数学建模 养鱼问题的最优模型
养鱼方案的数学模型
养鱼方案的数学模型2011年5月5日【问题背景】“养鱼方案”是想通过建立数学模型来探讨实际养鱼的最优方法,化实际问题为理论的探究池塘养鱼获取最大利润的养鱼方案。
从中会忽略很多实际中存在的问题在实际采用中就需要变化的应对。
从实际问题出发寻找数学约束条件,通过数学建模、计算机运筹学模拟计算得到最佳模型求解。
【关键词】池塘养鱼、非线性规划、最大利润、lingo 软件求解一、问题重述在一个水面面积为2100100m 的池塘里养殖某种鱼,并有假设如下: 1、鱼的存活空间为2/1m kg ; 2、每kg 1鱼每天需要的饲料为kg 05.0,市场上鱼饲料的价格为kg /2.1元;3、鱼苗的价格忽略不计,每kg 1鱼苗大约有500条鱼;4、鱼可四季生长,每天的生长重量与鱼的自重成正比,365天长为成鱼,成鱼的重量为kg 2;5、池塘内与的繁殖与死亡均忽略;6、若q 为鱼重,则此种鱼的售价为:⎪⎪⎩⎪⎪⎨⎧<≤<≤<≤<=25.1/105.175.0/875.02.0/62.0/0q kgq kg q kg q kg q 元元元元 7、该池内只能投放鱼苗。
试建立适当的数学模型来得到一个能获得较大利润的三年养鱼方案。
二、模型假设与符号说明(一)、模型假设:1、假设每年都只有365天;2、只要有符合要求的鱼,都能顺利卖掉,且需要鱼苗时都能买到;3、中途捕捞时对池塘里剩余的鱼不会造成损伤,且利用有不同大小网眼的 网能够捕捞到想要的鱼;(二)、符号说明:)3,2,1,0,(=j i s ij —各个阶段鱼体重增长过程中鱼吃饲料的增长和;(ij s 05.0为饲料的总和) )3,2,1(=i q i ——各个阶段的鱼的重量;)3,2,1(=i n i ——各重量段捕鱼的数量;三、模型建立与求解充分利用池塘空间:尽最大程度放养的养鱼方案,空间饱和就捕鱼。
具体为:在开始一次性放入足够多的鱼苗数(确保空间足够都能长到kg 2.0),到鱼长到能卖6元时捕捞部分卖出,在这些鱼长到能卖8元和能卖10元时,各个阶段也有适当的捕捞,并在长到kg 2时全部捕出出售。
池塘养鱼的最优方案模型
池塘养鱼的最优方案模型摘要:根据题目给出的七个已知条件和问题,我们判断这是一个关于如何在有限的资源和条件下获得最大利润的养鱼问题。
本文分别考虑了年初一次性投放鱼苗年后一次性卖出和边投边卖尽可能利用鱼塘资源两种情况,并且在建模过程中运用了常微分方程,计算出鱼的重量关于时间的函数表达式,又运用等比数列求和公式来最终确定最优的年初投放鱼苗的方案。
在模型Ⅱ收益函数的计算中,本文不仅考虑了不同质量范围的鱼所用的饲料费和收入的不同,而且还考虑了不同质量的鱼所占的存活空间的不同,提出了鱼塘的单位面积的收益率的概念来作为衡量标准,以此来进行资源的最优化利用,并结合相关图像最终确定最优养鱼方案。
文中所提出的数学方法及手段均用软件进行了实现。
关键词养鱼方案微分方程等比数列matlab空间利用效用最大化一、问题提出设某地有一池塘,其水面面积约为100⨯1002m ,用来养殖某种鱼类。
在如下的假设下,设计能获取较大利润的三年的养鱼方案。
(1)鱼的存活空间为12kg m ;(2)每1kg 鱼每天需要的饲料为0.05kg ,市场上鱼饲料的价格为2.5元/kg ;(3)鱼苗的价格忽略不计,每1kg 鱼苗大约有500条鱼;(4)鱼可四季生长,每天的生长重量与鱼的自重成正比,365天长为成鱼,成鱼的重量为2kg ;(5)池内鱼的繁殖与死亡均忽略;(6)q 为鱼重,则此种鱼的售价为:⎪⎪⎩⎪⎪⎨⎧≤≤<≤<≤<=25.1/元155.11/元1012.0/元62.0/元0q kg q kg q kg q kg Q(7)池内只能投放鱼苗。
二 、问题分析养殖户为了获取较大的利润,必然会面对确定养殖方案的问题。
因此如何在限定的条件下找出最佳的出售时机以制定最优的养鱼方案成为了解决此问题的关键。
在这里,由于各种无法预测的不确定因素带来的影响,使得养鱼者的实际收益与预期收益会发生一定的偏差,从而有蒙受损失和获得额外收益的机会[1]。
