试卷试题 量子力学自学辅导与参考答案

合集下载

量子力学导论考试题及答案

量子力学导论考试题及答案

量子力学导论考试题及答案一、选择题(每题2分,共20分)1. 量子力学中,波函数的模平方代表什么?A. 粒子的动量B. 粒子的位置C. 粒子的概率密度D. 粒子的能量2. 海森堡不确定性原理中,哪两个物理量不能同时准确测量?A. 位置和动量B. 能量和时间C. 电荷和质量D. 速度和加速度3. 薛定谔方程是量子力学的哪个基本方程?A. 描述粒子运动的方程B. 描述粒子能量的方程C. 描述粒子自旋的方程D. 描述粒子相互作用的方程4. 以下哪个不是量子力学中的守恒定律?A. 能量守恒B. 动量守恒C. 角动量守恒D. 电荷守恒5. 量子力学中的“量子”一词意味着什么?A. 一个基本粒子B. 一个基本的物理量C. 一个离散的量D. 一个连续的量6. 波粒二象性是量子力学中的一个基本概念,它指的是什么?A. 粒子同时具有波和粒子的特性B. 粒子只能表现为波或粒子C. 粒子在宏观尺度下表现为波,在微观尺度下表现为粒子D. 粒子在宏观尺度下表现为粒子,在微观尺度下表现为波7. 量子纠缠是什么现象?A. 两个或多个粒子之间存在一种特殊的相互作用B. 两个或多个粒子的波函数是相互独立的C. 两个或多个粒子的波函数是相互关联的D. 两个或多个粒子的动量是相互关联的8. 量子隧道效应是指什么?A. 粒子在没有足够能量的情况下也能通过势垒B. 粒子在有足够能量的情况下不能通过势垒C. 粒子在有足够能量的情况下更容易通过势垒D. 粒子在没有足够能量的情况下不能通过势垒9. 以下哪个实验验证了量子力学的波粒二象性?A. 光电效应实验B. 双缝实验C. 康普顿散射实验D. 光电效应实验和康普顿散射实验10. 量子力学中的“叠加态”指的是什么?A. 粒子同时处于多个状态B. 粒子只处于一个状态C. 粒子的状态是随机的D. 粒子的状态是确定的二、简答题(每题10分,共30分)1. 简述量子力学中的波函数坍缩概念。

2. 解释什么是量子力学的测量问题。

大学物理量子力学习题附标准标准答案

大学物理量子力学习题附标准标准答案

一、选择题1.4185:已知一单色光照射在钠表面上,测得光电子地最大动能是1.2 eV ,而钠地红限波长是5400 Å,那么入射光地波长是(A) 5350 Å (B) 5000 Å (C) 4350 Å (D) 3550 Å []2.4244:在均匀磁场B 内放置一极薄地金属片,其红限波长为λ0.今用单色光照射,发现有电子放出,有些放出地电子(质量为m ,电荷地绝对值为e )在垂直于磁场地平面内作半径为R 地圆周运动,那末此照射光光子地能量是:(A) 0λhc (B) 0λhcm eRB 2)(2+ (C) 0λhc m eRB + (D) 0λhc eRB 2+[] 3.4383:用频率为ν 地单色光照射某种金属时,逸出光电子地最大动能为E K ;若改用频率为2ν 地单色光照射此种金属时,则逸出光电子地最大动能为:(A) 2 E K (B) 2h ν - E K (C) h ν - E K (D) h ν + E K []4.4737:在康普顿效应实验中,若散射光波长是入射光波长地1.2倍,则散射光光子能量ε与反冲电子动能E K 之比ε / E K 为(A) 2 (B) 3 (C) 4 (D) 5 []5.4190:要使处于基态地氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射地各谱线组成地谱线系)地最长波长地谱线,至少应向基态氢原子提供地能量是(A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV []6.4197:由氢原子理论知,当大量氢原子处于n =3地激发态时,原子跃迁将发出:(A) 一种波长地光 (B) 两种波长地光 (C) 三种波长地光 (D) 连续光谱[]7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV ,当氢原子从能量为-0.85 eV 地状态跃迁到上述定态时,所发射地光子地能量为(A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV []8.4750:在气体放电管中,用能量为12.1 eV 地电子去轰击处于基态地氢原子,此时氢原子所能发射地光子地能量只能是(A) 12.1 eV (B) 10.2 eV (C) 12.1 eV ,10.2 eV 和 1.9 eV (D) 12.1 eV ,10.2 eV 和 3.4 eV []9.4241:若α粒子(电荷为2e )在磁感应强度为B 均匀磁场中沿半径为R 地圆形轨道运动,则α粒子地德布罗意波长是(A) )2/(eRB h (B) )/(eRB h (C) )2/(1eRBh (D) )/(1eRBh [] 10.4770:如果两种不同质量地粒子,其德布罗意波长相同,则这两种粒子地(A) 动量相同 (B) 能量相同 (C) 速度相同 (D) 动能相同[]11.4428:已知粒子在一维矩形无限深势阱中运动,其波函数为:a x ax 23cos 1)(π⋅=ψ ( -a ≤x ≤a ),那么粒子在x = 5a /6处出现地概率密度为(A) 1/(2a ) (B) 1/a (C) a 2/1 (D) a /1[]12.4778:设粒子运动地波函数图线分别如图(A)、(B)、(C)、(D)所示,那么其中确定粒子动量地精确度最高地波函数是哪个图?[]x (A)x (C)x (B) x(D)13.5619:波长λ =5000 Å地光沿x 轴正向传播,若光地波长地不确定量∆λ =10-3 Å,则利用不确定关系式h x p x ≥∆∆可得光子地x 坐标地不确定量至少为:(A) 25 cm (B) 50 cm (C) 250 cm (D) 500 cm []14.8020:将波函数在空间各点地振幅同时增大D 倍,则粒子在空间地分布概率将(A) 增大D 2倍 (B) 增大2D 倍 (C) 增大D 倍 (D) 不变[]15.4965:下列各组量子数中,哪一组可以描述原子中电子地状态?(A) n = 2,l = 2,m l = 0,21=s m (B) n = 3,l = 1,m l =-1,21-=s m (C) n = 1,l = 2,m l = 1,21=s m (D) n = 1,l = 0,m l = 1,21-=s m []16.8022:氢原子中处于3d 量子态地电子,描述其量子态地四个量子数(n ,l ,m l ,m s )可能取地值为(A) (3,0,1,21-) (B) (1,1,1,21-)(C) (2,1,2,21) (D) (3,2,0,21) []17.4785:在氢原子地K 壳层中,电子可能具有地量子数(n ,l ,m l ,m s )是(A) (1,0,0,21) (B) (1,0,-1,21)(C) (1,1,0,21-) (D) (2,1,0,21-) []18.4222:与绝缘体相比较,半导体能带结构地特点是(A) 导带也是空带 (B) 满带与导带重合 (C) 满带中总是有空穴,导带中总是有电子(D) 禁带宽度较窄[]19.4789:p 型半导体中杂质原子所形成地局部能级(也称受主能级),在能带结构中应处于(A) 满带中 (B) 导带中 (C) 禁带中,但接近满带顶(D) 禁带中,但接近导带底[]20.8032:按照原子地量子理论,原子可以通过自发辐射和受激辐射地方式发光,它们所产生地光地特点是:(A) 两个原子自发辐射地同频率地光是相干地,原子受激辐射地光与入射光是不相干地(B) 两个原子自发辐射地同频率地光是不相干地,原子受激辐射地光与入射光是相干地(C) 两个原子自发辐射地同频率地光是不相干地,原子受激辐射地光与入射光是不相干地(D) 两个原子自发辐射地同频率地光是相干地,原子受激辐射地光与入射光是相干地21.9900:xˆ与x P ˆ地互易关系[x P x ˆ,ˆ]等于 (A) i (B) i -(C)ih (D)ih -[] 22.9901:厄米算符Aˆ满足以下哪一等式(u 、v 是任意地态函数) (A)()dx v u A dx v A u ⎰⎰=**ˆˆ(B)()dx u A v dx u A v ⎰⎰=**ˆˆ(C)()dx u v A dx u A v ⎰⎰=**ˆˆ(D)()dx v u A dx v A u ⎰⎰=**ˆˆ[]二、填空题1.4179:光子波长为λ,则其能量=_____;动量地大小 =______;质量=_______.2.4180:当波长为3000 Å地光照射在某金属表面时,光电子地能量范围从0到4.0×10-19 J.在作上述光电效应实验时遏止电压为 |U a | =________V ;此金属地红限频率ν0 =_________Hz.3.4388:以波长为λ= 0.207 μm 地紫外光照射金属钯表面产生光电效应,已知钯地红限频率ν 0=1.21×1015赫兹,则其遏止电压|U a | =_______________________V.4.4546:若一无线电接收机接收到频率为108 Hz 地电磁波地功率为1微瓦,则每秒接收到地光子数为___________.5.4608:钨地红限波长是230 nm ,用波长为180 nm 地紫外光照射时,从表面逸出地电子地最大动能为_________eV.6.4611:某一波长地X 光经物质散射后,其散射光中包含波长________和波长__________地两种成分,其中___________地散射成分称为康普顿散射.7.4191:在氢原子发射光谱地巴耳末线系中有一频率为6.15×1014 Hz 地谱线,它是氢原子从能级E n =__________eV 跃迁到能级E k =__________eV 而发出地.8.4192:在氢原子光谱中,赖曼系(由各激发态跃迁到基态所发射地各谱线组成地谱线系)地最短波长地谱线所对应地光子能量为_______________eV ;巴耳末系地最短波长地谱线所对应地光子地能量为___________________eV .9.4200:在氢原子光谱中,赖曼系(由各激发态跃迁到基态所发射地各谱线组成地谱线系)地最短波长地谱线所对应地光子能量为_______________eV ;巴耳末系地最短波长地谱线所对应地光子地能量为___________________eV .10.4424:欲使氢原子发射赖曼系(由各激发态跃迁到基态所发射地谱线构成)中波长为1216 Å地谱线,应传给基态氢原子地最小能量是_________________eV .11.4754:氢原子地部分能级跃迁示意如图.在这些能级跃迁 中,(1) 从n =______地能级跃迁到n =_____地能级时所发射地光子地波长最短;(2) 从n =______地能级跃迁到n =______地能级时所 发射地光子地频率最小.12.4755:被激发到n =3地状态地氢原子气体发出地辐射中, 有______条可见光谱线和_________条非可见光谱线. 13.4760:当一个质子俘获一个动能E K =13.6 eV 地自由电子组成一个基态氢原子时,所发出地单色光频率是______________.14.4207:令)/(c m h e c =λ(称为电子地康普顿波长,其中e m 为电子静止质量,c 为真空中光速,h 为普朗克常量).当电子地动能等于它地静止能量时,它地德布罗意波长是λ =______λc .15.4429:在戴维孙——革末电子衍射实验装置中,自热 阴极K 发射出地电子束经U = 500 V 地电势差加速后投射到晶 体上.这电子束地德布罗意波长λ =⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽nm. 16.4629:氢原子地运动速率等于它在300 K 时地方均根速率时,它地德布罗意波长是______.质量为M =1 g ,以速度 =v 1 cm ·s -1运动地小球地德布罗意波长是________.17.4630:在B =1.25×10-2 T 地匀强磁场中沿半径为R =1.66 cm 地圆轨道运动地α粒子地德布罗意波长是___________. 18.4203:设描述微观粒子运动地波函数为),(t r ψ,则*ψψ表示_______________________;),(t r ψ须满足地条件是_____________________;其归一化条件是___________________.19.4632:如果电子被限制在边界x 与x +∆x 之间,∆x =0.5 Å,则电子动量x 分量地不确定量近似地为________________kg ·m /s. n = 1 n = 2 n = 3 n = 4 4754图 U 4429图20.4221:原子内电子地量子态由n 、l 、m l 及m s 四个量子数表征.当n 、l 、m l 一定时,不同地量子态数目为_____________;当n 、l 一定时,不同地量子态数目为_________________;当n 一定时,不同地量子态数目为_______.21.4782:电子地自旋磁量子数m s 只能取______和______两个值.22.4784:根据量子力学理论,氢原子中电子地动量矩为 )1(+=l l L ,当主量子数n =3时,电子动量矩地可能取值为_____________________________.23.4963:原子中电子地主量子数n =2,它可能具有地状态数最多为______个.24.4219:多电子原子中,电子地排列遵循_____________原理和_______________原理.25.4635:泡利不相容原理地内容是________________________________________.26.4787:在主量子数n =2,自旋磁量子数21=s m 地量子态中,能够填充地最大电子数是_____________.27.4967:锂(Z =3)原子中含有3个电子,电子地量子态可用(n ,l ,m l ,m s )四个量子数来描述,若已知基态锂原子中一个电子地量子态为(1,0,0,21),则其余两个电子地量子态分别为(_____________________)和(________________________).28.4969:钴(Z = 27 )有两个电子在4s 态,没有其它n ≥4地电子,则在3d 态地电子可有____________个.29.8025:根据量子力学理论,原子内电子地量子态由(n ,l ,m l ,m s )四个量子数表征.那么,处于基态地氦原子内两个电子地量子态可由______________和______________两组量子数表征.30.4637:右方两图(a)与(b)中,(a)图是____型半导体地能带结构图,(b)图是____型半导体地能带结构图.31.4792:若在四价元素半导体中掺入五价元素原子,则可构成______型半导体,参与导电 地多数载流子是_______. 32.4793:若在四价元素半导体中掺入三价 元素原子,则可构成______型半导体,参与导电 地多数载流子是______.33.4971:在下列给出地各种条件中,哪些是 产生激光地条件,将其标号列下:___________.(1)自发辐射;(2)受激辐射;(3)粒子数反转;(4)三能极系统;(5)谐振腔.34.5244:激光器中光学谐振腔地作用是:(1)_____________________________________;(2)_________________________________;(3)_________________________________________.35.8034:按照原子地量子理论,原子可以通过____________________________两种辐射方式发光,而激光是由__________________方式产生地.36.8035:光和物质相互作用产生受激辐射时,辐射光和照射光具有完全相同地特性,这些特性是指_______________________________________________.37.8036:激光器地基本结构包括三部分,即_____________、___________和_____________.38.写出以下算符表达式:=x pˆ________;=H ˆ________;=y L ˆ________; 39.微观低速地(非相对论性)体系地波函数ψ满足薛定谔方程,其数学表达式为________.40.自旋量子数为______________地粒子称为费米子,自旋量子数为_______________地粒子称为玻色子;________________体系遵循泡利不相容原理.4637图E v e 41.[]x p x ˆˆ,=___________;[]=z y ˆˆ,___________;[]=z x p p ˆˆ,___________; []=z L L ˆ,ˆ2___________;[]=y x p L ˆ,ˆ___________. 42.线性谐振子地能量可取为________________;若32010352103u u u ++=ψ,nu 是谐振子地第n 个能量本征函数,则体系地能量平均值为________________.三、计算题1.4502:功率为P 地点光源,发出波长为λ地单色光,在距光源为d 处,每秒钟落在垂直于光线地单位面积上地光子数为多少?若λ =6630 Å,则光子地质量为多少?2.4431:α粒子在磁感应强度为B = 0.025 T 地均匀磁场中沿半径为R =0.83 cm 地圆形轨道运动.(1) 试计算其德布罗意波长;(2) 若使质量m = 0.1 g 地小球以与α粒子相同地速率运动.则其波长为多少?(α粒子地质量m α =6.64×10-27 kg ,普朗克常量h =6.63×10-34 J ·s ,基本电荷e =1.60×10-19 C)3.4506:当电子地德布罗意波长与可见光波长( λ =5500 Å)相同时,求它地动能是多少电子伏特?(电子质量m e =9.11×10-31 kg ,普朗克常量h =6.63×10-34 J ·s, 1 eV =1.60×10-19J)4.4535:若不考虑相对论效应,则波长为 5500 Å地电子地动能是多少eV ?(普朗克常量h =6.63×10-34 J ·s ,电子静止质量m e =9.11×10-31 kg)5.4631:假如电子运动速度与光速可以比拟,则当电子地动能等于它静止能量地2倍时,其德布罗意波长为多少?(普朗克常量h =6.63×10-34 J ·s ,电子静止质量m e =9.11×10-31kg)6.5248:如图所示,一电子以初速度v 0 = 6.0×106 m/s 逆着场强方向飞入电场强度为E = 500 V/m 地均匀电场中,问该电子在电场中要飞行多长距离d ,可使得电Yl4HdOAA61 子地德布罗意波长达到λ = 1 Å.(飞行过程中,电子地质量认为不变, 即为静止质量m e =9.11×10-31 kg ;基本电荷e =1.60×10-19 C ;普朗克 常量h =6.63×10-34 J ·s).7.4430:已知粒子在无限深势阱中运动,其波函数为)/sin(/2)(a x a x π=ψ(0≤x≤a ),求发现粒子地概率为最大地位置. 8.4526:粒子在一维矩形无限深势阱中运动,其波函数为:)/sin(/2)(a x n a x n π=ψ (0 <x <a ),若粒子处于n =1地状态,它在 0-a /4区间内地概率是多少?提示:C x x x x +-=⎰2sin )4/1(21d sin 29.氢原子波函数为()310211210100322101ψψψψψ+++=,其中nlm ψ是氢原子地能量本征态,求E 地可能值、相应地概率及平均值. 10.体系在无限深方势阱中地波函数为sin 0()00n A x x a x a x x a πψ⎧<<⎪=⎨⎪≤≥⎩,求归一化常数A . 11.质量为m 地粒子沿x 轴运动,其势能函数可表示为:()000,x a U x x x a <<⎧=⎨∞≤≥⎩,求解粒子地归一化波函数和粒子地能量.12.设质量为粒子处在(0,a )内地无限方势阱中,()⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=x a x a a x ππψ2cos sin 4,对它地能量进行测量,可能得到地值有哪几个?概率各多少?平均能量是多少?13.谐振子地归一化地波函数:()()()()x cu x u x u x 3202131++=ψ.其中,()x u n 是归一化地谐振子地定态波函数.求:c 和能量地可能取值,以及平均能量E .一、选择题1.4185:D 2.4244:B 3.4383:D 4.4737:D 5.4190:C 6.4197:C 7.4748:A 8.4750:C 9.4241:A 10.4770:A 11.4428:A 12.4778:13.5619:C 14.8020:D 15.4965:B 16.8022:D 17.4785:A 18.4222:D 19.4789:C 20.8032:B 21.9900:A 22.9901:C二、填空题1.4179:λ/hc ----------------1分;λ/h ----------------2分;)/(λc h --------------2分2.4180: 2.5---------------------2分; 4.0×1014-----------2分3.4388: 0.99--------------------3分4.4546: 1.5×1019 ------------3分5.4608: 1.5 --------------------3分6.4611:不变-----------------1分;变长----------------1分;波长变长--------------1分7.4191:-0.85---------------2分;-3.4----------------2分8.4192: 13.6----------------- 2分; 3.4---------------- 2分9.4200: 6----------------------2分; 973----------------2分10.4424: 10.2-------------------3分11.4754: 4 1------------2分; 4 3----------------2分12.4755: 1-----------------------2分; 2----------------2分13.4760: 6.56×1015 Hz-------3分14.4207:3/1----------------3分15.4429: 0.0549----------------3分16.4629: 1.45 Å-----------------2分;6.63×10-19 Å-------------------2分17.4630: 0.1 Å-------------------3分18.4203:粒子在t 时刻在(x ,y ,z )处出现地概率密度-------------2分单值、有限、连续---------------------------------------------1分1d d d 2=⎰⎰⎰z y x ψ----------------------------------------2分19.4632: 1.33×10-23 -----------------------3分20.4221: 2-------------------1分;2×(2l +1)-------------2分;2n 2 --------------2分21.4782:21-------------------2分;21------------------------------2分22.4784: 0, 2, 6-----------------------------各1分23.4963: 8------------------------------------------------ 3分24.4219:泡利不相容---------------2分;能量最小-----------------2分25.4635:一个原子内部不能有两个或两个以上地电子有完全相同地四个量子数(n 、l 、m l 、m s )--------------------------3分26.4787: 4---------------------3分27.4967: 1,0,0,21---------------2分;2,0,0,21 2,0,0,21----------------------2分28.4969: 7----------------------------3分 29.8025: (1,0,0,21)----------2分; (1,0,0,21-)-----------------2分30.4637: n-----------------------2分; p-------------2分31.4792: n-----------------------2分;电子--------2分32.4793: p-----------------------2分;空穴--------2分33.4971: (2)、(3)、(4)、(5)-------3分答对2个1分34.5244:产生与维持光地振荡,使光得到加强---------------------------2分使激光有极好地方向性---------------------------------------------1分使激光地单色性好---------------------------------------------------2分35.8034:自发辐射和受激辐射-----------2分;受激辐射------------2分36.8035:相位、频率、偏振态、传播方向---------------------------------3分37.8036:工作物质、激励能源、光学谐振腔---------------------------各1分38.x i p x ∂∂-= ˆ;U H +∇-=222ˆμ ;)(ˆz x x z i L y ∂∂-∂∂-= 39.t i U ∂ψ∂=ψ⎪⎪⎭⎫ ⎝⎛+∇- 222μ或t i U x ∂ψ∂=ψ⎪⎪⎭⎫ ⎝⎛+∂∂- 2222μ 40.半奇数;整数;费米子41. i ;0;0;0;z pi ˆ 42.ω )21(+=n E n ,n =0,1,2,3……;ω 511三、计算题1.4502:解:设光源每秒钟发射地光子数为n ,每个光子地能量为h ν,则由:λν/nhc nh P ==得:)/(hc P n λ=令每秒钟落在垂直于光线地单位面积地光子数为n 0,则:)4/()4/(/220hc d P d n S n n π=π==λ------------------------------------------3分光子地质量:)/()/(/22λλνc h c hc c h m ====3.33×10-36 kg--------------------2分 2.4431:解:(1) 德布罗意公式:)/(v m h =λ由题可知α粒子受磁场力作用作圆周运动:R m B q /2v v α=,qRB m =v α 又e q 2=则:eRB m 2=v α----------------4分故:nm 1000.1m 1000.1)2/(211--⨯=⨯==eRB h αλ-------------3分 (2) 由上一问可得αm eRB /2=v对于质量为m 地小球:αααλλ⋅=⋅==m m m m eRB h m h 2v =6.64×10-34 m-----------3分3.4506:解:)2/()/()2/(22e e K m h m p E λ==---------------3分 =5.0×10-6 eV--------------------------------------2分4.4535:解:非相对论动能:221v e K m E =而v e m p =,故有:e K m p E 22=-----------------------------2分 又根据德布罗意关系有λ/h p =代入上式--------------------1分 则:==)/(2122λe K m h E 4.98×10-6 eV----------------------2分 5.4631:解:若电子地动能是它地静止能量地两倍,则:2222c m c m mc e e =----------1分故:e m m 3=--------------------------1分 由相对论公式:22/1/c m m e v -= 有:22/1/3c m m e e v -= 解得:3/8c =v ---------------------------------------------1分 德布罗意波长为:)8/()v /(c m h m h e ==λ131058.8-⨯≈m-----------------2分光电子地德布罗意波长为:===v e m h p h λ 1.04×10-9 m =10.4 Å------------------3分6.5248:解:)/(v e m h =λ①---------------------2分ad 2202=-v v ②a m eE e =③----------------------2分由①式:==)/(λe m h v 7.28×106 m/s由③式:==e m eE a /8.78×1013 m/s 2由②式:)2/()(202a d v v -== 0.0968 m = 9.68 cm-----------------------4分 7.4430:解:先求粒子地位置概率密度:)/(sin )/2()(22a x a x π=ψ)]/2cos(1)[2/2(a x a π-=--------------------2分当:1)/2cos(-=πa x 时,2)(x ψ有最大值.在0≤x ≤a 范围内可得π=πa x /2 ∴a x 21=--------------------------------3分 8.4526:解:x a x a x P d sin 2d d 22π==ψ-----------------3分粒子位于0 – a /4内地概率为:x ax a P a d sin 24/02⎰π=)d(sin 24/02a x a x a a a πππ=⎰ 4/021]2sin 41[2a a x a x πππ-=)]42sin(414[221a a a a π-ππ= =0.091----------2分9.解:根据给出地氢原子波函数地表达式,可知能量E 地可能值为:1E 、2E 、3E ,其中:113.6E eV =、2 3.4E eV =-、3 1.51E eV =------------------3分由于:11031021011022222=+++-----------------------1分 所以,能量为1E 地概率为5210221==P ---------------------1分能量为2E 地概率为103102101222=+=P ---------------------1分 能量为3E 地概率为10310323==P ---------------------1分 能量地平均值为:332211E P E P E PE ++=-----------------------2分 eV 913.6-=--------------------1分10.解:由归一化条件,应有1sin 022=⎰xdx a n A a π-----------------------3分 得:a A 2=-----------------------2分11.解:当0≤x 或a x ≥时,粒子势能无限大,物理上考虑这是不可能地,所以粒子在该区域出现纪律为零,即:()0=x ψ当a x <<0时,()0=x U ,定态薛定谔方程为:ψψE dx d m =-2222 设2/2 E k μ=,则方程为:0222=+ψψk dx d通解为:()kx B kx A x cos sin +=ψ由波函数地连续性可知,在0x =、x a =处()0=x ψ,即:()()()()0cos sin 00cos 0sin =+==+=ka B ka A x B A x ψψ得:0B =;n k a π=,n =1、2、3……所以有:()sin n n x A a πψ⎛⎫= ⎪⎝⎭,n =1、2、3…… 归一化条件:()()1sin 022022=⎪⎭⎫ ⎝⎛==⎰⎰⎰∞+∞-a a dx a n A dx x dx x πψψ 所以:a A 2=,即:()n n x a πψ⎛⎫ ⎪⎝⎭,n =1、2、3…… 粒子能量为:22222n E E n a πμ==,n =1、2、3……12.解:()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=a x a x a x a a x a x a x πππππψ2cos sin sin 2cos sin 22⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=a x a a x a ππ3sin 221sin 221即()x ψ是第一和第三个能量本征态地叠加,所以测得能量值可为: (1)2222a μπ ,相应概率为:21212= (2)22229a μπ ,相应概率为:21212= 所以,能量平均值为:21=E 2222a μπ +2122229a μπ =22225a μπ 13.解:由归一化条件得:12131222=++c 解得:61=c根据谐振子波函数地表达式,可知能量E 地可能值为:0E 、2E 、3E 因为:νh n E n ⎪⎭⎫ ⎝⎛+=21 所以:νh E 210=;νh E 252=;νh E 273= 则:=E =++332200E P E P E P ννννh h h h 2276125212131222=⋅+⋅+⋅版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.ViLRaIt6sk用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬.9eK0GsX7H1个人收集整理仅供参考学习Users may use the contents or services of this article for personal study, research or appreciation, and othernon-commercial or non-profit purposes, but at the same time, they shall abide by the provisions of copyright law and other relevant laws, and shall not infringe upon the legitimate rights of this website and its relevant obligees. In addition, when any content or service of this article is used for other purposes, written permission and remuneration shall be obtained from the person concerned and the relevant obligee.naK8ccr8VI转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任.B6JgIVV9aoReproduction or quotation of the content of this article must be reasonable and good-faith citation for the use of news or informative public free information. It shall not misinterpret or modify the original intention of the content of this article, and shall bear legal liability such as copyright.P2IpeFpap511 / 11。

