《数值分析》知识结构图very cool

合集下载

11数值分析简介33页PPT

11数值分析简介33页PPT

学时Байду номын сангаас
➢理论教学:36学时(2.5学分) ➢实践教学:18学时 ( 1.5学分,由实
验报告单独给成绩)
考试方法
1. 期终闭卷考试占50%;
2. 平时成绩占10%,包括考勤和 课堂回答问题; 3. 实验创新成绩占40%,根据课 堂内容所进行的实验创新活动,如 科技小论文、心得体会、对课程改 革的建议等,以读书报告的形式提 交两次.
2
S4
0
S1 R
(xi, yi,z,i,则ti)得到下
列非线性方程组
10
S2
8
5
4
6
( x x1 )2 ( y y1 ) 2 ( z z1 ) 2 ( t1 -t ) c 0
N-S positions
2 00
图 7.8
( x x2 )2 ( y y2 )2 ( z z2 )2 (t2 -t) c 0
这个问题就是要求由函数f(x)=sin x给定的 曲线从x=0到x=48英寸间的弧长L.
由微积分学我们知道,所求的弧长可表示为:
L 48 1 (f'(x )2 ) d x48 1 (cx )o 2dsx
0
0
上述积分称为第二类椭圆积分,它不能用普通 方法来计算.
本课程第七章的内容:数值积分
8、生物化学反应的例子
A,B,C是三种蛋白质,其反应如下:
A a1 B B B a2 C B B C a3 A C
我们通过建模可以得到如下方程组
A: y1' a1y1a3y2y3
本课程第三章的内容: 非线性方程的数值解法
3、全球定位系统(Global Positioning System, GPS)

数值分析学习课件

数值分析学习课件

数值分析学习课件目录1. 内容概要 (2)1.1 数值分析的重要性 (2)1.2 课件内容概述 (3)2. 基础知识准备 (4)2.1 数学知识要点 (6)2.2 计算机基础 (7)2.3 编程基础 (8)3. 数值计算的基本原理 (10)3.1 误差理论 (11)3.2 近似计算 (13)3.3 算法稳定性与收敛性 (15)4. 数值计算方法与技巧 (16)4.1 插值与逼近 (17)4.2 微分与积分计算 (19)4.3 线性代数方程求解 (19)4.4 优化计算方法 (21)5. 数值分析的应用实例 (22)5.1 数据拟合与预测分析 (23)5.2 微分方程数值解法应用 (24)5.3 线性规划优化问题应用 (26)5.4 其他领域的应用实例 (27)6. 实践操作指导 (28)6.1 编程实践环境搭建 (30)6.2 数值计算软件使用介绍 (31)6.3 编程实践案例分析 (32)7. 课程总结与展望 (33)7.1 课程重点内容回顾 (34)7.2 数值分析发展趋势 (35)7.3 学习建议与展望 (37)1. 内容概要数值分析是一个研究数值算法的学科,旨在寻找有效的方法来求解大量的数学问题,特别是那些无法得到精确解或者求解起来过于繁杂的问题。

它在物理学、工程学、经济学、生物技术以及许多其他科学领域中都是至关重要的。

本课程将涵盖数值分析的核心概念和方法,重点是数值线性代数、数值积分、数值微分方程以及数值优化等经典主题。

学生将理解这些问题的数学背景,掌握相关的数值算法,并能够运用编程实现这些算法。

学生还将学习误差分析、收敛性理论以及如何选择和实现适合特定问题的数值方法。

在整个课程中,学生将通过实际问题的解决,如物理模型、金融模型、生物数据的分析和处理等,来应用所学的数值分析知识和技能。

通过本课程的学习,学生不仅能够加深对数值方法的理解,还能增强解决实际问题的能力。

1.1 数值分析的重要性数值分析是利用计算机解决数学问题的重要工具,在许多领域,例如物理、工程、金融、生物等,现实世界的问题常常难以用精确的解析解表达出来。

数值分析课件

数值分析课件

第3章线性方程组的解法本章探讨大型线性方程组运算机求解的经常使用数值方式的构造和原理,要紧介绍在运算机上有效快速地求解线性方程组的有关知识和方式.重点论述Jacobi迭代法、Seidel迭代法、Guass消元法及LU分解法的原理、构造、收敛性等内容。

