(镍400k) = p(镍300k) * [1+ α* 100] ----(3) 其中参数: α为镍的温度系数约= 0.007 ; p(镍300k)(室温) = 7*10∧-6 Ω.cm) 将(1)和(3)代入(2)可算出杂质引起的电阻率p(杂400k)。
2.为什么金属的电阻因温度升高而增大,而半导体的电阻却因温度的升高而减小?对金属材料,尽管温度对有效电子数和电子平均速率几乎没有影响,然而温度升高会使离子振动加剧,热振动振幅加大,原子的无序度增加,周期势场的涨落也加大。
这些因素都使电子运动的自由称减小,散射几率增加而导致电阻率增大而对半导体当温度升高时,满带中有少量电子有可能被激发到上面的空带中去,在外电场作用下,这些电子将参与导电。
材料物理性能课后习题答案 北航出版社 主编
材料物理性能课后习题答案_北航出版社_主编材料物理习题集第一章固体中电子能量结构和状态(量子力学基础)1.一电子通过5400V电位差的电场,(1)计算它的xxxx波长;(2)计算它的波数;(3)计算它对Ni晶体(111)面(面间距d=2.04×10-10m)的布拉格衍射角。
(P5)hh?=1?)解:(1p)mE(22?3410?6.6 =1?3119?)?10?(2?9.1?10?54001.6211?m?10=1.67?211103.76?2()波数K=?????sin)(32d?'o??18??sin2?d22.有两种原子,基态电子壳层是这样填充的,请分别写出n=3的所有电子的四个量子数的可能组态。
(非书上内容)3.如电子占据某一能级的几率是1/4,另一能级被占据的几率为3/4,分别计算两个能级的能量比费米能级高出多少kT?(P15)4.已知Cu的密度为8.5×103kg/m3,计算其(P16)5.计算Na在0K时自由电子的平均动能。
(Na的摩尔质量M=22.99,)(P16)材料物理性能课后习题答案_北航出版社_主编6.若自由电子矢量K满足以为晶格周期性边界条件和定态xx方程。
试证明下式成立:eiKL=17.已知晶面间距为d,晶面指数为(h k l)的平行晶面*?角入射,试证明,一电子波与该晶面系成的倒易矢量为r hkl*??r/cos的轨迹满足方程K2。
产生布拉格反射的临界波矢量K hkl8.试用布拉格反射定律说明晶体电子能谱中禁带产生的原因。
(P20)9.试用晶体能带理论说明元素的导体、半导体、绝缘体的导电性质。
答:(画出典型的能带结构图,然后分别说明)10.过渡族金属物理性质的特殊性与电子能带结构有何联系?(P28)答:过渡族金属的d带不满,且能级低而密,可xx较多的电子,夺取较高的s带中的电子,降低费米能级。
补充习题为什么镜子颠倒了左右而没有颠倒上下? 1.只考虑xx力学,试计算在不损害人体安全的情况下,加速到2.光速需要多少时间?已知下列条件,试计算空间两个电子的电斥力和万有引力的 3.比值画出原子间引力、斥力、能量随原子间距变化的关系图。
材料物理性能课后习题答案
1-1一圆杆的直径为 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。
解:由计算结果可知:真应力大于名义应力,真应变小于名义应变。
1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。
若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。
解:令E 1=380GPa,E 2=84GPa,V 1=,V 2=。
则有当该陶瓷含有5%的气孔时,将P=代入经验计算公式E=E 0+可得,其上、下限弹性模量分别变为 GPa 和 GPa 。
1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。