《量子力学》基本概念考查题目以及答案

《量子力学》基本概念考查题目以及答案

《量子力学》基本概念考查题目以及答案1. 量子力学中,粒子的状态由什么描述?A. 位置B. 动量C. 波函数D. 能量答案:C2. 海森堡不确定性原理表明了什么?A. 粒子的位置和动量可以同时准确知道B. 粒子的位置和动量不能同时准确知道C. 粒子的速度和动量可以同时准确知道D. 粒子的位置和能量可以同时准确知道答案:B3. 量子纠缠是指什么?A. 两个粒子之间的经典相互作用B. 两个粒子之间的量子相互作用C. 两个粒子的量子态不能独立于彼此描述D. 两个粒子的量子态可以独立于彼此描述答案:C4. 在量子力学中,一个粒子通过一个势垒的隧穿概率是由什么决定的?A. 粒子的能量B. 势垒的宽度C. 势垒的高度D. 所有以上因素答案:D5. 量子力学的基本方程是什么?A. 牛顿第二定律B. 麦克斯韦方程组C. 薛定谔方程D. 热力学第二定律答案:C6. 在量子力学中,一个系统的波函数坍缩通常发生在什么情况下?A. 当系统处于叠加态时B. 当系统被测量时C. 当系统与环境相互作用时D. B 和 C答案:D7. 量子力学中的泡利不相容原理指出,一个原子中的两个电子不能具有完全相同的一组量子数,这主要影响什么?A. 电子的质量B. 电子的自旋C. 电子的能级D. 电子的电荷答案:C8. 量子退相干是什么?A. 量子态的相干性增强的过程B. 量子态的相干性丧失的过程C. 量子态的叠加态减少的过程D. 量子态的不确定性减少的过程答案:B9. 在量子力学中,哪个原理说明了全同粒子不能被区分?A. 泡利不相容原理B. 量子叠加原理C. 量子不确定性原理D. 量子对称性原理答案:D10. 量子力学中的“观测者效应”指的是什么?A. 观测者的存在改变了被观测系统的状态B. 观测者的存在增强了被观测系统的能量C. 观测者的存在减小了被观测系统的不确定性D. 观测者的存在导致了被观测系统的量子坍缩答案:A11. 在量子力学中,一个粒子的波函数通常是复数还是实数?A. 实数B. 复数C. 整数D. 可以是复数也可以是实数答案:B12. 量子力学中的“粒子-波动二象性”指的是什么?A. 粒子有时表现为波动,有时表现为粒子B. 粒子和波动是两种完全不同的实体C. 粒子和波动是同一种实体的不同表现形式D. 粒子的存在需要波动作为媒介答案:C13. 在量子力学中,一个粒子的动量和位置可以同时被准确测量吗?A. 是的,可以同时准确测量B. 不可以,这受到海森堡不确定性原理的限制C. 只有在特定条件下可以D. 只有使用特殊仪器才可以答案:B14. 量子力学中的“超定性”是指什么?A. 系统的状态由多个波函数描述B. 系统的多个性质可以独立测量C. 系统的波函数可以有多个解D. 系统的多个状态可以共存答案:A15. 在量子力学中,一个粒子的自旋是什么?A. 粒子旋转的速度B. 粒子的量子态的一个内在属性C. 粒子的角动量D. 粒子的动能答案:B16. 量子力学中的“测量问题”指的是什么?A. 如何测量量子系统的尺寸B. 如何测量量子系统的动量C. 测量过程如何影响量子系统的状态D. 测量结果的统计性质答案:C17. 量子力学中的“波函数坍缩”是指什么?A. 波函数在空间中的扩散B. 波函数在时间中的演化C. 波函数从叠加态突然转变为某个特定的状态D. 波函数的数学表达式变得复杂答案:C18. 在量子力学中,一个系统的能量通常是量子化的,这意味着什么?A. 系统的能量可以连续变化B. 系统的能量可以是任何值C. 系统的能量只能取特定的离散值D. 系统的能量只能增加或减少特定的量答案:C19. 量子力学中的“非局域性”指的是什么?A. 量子系统的状态不能在空间中定位B. 量子系统的状态不能在时间中定位C. 量子系统的状态不受空间距离的限制D. 量子系统的状态不受时间距离的限制答案:C20. 在量子力学中,一个粒子的波函数的绝对值平方代表什么?A. 粒子的总能量B. 粒子的总动量C. 粒子在某个位置被发现的概率密度D. 粒子的电荷密度答案:C这套选择题覆盖了量子力学的多个基本概念,适合用于检验学生对量子力学基础知识的掌握情况。