实际案例问题的描述与大体概念解线性方程组问题在线性代数中已有很优美的行列式解法,但对大型的线性方程组(阶数n>40)的求解问题利用价值并非大,因为其计算量太大。

实际问题中常常碰到自变量个数n都专门大的线性方程组求解问题,这些线性方程组要借助运算机的帮忙才能求出解。

n 个变元12,,,n x x x ⋯的线性方程组的一样形式为11112211211222221122n n n n m m mn n ma x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ ()式中,a ij 称为系数,b i 称为右端项,它们都是已知的常数。

若是有***1122,,,n nx x x x x x ===使方程组()成立,那么称值***12,,,nx x x为线性方程组的()的一组解。

本章在不作专门说明的情形下,要紧讨论m=n 的线性方程组11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩的求解问题,且假设它有唯一解。

线性方程组的矩阵表示Ax b =式中A称为系数矩阵,b称为右端项。

数值分析中,线性方程组的数值解法要紧分为直接法和迭代法两大类。

直接法是用有限次计算就能够求出线性方程组“准确解”的方式(不考虑舍入误差);迭代法是由线性方程组构造出迭代计算公式,然后以一个猜想的向量作为迭代计算的初始向量慢慢迭代计算,来取得知足精度要求的近似解。

迭代法是一种逐次逼近的方式。

数值分析主要知识点

数值分析主要知识点

第三章
非线性方程的数值解法
二分法的思想以及其中对分次数的计算;
不动点迭代法、迭代格式的收敛性判定方法、
误差估计式;
Newton迭代法及其收敛性; 割线法迭代格式;
迭代加速方法。
第四章
线性方程组的直接解法
Gauss消去法与列主元素Gauss消去法; 三角分解(LU)法; 平方根方法(Cholesky分解); 向量与矩阵范数; 条件数与病态方程组求解。
第五章
曲线拟合与最小二乘问题
拟合与插值的异同点、矛盾方程组的最小二乘解; 满秩分解、法方程组、可化为线性拟合的非线性拟合;
(极小)最小二乘解的存在唯一性、广义逆与极小
最小二乘解;
GS与MGS正交化与最小二乘解;
Householder正交化与最小二乘解。
第六章代法与Gauss-Seidel迭代法及其收敛性;
SOR迭代法及其收敛的必要条件、最佳松弛因子; 解非线性方程组的Newton迭代法与拟Newton思想。
第七章
最优化方法与共轭梯度法
与方程组等价的变分问题、线性寻查(线搜索)法;
最速下降法; 解线性方程组的共轭梯度法。
写、不得打印、不得复印,纸上签有姓名和学号;
可以携带计算器(考试期间不允许互借)。
《数值分析》复习主要知识点 第一章
绪论 基本概念:误差的分类(截断误差、舍入误差)、 绝对误差和相对误差、有效数字;
数值稳定性; 误差分析的原则:1)尽量避免相近的数相减,2)
尽量避免绝对值小的数做除数,3)防止大数吃小数, 4)先化简再计算,5)选用数值稳定的算法;
浮点数系统特征(四个整数表征)。
第八章
数值微分与数值积分

数值分析课件

数值分析课件

n=20 需要运算 多少次?
➢ 存贮量 ➢ 逻辑结构
n=100?
§2 误差来源与误差分析的重要性
一、误差的来源与分类
➢ 从实际问题中抽象出数学模型—— 模型误差
例:质量为m的物体,在重力作用下,自由下落, 其下落距离s 与时间t 的关系是:
m
d 2s dt2
mg
其中 g 为重力加速度。
➢ 通过测量得到模型中参数的值—— 观测误差
S2 计算 D a11a22 a21a12
S3 如果 D 0
则输出原方程无解或有无穷多组解的信息;
否则 D 0
x1
a22b1 a12b2 D
S4 输出计算的结果
x1, x2
x2
a11b2 a21b1 D
开始
输入
a11, a12 , a21, a22 , b1 , b2
D=a11a22-a12a21
(1)如果 D 0,则令计算机计算
x1 b1a22 b2a12 D , x2 b2a11 b1a21 D
输出计算的结果x1,x2。
(2)如果D= 0,则或是无解,或有无穷多组解。
令 D a11a22 a21a12
通过求解过程,可以总结出算法步骤如下:
S1 输入 a11, a12, a21, a22,b1,b2
➢ 求近似解 —— 方法误差 (截断误差)
例如,当函数 f 用 xTaylor多项式
Pn x
f
0
f 0
x 1!
f 0 x2
2!
f (n) 0 xn
n!
近似代替时,数值方法的截断误差是
( 在 与x0之间)。
Rn x
f
x Pn x