解:Maxwell 模型可以较好地模拟应力松弛过程:Voigt 模型可以较好地模拟应变蠕变过程:)(2.36505.08495.03802211GPa V E V E E H =⨯+⨯=+=上限弹性模量)(1.323)8405.038095.0()(112211GPa E V E V E L =+=+=--下限弹性模量).1()()(0)0()1)(()1()(10//0----==∞=-∞=-=e EEe e Et t t στεσεεεσεττ;;则有:其蠕变曲线方程为:./)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ==∞==则有::其应力松弛曲线方程为0123450.00.20.40.60.81.0σ(t )/σ(0)t/τ0123450.00.20.40.60.81.0ε(t )/ε(∞)t/τ0816.04.25.2ln ln ln 22001====A A l l T ε真应变)(91710909.4450060MPa A F =⨯==-σ名义应力0851.0100=-=∆=AA l l ε名义应变)(99510524.445006MPa A F T =⨯==-σ真应力以上两种模型所描述的是最简单的情况,事实上由于材料力学性能的复杂性,我们会用到用多个弹簧和多个黏壶通过串并联组合而成的复杂模型。
材料物理性能课后习题答案_北航出版社_田莳主编
材料物理习题集第一章 固体中电子能量结构和状态(量子力学基础)1. 一电子通过5400V 电位差的电场,(1)计算它的德布罗意波长;(2)计算它的波数;(3)计算它对Ni 晶体(111)面(面间距d =2.04×10-10m )的布拉格衍射角。
(P5)12341311921111o '(2)6.610 =(29.1105400 1.610)=1.67102K 3.7610sin sin 2182hh pmE m d dλπλθλλθθ----=⨯⨯⨯⨯⨯⨯⨯=⨯==⇒=解:(1)=(2)波数=(3)22. 有两种原子,基态电子壳层是这样填充的;;s s s s s s s 2262322626102610(1)1、22p 、33p (2)1、22p 、33p 3d 、44p 4d ,请分别写出n=3的所有电子的四个量子数的可能组态。
(非书上内容)3. 如电子占据某一能级的几率是1/4,另一能级被占据的几率为3/4,分别计算两个能级的能量比费米能级高出多少k T ?(P15)1()exp[]11ln[1]()()1/4ln 3()3/4ln 3FF F F f E E E kT E E kT f E f E E E kT f E E E kT=-+⇒-=-=-=⋅=-=-⋅解:由将代入得将代入得4. 已知Cu 的密度为8.5×103kg/m 3,计算其E 0F 。
(P16)2203234262333118(3/8)2(6.6310)8.510 =(3 6.0210/8)291063.5=1.0910 6.83Fh E n m J eVππ---=⨯⨯⨯⨯⨯⨯⨯⨯=解:由5. 计算Na 在0K 时自由电子的平均动能。
(Na 的摩尔质量M=22.99,.0ρ⨯33=11310kg/m )(P16)220323426233311900(3/8)2(6.6310) 1.01310 =(3 6.0210/8)291022.99=5.2110 3.253 1.085FF h E n mJ eVE E eVππ---=⨯⨯⨯⨯⨯⨯⨯⨯===解:由由 6. 若自由电子矢量K 满足以为晶格周期性边界条件x x L ψψ+()=()和定态薛定谔方程。
材料物理性能课后习题答案_北航出版社_田莳主编
材料物理习题集第一章 固体中电子能量结构和状态(量子力学基础)1. 一电子通过5400V 电位差的电场,(1)计算它的德布罗意波长;(2)计算它的波数;(3)计算它对Ni 晶体(111)面(面间距d =2.04×10-10m )的布拉格衍射角。
(P5)12341311921111o '(2)6.610 =(29.1105400 1.610)=1.67102K 3.7610sin sin 2182hh pmE m d dλπλθλλθθ----=⨯⨯⨯⨯⨯⨯⨯=⨯==⇒=解:(1)=(2)波数=(3)22. 有两种原子,基态电子壳层是这样填充的;;s s s s s s s 2262322626102610(1)1、22p 、33p (2)1、22p 、33p 3d 、44p 4d ,请分别写出n=3的所有电子的四个量子数的可能组态。
(非书上内容)3. 如电子占据某一能级的几率是1/4,另一能级被占据的几率为3/4,分别计算两个能级的能量比费米能级高出多少k T ?(P15)1()exp[]11ln[1]()()1/4ln 3()3/4ln 3FF F F f E E E kT E E kT f E f E E E kT f E E E kT=-+⇒-=-=-=⋅=-=-⋅解:由将代入得将代入得4. 已知Cu 的密度为8.5×103kg/m 3,计算其E 0F 。