【试题】量子力学期末考试题库含答案22套

【试题】量子力学期末考试题库含答案22套

【关键字】试题量子力学自测题(1)一、简答与证明:(共25分)1、什么是德布罗意波?并写出德布罗意波的表达式。

(4分)2、什么样的状态是定态,其性质是什么?(6分)3、全同费米子的波函数有什么特点?并写出两个费米子组成的全同粒子体系的波函数。

(4分)4、证明是厄密算符(5分)5、简述测不准关系的主要内容,并写出坐标和动量之间的测不准关系。

(6分)2、(15分)已知厄密算符,满足,且,求1、在A表象中算符、的矩阵表示;2、在B表象中算符的本征值和本征函数;3、从A表象到B表象的幺正变换矩阵S。

三、(15分)设氢原子在时处于状态,求1、时氢原子的、和的取值几率和平均值;2、时体系的波函数,并给出此时体系的、和的取值几率和平均值。

四、(15分)考虑一个三维状态空间的问题,在取定的一组正交基下哈密顿算符由下面的矩阵给出这里,,是一个常数,,用微扰公式求能量至二级修正值,并与精确解相比较。

五、(10分)令,,分别求和作用于的本征态和的结果,并根据所得的结果说明和的重要性是什么?量子力学自测题(1)参考答案一、1、描写自由粒子的平面波称为德布罗意波;其表达式:2、定态:定态是能量取确定值的状态。

性质:定态之下不显含时间的力学量的取值几率和平均值不随时间改变。

3、全同费米子的波函数是反对称波函数。

两个费米子组成的全同粒子体系的波函数为:。

4、=,因为是厄密算符,所以是厄密算符。

5、设和的对易关系,是一个算符或普通的数。

以、和依次表示、和在态中的平均值,令,,则有,这个关系式称为测不准关系。

坐标和动量之间的测不准关系为:2、解1、由于,所以算符的本征值是,因为在A表象中,算符的矩阵是对角矩阵,所以,在A表象中算符的矩阵是:设在A 表象中算符的矩阵是,利用得:;由于,所以,;由于是厄密算符,, 令,其中为任意实常数,得在A 表象中的矩阵表示式为: 2、类似地,可求出在B 表象中算符的矩阵表示为:在B 表象中算符的本征方程为:,即 和不同时为零的条件是上述方程的系数行列式为零,即 对有:,对有:所以,在B 表象中算符的本征值是,本征函数为和 3、类似地,在A 表象中算符的本征值是,本征函数为和从A 表象到B 表象的幺正变换矩阵就是将算符在A 表象中的本征函数按列排成的矩阵,即 三、解: 已知氢原子的本征解为: ,将向氢原子的本征态展开, 1、=,不为零的展开系数只有三个,即,,,显然,题中所给的状态并未归一化,容易求出归一化常数为:,于是归一化的展开系数为: ,,(1)能量的取值几率,, 平均值为:(2)取值几率只有:,平均值 (3)的取值几率为: ,,平均值 2、时体系的波函数为:=由于、和皆为守恒量,所以它们的取值几率和平均值均不随时间改变,与时的结果是一样的。

《量子力学》复习题参考答案

《量子力学》复习题参考答案

1 《量子力学》练习题一练习题第1套一、基本概念及简要回答1. p - 和 p- 是否相等?为什么?2.判定下列符号中,哪些是算符?哪些是数?哪些是矢量? φψ; )()(t t φψ; w v u λ; w Fu ˆ。

3.波函数的导数是否一定要连续?举例说明。

4.为什么既不能把ψ波理解为‘粒子的某种实际结构,即把波包看作粒子’, 也不把ψ波理解为‘由大量粒子分布于空间而形成的波,即把波看作由粒子构成的’?5. 设ˆˆA A +=,ˆˆB B +=,ˆˆ0A B ⎡⎤≠⎣⎦,。

试判断下列算符哪些是厄米算符,哪些不是。

(1)1ˆˆˆˆˆ()2F AB BA i=- ; (2)ˆˆˆG AB = ; (3)ˆˆˆC A iB =+ ; (4)ˆˆˆD A B =-。

二.质量为m 的粒子处于一维谐振子势场()()0,2121>=k kx x V 的基态, 若弹性系数k 突然变成k 2,即势场变成()22kx x V =,随即测量粒子的能量,求发现粒子处于新势场()x V 2基态的几率;(只列出详细的计算公式即可)三.已知二维谐振子的哈密顿算符为()22220212ˆˆy x p H ++=μωμ,在对其施加微扰xy Wˆλ-=后,利用微扰论求W H H ˆˆˆ0+=第一激发态能量至一级修正。

提示:⎥⎦⎤⎢⎣⎡++=+-1,1,2121n m n m n m n n x δδαϕϕ,其中, μωα=,而n ϕ为线谐振子的第n 个本征矢。

四. 已知ˆˆ[,]1αβ=,求证 1ˆˆˆˆˆn n n n αββαβ--= 五. 一个三维运动的粒子处于束缚态,其定态波函数的空间部分是实函数,求此态中的动量平均值。

六. 质量为m 的粒子作一维自由运动,如果粒子处于()kx A x 2sin =ψ的状态 上,求其动量pˆ与动能T ˆ的几率分布及平均值。

量子力学复习题及答案

量子力学复习题及答案

量子力学复习题及答案填空题1、量子力学体系中,任意态)(x ψ可用一组力学量完全集的共同本征态)(x n ψ 展开:()()n n nx a x ψψ=∑,则展开式系数()()*n n a x x dx ψψ=⎰。

2、不考虑电子的自旋,氢原子能级的简并度是 n 2___。

3、测量一自由电子的自旋角动量的X 分量,其测量值为2/ ,接着测量其Z 分量,则得到的值为2/ 的概率为 1/2 。

4、坐标表象中,动量的本征函数是__()()3/21exp 2i r p r ψπ⎛⎫=⎪⎝⎭_;动量表象中,坐标的本征函数是_____()()3/21exp 2i r p r ψπ⎛⎫=- ⎪⎝⎭____。

5、由两个全同粒子组成的体系,一个处在单粒子态1ϕ,另一个处在单粒子态2ϕ。

若粒子是波色子,则体系的波函数是_______)]1()2()2()1([212121ϕϕϕϕ+______;若粒子是费米子,则体系的波函数是____)]1()2()2()1([212121ϕϕϕϕ-____。

6、波函数满足的三个基本条件是: _单值 _; _有限__;__连续__。

7、设粒子的波函数为),(t r ψ,则相应的概率密度 ρ =_______ ()2,r t ψ ____;概率流密度j =__ ()()()()()**,,,,2i r t r t r t r t m ψψψψ-∇-∇_______。

8、角动量ˆx L 与ˆy L 的海森堡不确定关系为_____()()22224x y z L L L ∆∆≥______。

9、对于两电子体系的总自旋S 及其各分量有2,x S S ⎡⎤⎣⎦= 0 ,,x y S S ⎡⎤⎣⎦= z i S 。

10、全同玻色子的波函数应为 对称化 波函数,全同费米子的波函数应为 反对称化 波函数,全同费米子满足 泡利不相容 原理。

11、在球坐标中,粒子的波函数为),,(ϕθψr ,则在球壳()dr r r +,中找到粒子的 概率是_____⎰⎰]sin |),,(|22ϕθθϕθψd d r dr r ___;在()ϕθ,方向的立体角Ωd 中找。

高等教育自学考试量子力学答案和评分标准

高等教育自学考试量子力学答案和评分标准

高等教育自学考试量子力学试卷(物理教育专业)参考答案及评分标准一.单项选择题(在每小题的四个备选答案中选出一个正确的答案,并将其号码填在题干后的括号内。

每小题1分,共10分)1.① 2.② 3.② 4.④ 5.② 6.① 7.③ 8.④ 9.② 10.④ 二.多项选择题(在每小题的五个备选答案中选出一个至五个正确的答案,并将其号码填在题干后的括号内。

每小题2分,共10分) 1.④⑤2.①②③ 3.③⑤4.①④⑤ 5.①②③④⑤三.填空题(每空1分,共10分) 1.有限性 单值性 2.厄米 完全系 3.薛定谔 几率波4.4 211ψ 210ψ 121-ψ 200ψ 5.∑=12,212211221121,,,,,,,,,,,,m m m j j j m j m j m j m j m j j j )12)(12(21++j j四.名词解释(每小题3分,共15分) 1. 简并度:对应同一本征值的本征函数的个数2. 全同性原理:在全同粒子所组成的体系中,两全同粒子相互调换不改变体系的状态,这一原理叫做全同性原理3. 表象:量子力学中态和力学量的具体表示方式称为表象4. 好量子数:若Fˆ与哈密顿H ˆ对易,则F ˆ的量子数叫做好量子数 5. 厄米算符:满足dx F dx F φψφψ⎰⎰=**)( 的算符Fˆ 五.简答题(每小题4分,共20分)1. 答:用任意波函数ψ算出H ˆ的平均值总是大于体系的基态能量0E ,而只有当ψ恰好是体系的基态波函数0ψ时H ˆ的平均值才等于基态能量0E 。

这样我们可以选取很多ψ并算出H ˆ的平均值,这些平均值中最小的一个最接近于基态能量0E 。

2. 答:较低能级(2分),因为微扰理论成立的条件是1)0()0('<<-mn mnE E H ,较低能级的能量间隔大,上述条件容易保证(2分)。

3. 答:体系的波函数可以写成坐标函数和自旋函数之积。

只要坐标函数部分是反对称的,自旋函数可以是对称的,因为这时他们的乘积仍然是反对称的。

量子考试题及答案

量子考试题及答案

量子考试题及答案一、选择题(每题2分,共20分)1. 量子力学的创始人是:A. 牛顿B. 爱因斯坦C. 普朗克D. 薛定谔答案:C2. 量子力学中,粒子的状态由什么描述?A. 位置B. 动量C. 波函数D. 能量答案:C3. 海森堡不确定性原理表明:A. 粒子的位置和动量可以同时准确测量B. 粒子的位置和动量不能同时准确测量C. 粒子的位置和能量可以同时准确测量D. 粒子的动量和能量可以同时准确测量答案:B4. 量子力学中的泡利不相容原理适用于:A. 电子B. 质子C. 中子D. 所有基本粒子答案:A5. 量子纠缠是指:A. 两个粒子之间的经典相互作用B. 两个粒子之间的量子相互作用C. 两个粒子之间的引力相互作用D. 两个粒子之间的电磁相互作用答案:B6. 量子力学中的薛定谔方程是一个:A. 线性方程B. 非线性方程C. 微分方程D. 代数方程答案:C7. 量子力学中的隧道效应是:A. 粒子通过势垒的概率不为零B. 粒子通过势垒的概率为零C. 粒子通过势垒的概率为一D. 粒子通过势垒的概率为负答案:A8. 量子力学中的叠加态是指:A. 粒子同时处于多个状态B. 粒子只处于一个状态C. 粒子处于确定的状态D. 粒子处于随机的状态答案:A9. 量子力学中的测量问题涉及:A. 粒子的测量结果B. 粒子的测量过程C. 粒子的测量设备D. 粒子的测量结果和过程答案:D10. 量子力学中的退相干是指:A. 量子态的相干性消失B. 量子态的相干性增强C. 量子态的相干性不变D. 量子态的相干性随机变化答案:A二、填空题(每题2分,共20分)1. 量子力学中的波粒二象性表明,粒子既表现出______的性质,也表现出______的性质。

答案:波动;粒子2. 量子力学中的德布罗意波长公式为:λ = ______ / p,其中λ表示波长,p表示动量。

答案:h / p3. 量子力学中的能级是______的,这是由量子力学的______决定的。

量子力学复习及答案(88题)

量子力学复习及答案(88题)
准确叙述
ψ ( r , = / 2)
K
2
K
2


K d 3 r ψ ( r , − = / 2)

2
解: ψ (r , = / 2 )
表示电子自旋向上( s z = = 2 ) 、位置在 r 处的几率密度;
2
18. 二电子体系中,总自旋 S = s1 + s 2 ,写出( S , S z )的归一化本征态(即自旋单态与三重态) 。 解: ( S , S z )的归一化本征态记为 χ SM S ,则
(1) ⎢ x ,
⎡ ⎣
d ⎤ ⎥=? d x⎦
(2) 2 x 。
(2 ) ⎢
⎡ d ⎤ , x2 ⎥ =? ⎣ dx ⎦
解:(1)-1
2. 一维运动中,哈密顿量 H =
p2 + V ( x) ,求 [x , H ] = ? 2m
解:
=2 d [x , H ] = , m dx
[ z = − = 2 )的几率。
a 的对易关系式; a 的关系; 20. 给出一维谐振子升、 降算符 a 、 粒子数算符 N 与 a 、 哈密顿量 H 用 N
3
理 学
2
分别表示什么样的物理意义。
K

+
⎛1⎞ ⎛0⎞ = = ⎟ , α = χ1 2 (s z ) = ⎜ ; s z = − , β = χ −1 2 ( s z ) = ⎜ ⎜ ⎟ ⎜1⎟ ⎟。 2 2 ⎝ 0⎠ ⎝ ⎠

⎧V , V ( x) = ⎨ 1 ⎩V2 ,
x<a x>a


4
解:高能粒子散射宜采用玻恩近似方法处理;低能粒子散射宜采用分波法处理。

量子力学练习答案

量子力学练习答案

《量子力学》试题(A) 答案及评分标准一、简答题(30分,每小题5分) 1.何谓势垒贯穿?是举例说明。

答:微观粒子在能量E 小于势垒高度时仍能贯穿势垒的现象,称为势垒贯穿。

它是一种量子效应,是微观粒子波粒二象性的体现。

例如金属电子冷发射、α衰变等现象都是由隧道效应产生的,利用微观粒子势垒贯穿效应的特性制造了隧道二极管。

2.波函数()t r ,ψ是应该满足什么样的自然条件?()2,t r ψ的物理含义是什么? 答:波函数是用来描述体系的状态的复函数,除了应满足平方可积的条件之外,它还应该是单值、有限和连续的。

()2,t r ψ表示在t 时刻r 附近τd 体积元中粒子出现的几率密度。

3.分别说明什么样的状态是束缚态、简并态、正宇称态和负宇称态?答:当粒子的坐标趋向无穷远时,波函数趋向零,称之为粒子处于束缚态。

若一个本征值对应一个以上的本征态,则称该本征值是简并的,所对应的本征态即为简并态,本征态的个数就是本征值相应的简并度。

将波函数中的坐标变量改变一个负号,若新波函数与原波函数一样,则称其为正宇称态;将波函数中的坐标变量改变一个负号,若新波函数与原波函数相差一个负号,则称其为负宇称态。