数值分析-第一章ppt课件

数值分析-第一章ppt课件

数及其图形作出判断. 整理版课件
6
由分部积分法可得:
Ine101xndex
n=1,2,4,6, 8,10,15
e 1 x n ex|1 0 e 1 0 1 nn 1 x ex dx
1 nn 1 I (n 1 ,2 , ).
如果取 I0 = 1–e–1 = 0.63212056 (八位有效数字).
x1,2b
b24ac 2a
直接进行计算则得: x1=109, x2=0. 其中的x2=0明பைடு நூலகம்失真, 这也是由于舍入误差造成的.
整理版课件
8
§1 误差的来源
实际 问题
建立数 学模型
确定计 算方法
编程 上机
由抽象简 化产生的 模型误差 及参数的 观测误差
由计算方 法本身产 生的截断 误差或称 方法误差
er(x* )e(x x* )x xx*
同样, 由于精确值 x 经常是未知的, 所以, 需要另
外的近似表达形式. 我们注意如下公式的推导,

|
e ( x*) x*
|
较小时,

e(x* )e(x* )e(x*x )* (x)
x x*
xx*
[x*[ee((xx**))2]x] *1[e(exx(**x*)]2)
整理版课件
18
乘法相关的误差公式: 设 f (x1, x2)= x1 x2 . e ( x 1 x 2 ) x 2 e ( x 1 ) x 1 e ( x 2 ) e r ( x 1 x 2 ) e r ( x 1 ) e r ( x 2 ) |e ( x 1 x 2 ) | |e ( x 1 ) | |e ( x 2 ) | |e r ( x 1 x 2 ) | |e r ( x 1 ) | |e r ( x 2 ) |

大一高数知识点框架图

大一高数知识点框架图

大一高数知识点框架图高等数学是大一学生必修的一门重要课程,它是数学学科的一门基础课程,对于学习后续专业课程和培养科学思维具有重要意义。

在学习高等数学时,了解清晰的知识点框架图可以帮助学生更好地整理和掌握知识。

下面是大一高数知识点的一个简要框架图,供参考:1.函数与极限1.1 函数的概念与性质1.2 一元函数的极限1.3 极限的运算1.4 无穷小与无穷大1.5 函数的连续性2.微分与导数2.1 导数的概念与性质2.2 基本导数公式2.3 高阶导数与高阶导数公式2.4 隐函数与参数方程的导数 2.5 微分中值定理与导数的应用3.微分学的应用3.1 函数的单调性与极值3.2 函数的凹凸性与拐点3.3 曲线的渐近线与渐近曲线 3.4 已知导数求函数3.5 微分方程的基本概念4.不定积分4.1 原函数与不定积分的概念 4.2 基本积分法4.3 分部积分法4.4 有理函数的积分4.5 径向量积分与弧长5.定积分5.1 定积分的概念与性质5.2 定积分的计算方法5.3 反常积分5.4 物理应用:面积、体积、质量与重心6.微分方程6.1 微分方程的基本概念与分类6.2 一阶微分方程的常见类型6.3 二阶线性微分方程6.4 常系数线性微分方程6.5 微分方程的应用:生物、物理、工程等领域通过以上的知识点框架图,我们可以清晰地看到大一高数的主要知识点及其内部的关联关系。