(P16)2203234262333118(3/8)2(6.6310)8.510 =(3 6.0210/8)291063.5=1.0910 6.83Fh E n m J eVππ---=⨯⨯⨯⨯⨯⨯⨯⨯=解:由5. 计算Na 在0K 时自由电子的平均动能。
(Na 的摩尔质量M=22.99,.0ρ⨯33=11310kg/m )(P16)220323426233311900(3/8)2(6.6310) 1.01310 =(3 6.0210/8)291022.99=5.2110 3.253 1.085FF h E n mJ eVE E eVππ---=⨯⨯⨯⨯⨯⨯⨯⨯===解:由由 6. 若自由电子矢量K 满足以为晶格周期性边界条件x x L ψψ+()=()和定态薛定谔方程。
材料物理性能课后习题答案_北航出版社_田莳主编
材料物理习题集第一章 固体中电子能量结构和状态(量子力学基础)1. 一电子通过5400V 电位差的电场,(1)计算它的德布罗意波长;(2)计算它的波数;(3)计算它对Ni 晶体(111)面(面间距d =2.04×10-10m )的布拉格衍射角。
(P5)12341311921111o '(2)6.610 =(29.1105400 1.610)=1.67102K 3.7610sin sin 2182hh pmE m d dλπλθλλθθ----=⨯⨯⨯⨯⨯⨯⨯=⨯==⇒=解:(1)=(2)波数=(3)22. 有两种原子,基态电子壳层是这样填充的;;s s s s s s s 2262322626102610(1)1、22p 、33p (2)1、22p 、33p 3d 、44p 4d ,请分别写出n=3的所有电子的四个量子数的可能组态。
(非书上内容)3. 如电子占据某一能级的几率是1/4,另一能级被占据的几率为3/4,分别计算两个能级的能量比费米能级高出多少k T ?(P15)1()exp[]11ln[1]()()1/4ln 3()3/4ln 3FF F F f E E E kT E E kT f E f E E E kT f E E E kT=-+⇒-=-=-=⋅=-=-⋅解:由将代入得将代入得4. 已知Cu 的密度为8.5×103kg/m 3,计算其E 0F 。
(P16)2203234262333118(3/8)2(6.6310)8.510 =(3 6.0210/8)291063.5=1.0910 6.83Fh E n m J eVππ---=⨯⨯⨯⨯⨯⨯⨯⨯=解:由5. 计算Na 在0K 时自由电子的平均动能。
(Na 的摩尔质量M=22.99,.0ρ⨯33=11310kg/m )(P16)220323426233311900(3/8)2(6.6310) 1.01310 =(3 6.0210/8)291022.99=5.2110 3.253 1.085FF h E n mJ eVE E eVππ---=⨯⨯⨯⨯⨯⨯⨯⨯===解:由由 6. 若自由电子矢量K 满足以为晶格周期性边界条件x x L ψψ+()=()和定态薛定谔方程。
材料物理性能课后习题答案解析_北航出版社_田莳主编
材料物理习题集第一章 固体中电子能量结构和状态(量子力学基础)1. 一电子通过5400V 电位差的电场,(1)计算它的德布罗意波长;(2)计算它的波数;(3)计算它对Ni 晶体(111)面(面间距d =2.04×10-10m )的布拉格衍射角。
(P5)12341311921111o '(2)6.610 =(29.1105400 1.610)=1.67102K 3.7610sin sin 2182hh pmE m d dλπλθλλθθ----=⨯⨯⨯⨯⨯⨯⨯=⨯==⇒=解:(1)=(2)波数=(3)22. 有两种原子,基态电子壳层是这样填充的;;s s s s s s s 2262322626102610(1)1、22p 、33p (2)1、22p 、33p 3d 、44p 4d ,请分别写出n=3的所有电子的四个量子数的可能组态。
(非书上内容)3. 如电子占据某一能级的几率是1/4,另一能级被占据的几率为3/4,分别计算两个能级的能量比费米能级高出多少k T ?(P15)1()exp[]11ln[1]()()1/4ln 3()3/4ln 3FF F F f E E E kT E E kT f E f E E E kT f E E E kT=-+⇒-=-=-=⋅=-=-⋅解:由将代入得将代入得4. 已知Cu 的密度为8.5×103kg/m 3,计算其E 0F 。