4.物理上可观测量应该对应什么样的算符?为什么?答:物理上可观测量对应线性厄米算符。

线性是状态叠加原理要求的,厄米算符的本征值是实数,可与观测值比较。

5.坐标x 分量算符与动量x 分量算符x pˆ的对易关系是什么?并写出两者满足的测不准关系。

答:对易关系为[] i ˆ,=x px ,测不准关系为2≥∆⋅∆x p x 6.厄米算符F ˆ的本征值nλ与本征矢n 分别具有什么性质? 答:本征值为实数,本征矢为正交、归一和完备的函数系二、证明题:(10分,每小题5分)(1)证明:i z y x =σσσˆˆˆ 证明:由对易关系z x y y x i σσσσσˆ2ˆˆˆˆ=-及反对易关系0ˆˆˆˆ=+x y y x σσσσ ,得z y x i σσσˆˆˆ=上式两边乘z σˆ,得2ˆˆˆˆz z y x i σσσσ= ∵ 1ˆ2=z σ ∴ i z y x =σσσˆˆˆ (2)证明幺正变换不改变矩阵的本征值。

周世勋 《量子力学 卷一 第三版》课后习题解答

周世勋  《量子力学 卷一 第三版》课后习题解答

量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kThc kT hc e kT hc e hc λλλλλπρ ⇒ 0115=-⋅+--kT hce kThc λλ ⇒ kThc ekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λ nmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

《量子力学》22套考研自测题+答案

《量子力学》22套考研自测题+答案

(2)求自旋角动量的 z 分量 sz 的平均值;
(3)求总磁矩 M = − e L − e s
2μ μ
的 z 分量 M z 的平均值。
12. s 、L 分别为电子的自旋和轨道角动量,J = s + L 为电子的总角动 量。证明:[ J , s ⋅ L ]=0;[ J 2 , Jα ]=0,α = x, y, z。 13.质量为 μ 的粒子受微扰后,在一维势场中运动,
QQ:704999167
HY制作
HY制作
HY制作
量子力学自测题(5)
一、 填空题(本题 20 分)
1.Planck 的量子假说揭示了微观粒子
特性,Einstein 的光
量子假说揭示了光的
性。Bohr 的氢原子理论解决了经典
考研自测题精美汇总
电磁场理论和原子的
之间的矛盾,解决了原子的
的起源问题。
2.力学量算符必须是
QQ:704999167
HY制作
HY制作
HY制作
量子力学自测题(3)
一、 简答题(每小题 5 分,共 40 分)
1.一粒子的波函数为ψ (r ) = ψ (x, y, z) ,写出粒子位于 x ~ x + dx 间的几
率。
考研自测题精美汇总
2.粒子在一维δ 势阱V (x) = −γ δ (x), (γ > 0),中运动,波函数为ψ (x) ,
ψ (1,2,),试证明交换算符 Pˆ12 是一个守恒量。 2.设Uˆ 是一个幺正算符,求证 Hˆ = i dUˆ ⋅Uˆ + 是厄米算符。
dt
3.设σ y 为 Pauli 矩阵, (1)求证: eiθσ y = cosθ + iσ y sinθ (2)试求:Treiθσ y

量子力学(二)习题参考答案

量子力学(二)习题参考答案

ψ 1 (− a ) = ψ 2 (− a ) → −C sin ka = A1e −α a
比较以上两式可以得到
B2 = − A1
A1eα x , x < − a 于是有 ψ 0 ( x) = C sin kx, −a < x < a − A e −α x , x > a 1
——奇宇称态!
+∞
( p x x − Et )
4) 、由归一化条件 ψ * ( x)ψ p ' ( x )dx = δ ( p ' − p '' ) 可定出归一化常数 p'
−∞

A= 1
2π h h2 d 2 ,U = 0 2 I dϕ 2
µ =− 4、平面转子(见教科书)—— H
其解为: E m =
m2 h2 , m = 0, ±1, ±2 …… 2I 1 imϕ e , 2π
比较得到:
B2 = A1
于是得
A1eα x , x < − a ψ e ( x) = C cos kx, − a < x < a −α x A1e , x > a
——偶宇称态!
(23)
其中的 C,A1 可由归一化条件和连续性条件定出。 7、 δ 形势—— U ( x ) = f ( x )δ ( x) U(x) E 1 0 2 x (1)


由①和②消去 B
→ 2 A = (1 +
2k1 k2 k +k )C = 1 2 C → C = A k1 k1 k1 + k 2

由①和②消去 C

A − B k2 = → A + B k1

量子力学试题

量子力学试题

量子力学试题(一)及答案 一. (20分)质量为m 的粒子,在一维无限深势阱中 中运动,若0=t 时,粒子处于状态上,其中,()x n ϕ为粒子能量的第n 个本征态。

(1) 求0=t 时能量的可测值与相应的取值几率;(2) 求0>t 时的波函数()t x ,ψ及能量的可测值与相应的取值几率 解:非对称一维无限深势阱中粒子的本征解为 (1) 首先,将()0,x ψ归一化。

由可知,归一化常数为于是,归一化后的波函数为 能量的取值几率为能量取其它值的几率皆为零。

(2) 因为哈密顿算符不显含时间,故0>t 时的波函数为(3) 由于哈密顿量是守恒量,所以0>t 时的取值几率与0=t 时相同。

二. (20分)质量为m 的粒子在一维势阱中运动()00>V ,若已知该粒子在此势阱中有一个能量2V E -=的状态,试确定此势阱的宽度a 。

解:对于02<-=V E 的情况,三个区域中的波函数分别为 其中,在a x =处,利用波函数及其一阶导数连续的条件 得到 于是有此即能量满足的超越方程。

当021V E -=时,由于故40ππ-=n a mV, ,3,2,1=n最后,得到势阱的宽度三.(20分)设厄米特算符Hˆ的本征矢为n ,{n 构成正交归一完备系,定义一个算符(1) 计算对易子()[]n m U H,ˆ,ˆ; (2) 证明()()()p m U q p U n m U nq ,ˆ,ˆ,ˆδ=+;(3) 计算迹(){}n m U,ˆTr ; (4) 若算符A ˆ的矩阵元为nm mn A A ϕˆ=,证明 解:(1)对于任意一个态矢ψ,有 故(2)()()()p m U q p U n m U nq q p n m ,ˆ,ˆ,ˆδϕϕϕϕ== (3)算符的迹为(4)算符 而四. (20分)自旋为21、固有磁矩为s γμ=(其中γ为实常数)的粒子,处 于均匀外磁场k 0 B B =中,设0=t 时,粒子处于2=x s 的状态,(1) 求出0>t 时的波函数;(2) 求出0>t 时x sˆ与z s ˆ的可测值及相应的取值几率。

量子力学试题含答案

量子力学试题含答案

一、填空题:(每题 4 分,共 40 分)1. 微观粒子具有 波粒 二象性。

2.德布罗意关系是粒子能量E 、动量P 与频率ν、波长λ之间的关系,其表达式为:E=h ν, p=/h λ 。

3.根据波函数的统计解释,dx t x 2),(ψ的物理意义为:粒子在x —dx 范围内的几率 。

4.量子力学中力学量用 厄米 算符表示。

5.坐标的x 分量算符和动量的x 分量算符x p 的对易关系为:[],x p i = 。

6.量子力学关于测量的假设认为:当体系处于波函数ψ(x)所描写的状态时,测量某力学量F 所得的数值,必定是算符Fˆ的 本征值 。

7.定态波函数的形式为: t E in n ex t x-=)(),(ϕψ。

8.一个力学量A 为守恒量的条件是:A 不显含时间,且与哈密顿算符对易 。

9.根据全同性原理,全同粒子体系的波函数具有一定的交换对称性,费米子体系的波函数是_反对称的_____________,玻色子体系的波函数是_对称的_______ _。

10.每个电子具有自旋角动量S ,它在空间任何方向上的投影只能取两个数值为: 2± 。

二、证明题:(每题10分,共20分)1、(10分)利用坐标和动量算符的对易关系,证明轨道角动量算符的对易关系:证明:zy x L i L L ˆ]ˆ,ˆ[ =]ˆˆ,ˆˆ[]ˆ,ˆ[z x y z yx p x p z p z p y L L --=2、(10分)由Schr ödinger 方程证明几率守恒:其中几率密度 几率流密度 证明:考虑 Schr ödinger 方程及其共轭式:2|),(|),(),(),(t r t r t r t rψ=ψψ=*ω22(,)[()](,)2i r t V r r t t μ∂ψ=-∇+ψ∂0=∙∇+∂∂J tω][2ψ∇ψ-ψ∇ψ=**μi J ]ˆˆ,ˆ[]ˆˆ,ˆ[z x y z x z p x p z p z p x p z py ---=]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[z y x y z z x z p x p z p z p z p x p y p z py +--=]ˆ,ˆ[]ˆ,ˆ[z y x z p x p z p z py +=y z z y z x x z p p x z p x p z p p z y p z py ˆ]ˆ,[]ˆ,ˆ[ˆ]ˆ,[]ˆ,ˆ[+++=y z x z p p x z p z py ˆ]ˆ,[]ˆ,ˆ[+=y z y z x z x z p p x z p p z x p z p y p pyz ˆˆ],[ˆ]ˆ,[ˆ],ˆ[]ˆ,ˆ[+++=y x p i x pi y ˆ)(ˆ)( +-=]ˆˆ[x y p y px i -= zL i ˆ =在空间闭区域τ中将上式积分,则有:三、计算题:(共40分)1、(10分)设氢原子处于状态),()(23),()(21),,(11211021ϕθϕθϕθψ--=Y r R Y r R r 求氢原子能量E 、角动量平方L 2、角动量Z 分量L Z 的可能值及这些可能值出现的几率。

《量子力学试卷A》答案

《量子力学试卷A》答案

《量⼦⼒学试卷A》答案《量⼦⼒学》试题 A 答案(闭卷)(电⼦科学与技术系2008级)姓名班级学号1、 (10分) 简述量⼦⼒学的5个基本假设[答] (1) 微观体系状体由波函数描述。

波函数满⾜连续性、有限性和单值性。

(2) ⼒学量⽤厄⽶算符表⽰。

(3) 将体系的状态波函数⽤算符的本征函数展开则在态中测量⼒学量得到结果为的⼏率是 ,得到结果在范围内的⼏率是 (4) 体系的状态波函数满⾜薛定谔⽅程: , 为体系的哈密顿算符。

(5) 在全同粒⼦所组成的体系中,两全同粒⼦相互调换不改变体系的状态(全同性原理)。

2、(10分) 分别判断下列三个波函数所描述的状态是否为定态?并说明理由。

1()()()E E ix i tix i tx u x eu x eψ---=+12212()()()()E E iti tx u x eu x e E E ψ--=+≠3()()()E E i t i tx u x eu x eψ-=+[答]2112()()()(2)E E E E ititx x u x eeωψψ--==++ 与时间⽆关,是定态;2*22111()()()(2)i x i x x x u x e e ωψψ-==++,与时间有关,不是定态;i H t∧?ψ=ψ?H ∧n λ2n c d λλλ→+2c d λλF ∧ψψF ∧Φ()n n n F F λλλλ∧∧Φ=ΦΦ=Φn n n c c d λλλψ=Φ+Φ∑222*333()()()(2)EEititx x u x e eωψψ-==++,与时间有关,不是定态。

3、(10分) 已知⼀质量为m 的粒⼦在⼀维势场??<>∞≤≤=000)(x a x ax x U 或中运动(1)写出该粒⼦⼀维薛定谔定态波动⽅程; (2)求解该粒⼦的能级;(3)求解该粒⼦归⼀化后的波函数2()()2()()()2d x E x x a m dx d x x E x x am dx ψψψψψ?-=≤-+∞=>??令222mE k = 则有通解为kx B kx A x cos sin )(+=ψ边界条件为:解得,能级波函数为:??<>≤≤=000)sin(2)(x a x a x axn a x 或πψ4、(10分) (1) 设??,AB 为厄⽶算符,且[??,A B ]0≠,证明()i AB BA -为厄⽶算符;(2) 下列算符中,哪些是线性算符?其中哪些是厄⽶算符?dxdx ,2, 22dx d ,, Sin , dxdi,ln [答] (1)因为??,AB 为厄⽶算符,对于任意两个波函数,φψ,有: ***??A d A d φψτφψτ=??,***B d B d φψτφψτ=??E ψ222()0d k x dx ψψ+=()sin cos 0(0)cos 0a A ka B ka B ka ψψ=+===0B =n k aπ=22222n E ma π=******************[,]()???()()??????()([,])i A B d i AB BA d i AB d i BA d i A B d i B A d i B A d i A B d iBA d iAB B d iAB iBA d i A Bd φψτφψτφψτφψτφψτφψτφψτφψτφψτφψτφψτφψτ=-=-=-=-=-+=-=即()i ABBA -为厄⽶算符,得证。