在学习高等数学时,我们应该先打好基础,理解函数与极限的概念,掌握导数的运算法则,然后学习微分与积分的概念及其计算方法。

在学习的过程中,要注重理论联系实际,灵活应用所学知识解决实际问题,提高数学能力和运用能力。

总结起来,大一高数知识点框架图为函数与极限、微分与导数、微分学的应用、不定积分、定积分和微分方程。

这个框架图可以帮助我们清晰地了解高等数学的知识结构和学习路径,为我们的学习提供指导和支持。

在学习过程中,我们要注重理论与实践相结合,灵活运用知识解决问题,提高数学思维的能力和创新的能力。

数值分析 PPT课件

数值分析 PPT课件

n1
(
x
)
这里 (a,b)且依赖于 x。
第12页/共51页
第13页/共51页
定理表明: (1) 插值误差与节点和点 x 之间的距离有关, 节点距离 x 越近, 插值误差一般情况下越小。 (2) 若被插值函数 f(x) 本身就是不超过 n 次的多项式, 则有 f(x)≡g(x)。
第14页/共51页
y1
)
(
(y y1
y0 )( y y0 )( y1
y2 )( y y y2 )( y1
3) y3
)
f
1 ( y2 )
( y y0 )( y y1 )( y y3 ) ( y2 y0 )( y2 y1 )( y2 y3 )
f
1
(
y3
)
(
(y y3
y0 )( y y0 )( y3
定理2 设 f (n)( x) 在 [a,b] 上连续,f (n1)( x) 在 (a,b) 内存在,节点
a x0 x1 xn b, Ln( x) 是满足拉格朗日插值条件的多项式,则 对任何 x [a,b], 插值余项
Rn ( x)
f ( x) Ln( x)
f ( (n1) )
(n 1)!
2.1 引言
许多实际问题都用函数 y=f(x) 来表示某种内在规 律的数量关系。若已知 f(x) 在某个区间 [a,b] 上存在、 连续,但只能给出 [a,b] 上一系列点的函数值表时,或 者函数有解析表达式,但计算过于复杂、使用不方便只 给出函数值表(如三角函数表、对数表等)时,为了研 究函数的变化规律,往往需要求出不在表上的函数值。 因此我们希望根据给定的函数表做一个既能 反映函数 f(x) 的特性,又便于计算的简单函数 P(x),用 P(x) 近 似 f(x)。这就引出了插值问题。

数值分析各算法流程图

数值分析各算法流程图

01,,n1,,n1,,)n x及数值分析各算法流程图一、插值1、 拉格朗日插值流程图:( 相应程序:lagrintp(x,y,xx))2,,n ,,j n 1,2,,n 1,,)n 2、 牛顿插值流程图(1)产生差商表的算法流程图(相应程序:divdiff(x,y))注:1、另一程序divdiff1(x,y),输出的矩阵包含了节点向量。

而divdiff(x,y)不含节点向量。

2、另一程序tableofdd(x,y,m),输出的是表格形式,添加了表头。

1,,),,n m 及1,,m (2)非等距节点的牛顿插值流程图(相应程序:newtint11(x,y,xx,m)) 、注:1、虽然程序newtint11(x,y,xx,m)考虑了多种情形,看上去很复杂,但基本流程结构还是如上图所示。

2、程序中调用的子程序是divdiff 。

若调用的子程序是divdiff1的话,流程图中的第三,第四,第五步要相应的改一下数字。

2,3,,1m +1,,j1,2,,n=1,2,,)n m 及(3)求差分表的流程图(相应程序:difference(y,m))注:1、difference 输出的是矩阵D 。