(P16)2203234262333118(3/8)2(6.6310)8.510 =(3 6.0210/8)291063.5=1.0910 6.83Fh E n m J eVππ---=⨯⨯⨯⨯⨯⨯⨯⨯=解:由5. 计算Na 在0K 时自由电子的平均动能。
(Na 的摩尔质量M=22.99,.0ρ⨯33=11310kg/m )(P16)220323426233311900(3/8)2(6.6310) 1.01310 =(3 6.0210/8)291022.99=5.2110 3.253 1.085FF h E n mJ eVE E eVππ---=⨯⨯⨯⨯⨯⨯⨯⨯===解:由由 6. 若自由电子矢量K 满足以为晶格周期性边界条件x x L ψψ+()=()和定态薛定谔方程。
材料物理性能课后答案
材料物理性能课后答案材料物理性能是指材料在外部作用下所表现出的物理特性,包括力学性能、热学性能、电学性能、磁学性能等。
了解材料的物理性能对于材料的选用、设计和应用具有重要意义。
下面是一些关于材料物理性能的课后答案,希望能对大家的学习有所帮助。
1. 什么是材料的力学性能?材料的力学性能是指材料在外力作用下所表现出的性能,包括抗拉强度、屈服强度、弹性模量、硬度等。
这些性能直接影响着材料的承载能力和使用寿命。
2. 为什么要了解材料的热学性能?材料的热学性能是指材料在温度变化下的性能表现,包括热膨胀系数、导热系数、比热容等。
了解材料的热学性能可以帮助我们选择合适的材料用于高温或低温环境,确保材料的稳定性和可靠性。
3. 材料的电学性能有哪些重要指标?材料的电学性能包括介电常数、电导率、击穿电压等指标。
这些性能直接影响着材料在电子器件中的应用,对于电子材料的选用和设计具有重要意义。
4. 什么是材料的磁学性能?材料的磁学性能是指材料在外磁场作用下的性能表现,包括磁化强度、磁导率、矫顽力等。
了解材料的磁学性能可以帮助我们选择合适的材料用于磁性材料和磁性器件的制备。
5. 如何评价材料的物理性能综合指标?材料的物理性能综合指标是综合考虑材料的力学性能、热学性能、电学性能、磁学性能等多个方面的性能指标,通过综合评价来确定材料的适用范围和性能等级。
这些综合指标可以帮助我们更好地了解材料的综合性能,为材料的选用和设计提供参考依据。
总结,了解材料的物理性能对于材料的选用、设计和应用具有重要意义,希望以上答案可以帮助大家更好地理解和掌握材料的物理性能知识。
对于材料物理性能的学习,需要多加练习和实践,才能真正掌握其中的精髓。
祝大家学习进步!。
材料物理性能课后习题答案_北航出版社_田莳主编
材料物理习题集第一章 固体中电子能量结构和状态(量子力学基础)1. 一电子通过5400V 电位差的电场,(1)计算它的德布罗意波长;(2)计算它的波数;(3)计算它对Ni 晶体(111)面(面间距d =2.04×10-10m )的布拉格衍射角。
(P5)12341311921111o '(2)6.610 =(29.1105400 1.610)=1.67102K 3.7610sin sin 2182hh pmE m d dλπλθλλθθ----=⨯⨯⨯⨯⨯⨯⨯=⨯==⇒=解:(1)=(2)波数=(3)22. 有两种原子,基态电子壳层是这样填充的;;s s s s s s s 2262322626102610(1)1、22p 、33p (2)1、22p 、33p 3d 、44p 4d ,请分别写出n=3的所有电子的四个量子数的可能组态。
(非书上内容)3. 如电子占据某一能级的几率是1/4,另一能级被占据的几率为3/4,分别计算两个能级的能量比费米能级高出多少k T ?(P15)1()exp[]11ln[1]()()1/4ln 3()3/4ln 3FF F F f E E E kT E E kT f E f E E E kT f E E E kT=-+⇒-=-=-=⋅=-=-⋅解:由将代入得将代入得4. 已知Cu 的密度为8.5×103kg/m 3,计算其E 0F 。
(P16)2203234262333118(3/8)2(6.6310)8.510 =(3 6.0210/8)291063.5=1.0910 6.83Fh E n m J eVππ---=⨯⨯⨯⨯⨯⨯⨯⨯=解:由5. 计算Na 在0K 时自由电子的平均动能。