试卷、试题—--量子力学自学辅导与参考答案

试卷、试题—--量子力学自学辅导与参考答案

题库(含答案)2011级 尹如冰(一) 单项选择题1.能量为100ev 的自由电子的De Broglie 波长是A A. 1.2A 0. B. 1.5A 0. C.2.1A 0. D. 2.5A 0.2. 能量为0.1ev 的自由中子的De Broglie 波长是B A.1.3A 0. B. 0.9A 0. C. 0.5A 0. D. 1.8A 0.3. 能量为0.1ev ,质量为1g 的质点的De Broglie 波长是C A.1.4A 0. B.1.9⨯1012-A 0.C.1.17⨯1012-A 0. D. 2.0A 0.4.温度T=1k 时,具有动能E k T B =32(k B 为Boltzeman 常数)的氦原子的De Broglie 波长是DA.8A 0. B. 5.6A 0. C. 10A 0. D. 12.6A 0.5.用Bohr-Sommerfeld 的量子化条件得到的一维谐振子的能量为( ,2,1,0=n )AA.E n n = ω.B.E n n =+()12ω.C.E n n =+()1 ω.D.E n n =2 ω.6.在0k 附近,钠的价电子的能量为3ev ,其De Broglie 波长是B A.5.2A 0. B.7.1A 0. C.8.4A 0. D.9.4A 0.7.钾的脱出功是2ev ,当波长为3500A 0的紫外线照射到钾金属表面时,光电子的最大能量为AA. 0.25⨯1018-J.B. 1.25⨯1018-J.C. 0.25⨯1016-J.D. 1.25⨯1016-J.8.当氢原子放出一个具有频率ω的光子,反冲时由于它把能量传递给原子而产生的频率改变为BA. 2μc .B.22μc. C. 222μc . D. 22μc . pton 效应证实了CA.电子具有波动性.B. 光具有波动性.C.光具有粒子性.D. 电子具有粒子性. 10.Davisson 和Germer 的实验证实了A A. 电子具有波动性. B. 光具有波动性. C. 光具有粒子性. D. 电子具有粒子性.11.粒子在一维无限深势阱U x x ax x a (),,,=<<∞≤≥⎧⎨⎩000 中运动,设粒子的状态由ψπ()sinx C xa= 描写,其归一化常数C 为B A.1a . B.2a . C.12a . D.4a.12. 设ψδ()()x x =,在dx x x +-范围内找到粒子的几率为DA.δ()x .B.δ()x dx .C.δ2()x .D.δ2()x dx .13. 设粒子的波函数为 ψ(,,)x y z ,在dx x x +-范围内找到粒子的几率为C A.ψ(,,)x y z dxdydz 2. B.ψ(,,)x y z dx 2. C.dx dydz z y x )),,((2⎰⎰ψ. D.dx dy dz x yz ψ(,)⎰⎰⎰2.14.设ψ1()x 和ψ2()x 分别表示粒子的两个可能运动状态,则它们线性迭加的态c x c x 1122ψψ()()+的几率分布为D A.c c 112222ψψ+.B. c c 112222ψψ++2*121ψψc c . C. c c 112222ψψ++2*1212ψψc c .D. c c 112222ψψ++c c c c 12121212****ψψψψ+. 15.波函数应满足的标准条件是DA.单值、正交、连续.B.归一、正交、完全性.C.连续、有限、完全性.D.单值、连续、有限. 16.有关微观实物粒子的波粒二象性的正确表述是CA.波动性是由于大量的微粒分布于空间而形成的疏密波.B.微粒被看成在三维空间连续分布的某种波包.C.单个微观粒子具有波动性和粒子性.D. A, B, C.17.已知波函数Cψ1=-+u x i Et u x iEt ()exp()()exp() ,ψ21122=-+u x i E t u x iE t ()exp()()exp() ,ψ312=-+-u x i Et u x iEt ()exp()()exp() ,ψ41122=-+-u x i E t u x iE t ()exp()()exp().其中定态波函数是A.ψ2.B.ψ1和ψ2.C.ψ3.D.ψ3和ψ4. 18.若波函数ψ(,)x t 归一化,则A.ψ(,)exp()x t i θ和ψ(,)exp()x t i -δ都是归一化的波函数.B.ψ(,)exp()x t i θ是归一化的波函数,而ψ(,)exp()x t i -δ不是归一化的波函数.C.ψ(,)exp()x t i θ不是归一化的波函数,而ψ(,)exp()x t i -δ是归一化的波函数.D.ψ(,)exp()x t i θ和ψ(,)exp()x t i -δ都不是归一化的波函数.(其中θδ,为任意实数)19.波函数ψ1、ψψ21=c (c 为任意常数),A.ψ1与ψψ21=c 描写粒子的状态不同.B.ψ1与ψψ21=c 所描写的粒子在空间各点出现的几率的比是1: c .C.ψ1与ψψ21=c 所描写的粒子在空间各点出现的几率的比是2:1c .D.ψ1与ψψ21=c 描写粒子的状态相同.20.波函数ψ(,)(,)exp()x t c p t ipx dp =⎰12π的傅里叶变换式是 A. c p t x t ipx dx (,)(,)exp()=⎰12π ψ. B. c p t x t i px dx (,)(,)exp()*=⎰12π ψ. C. c p t x t ipx dx (,)(,)exp()=-⎰12π ψ. D. c p t x t i px dx (,)(,)exp()*=-⎰12πψ. 21.量子力学运动方程的建立,需满足一定的条件:(1)方程中仅含有波函数关于时间的一阶导数. (2)方程中仅含有波函数关于时间的二阶以下的导数.(3)方程中关于波函数对空间坐标的导数应为线性的. (4) 方程中关于波函数对时间坐标的导数应为线性的.(5) 方程中不能含有决定体系状态的具体参量. (6) 方程中可以含有决定体系状态的能量. 则方程应满足的条件是 A. (1)、(3)和(6). B. (2)、(3)、(4)和(5). C. (1)、(3)、(4)和(5). D.(2)、(3)、(4)、(5)和(6). 22.两个粒子的薛定谔方程是A.∑=ψ∇=ψ21212221),,(2),,(i i t r r t r r t iμ∂∂ ),,(),,(2121t r r t r r U ψ+B.∑=ψ∇=ψ21212221),,(2),,(i i t r r t r r tμ∂∂ ),,(),,(2121t r r t r r Uψ+C. ∑=ψ∇=ψ21212221),,(2),,(i i it r r t r r t μ∂∂),,(),,(2121t r r t r r U ψ+D.∑=ψ∇=ψ21212221),,(2),,(i i it r r t r r t i μ∂∂),,(),,(2121t r r t r r Uψ+ 23.几率流密度矢量的表达式为A.J =∇ψ-2μ()**ψψ∇ψ. B.J i =∇ψ-2μ()**ψψ∇ψ. C.J i =-∇ψ2μ()**ψ∇ψψ.D.J =-∇ψ2μ()**ψ∇ψψ. 24.质量流密度矢量的表达式为A.J =∇ψ-2()**ψψ∇ψ.B.J i =∇ψ-2()**ψψ∇ψ.C.J i =-∇ψ2()**ψ∇ψψ.D.J =-∇ψ2()**ψ∇ψψ.25. 电流密度矢量的表达式为A.J q =∇ψ-2μ()**ψψ∇ψ. B. J iq =∇ψ-2μ()**ψψ∇ψ. C.J iq =-∇ψ2μ()**ψ∇ψψ. D.J q =-∇ψ2μ()**ψ∇ψψ. 26.下列哪种论述不是定态的特点A.几率密度和几率流密度矢量都不随时间变化.B.几率流密度矢量不随时间变化.C.任何力学量的平均值都不随时间变化.D.定态波函数描述的体系一定具有确定的能量.27.在一维无限深势阱U x x ax a (),,=<∞≥⎧⎨⎩022中运动的质量为μ的粒子的能级为A.πμ22224 n a ,B.πμ22228 n a ,C.πμ222216 n a ,D.πμ222232 n a .28. 在一维无限深势阱U x x a x a (),,=<∞≥⎧⎨⎩0中运动的质量为μ的粒子的能级为A.πμ22222 n a , B.πμ22224 n a , C.πμ22228 n a , D.πμ222216 n a .29. 在一维无限深势阱U x x b x b (),/,/=<∞≥⎧⎨⎩022中运动的质量为μ的粒子的能级为A.πμ22222 n b ,B.πμ2222 n b , C.πμ22224 n b , D.πμ22228 n b. 30. 在一维无限深势阱U x x a x a(),,=<∞≥⎧⎨⎩0中运动的质量为μ的粒子处于基态,其位置几率分布最大处是A.x =0,B.x a =,C.x a =-,D.x a =2.31. 在一维无限深势阱U x x ax a (),,=<∞≥⎧⎨⎩0中运动的质量为μ的粒子处于第一激发态,其位置几率分布最大处是A.x a =±/2,B.x a =±,C.x =0,D.4/a x ±=. 32.在一维无限深势阱中运动的粒子,其体系的 A.能量是量子化的,而动量是连续变化的. B.能量和动量都是量子化的. C.能量和动量都是连续变化的.D.能量连续变化而动量是量子化的. 33.线性谐振子的能级为 A.(/),(,,,...)n n +=12123 ω. B.(),(,,,....)n n +=1012 ω.C.(/),(,,,...)n n +=12012ω. D.(),(,,,...)n n +=1123 ω.34.线性谐振子的第一激发态的波函数为ψαα()exp()x N x x =-122122,其位置几率分布最大处为A.x =0.B.x =±μω. C.x =μω . D.x =± μω.35.线性谐振子的A.能量是量子化的,而动量是连续变化的.B.能量和动量都是量子化的.C.能量和动量都是连续变化的.D.能量连续变化而动量是量子化的. 36.线性谐振子的能量本征方程是A.[]-+= 222222212μμωψψd dx x E . B.[]--= 22222212μμωψψd dx x E . C.[] 22222212μμωψψd dx x E -=-. D.[] 222222212μμωψψd dx x E +=-. 37.氢原子的能级为A.- 2222e n s μ.B.-μ22222e n s .C.242ne sμ -. D. -μe n s 4222 . 38.在极坐标系下,氢原子体系在不同球壳内找到电子的几率为A.r r R nl )(2. B.22)(r r R nl .C.rdr r R nl )(2.D.dr r r R nl 22)(.39. 在极坐标系下,氢原子体系在不同方向上找到电子的几率为 A.),(ϕθlm Y . B. 2),(ϕθlm Y .C. Ωd Y lm ),(ϕθ.D. Ωd Y lm 2),(ϕθ.40.波函数ψ和φ是平方可积函数,则力学量算符 F为厄密算符的定义是 A.ψφτφψτ*** Fd F d =⎰⎰. B.ψφτφψτ**( )F d F d =⎰⎰. C.( ) **F d F d ψφτψφτ=⎰⎰. D. ***F d F d ψφτψφτ=⎰⎰.41. F和 G 是厄密算符,则 A. FG必为厄密算符. B. FG GF -必为厄密算符. C.i FGGF ( )+必为厄密算符. D. i FGGF ( )-必为厄密算符. 42.已知算符 x x =和 pi xx =- ∂∂,则 A. x 和 p x 都是厄密算符. B. xp x 必是厄密算符. C. xp p x x x +必是厄密算符. D. xp p x x x -必是厄密算符.43.自由粒子的运动用平面波描写,则其能量的简并度为 A.1. B. 2. C. 3. D. 4.44.二维自由粒子波函数的归一化常数为(归到δ函数)A.1212/()/π .B.12/()π .C.1232/()/π .D.122/()π45.角动量Z 分量的归一化本征函数为A.12πϕ exp()im . B. )ex p(21r k i ⋅π. C.12πϕexp()im . D. )ex p(21r k i⋅π. 46.波函数)ex p()(cos )1(),(ϕθϕθim P N Y m l lm m lm -=A. 是 L 2的本征函数,不是 L z的本征函数. B. 不是 L2的本征函数,是 L z的本征函数. C. 是 L 2、 L z的共同本征函数. D. 即不是 L 2的本征函数,也不是 L z的本征函数. 47.若不考虑电子的自旋,氢原子能级n=3的简并度为 A. 3. B. 6. C. 9. D. 12. 48.氢原子能级的特点是A.相邻两能级间距随量子数的增大而增大.B.能级的绝对值随量子数的增大而增大.C.能级随量子数的增大而减小.D.相邻两能级间距随量子数的增大而减小.49一粒子在中心力场中运动,其能级的简并度为n 2,这种性质是 A. 库仑场特有的. B.中心力场特有的.C.奏力场特有的.D.普遍具有的.50.对于氢原子体系,其径向几率分布函数为W r dr R r dr 323222()=,则其几率分布最大处对应于Bohr 原子模型中的圆轨道半径是 A.a 0. B. 40a . C. 90a . D. 160a . 51.设体系处于ψ=--123231102111R Y R Y 状态,则该体系的能量取值及取值几率分别为A.E E 321434,;,. B.E E 321232,;,-.C.E E 321232,;,.D.E E 323414,;,.52.接51题,该体系的角动量的取值及相应几率分别为 A.21 , . B. ,1. C.212 ,. D.212 ,.53. 接51题,该体系的角动量Z 分量的取值及相应几率分别为A.01434,;,- .B. 01434,;, .C.01232,;, -. D. 01232,;,-- .54. 接51题,该体系的角动量Z 分量的平均值为A.14 .B. -14 .C. 34 .D. -34 .55. 接51题,该体系的能量的平均值为A.-μe s 4218 .B.-3128842μe s .C.-2925642μe s .D.-177242μe s.56.体系处于ψ=C kx cos 状态,则体系的动量取值为A. k k ,-.B. k .C. - k .D. 12k .57.接上题,体系的动量取值几率分别为A. 1,0.B. 1/2,1/2.C. 1/4,3/4/ .D. 1/3,2/3. 58.接56题, 体系的动量平均值为A.0.B. k .C. - k .D. 12k .59.一振子处于ψψψ=+c c 1133态中,则该振子能量取值分别为A.3252 ωω,.B. 1252 ωω,.C. 3272 ωω,.D. 1252ωω,.60.接上题,该振子的能量取值E E 13,的几率分别为A.2321,c c . B. 232121c c c +,232123c c c +.C.23211c c c +,23213c c c +. D. 31,c c .61.接59题,该振子的能量平均值为A. ω 232123215321c c c c ++. B. 5 ω. C. 92 ω. D. ω 232123217321c c c c ++. 62.对易关系[ ,()]pf x x 等于(f x ()为x 的任意函数) A.i f x '().B.i f x ().C.-i f x '(). D.-i f x ().63. 对易关系[ ,exp()]piy y 等于 A.)exp(iy . B. i iy exp().C.- exp()iy .D.-i iy exp().64.对易关系[, ]x px 等于 A.i . B. -i . C. . D. - .65. 对易关系[, ]L yx 等于 A.i z. B. z . C.-i z . D.- z . 66. 对易关系[, ]L zy 等于 A.-i x. B. i x . C. x . D.- x . 67. 对易关系[, ]L zz 等于 A.i x. B. i y . C. i . D. 0. 68. 对易关系[, ]x py 等于 A. . B. 0. C. i . D. - . 69. 对易关系[ , ]pp y z 等于 A.0. B. i x . C. i p x . D. p x . 70. 对易关系[ , ]LL xz等于 A.i L y . B. -i L y . C. L y . D. - L y . 71. 对易关系[ , ]LL zy等于 A.i L x . B. -i L x . C. L x . D. - L x . 72. 对易关系[ , ]LL x2等于 A. L x . B. i L x . C. i L L z y ( )+. D. 0. 73. 对易关系[ , ]LL z2等于 A. L z . B. i L z . C. i L L x y( )+. D. 0. 74. 对易关系[, ]L px y 等于 A.i L z. B. -i L z . C. i p z . D. -i p z . 75. 对易关系[ , ]p L z x等于 A.-i py. B. i p y . C.-i L y . D. i L y. 76. 对易关系[ , ]L p zy 等于 A.-i p x . B. i p x . C. -i Lx . D. i L x . 77.对易式[ , ]Lx y 等于 A.0. B. -i z. C. i z . D. 1.78. 对易式[ , ]FF m n 等于(m,n 为任意正整数) A. Fm n +. B. F m n -. C. 0. D. F . 