而另一程序tableofd(y,m),输出的是带有表头的差分表。

n x m1,,),,1,,m注:1、程序newtforward1(x,y,xx,m))的结构与上述流程图一致,xx可以是数组。

2、另一程序newtforward(x,y,xx,m))先求出插值多项式,再求插值多项式在插值点的函数值。

基本结构还是和上面的流程图一样。

n x m1,,),,-x x1,,m注:1、程序newtbackward1(x,y,xx,m))的结构与上述流程图一致,xx可以是数组。

2、另一程序newtbackward(x,y,xx,m))先求出插值多项式,再求插值多项式在插值点的函数值。

基本结构还是和上面的流程图一样。

1,2,,n1,2,,n ,2,,)n x及3、Hermite 插值流程图(1) 已知条件中一阶导数的个数与插值节点的个数相等时的Hermite 插值流程图。

数值分析课件

数值分析课件
2
(∫
π
−π
| f (t ) − g (t ) | dt
2
)
1/2
, 求证 A 有
界,但不是全有界。
证: ∀f n (t ) = sin nt ∈ A, d ( f n , 0) = π ,∴ A 有界; 又 ∵ d ( f n , f m ) = 2π (n ≠ m), A 中 有 可 数 无 穷 多 个 点 , 取
z 子 集
有 界 性
: 设 A ⊂ X, 若∃x0 ∈ X 和 有 限 数
r ∈ R1 , s.t.
∀x ∈ A, 有 d ( x, x0 ) < r ,称 A 是距离空间X中
的有界集,简称A有界。 z 点列收敛性:{xn } ⊂ X, x* ∈ X, ∀ε > 0, ∃N > 0, 当 n > N 时,
2. C[a, b] = { f (t ) f (t )在[a, b]上连续} ——连续函数空间
f (t ) − g (t ) ∀f (t ), g (t ) ∈ C[ a, b] , d ( f , g ) tmax ∈[ a ,b ]
2 3. L [ a, b] = f (t )
{
ห้องสมุดไป่ตู้

| f (t ) |2 dt < +∞ ——平方可积函数空间 a
m, n > N 时, d ( xm , xn ) < ε , 称 {xn } 为 Cauchy 列或基本列。
证: d ( xm , xn ) ≤
d ( xn , x*) + d ( xm , x*)
z 完备性:若 X 中Cauchy列都是收敛列,则称 X 是完备距离 空间;否则,是不完备距离空间。 完备距离空间的例子:

数值分析课件2015xin王兵团_数值分析整理

数值分析课件2015xin王兵团_数值分析整理

数值分析1.数值分析的病态性是指因初始数据的微小变化,导致计算结果的剧烈变化。

病态问题:因初始数据微小变化,导致计算结果剧烈变化的问题良态问题:初始数据微小变化,只引起计算结果微小变化的计算问题。

数值不稳定算法:指算法进行计算的初始数据有谋差,而计算过程中产生的舍入误差不断增长。

例r2.误差的来源:①模型误差:在数学建模时,由于忽略了某些次要因素而产生的误差:②观测谋差:在采集原始数据时,由仪器的精度或其他客观因素产生的误差;③截断谋差:对产与计算的数学公式做简化处理后所产生的误差:④ 舍入误差:计算机因数系不全,由接受和运算数据的舍入引起的误差。

科学计算中值得注盘的地方:①避免两个相近的数相减;②合理安扌丨丨:量级相差很大的数之间的运算次序,防上人数吃小数;③避免绝对值很小的数做分母:④简化运算步骤,减少运算次数。