(Na 的摩尔质量M=22.99,.0ρ⨯33=11310kg/m )(P16)220323426233311900(3/8)2(6.6310) 1.01310 =(3 6.0210/8)291022.99=5.2110 3.253 1.085FF h E n mJ eVE E eVππ---=⨯⨯⨯⨯⨯⨯⨯⨯===解:由由 6. 若自由电子矢量K 满足以为晶格周期性边界条件x x L ψψ+()=()和定态薛定谔方程。
材料物理性能课后习题答案北航出版社田莳主编.docx
材料物理习题集第一章 固体中电子能量结构和状态(量子力学基础)1.一电子通过 5400V 电位差的电场,(1)计算它的德布罗意波长; (2)计算它的波数;( 3)计算它对 Ni 晶体( 111)面(面间距 d =× 10-10 m )的布拉格衍射角。
( P5)解:( 1) =hh1p(2 mE) 2= 6.6 10 341(29.1 10 31 5400 1.6 10 19 ) 2=1.67 10 11 m(2)波数 K = 23.76 1011( 3) 2d sinsin2o 18'2 d2.有两种原子,基态电子壳层是这样填充的(1)1s 2、2s 2 2p 6、3s 2 3p 3;,请分别写出 n=3 的所有电子的四个量(2)1s 2、2s 2 2p 6、3s 2 3p 63d 10、 4s 2 4p 6 4d 10;子数的可能组态。
(非书上内容)3.如电子占据某一能级的几率是的能量比费米能级高出多少1/4 ,另一能级被占据的几率为k T ?( P15)3/4 ,分别计算两个能级1解:由 f ( E)EF ]exp[E1kT E E F11] kT ln[f ( E )将 f (E) 1/ 4代入得 E E F ln 3 kT将 f (E)3/ 4代入得 EE Fln 3 kT4.已知 Cu 的密度为× 10 3kg/m 3,计算其 E 0F 。
( P16)解:h22(3n / 8) 3由 E F2m= (6.6334262 1031)(38.5 10 6.02 1023 / 8 ) 3291063.5=1.0910 18J 6.83eV5.计算 Na 在 0K 时自由电子的平均动能。
( Na 的摩尔质量 M=,=1.013103 kg/m3)(P16)解:由 E F0h22 (3 n / 8) 32m= (6.6334262 1031)(3 1.013 10 6.021023 /8 )3291022.99 =5.2110 19J 3.25eV由E03E F0 1.08eV 56.若自由电子矢量K 满足以为晶格周期性边界条件( x)= ( x L)和定态薛定谔方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料物理与性能配套课后题答案精选第一章:试阐述经典热容理论、爱因斯坦量子热容理论及德拜热容理论,并说出它们的不同之处。
答:经典热容理论:杜隆-珀替把气体分子的热容理论直接应用于固体,并用统计力学处理热容。
晶体摩尔热容为常数。
爱因斯坦量子热容理论:爱因斯坦把晶体中原子看成是具有相同频率、并在空间自振动的独立振子。
引用了晶格振动能量量子化即声子的概念。
德拜量子热容理论:格波的频率有一定分布,即不为常数。
德拜考虑到低温下只有频率较低的长声学波对热容才有重要的贡献,可用连续介质中的弹性波来描述。
阐述金属热容与合金热容的特点。
LeccVV答:包括点阵振动引起的热容和电子热容。
一般情况下,常温时点阵振动贡献的热容远大于电子热容,只有在温度极低或极高时,电子热容才不能被忽略。
金属及合金发生相变时,会产生附加的热效应,并因此使热容发生异常变化。
按照变化特征主要可分为一级相变、二级相变、亚稳态组织转变等情况。
证明理想固体线膨胀系数和体膨胀系数间的关系。
答:见文中~。
简述影响膨胀系数的因素。
答:膨胀系数与温度、热容、质点间的结合能、熔点以及物质的结构都有关系。
为什么导电性好的材料一般其导热性也好?答:固体中的导热主要是晶格振动的格波和自运动来实现的。
导电性好的材料有大量的自电子,而且电子的质量很轻,能够迅速地实现热量的传递。
因此,导电性好的材料一般导热性也好。