79.对易式[ , ]FG 等于 A. FG. B. GF . C. FG GF -. D. FG GF +. 80. .对易式[ ,]Fc 等于(c 为任意常数) A.cF. B. 0. C. c . D. F ˆ. 81.算符 F和 G 的对易关系为[ , ] F G ik =,则 F 、 G 的测不准关系是 A.( )( )∆∆F G k 2224≥. B. ( )( )∆∆F G k 2224≥.C. ( )( )∆∆F G k 2224≥.D. ( )( )∆∆F G k 2224≥. 82.已知[ , ]xp i x = ,则 x 和 p x 的测不准关系是 A.( )( )∆∆x p x 222≥ . B. ( )( )∆∆x p 2224≥ .C. ( )( )∆∆x p x 222≥ . D. ( )( )∆∆x p x 2224≥ .83. 算符 L x 和 L y 的对易关系为[ , ] L L i L x y z = ,则 L x 、 L y的测不准关系是 A.( )( ) ∆∆L L L x y z 22224≥ .B.( )( ) ∆∆L L L x y22224≥ . C.( )( ) ∆∆FG L z 22224≥ . D.( )( ) ∆∆FG L 22224≥ . 84.电子在库仑场中运动的能量本征方程是A.[]-∇+= 2222μψψze rE s.B. []-∇+= 22222μψψze r E s.C.[]-∇-= 2222μψψze rE s.D.[]-∇-= 22222μψψze rE s.85.类氢原子体系的能量是量子化的,其能量表达式为A.-μz e n s 22222. B. -μ224222z e n s .C.-μze n s 2222 .D. -μz e ns 24222 .86. 在一维无限深势阱U x x ax x a (),,,=<<∞≤≥⎧⎨⎩000中运动的质量μ为的粒子,其状态为ψππ=42aa x a x sin cos ,则在此态中体系能量的可测值为A.22222229,2a a μπμπ , B. πμπμ2222222 a a , , C.323222222πμπμ a a ,, D.524222222πμπμ a a , . 87.接上题,能量可测值E 1、E 3出现的几率分别为 A.1/4,3/4. B. 3/4,1/4. C.1/2, 1/2. D. 0,1. 88.接86题,能量的平均值为A.52222πμ a ,B.2222πμ a ,C.72222πμ a ,D.5222πμ a .89.若一算符 F的逆算符存在,则[ , ]F F -1等于 A. 1. B. 0. C. -1. D. 2.90.如果力学量算符 F和 G 满足对易关系[ , ]F G =0, 则 A. F和 G 一定存在共同本征函数,且在任何态中它们所代表的力学量可同时具有确定值. B. F和 G 一定存在共同本征函数,且在它们的本征态中它们所代表的力学量可同时具有确定值.C. F和 G 不一定存在共同本征函数,且在任何态中它们所代表的力学量不可能同时具有确定值.D. F和 G 不一定存在共同本征函数,但总有那样态存在使得它们所代表的力学量可同时具有确定值.91.一维自由粒子的能量本征值 A. 可取一切实数值. B.只能取不为负的一切实数. C.可取一切实数,但不能等于零. D.只能取不为正的实数.92.对易关系式[ , ()]pp f x x x 2等于 A.-i pf x x '()2. B. i p f x x '()2 . C.-i pf x x ()2. D. i p f x x ()2. 93.定义算符yx L i L L ˆˆˆ±=±, 则[ , ]L L +-等于 A.zLˆ . B.2 L z. C.-2 L z. D.zL ˆ -. 94.接上题, 则[ , ]L L z+等于 A. L +. B. L z . C. -+L . D. - L z . 95. 接93题, 则[ , ]LL z-等于 A. L -. B. L z . C. --L . D. - L z . 96.氢原子的能量本征函数ψθϕθϕnlm nl lm r R r Y (,,)()(,)=A.只是体系能量算符、角动量平方算符的本征函数,不是角动量Z 分量算符的本征函数.B.只是体系能量算符、角动量Z 分量算符的本征函数,不是角动量平方算符的本征函数.C.只是体系能量算符的本征函数,不是角动量平方算符、角动量Z 分量算符的本征函数.D.是体系能量算符、角动量平方算符、角动量Z 分量算符的共同本征函数. 97.体系处于ψ=+c Y c Y 111210态中,则ψA.是体系角动量平方算符、角动量Z 分量算符的共同本征函数.B.是体系角动量平方算符的本征函数,不是角动量Z 分量算符的本征函数.C.不是体系角动量平方算符的本征函数,是角动量Z 分量算符的本征函数.D.即不是体系角动量平方算符的本征函数,也不是角动量Z 分量算符的本征函数.98.对易关系式[ , ]FGH 等于 A.[ , ] [ , ]FH G F G H +. B. [ , ] F H G C. [ , ]FG H . D. [ , ] [ , ]F H G F G H -. 99.动量为p '的自由粒子的波函数在坐标表象中的表示是)'ex p(21)('x p ix Pπψ=,它在动量表象中的表示是A.δ(')p p -.B.δ(')p p +.C.δ()p .D.δ(')p .100.力学量算符 x对应于本征值为x '的本征函数在坐标表象中的表示是 A.δ(')x x -. B.δ(')x x +. C.δ()x . D.δ(')x . 101.一粒子在一维无限深势阱中运动的状态为)(22)(22)(21x x x ψψψ-=,其中ψ1()x 、ψ2()x 是其能量本征函数,则ψ()x 在能量表象中的表示是A.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ 02/22/2.B.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛- 02/22/2.C.222200//⎛⎝ ⎫⎭⎪⎪⎪⎪⎪.D.222200//-⎛⎝ ⎫⎭⎪⎪⎪⎪⎪. 102.线性谐振子的能量本征函数ψ1()x 在能量表象中的表示是A.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ 001.B. ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ 010. C. 1000⎛⎝ ⎫⎭⎪⎪⎪⎪. D. 0100⎛⎝ ⎫⎭⎪⎪⎪⎪.103. 线性谐振子的能量本征函数)()(10x b x a ψψψ+=在能量表象中的表示是A.⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛++ 0//2222b a b b a a . B. ⎪⎪⎪⎪⎪⎭⎫⎝⎛++0//02222b a b b a a .C. ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ 0b a . D.00a b ⎛⎝ ⎫⎭⎪⎪⎪⎪. 104.在( , L L z 2)的共同表象中,波函数φ=⎛⎝ ⎫⎭⎪⎪⎪22101,在该态中 L z 的平均值为 A. . B. - . C. 2 . D. 0.105.算符 Q 只有分立的本征值{}Q n ,对应的本征函数是{()}u x n,则算符 (,)F x i x∂∂在 Q表象中的矩阵元的表示是 A.F u x F x i x u x dx mn n m =⎰*()(,)() ∂∂.B.F u x F x i x u x dx mn m n =⎰*()(,)() ∂∂.C.F u x F x i x u x dx mn n m =⎰()(,)()*∂∂.D.F u x F x i xu x dx mn m n =⎰()(,)()*∂∂.106.力学量算符在自身表象中的矩阵表示是 A. 以本征值为对角元素的对角方阵. B. 一个上三角方阵. C.一个下三角方阵. D.一个主对角线上的元素等于零的方阵.107.力学量算符xˆ在动量表象中的微分形式是 A.-i p x∂∂. B.i p x ∂∂. C.-i p x 2∂∂. D.i p x 2∂∂.108.线性谐振子的哈密顿算符在动量表象中的微分形式是A.p p 22222212μμω∂∂+ .B.p p 2222212μμω∂∂-. C.22222212pp ∂∂μωμ -. D.--p p 2222212μμω∂∂. 109.在 Q 表象中F =⎛⎝ ⎫⎭⎪0110,其本征值是A. ±1.B. 0.C. ±i .D. 1±i . 110.接上题, F 的归一化本征态分别为A.22112211⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪,. B. 1111⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪,.C. 12111211⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪,.D.22102201⎛⎝ ⎫⎭⎪⎛⎝ ⎫⎭⎪,.111.幺正矩阵的定义式为A.S S +-=.B.S S +=*.C.S S =-.D.S S *=-.112.幺正变换A.不改变算符的本征值,但可改变其本征矢.B.不改变算符的本征值,也不改变其本征矢.C.改变算符的本征值,但不改变其本征矢.D.即改变算符的本征值,也改变其本征矢.113.算符 ()( )/ax ip =+μωμω212 ,则对易关系式[ , ]a a +等于 A. [ , ]aa +=0. B. [ , ]a a +=1. C. [ , ]aa +=-1. D. [ , ]a a i +=. 114.非简并定态微扰理论中第n 个能级的表达式是(考虑二级近似) A.E H H E E n nn mn nm m()()()''0200++-∑. B. E H H E E n nn mnnmm()()()'''0200++-∑.C.E H H E E n nn mn m nm()()()'''0200++-∑. D.E H H E E n nn mnmnm()()()''0200++-∑.115. 非简并定态微扰理论中第n 个能级的一级修正项为 A.H mn '. B.H nn '. C.-H nn '. D.H nm '.116. 非简并定态微扰理论中第n 个能级的二级修正项为 A.H E E mn nm m'()()200-∑. B. ''()()H EE mnnmm200-∑. C.''()()H EE mnmnm200-∑. D.H EE mnmnm'()()200-∑.117. 非简并定态微扰理论中第n 个波函数一级修正项为A.H E E mn nm m m '()()()000-∑ψ.B. ''()()()H E E mn nm m m 000-∑ψ.C. ''()()()H E E mn mn m m 000-∑ψ.D. H E E mn mn m m '()()()000-∑ψ.118.沿x 方向加一均匀外电场ε,带电为q 且质量为μ的线性谐振子的哈密顿为A. H d dx x q x =-++ 22222212μμωε. B. H d dx x q x =-++ 2222212μμωε.C. H d dx x q x =-+- 2222212μμωε.D. H d dx x q x =-+- 22222212μμωε. 119.非简并定态微扰理论的适用条件是A.H E E mk km'()()001-<<. B.H E E mk km'()()001+<<.C. H mk '<<1.D. E E k m ()()001-<<.120.转动惯量为I ,电偶极矩为 D 的空间转子处于均匀电场ε中,则该体系的哈密顿为A.ε ⋅+=D IL H2ˆˆ2. B. ε ⋅+-=D I L H 2ˆˆ2. C. ε ⋅-=D IL H 2ˆˆ2. D. ε ⋅--=D I L H 2ˆˆ2. 121.非简并定态微扰理论中,波函数的一级近似公式为A.ψψψn n nm nm m m H E E =+-∑()()()()''0000.B.ψψψn n mn nm m m H E E =+-∑()()()()''0000.C.ψψψn n mn m nm m H E E =+-∑()()()()''0000. D.ψψψn n nm mn m m H E E =+-∑()()()()''0000.122.氢原子的一级斯塔克效应中,对于n =2的能级由原来的一个能级分裂为A. 五个子能级.B. 四个子能级.C. 三个子能级.D. 两个子能级.123.一体系在微扰作用下,由初态Φk 跃迁到终态Φm 的几率为A.22' )'ex p('1⎰tmk mkdt t i H ω.B. 20 ' )'ex p('⎰t mk mkdt t i H ω.C.22')' ex p(1⎰t mk mkdt t i Hω .D.2' )'ex p(⎰tmk mkdt t i Hω.124.用变分法求量子体系的基态能量的关键是 A. 写出体系的哈密顿. B. 选取合理的尝试波函数.C. 计算体系的哈密顿的平均值.D. 体系哈密顿的平均值对变分参数求变分. 125.Stern-Gerlach 实验证实了A. 电子具有波动性.B.光具有波动性.C. 原子的能级是分立的.D. 电子具有自旋.126. S 为自旋角动量算符,则[ , ]SS yx等于 A.2i . B. i . C. 0 .D. -i S z . 127. σ为Pauli 算符,则[ , ]σσxz等于 A.-i y σ. B. i y σ. C.2i y σ. D.-2i y σ. 128.单电子的自旋角动量平方算符 S2的本征值为 A.142 . B.342 . C.322 . D.122 .129.单电子的Pauli 算符平方的本征值为 A. 0. B. 1. C. 2. D. 3. 130.Pauli 算符的三个分量之积等于 A. 0. B. 1. C. i . D. 2i .131.电子自旋角动量的x 分量算符在 S z表象中矩阵表示为 A. S x =⎛⎝ ⎫⎭⎪ 21001. B. S i i x =-⎛⎝ ⎫⎭⎪ 200. C. S x =⎛⎝ ⎫⎭⎪ 20110. D. S x =-⎛⎝ ⎫⎭⎪ 21001. 132. 电子自旋角动量的y 分量算符在 Sz表象中矩阵表示为 A. S y =⎛⎝ ⎫⎭⎪ 21001. B. S i y=-⎛⎝ ⎫⎭⎪ 20110. C. S i i i y =-⎛⎝ ⎫⎭⎪ 200. D. S i i y =⎛⎝ ⎫⎭⎪ 200. 133. 电子自旋角动量的z 分量算符在 Sz表象中矩阵表示为 A. S z =⎛⎝ ⎫⎭⎪ 21001. B. S z =-⎛⎝⎫⎭⎪ 20110. C. S z =-⎛⎝ ⎫⎭⎪ 21001. D. S i z=-⎛⎝ ⎫⎭⎪ 21001. 134. , J J 12是角动量算符, J J J =+12,则[ ,] J J 212等于A. J 1.B. -J 1. C. 1 . D. 0 .135.接上题, [ ,] J J z 12等于A. i J J x y( )11+. B.i J z 1. C. J z 1. D. 0. 136.接134题, ]ˆ,ˆ[12z J J 等于A. i JJ xy( )11+. B.i J z1. C. J z1. D. 0. 137.一电子处于自旋态χχχ=+-a s b s z z 1212//()()中,则s z 的可测值分别为A.0, .B. 0,- .C.22,. D. 22,-. 138.接上题,测得s z 为22,-的几率分别是A.a b ,.B. a b 22,.C.a b 2222/,/.D. a a b b a b 222222/(),/()++. 139.接137题, s z 的平均值为A. 0.B. )(222b a - .C. )22/()(2222b a b a +- . D. .140.在s z 表象中,χ=⎛⎝ ⎫⎭⎪3212//,则在该态中s z 的可测值分别为A. ,-.B. /,2.C. /,/22-.D. ,/-2. 141.接上题,测量s z 的值为 /,/22-的几率分别为A.3212/,/.B.1/2,1/2.C.3/4,1/4.D.1/4, 3/4. 142.接140题,s z 的平均值为A. /2.B. /4.C.- /4.D.- /2. 143.下列有关全同粒子体系论述正确的是A.氢原子中的电子与金属中的电子组成的体系是全同粒子体系.B.氢原子中的电子、质子、中子组成的体系是全同粒子体系.C.光子和电子组成的体系是全同粒子体系.D.α粒子和电子组成的体系是全同粒子体系.144.全同粒子体系中,其哈密顿具有交换对称性,其体系的波函数 A.是对称的. B.是反对称的. C.具有确定的对称性. D.不具有对称性.145.分别处于p 态和d 态的两个电子,它们的总角动量的量子数的取值是A. 0,1,2,3,4.B.1,2,3,4.C. 0,1,2,3.D.1,2,3.(二) 填空题pton 效应证实了 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题库(含答案)2011级 尹如冰(一) 单项选择题1.能量为100ev 的自由电子的De Broglie 波长是A A. 1.2A 0. B. 1.5A 0. C.2.1A 0. D. 2.5A 0.2. 