3.用计算机做科学计算时的溢出错误。

机器数系是有限的离散集,机器数系中有绝对值最人和最小的非零数M和m,若•个非零实数的绝对值人于M,则计算机产生上溢错谋,若其绝对值小于m,则计算机产生下溢错谋。

上溢错谋时,计算机中断程序处理:下溢错误时,计算机将此数用零农示并继续执行程序。

4.解非线性方程单根的牛顿法具有二阶收敛。

简单迭代法具有•阶收敛性。

当且有2阶导数时,Ne、vton迭代法才有二阶敛速。

5.对@十1)个节点的Newton-cotes求积公式,在时,Cotes系数人于0,而在时,考虑到公式的稳定性不实用该公式。

6.当系数矩阵A是严格对角占优矩阵,Jacobi格式、Seidel格式都收敛。

7.用高斯消元法求解线性方程组,•般使用选主元的技术是因为要减少舍入误差。

8•解非线性方程组迭代法的整体收敛和局部收敛的主要区别是局部收敛在较小邻域取初值,有初值限制。

9.二分法是全部收敛,简单迭代法是局部收敛。

10.四种插值方法:Lagrange插值、Xewton插值、Hennite插值、分段多项式插值。

20张高清数据分析全知识地图,强烈建议收藏

20张高清数据分析全知识地图,强烈建议收藏

20张高清数据分析全知识地图,强烈建议收藏
内容来源:数据分析
正文开始
最近团队小伙伴为大家整理了20张数据分析的知识地图,话不多说直接上图,觉得有用别忘了转发点赞收藏
CCTC®01
1、数据分析步骤地图
2、数据分析基础知识地图
3、数据分析技术知识地图
4、数据分析业务流程
5、数据分析师能力体系
6、数据分析思路体系
7、电商数据分析核心主题
8、数据科学技能书知识地图
9、数据挖掘体系
10、python学习路径
CCTC®02
11、线下店铺数据分析
12、小程序数据分析
13、用户分析
14、用户画像法
15、Excel常用公式
16、Excel透视表
17、数据分析图表
18、MySQL
19、统计学
20、回归分析方法。

数值分析必备知识

数值分析必备知识
( k 1 ) ( k ) i
1 n 1 i ( k 1 ) ( k ) x x ( b a x a x ), i 1 , 2 , n , k 0 , 1 , 2 , i ij ij i j j j 1 j i a ii
或写成向量形式 x(k+1)=x(k)+D-1(b+Lx(k+1)+(U-D)x(k)) , k=0,1,2,…
方程组:
a13 a1n a12 b1 x x x x 2 3 n 1 a11 a11 a11 a11 a 23 a2 n a 21 b2 x1 x3 xn x2 a 22 a 22 a 22 a 22 a n1 an 2 a nn 1 bn xn a x1 a x2 a xn 1 a nn nn nn nn
M
k
1 M
x(1) x(0)
, 即
k ln( )/ln M (1) (0) x x
可以事先估计达到某一精度需要迭代多少步。
ε(1 M )
例如,例1中J-法计算结果如下: k 0 1 2 3 4 5 6 7 x1(k) 0 1.4 1.11 0.929 0.9906 1.01159 1.000251 0.9982364 x2(k) 0 0.5 1.20 1.055 0.9645 0.9953 1.005795 1.0001255 x3(k) 0 1.4 1.11 0.929 0.9906 1.01159 1.000251 0.9982364
从而得迭代公式
a a a b (k1) 13 (k) 1 n (k) 12 (k) 1 x x x x 2 3 n 1 a a a a 11 11 11 11 a2n (k) b a21 (k) a23 (k) (k1) 2 x x x x 2 1 3 n a a a a22 22 22 22 an1 (k) an2 (k) ann b (k1) 1 (k) n x x x x n ann 1 ann 2 ann n1 ann

数值分析PPT课件

数值分析PPT课件

03
数值分析的方法和技巧广泛应用于科学计算、工程、经 济、金融等领域。
主题的重要性
随着计算机技术的不断发展, 数值计算已经成为解决实际问 题的重要手段。
数值分析为各种数学问题提供 了有效的数值计算方法和技巧, 使得许多问题可以通过计算机 得以解决。
掌握数值分析的知识和方法对 于数学建模、科学计算、数据 分析等领域具有重要意义。
意义。
未来数值分析的发展方向
随着计算机技术的不断发展,数值分析 将更加依赖于计算机实现,因此数值算 法的优化和并行化将是未来的重要研究
方向。
随着大数据时代的到来,数值分析将更 加注重对大规模数据的处理和分析,因 此数据科学和数值分析的交叉研究将成
为一个新的研究热点。
随着人工智能和机器学习的发展,数值 分析将更加注重对非线性、非平稳问题 的处理,因此新的数值算法和模型将不
数值积分和微分
矩形法
将积分区间划分为若干个小的矩形区域,求 和得到近似积分值。
辛普森法
梯形法
利用梯形公式近似计算定积分,适用于简单 的被积函数。
利用三个矩形区域和一个梯形区域的面积近 似计算定积分。
02
01
高斯积分法
利用高斯点将积分区间划分为若干个子区间, 通过求和得到近似积分值。
04
03
矩阵的特征值和特征向量
数值分析ppt课件
目录
• 引言 • 数值分析的基本概念 • 数值分析的主要算法 • 数值分析的误差分析 • 数值分析的实例和应用 • 结论
01
引言
主题简介
01
数值分析是数学的一个重要分支,主要研究如何利用数 值计算方法解决各种数学问题。
02
它涉及到线性代数、微积分、微分方程、最优化理论等 多个数学领域。