一级相变、二级相变对热容有什么影响?答:一级相变伴随相变潜热发生,若为恒温转变,在相变时伴随有焓的突变,同时热容趋于无穷大,但是二级相变则没有相变潜热,但热容有突变。
何谓热应力?它是如何产生的?请以平面陶瓷薄板为例说明热应力的计算。
答:不改变外力作用状态,材料仅因热冲击在温度作用下产生的内应力叫热应力。
其产生和计算见文中节。
何谓差热分析法?差热分析法与普通热分析法有何不同?在DTA基础上发展起来的差示扫描量热法与DTA有何不同?答:DTA是在程序控制温度下,测量物质与参比物之间的温度差随温度变化的一种技术。
差热分析反映的是物质在受热或冷却过程中发生的物理变化和化学变化伴随着吸热和放热现象。
如晶型转变、沸腾、升华、蒸发、熔融等物理变化,以及氧化还原、分解、脱水和离解等等化学变化均伴随一定的热效应变化。
简述纳米材料在热学性能上与常规材料的不同,并请解释其原因。
答:于纳米材料与常规粉体材料相比,纳米粒子的表面能高,表面原子数多,这些表面原子近邻配位不全,活性大,因此,其熔化时所需增加的内能小得多,这就使得纳米粒子熔点急剧下降。
又纳米粒子尺寸小,表面能高,压制成块材后的界面具有高能量,在烧结中高的界面能成为原子运动的驱动力,有利于界面附近的原子扩散。
因此,在较低温度下烧结就能达到致密化目的。
第四章1、试说明经典自电子论、量子自电子论和能带理论的区别?答:经典电子理论:认为:连续能量分布的价电子在均匀势场中运动。
无法解释一价金属和二价金属的导电问题。
按照自电子的概念,二价金属的价电子比一价金属的多,似乎二价金属的导电性比一价金属好,但是,实际情况却是一价金属的导电性比二价金属好。
问题的根源:忽略了电子之间的排斥作用和正离子点阵周期场的作用。
经典电子理论它是立足于牛顿力学,而对微观粒子的运动问题应用量子力学的概念来解决。
量子自电子论:认为:不连续能量分布的价电子在均匀势场中运动。
很好解释了自电子论不能解决的问题,但不能很好解释铁磁性、相结构、结合力等问题。
能带理论:认为:不连续能量分布的价电子在周期性势场中运动。
在量子自电子论基础上,考虑了离子所造成的周期性势场的存在,导出了电子在金属中的分布特点,并建立了禁带的概念,解决了以上存在的问题。
2、为什么金属的电阻因温度的升高而增大,而半导体的电阻却因温度的升高而减小?答:对金属来说,利用量子力学原理可以导出电导率为2m2mp。
温度升高离子热振动的振幅就大,电子就容易受到散射,故可认为p与温度成正比,则?就与温度成反比,这就是金属的导电性随温度升高而降低的原因;而半导体的导电性却正好相反,于温度升高使低能级的电子获得能量可以跃迁到高能级上去,所以半导体的导电性随温度升高而增强。
??nefe2t?nefe23、表征超导体性能的三个主要指标是什么?答:临界温度TC、磁场强度HC、电流密度JC。
4、简要论述电阻测量在金属研究中的应用?答:通过测量材料电阻率的变化,可以研究材料的成分、结构和组织的变化。
例如,研究固溶体的溶解度曲线,研究合金的时效,研究材料的相变以及疲劳等。
5、为什么锗半导体材料最先得到应用,而现在的半导体材料却大都采用硅半导体?答:锗易提纯,但硅难提纯。
硅:难以制造,需要现代技术。
在70年代前,锗制作的半导体三极管运用很广,而当时硅的三极管反而更贵。
进入到大规模集成电路时代后,硅的特性优势显示出来。
于硅的半导体性能以及化学性质比锗优越,即禁带宽度比锗大,可以耐高压,器件的工作温度较高,可达150-200℃,而锗只能到℃,所以硅器件的功率大。
这就是为什么硅比锗应用的更广的原因。
另外,硅可以制成二氧化硅薄膜,这在半导体器件中非常重要。
6、怎样通过实验区别n型半导体和p型半导体?答:在p-n结的两端加上外电场,如果电流随电压的增大呈指数上升,则证明所加电压为正偏压,即负极一端为n型半导体,正极一端为p型半导体;如果电流随电压的增大几乎没有改变,则关系所加电压为反偏压,即负极一端为p型半导体,正极一端为n 型半导体。
7、半导体有哪些物理效应?答:敏感效应包括热敏效应、光敏效应、压敏效应、以及如次敏效应、气敏效应、光磁效应、热磁效应、热电效应等其他敏感效应;光致发光效应;电致发光效应;光伏特效应等。
第五章解释下列名词:极化电荷、偶极子、电偶极矩、极化强度、电介质的电极化率、介电强度、取向极化、介电强度的破坏。
答:极化电荷:于分子内在力的约束,电介质分子中的带电粒子不能发生宏观的位移,被称作束缚电荷,也叫极化电荷。