能量为0.1ev 的自由中子的De Broglie 波长是B A.1.3A 0. B. 0.9A 0. C. 0.5A 0. D. 1.8A 0.3. 能量为0.1ev ,质量为1g 的质点的De Broglie 波长是C A.1.4A 0. B.1.9⨯1012-A 0.C.1.17⨯1012-A 0. D. 2.0A 0.4.温度T=1k 时,具有动能E k T B =32(k B 为Boltzeman 常数)的氦原子的De Broglie 波长是DA.8A 0. B. 5.6A 0. C. 10A 0. D. 12.6A 0.5.用Bohr-Sommerfeld 的量子化条件得到的一维谐振子的能量为(Λ,2,1,0=n )AA.E n n =ηω.B.E n n =+()12ηω.C.E n n =+()1ηω.D.E n n =2ηω.6.在0k 附近,钠的价电子的能量为3ev ,其De Broglie 波长是B A.5.2A 0. B.7.1A 0. C.8.4A 0. D.9.4A 0.7.钾的脱出功是2ev ,当波长为3500A 0的紫外线照射到钾金属表面时,光电子的最大能量为AA. 0.25⨯1018-J.B. 1.25⨯1018-J.C. 0.25⨯1016-J.D. 1.25⨯1016-J.8.当氢原子放出一个具有频率ω的光子,反冲时由于它把能量传递给原子而产生的频率改变为BA.η2μc .B. η22μc. C.η222μc . D. η22μc . pton 效应证实了CA.电子具有波动性.B. 光具有波动性.C.光具有粒子性.D. 电子具有粒子性. 10.Davisson 和Germer 的实验证实了A A. 电子具有波动性. B. 光具有波动性. C. 光具有粒子性. D. 电子具有粒子性.11.粒子在一维无限深势阱U x x ax x a (),,,=<<∞≤≥⎧⎨⎩000 中运动,设粒子的状态由ψπ()sinx C xa= 描写,其归一化常数C 为B A.1a . B.2a . C.12a . D.4a.12. 设ψδ()()x x =,在dx x x +-范围内找到粒子的几率为DA.δ()x .B.δ()x dx .C.δ2()x .D.δ2()x dx .13. 设粒子的波函数为 ψ(,,)x y z ,在dx x x +-范围内找到粒子的几率为C A.ψ(,,)x y z dxdydz 2. B.ψ(,,)x y z dx 2. C.dx dydz z y x )),,((2⎰⎰ψ. D.dx dy dz x yz ψ(,)⎰⎰⎰2.14.设ψ1()x 和ψ2()x 分别表示粒子的两个可能运动状态,则它们线性迭加的态c x c x 1122ψψ()()+的几率分布为D A.c c 112222ψψ+.B. c c 112222ψψ++2*121ψψc c . C. c c 112222ψψ++2*1212ψψc c .D. c c 112222ψψ++c c c c 12121212****ψψψψ+. 15.波函数应满足的标准条件是DA.单值、正交、连续.B.归一、正交、完全性.C.连续、有限、完全性.D.单值、连续、有限. 16.有关微观实物粒子的波粒二象性的正确表述是CA.波动性是由于大量的微粒分布于空间而形成的疏密波.B.微粒被看成在三维空间连续分布的某种波包.C.单个微观粒子具有波动性和粒子性.D. A, B, C.17.已知波函数Cψ1=-+u x i Et u x iEt ()exp()()exp()ηη,ψ21122=-+u x i E t u x iE t ()exp()()exp()ηη,ψ312=-+-u x i Et u x iEt ()exp()()exp()ηη,ψ41122=-+-u x i E t u x iE t ()exp()()exp()ηη.其中定态波函数是A.ψ2.B.ψ1和ψ2.C.ψ3.D.ψ3和ψ4. 18.若波函数ψ(,)x t 归一化,则A.ψ(,)exp()x t i θ和ψ(,)exp()x t i -δ都是归一化的波函数.B.ψ(,)exp()x t i θ是归一化的波函数,而ψ(,)exp()x t i -δ不是归一化的波函数.C.ψ(,)exp()x t i θ不是归一化的波函数,而ψ(,)exp()x t i -δ是归一化的波函数.D.ψ(,)exp()x t i θ和ψ(,)exp()x t i -δ都不是归一化的波函数.(其中θδ,为任意实数)19.波函数ψ1、ψψ21=c (c 为任意常数),A.ψ1与ψψ21=c 描写粒子的状态不同.B.ψ1与ψψ21=c 所描写的粒子在空间各点出现的几率的比是1: c .C.ψ1与ψψ21=c 所描写的粒子在空间各点出现的几率的比是2:1c .D.ψ1与ψψ21=c 描写粒子的状态相同.20.波函数ψ(,)(,)exp()x t c p t ipx dp =⎰12πηη的傅里叶变换式是 A. c p t x t ipx dx (,)(,)exp()=⎰12πηηψ. B. c p t x t i px dx (,)(,)exp()*=⎰12πηηψ. C. c p t x t ipx dx (,)(,)exp()=-⎰12πηηψ. D. c p t x t i px dx (,)(,)exp()*=-⎰12πηηψ. 21.量子力学运动方程的建立,需满足一定的条件:(1)方程中仅含有波函数关于时间的一阶导数. (2)方程中仅含有波函数关于时间的二阶以下的导数.(3)方程中关于波函数对空间坐标的导数应为线性的. (4) 方程中关于波函数对时间坐标的导数应为线性的.(5) 方程中不能含有决定体系状态的具体参量. (6) 方程中可以含有决定体系状态的能量. 则方程应满足的条件是 A. (1)、(3)和(6). B. (2)、(3)、(4)和(5). C. (1)、(3)、(4)和(5). D.(2)、(3)、(4)、(5)和(6). 22.两个粒子的薛定谔方程是A.∑=ψ∇=ψ21212221),,(2),,(i i t r r t r r t i ρρηρρημ∂∂ ),,(),,(2121t r r t r r U ρρρρψ+B.∑=ψ∇=ψ21212221),,(2),,(i i t r r t r r t ρρηρρημ∂∂ ),,(),,(2121t r r t r r U ρρρρψ+C. ∑=ψ∇=ψ21212221),,(2),,(i i it r r t r r t ρρηρρημ∂∂),,(),,(2121t r r t r r U ρρρρψ+D.∑=ψ∇=ψ21212221),,(2),,(i i it r r t r r t i ρρηρρημ∂∂),,(),,(2121t r r t r r U ρρρρψ+ 23.几率流密度矢量的表达式为A.ρηJ =∇ψ-2μ()**ψψ∇ψ. B.ρηJ i =∇ψ-2μ()**ψψ∇ψ. C.ρηJ i =-∇ψ2μ()**ψ∇ψψ.D.ρηJ =-∇ψ2μ()**ψ∇ψψ. 24.质量流密度矢量的表达式为A.ρηJ =∇ψ-2()**ψψ∇ψ.B.ρηJ i =∇ψ-2()**ψψ∇ψ.C.ρηJ i =-∇ψ2()**ψ∇ψψ.D.ρηJ =-∇ψ2()**ψ∇ψψ.25. 电流密度矢量的表达式为A.ρηJ q =∇ψ-2μ()**ψψ∇ψ. B.ρηJ iq =∇ψ-2μ()**ψψ∇ψ. C.ρηJ iq =-∇ψ2μ()**ψ∇ψψ. D.ρηJ q =-∇ψ2μ()**ψ∇ψψ. 26.下列哪种论述不是定态的特点A.几率密度和几率流密度矢量都不随时间变化.B.几率流密度矢量不随时间变化.C.任何力学量的平均值都不随时间变化.D.定态波函数描述的体系一定具有确定的能量.27.在一维无限深势阱U x x ax a (),,=<∞≥⎧⎨⎩022中运动的质量为μ的粒子的能级为A.πμ22224ηn a ,B.πμ22228ηn a ,C.πμ222216ηn a ,D.πμ222232ηn a .28. 在一维无限深势阱U x x a x a (),,=<∞≥⎧⎨⎩0中运动的质量为μ的粒子的能级为A.πμ22222ηna , B.πμ22224ηn a , C.πμ22228ηn a , D.πμ222216ηn a .29. 在一维无限深势阱U x x b x b (),/,/=<∞≥⎧⎨⎩022中运动的质量为μ的粒子的能级为A.πμ22222ηnb ,B.πμ2222ηn b , C.πμ22224ηn b , D.πμ22228ηn b. 30. 在一维无限深势阱U x x a x a(),,=<∞≥⎧⎨⎩0中运动的质量为μ的粒子处于基态,其位置几率分布最大处是A.x =0,B.x a =,C.x a =-,D.x a =2.31. 在一维无限深势阱U x x ax a (),,=<∞≥⎧⎨⎩0中运动的质量为μ的粒子处于第一激发态,其位置几率分布最大处是A.x a =±/2,B.x a =±,C.x =0,D.4/a x ±=. 32.在一维无限深势阱中运动的粒子,其体系的 A.能量是量子化的,而动量是连续变化的. B.能量和动量都是量子化的. C.能量和动量都是连续变化的.D.能量连续变化而动量是量子化的. 33.线性谐振子的能级为 A.(/),(,,,...)n n +=12123ηω. B.(),(,,,....)n n +=1012ηω.C.(/),(,,,...)n n +=12012ηω. D.(),(,,,...)n n +=1123ηω.34.线性谐振子的第一激发态的波函数为ψαα()exp()x N x x =-122122,其位置几率分布最大处为A.x =0.B.x =±ημω. C.x =μωη. D.x =±ημω.35.线性谐振子的A.能量是量子化的,而动量是连续变化的.B.能量和动量都是量子化的.C.能量和动量都是连续变化的.D.能量连续变化而动量是量子化的. 36.线性谐振子的能量本征方程是A.[]-+=η222222212μμωψψd dx x E . B.[]--=η22222212μμωψψd dx x E . C.[]η22222212μμωψψd dx x E -=-. D.[]η222222212μμωψψd dx x E +=-. 37.氢原子的能级为A.-η2222e n s μ.B.-μ22222e n s η.C.242ne sμη-. D. -μe n s 4222η. 38.在极坐标系下,氢原子体系在不同球壳内找到电子的几率为A.r r R nl )(2. B.22)(r r R nl .C.rdr r R nl )(2.D.dr r r R nl 22)(.39. 在极坐标系下,氢原子体系在不同方向上找到电子的几率为 A.),(ϕθlm Y . B. 2),(ϕθlm Y .C. Ωd Y lm ),(ϕθ.D. Ωd Y lm 2),(ϕθ.40.波函数ψ和φ是平方可积函数,则力学量算符∃F 为厄密算符的定义是A.ψφτφψτ***∃∃Fd F d =⎰⎰. B.ψφτφψτ**∃(∃)F d F d =⎰⎰. C.(∃)∃**F d F d ψφτψφτ=⎰⎰. D.∃∃***Fd F d ψφτψφτ=⎰⎰. 41. ∃F 和∃G 是厄密算符,则A.∃∃FG 必为厄密算符.B.∃∃∃∃FG GF-必为厄密算符. C.i FG GF (∃∃∃∃)+必为厄密算符. D. i FGGF (∃∃∃∃)-必为厄密算符. 42.已知算符∃x x =和∃p i xx=-η∂∂,则 A.∃x 和∃p x 都是厄密算符. B.∃∃xp x 必是厄密算符. C.∃∃∃∃xp p x x x +必是厄密算符. D.∃∃∃∃xp p xx x -必是厄密算符. 43.自由粒子的运动用平面波描写,则其能量的简并度为 A.1. B. 2. C. 3. D. 4.44.二维自由粒子波函数的归一化常数为(归到δ函数)A.1212/()/πη.B.12/()πη.C.1232/()/πη.D.122/()πη45.角动量Z 分量的归一化本征函数为A.12πϕηexp()im . B. )ex p(21r k i ρρ⋅π. C.12πϕexp()im . D. )ex p(21r k i ρρη⋅π. 46.波函数)ex p()(cos )1(),(ϕθϕθim P N Y m l lm m lm -=A. 是∃L 2的本征函数,不是∃L z的本征函数.B. 不是∃L 2的本征函数,是∃L z 的本征函数.C. 是∃L 2、∃L z的共同本征函数.D. 即不是∃L 2的本征函数,也不是∃L z 的本征函数.47.若不考虑电子的自旋,氢原子能级n=3的简并度为 A. 3. B. 6. C. 9. D. 12. 48.氢原子能级的特点是A.相邻两能级间距随量子数的增大而增大.B.能级的绝对值随量子数的增大而增大.C.能级随量子数的增大而减小.D.相邻两能级间距随量子数的增大而减小.49一粒子在中心力场中运动,其能级的简并度为n 2,这种性质是 A. 库仑场特有的. B.中心力场特有的.C.奏力场特有的.D.普遍具有的.50.对于氢原子体系,其径向几率分布函数为W r dr R r dr 323222()=,则其几率分布最大处对应于Bohr 原子模型中的圆轨道半径是 A.a 0. B. 40a . C. 90a . D. 160a . 51.设体系处于ψ=--123231102111R Y R Y 状态,则该体系的能量取值及取值几率分别为A.E E 321434,;,. B.E E 321232,;,-.C.E E 321232,;,.D.E E 323414,;,.52.接51题,该体系的角动量的取值及相应几率分别为A.21η, .B.η,1.C.212η,. D.212η,. 53. 接51题,该体系的角动量Z 分量的取值及相应几率分别为A.01434,;,-η.B. 01434,;,η.C.01232,;,η-. D. 01232,;,--η. 54. 接51题,该体系的角动量Z 分量的平均值为A.14η .B. -14η.C. 34η.D. -34η.55. 接51题,该体系的能量的平均值为A.-μe s 4218η.B.-3128842μe s η.C.-2925642μe s η.D.-177242μe sη. 56.体系处于ψ=C kx cos 状态,则体系的动量取值为A.ηηk k ,-.B. ηk .C. -ηk .D. 12ηk .57.接上题,体系的动量取值几率分别为A. 1,0.B. 1/2,1/2.C. 1/4,3/4/ .D. 1/3,2/3. 58.接56题, 体系的动量平均值为A.0.B. ηk .C. -ηk .D. 12ηk .59.一振子处于ψψψ=+c c 1133态中,则该振子能量取值分别为A.3252ηηωω,.B. 1252ηηωω,.C. 3272ηηωω,.D. 1252ηηωω,.60.接上题,该振子的能量取值E E 13,的几率分别为A.2321,c c . B. 232121c c c +,232123c c c +.C.23211c c c +,23213c c c +. D. 31,c c .61.接59题,该振子的能量平均值为A. ωη232123215321c c c c ++. B. 5ηω. C. 92ηω. D. ωη232123217321c c c c ++. 62.对易关系[∃,()]p f x x 等于(f x ()为x 的任意函数)A.i f x η'().B.i f x η().C.-i f x η'().D.-i f x η().63. 对易关系[∃,exp()]p iy y 等于A.)exp(iy η.B. i iy ηexp().C.-ηexp()iy .D.-i iy ηexp().64.对易关系[,∃]x p x 等于A.i η.B. -i η.C. η .D. -η.65. 对易关系[,∃]L y x 等于A.i z η∃.B.η∃z .C.-i z η∃.D.-η∃z. 66. 对易关系[,∃]L zy 等于 A.-i x η∃. B. i x η∃. C.η∃x . D.-η∃x. 67. 对易关系[,∃]L z z 等于A.i x η∃.B. i yη∃. C. i η . D. 0. 68. 对易关系[,∃]x p y 等于 A.η. B. 0. C. i η . D. -η. 69. 对易关系[∃,∃]p p y z 等于 A.0. B. i x η∃. C. i p x η∃. D. η∃p x . 70. 对易关系[∃,∃]LL xz等于 A.i L y η∃. B. -i L y η∃. C. η∃L y . D. -η∃L y . 71. 对易关系[∃,∃]L L zy等于A.i L x η∃.B. -i L x η∃.C. η∃L x .D. -η∃L x . 72. 对易关系[∃,∃]LL x2等于 A.∃L x . B. i L x η∃. C. i L L z y η(∃∃)+. D. 0. 73. 对易关系[∃,∃]LL z2等于 A.∃L z . B. i L z η∃. C. i L L x y η(∃∃)+. D. 0. 74. 对易关系[,∃]L p x y 等于A.i L z η∃.B. -i L z η∃.C. i p z η∃.D. -i p z η∃. 75. 对易关系[∃,∃]p L z x 等于A.-i p yη∃. B. i py η∃. C.-i L y η∃. D. i L yη∃. 76. 对易关系[∃,∃]L p z y 等于A.-i p x η∃.B. i p x η∃.C.-i L x η∃. D. i L x η∃. 77.对易式[∃,∃]L x y 等于A.0.B. -i z η∃.C. i zη∃. D. 1.78. 对易式[∃,∃]FF m n 等于(m,n 为任意正整数) A.