数值分析知识点大全总结

数值分析知识点大全总结

数值分析知识点大全总结一、数值计算方法数值计算方法是数值分析的基础,它涵盖了数值逼近、数值积分、插值与拟合、数值微分与数值积分、解线性方程组、求解非线性方程与方程组、解常微分方程等内容。

下面我们将逐一介绍这些方面的知识点。

1. 数值逼近数值逼近是研究如何用简单的函数来近似一个复杂的函数的方法。

常见的数值逼近方法包括多项式逼近、三角函数逼近、曲线拟合等。

其中,最为重要的是多项式逼近,它可以用来近似任意函数,并且具有较好的数学性质。

2. 数值积分数值积分是研究如何用离散的数据来估计连续函数的积分值的方法。

常见的数值积分方法包括梯形公式、辛普森公式、龙贝格公式等。

其中,辛普森公式是一种较为精确的数值积分方法,它可以用来估计任意函数的积分值,并且具有较好的数值稳定性。

3. 插值与拟合插值与拟合是研究如何用离散的数据来构造连续函数的方法。

常见的插值方法包括拉格朗日插值、牛顿插值等。

而拟合方法则是研究如何用简单的函数来拟合复杂的数据,常见的拟合方法包括最小二乘法、最小二乘多项式拟合等。

4. 数值微分与数值积分数值微分与数值积分是研究如何用差分方法来估计导数与积分的值的方法。

常见的数值微分方法包括向前差分、向后差分、中心差分等。

而数值积分方法则可以直接用差分方法来估计积分的值。

5. 解线性方程组解线性方程组是研究如何用迭代法或直接法来求解线性方程组的方法。

常见的迭代法包括雅各比迭代法、高斯-赛德尔迭代法等。

而直接法则是指用消元法来求解线性方程组的方法。

6. 求解非线性方程与方程组求解非线性方程与方程组是研究如何用迭代法来求解非线性方程与方程组的方法。

常见的迭代法包括牛顿法、割线法等。

其中,牛顿法是一种非常高效的求解非线性方程与方程组的方法,它具有收敛速度快的特点。

7. 解常微分方程值积分方法包括龙格-库塔法、变步长欧拉法、变步长龙格-库塔法等。

其中,龙格-库塔法是一种较为精确的数值积分方法,它可以用来求解各种类型的常微分方程。

《数值分析》ppt课件

《数值分析》ppt课件

7.
er

a b


er
(a)

er
(b)
30
例4
ε(p)
设有三个近似数
p ≈ 6.6332
≈0.02585
a=2.31,b=1.93,c=2.24
它们都有三位有效数字,试计算p=a+bc,e ( p)和e r ( p) 并问:p的计算结果能有几位有效数字?
2位
例5
设f (x, y) cos y , x 1.30 0.005, y 0.871 0.0005. x
er

e x

x x x
.
由于精确值 x 未知, 实际上总把
e x
作为x*的
相对误差,并且仍记为er , 即
er

e x
.
❖定义 近似值 x* 的相对误差上限(界) (relative accuracy)
εr

|
ε x
|.
注:相对误差一般用百分比表示.
17
例1 用最小刻度为毫米的卡尺测量直杆甲和直杆
注:理论上讲,e 是唯一确定的, 可能取正, 也可能取负.
e > 0 不唯一,当然 e 越小越具有参考价值。
15
提问:绝对误差限的大小能否完全地 表示近似值的好坏? 例如:有两个量
x 10 1 , y 1000 5
思考
问:谁的近似程度要好一些?
16
❖定义 近似值 x* 的相对误差 (relative error)
a 2.18
e r(b) e (b) 0.00005 0.0024%
b 2.1200
19
➢有效数字 ( significant digits)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档