偶极子:一个正电荷q和另一个符号相反、数量相等的负电荷-q于某种原因而坚固地互相束缚于不等于零的距离上,便组成一个电偶极子。
?电偶极矩:若从负电荷到正电荷作一矢量l,则这个粒子具有的电偶极矩可表示为矢量???ql 电偶极矩的单位为C〃m。
?极化强度:单位体积?V中电偶极矩的矢量和???是用来衡量电介质极化强弱的一个参??P?数,该参数被称为极化强度P。
可表示为:?V电介质的电极化率:在描述极化强度P和电场强度E之间的关系的式子中?P??E??0?E 这里?和? 一样都取决于电介质的性质,叫做电介质的极化率。
介电强度:当施加于电介质上的电场强度或电压增大到一定程度时,电介质就介电状态变为导电状态,这一突变现象称为介电强度的破坏,或叫电介质的击穿。
相应的电场强度称为介电强度,用E穿表示。
取向极化:没有外电场作用时,电偶极子在固体中杂乱无章地排列,宏观上显示不出它的带电特征;如果将该系统放入外电场中,固有电矩将沿电场方向取向,其固有的电偶极矩沿外电场方向有序化,这个过程被称为取向极化或转向极化。
介电强度的破坏:当施加于电介质上的电场强度或电压增大到一定程度时,电介质就介电状态变为导电状态,这一突变现象称为介电强度的破坏,或叫电介质的击穿。
什么叫极化强度?写出它的几种表达式及其物理意义???答:单位体积?V中电偶极矩的矢量和?是用来衡量电介质极化强弱的一个参数,该参数被称为极化强度P。
可表示为P????V?极化强度是一个矢量,它是一个具有平均意义的物理量,其单位为C/m2。
可以证明,电极化强度的值等于介质表面的电荷密度。
极化强度的另一种表达式是:P??E??0?E 描述了极化强度P和电场强度E之间的关系,P 与E的关系与场强方向有关,同一大小的场强如果方向不同,引起的极化强度也会不同。
这里?和? 一样都取决于电介质的性质,叫做电介质的极化率。
第三种表述为:电极化强度P可以表示为单位体积电介质在实际电场作用下所有偶极矩的总和,即式中:P??Ni?i Ni为第i 种偶极子数目,?i为第i种偶极子平均偶极矩。
一平行板真空电容器,极板上的电荷面密度ζ=×10-6 C/m2。
现充以εr=9的介质,若极扳上的自电荷保持不变,计算真空和介质中的E、P、D各为多少?束缚电荷产生的场强是多少????0,真空介电常解:真空条件下,P在任何电场强度E下均为零,故其??0,数?0=×10-12 F/m,静电力常量k=×109N?m2/C2 C?UQQ?0SE????d,S 得:U4?kd,E?4?k??04???109??10?6??10?12=×1014N /CD=?0E=×10-12××1014=×103 E?4?k?介质中:?r4???109??10?6?9=×103N/C D??0?1???E=D??0?rE=×10-12×9××103=×105 P?D??0E=××10-12××103=×105 E?束缚电荷产生的场强:4?k??0?r4???109??10?6??10?12?9=×1013 N/C 边长为10mm、厚度为1mm的方形平板电容器的电介质相对介电系数为2000,计算相应的电容量。
若在平板上外加200 V电压,计算:①电介质中的电场;②每个平板上的总电量;③电介质的极化强度;④储存在介质电容器中的能量。
?rSQ2000?10?10?10?6?9C???? ?10U4?kd4???109?1?10?3解:电容量:E?①电介质中电场:U200??2?105?3d1?10V/m ②每个平板上的总电量:Q=CU=×10-9×2×105=×10-4C ③电介质的极化强度:×2×105=×10-3 P??E??E=?0=×10-12×0?r?1④储存在介质电容器中的能量:W能=1/2?rE2=1/2×2000×(2×105)2=4×1013J电介质的极化机制有哪些?分别在什么频率范围响应?极化机制电子位移极化离子位移极化离子松弛极化电子松弛极化转向极化空间电荷极化自发极化发生极化的频率范围直流-光频直流-红外直流-超高频直流-超高频直流-超高频直流-低频103Hz 与频率无关如果A原于的原子半径为B原子的两倍,那么在其它条件都相同的情况下,原子A的电子极化率大约是B原子的多少倍?解:电子极化率的大小与原子的半径有关:3?ARA(2RB)3?3?3?RRBBB于RA=2RB,=8 ?e???0R343所以在其它条件都相同的情况下,当A原于的原子半径为B原子的两倍时,原子A的电子极化率大约是B原子的8倍。