∃F m n +. B. ∃F m n -. C. 0. D. ∃F .79.对易式[∃,∃]FG 等于 A.∃∃FG . B.∃∃GF . C.∃∃∃∃FG GF -. D.∃∃∃∃FG GF +. 80. .对易式[∃,]Fc 等于(c 为任意常数) A.cF ∃. B. 0. C. c . D. Fˆ. 81.算符∃F 和∃G 的对易关系为[∃,∃]∃F G ik =,则∃F 、∃G 的测不准关系是A.(∃)(∃)∆∆F G k 2224≥. B. (∃)(∃)∆∆F G k 2224≥.C. (∃)(∃)∆∆F G k 2224≥.D. (∃)(∃)∆∆F G k 2224≥. 82.已知[∃,∃]x p i x =η,则∃x 和∃p x 的测不准关系是A.(∃)(∃)∆∆x p x 222≥η. B. (∃)(∃)∆∆x p 2224≥η. C. (∃)(∃)∆∆x p x 222≥η. D. (∃)(∃)∆∆x p x 2224≥η. 83. 算符∃L x 和∃L y 的对易关系为[∃,∃]∃L L i L x y z =η,则∃L x 、∃L y 的测不准关系是A.(∃)(∃)∃∆∆L L L x y z 22224≥η.B.(∃)(∃)∃∆∆L L L x y22224≥η. C.(∃)(∃)∃∆∆F G L z 22224≥η. D.(∃)(∃)∃∆∆F G L 22224≥η. 84.电子在库仑场中运动的能量本征方程是A.[]-∇+=η2222μψψze rE s .B. []-∇+=η22222μψψze r E s .C.[]-∇-=η2222μψψze rE s .D.[]-∇-=η22222μψψze rE s .85.类氢原子体系的能量是量子化的,其能量表达式为A.-μz e n s 22222η. B. -μ224222z e n s η. C.-μze n s 2222η. D. -μz e ns 24222η.86. 在一维无限深势阱U x x ax x a (),,,=<<∞≤≥⎧⎨⎩000中运动的质量μ为的粒子,其状态为ψππ=42aa x a x sin cos ,则在此态中体系能量的可测值为A.22222229,2a a μπμπηη, B. πμπμ2222222ηηa a , , C.323222222πμπμηηa a ,, D.524222222πμπμηηa a, . 87.接上题,能量可测值E 1、E 3出现的几率分别为 A.1/4,3/4. B. 3/4,1/4. C.1/2, 1/2. D. 0,1. 88.接86题,能量的平均值为A.52222πμηa ,B.2222πμηa ,C.72222πμηa ,D.5222πμηa .89.若一算符∃F 的逆算符存在,则[∃,∃]FF -1等于 A. 1. B. 0. C. -1. D. 2.90.如果力学量算符∃F 和∃G 满足对易关系[∃,∃]FG =0, 则 A. ∃F 和∃G 一定存在共同本征函数,且在任何态中它们所代表的力学量可同时具有确定值. B. ∃F 和∃G 一定存在共同本征函数,且在它们的本征态中它们所代表的力学量可同时具有确定值.C. ∃F 和∃G 不一定存在共同本征函数,且在任何态中它们所代表的力学量不可能同时具有确定值.D. ∃F 和∃G 不一定存在共同本征函数,但总有那样态存在使得它们所代表的力学量可同时具有确定值.91.一维自由粒子的能量本征值 A. 可取一切实数值. B.只能取不为负的一切实数. C.可取一切实数,但不能等于零. D.只能取不为正的实数.92.对易关系式[∃,∃()]p p f x x x 2等于A.-i p f x x η∃'()2. B. i p f x x η∃'()2 . C.-i p f x x η∃()2. D. i p f x x η∃()2.93.定义算符yx L i L L ˆˆˆ±=±, 则[∃,∃]L L +-等于A.z L ˆη.B.2η∃L z .C.-2η∃L z .D.z L ˆη-.94.接上题, 则[∃,∃]LL z+等于 A.η∃L +. B. η∃L z . C. -+η∃L . D. -η∃L z . 95. 接93题, 则[∃,∃]LL z-等于 A.η∃L -. B. η∃L z . C. --η∃L . D. -η∃L z . 96.氢原子的能量本征函数ψθϕθϕnlm nl lm r R r Y (,,)()(,)=A.只是体系能量算符、角动量平方算符的本征函数,不是角动量Z 分量算符的本征函数.B.只是体系能量算符、角动量Z 分量算符的本征函数,不是角动量平方算符的本征函数.C.只是体系能量算符的本征函数,不是角动量平方算符、角动量Z 分量算符的本征函数.D.是体系能量算符、角动量平方算符、角动量Z 分量算符的共同本征函数. 97.体系处于ψ=+c Y c Y 111210态中,则ψA.是体系角动量平方算符、角动量Z 分量算符的共同本征函数.B.是体系角动量平方算符的本征函数,不是角动量Z 分量算符的本征函数.C.不是体系角动量平方算符的本征函数,是角动量Z 分量算符的本征函数.D.即不是体系角动量平方算符的本征函数,也不是角动量Z 分量算符的本征函数.98.对易关系式[∃∃,∃]FGH 等于 A.[∃,∃]∃∃[∃,∃]F H G F G H +. B. [∃,∃]∃F H GC. ∃[∃,∃]FG H . D. [∃,∃]∃∃[∃,∃]F H G F G H -. 99.动量为p '的自由粒子的波函数在坐标表象中的表示是)'ex p(21)('x p ix P ηηπψ=,它在动量表象中的表示是A.δ(')p p -.B.δ(')p p +.C.δ()p .D.δ(')p .100.力学量算符∃x 对应于本征值为x '的本征函数在坐标表象中的表示是A.δ(')x x -.B.δ(')x x +.C.δ()x .D.δ(')x . 101.一粒子在一维无限深势阱中运动的状态为)(22)(22)(21x x x ψψψ-=,其中ψ1()x 、ψ2()x 是其能量本征函数,则ψ()x 在能量表象中的表示是A.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛M 02/22/2.B.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-M 02/22/2.C.222200//⎛⎝ ⎫⎭⎪⎪⎪⎪⎪.D.222200//-⎛⎝ ⎫⎭⎪⎪⎪⎪⎪. 102.线性谐振子的能量本征函数ψ1()x 在能量表象中的表示是A.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛M 001.B. ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛M 010. C. 1000⎛⎝ ⎫⎭⎪⎪⎪⎪. D. 0100⎛⎝ ⎫⎭⎪⎪⎪⎪.103. 线性谐振子的能量本征函数)()(10x b x a ψψψ+=在能量表象中的表示是A.⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛++M 0//2222b a b b a a . B. ⎪⎪⎪⎪⎪⎭⎫⎝⎛++0//02222b a b b a a .C. ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛M 0b a . D.00a b ⎛⎝ ⎫⎭⎪⎪⎪⎪. 104.在(∃,∃L L z 2)的共同表象中,波函数φ=⎛⎝ ⎫⎭⎪⎪⎪22101,在该态中∃L z 的平均值为 A. η. B. -η. C. 2η. D. 0.105.算符∃Q 只有分立的本征值{}Q n ,对应的本征函数是{()}u x n ,则算符∃(,)F x i xη∂∂在∃Q 表象中的矩阵元的表示是A.F u x F x i x u x dx mn n m =⎰*()(,)()η∂∂.B.F u x F x i x u x dx mn m n =⎰*()(,)()η∂∂.C.F u x F x i x u x dx mn n m =⎰()(,)()*η∂∂.D.F u x F x i xu x dx mn m n =⎰()(,)()*η∂∂.106.力学量算符在自身表象中的矩阵表示是 A. 以本征值为对角元素的对角方阵. B. 一个上三角方阵. C.一个下三角方阵. D.一个主对角线上的元素等于零的方阵.107.力学量算符xˆ在动量表象中的微分形式是 A.-i p xη∂∂. B.i p x η∂∂. C.-i p x η2∂∂. D.i p x η2∂∂.108.线性谐振子的哈密顿算符在动量表象中的微分形式是A.p p 22222212μμω∂∂+η.B.p p 2222212μμω∂∂-. C.22222212pp ∂∂μωμη-. D.--p p 2222212μμω∂∂. 109.在∃Q 表象中F =⎛⎝ ⎫⎭⎪0110,其本征值是A. ±1.B. 0.C. ±i .D. 1±i . 110.接上题, F 的归一化本征态分别为A.22112211⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪,. B. 1111⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪,.C. 12111211⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪,.D.22102201⎛⎝ ⎫⎭⎪⎛⎝ ⎫⎭⎪,.111.幺正矩阵的定义式为A.S S +-=.B.S S +=*.C.S S =-.D.S S *=-.112.幺正变换A.不改变算符的本征值,但可改变其本征矢.B.不改变算符的本征值,也不改变其本征矢.C.改变算符的本征值,但不改变其本征矢.D.即改变算符的本征值,也改变其本征矢.113.算符∃()(∃∃)/ax i p =+μωμω212η,则对易关系式[∃,∃]a a +等于 A. [∃,∃]aa +=0. B. [∃,∃]a a +=1. C. [∃,∃]aa +=-1. D. [∃,∃]a a i +=. 114.非简并定态微扰理论中第n 个能级的表达式是(考虑二级近似) A.E H H E E n nn mn nm m()()()''0200++-∑. B. E H H E E n nn mnnmm()()()'''0200++-∑.C.E H H E E n nn mn m nm()()()'''0200++-∑. D.E H H E E n nn mnmnm()()()''0200++-∑.115. 非简并定态微扰理论中第n 个能级的一级修正项为 A.H mn '. B.H nn '. C.-H nn '. D.H nm '.116. 非简并定态微扰理论中第n 个能级的二级修正项为 A.H E E mn nm m'()()200-∑. B. ''()()H EE mnnmm200-∑. C.''()()H EE mnmnm200-∑. D.H EE mnmnm'()()200-∑.117. 非简并定态微扰理论中第n 个波函数一级修正项为A.H E E mn nm m m '()()()000-∑ψ.B. ''()()()H E E mn nm m m 000-∑ψ.C. ''()()()H E E mn mn m m 000-∑ψ.D. H E E mn mn m m '()()()000-∑ψ.118.沿x 方向加一均匀外电场ρε,带电为q 且质量为μ的线性谐振子的哈密顿为A.∃H d dx x q x =-++η22222212μμωε. B. ∃H d dx x q x =-++η2222212μμωε.C.∃H d dx x q x =-+-η2222212μμωε.D.∃H d dx x q x =-+-η22222212μμωε. 119.非简并定态微扰理论的适用条件是A.H E E mk km'()()001-<<. B.H E E mk km'()()001+<<.C. H mk '<<1.D. E E k m ()()001-<<.120.转动惯量为I ,电偶极矩为ρD 的空间转子处于均匀电场ρε中,则该体系的哈密顿为A.ερρ⋅+=D IL H2ˆˆ2. B. ερρ⋅+-=D I L H 2ˆˆ2. C. ερρ⋅-=D IL H 2ˆˆ2. D. ερρ⋅--=D I L H 2ˆˆ2. 121.非简并定态微扰理论中,波函数的一级近似公式为A.ψψψn n nm nm m m H E E =+-∑()()()()''0000.B.ψψψn n mn nm m m H E E =+-∑()()()()''0000.C.ψψψn n mn m nm m H E E =+-∑()()()()''0000. D.ψψψn n nm mn m m H E E =+-∑()()()()''0000.122.氢原子的一级斯塔克效应中,对于n =2的能级由原来的一个能级分裂为A. 五个子能级.B. 四个子能级.C. 三个子能级.D. 两个子能级.123.一体系在微扰作用下,由初态Φk 跃迁到终态Φm 的几率为A.22' )'ex p('1⎰tmk mkdt t i H ωη.B. 20 ' )'ex p('⎰t mk mkdt t i H ω.C.22')' ex p(1⎰t mk mkdt t i Hωη.D.2' )'ex p(⎰tmk mkdt t i Hω.124.用变分法求量子体系的基态能量的关键是 A. 写出体系的哈密顿. B. 选取合理的尝试波函数.C. 计算体系的哈密顿的平均值.D. 体系哈密顿的平均值对变分参数求变分. 125.Stern-Gerlach 实验证实了A. 电子具有波动性.B.光具有波动性.C. 原子的能级是分立的.D. 电子具有自旋.126.ρ∃S 为自旋角动量算符,则[∃,∃]S S yx等于A.2i .B. i η.C. 0 .D. -i S z η∃. 127. ρ∃σ为Pauli 算符,则[∃,∃]σσxz等于 A.-i y η∃σ. B. i y η∃σ. C.2i y η∃σ. D.-2i y η∃σ.128.单电子的自旋角动量平方算符∃S 2的本征值为A.142η.B.342η.C.322η.D.122η.129.单电子的Pauli 算符平方的本征值为 A. 0. B. 1. C. 2. D. 3. 130.Pauli 算符的三个分量之积等于 A. 0. B. 1. C. i . D. 2i .131.电子自旋角动量的x 分量算符在∃S z 表象中矩阵表示为A.∃S x =⎛⎝ ⎫⎭⎪η21001.B. ∃S i i x =-⎛⎝ ⎫⎭⎪η200. C. ∃S x =⎛⎝ ⎫⎭⎪η20110. D. ∃S x =-⎛⎝ ⎫⎭⎪η21001. 132. 电子自旋角动量的y 分量算符在∃S z表象中矩阵表示为A.∃S y =⎛⎝ ⎫⎭⎪η21001.B. ∃S i y=-⎛⎝ ⎫⎭⎪η20110. C. ∃S i i i y =-⎛⎝ ⎫⎭⎪η200. D. ∃S i i y =⎛⎝ ⎫⎭⎪η200. 133. 电子自旋角动量的z 分量算符在∃S z表象中矩阵表示为A.∃S z =⎛⎝ ⎫⎭⎪η21001. B. ∃S z =-⎛⎝⎫⎭⎪η20110. C. ∃S z =-⎛⎝ ⎫⎭⎪η21001. D. ∃S i z=-⎛⎝ ⎫⎭⎪η21001. 134.ρρ∃,∃J J 12是角动量算符,ρρρ∃∃∃J J J =+12,则[∃,∃]ρρJ J 212等于 A. ρ∃J 1. B. -ρ∃J 1. C. 1 . D. 0 .135.接上题, [∃,∃]ρρJ J z 12等于A. i J J x y η(∃∃)11+.B.i J z η∃1. C.∃J z 1. D. 0. 136.接134题, ]ˆ,ˆ[12z J J ρ等于A. i J J xyη(∃∃)11+. B.i J zη∃1. C. ∃J z1. D. 0. 137.一电子处于自旋态χχχ=+-a s b s z z 1212//()()中,则s z 的可测值分别为A.0,η.B. 0,-η .C.ηη22,. D. ηη22,-. 138.接上题,测得s z 为ηη22,-的几率分别是A.a b ,.B. a b 22,.C.a b 2222/,/.D. a a b b a b 222222/(),/()++. 139.接137题, s z 的平均值为A. 0.B. )(222b a -η.C. )22/()(2222b a b a +-η. D. η.140.在s z 表象中,χ=⎛⎝ ⎫⎭⎪3212//,则在该态中s z 的可测值分别为A.ηη,-.B.ηη/,2. C.ηη/,/22-. D.ηη,/-2. 141.接上题,测量s z 的值为ηη/,/22-的几率分别为A.3212/,/.B.1/2,1/2.C.3/4,1/4.D.1/4, 3/4. 142.接140题,s z 的平均值为 A.η/2. B.η/4. C.-η/4. D.-η/2. 143.下列有关全同粒子体系论述正确的是A.氢原子中的电子与金属中的电子组成的体系是全同粒子体系.B.氢原子中的电子、质子、中子组成的体系是全同粒子体系.C.光子和电子组成的体系是全同粒子体系.D.α粒子和电子组成的体系是全同粒子体系.144.全同粒子体系中,其哈密顿具有交换对称性,其体系的波函数 A.是对称的. B.是反对称的. C.具有确定的对称性. D.不具有对称性.145.分别处于p 态和d 态的两个电子,它们的总角动量的量子数的取值是A. 0,1,2,3,4.B.1,2,3,4.C. 0,1,2,3.D.1,2,3.(二) 填空题pton 效应证实了 。

相关文档
最新文档