数学建模案例――最佳捕鱼方案
最佳捕鱼方案摘要:本文解决的是一个最佳捕鱼方案设计的单□标线性规划问题,U的是制定每天的捕鱼策略,使得总收益最大。
根据题设条件,结合实际情况,我们设计了成本与损失率随天数的增加成反比变化的函数曲线(见图三所示),并导出总收益的表达式:w=£气=£几><亠-r-J i-J r-1由于价格是关于供应量的分段函数(见图一所示),我们引入“0—1”变量法编写程序(程序见附录一),并用数学软件LI\GO求解,得到最大收益(W)为441291.4元,分21天捕捞完毕。
其中第1〜16天,日捕捞量在1030〜1070 公斤之间,第17〜21天的日捕捞量为1610〜1670公斤之间(具体数值见正文)。
由结果分析,我们对模型提出了优化方向,例如人工放水来降低成本。
关键词:“0-1”整数规划,单目标线性规划,离散型分布。
一.问题重述一个水库,由个人承包,为了提高经济效益,保证优质鱼类有良好的生活环境,必须对水库里的杂鱼做一次彻底清理,因此放水清库。
水库现有水位平均为15米,自然放水每天水位降低0. 5米,经与当地协商水库水位最低降至5 米,这样预计需要二十天时间,水位可达到□标。
据估计水库内尚有草鱼二万五千余公斤,鲜活草鱼在当地市场上,若日供应量在500公斤以下,其价格为30元/公斤;日供应量在500-1000公斤,其价格降至25元/公斤,日供应量超过1000公斤时,价格降至20元/公斤以下,日供应量到1500公斤处于饱和。
捕捞草鱼的成本水位于15米时,每公斤6元;当水位降至5米时,为3元 /公斤。
同时随着水位的下降草鱼死亡和捕捞造成损失增加,至最低水位5米时损失率为10%o承包人提出了这样一个问题:如何捕捞鲜活草鱼投放市场,效益最佳?二.模型假设1.池塘中草鱼的生长处于稳定状态,不考虑种群繁殖以及其体重增减,即在捕捞过程中草鱼总量保持在25, 000公斤不变。
2.第一天捕捞时水位为15m,每天都在当天的初始水位捕捞草鱼,水库水位每天按自然放水0. 5m逐渐降低,20天后刚好达到最低要求水位5mo3.在水库自然放水的21内将草鱼捕完。
数学建模—最佳捕鱼方案
三、 符号说明
;当k 1 x :表示 i 龄鱼第 j 年的年初(或年末)的鱼量( k 0或1, 当k 0时, 表示年初 时表示年末。 i 1,2,3,4; j 1,2, ) 条 ; r :表示各年龄组鱼群的死亡率: 0.8(1 年) ; :表示 4 龄鱼的捕捞强度系数,则 3 龄鱼的捕捞强度系数为 0.42 ; n :产卵总量 个 ; Z:捕鱼总重量 g ; xij t :表示第 j 年 t 时刻 i 龄鱼的数量 条 ; j :表示第 j 年的捕鱼总量;
4
年 收 获 总 量 ( g)
4.2 4.15 4.1 4.05 4 3.95 3.9 3.85
x 10
11
3.8 0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
死 亡 率 ( 1/ 年 )
由上图可直观地看出:死亡率与年收获总量成正比例关系,即当死亡率增加时, 年收获总量则减少;反之,增加。由此可知,死亡率对年收获总量有显著的影响。 2.对模型中捕捞强度系数 的灵敏度分析 模型中其它因素不变, 只考虑 从 10 变到 19 时最大的年收获总量的变化情况, 分析 的变化对模型的影响(见下图)
年 收 获 总 量 ( g)
3.95 x 10
11
3.9
3.85
3.8
3.75
3.7
3.65
3.6
3.55
3.5 10
11பைடு நூலகம்
12
13
14
15
16
17
18
19
4龄 鱼 的 捕 捞 强 度 系 数
由上图可直观地看出:捕捞强度系数也是影响年收获总量的重要因素,年收获总量 随捕捞强度系数的增加而增加。只是增长速率逐渐减慢。 七、 模型评价与推广 模型的评价: 优点:1. 本文建立的模型与实际相联系,考虑到一些实际情况,从而使模型较贴近实 际;通用性.,推广性较强。 2.模型方便、直观,可以实现计算机模拟。 缺点: 1.模型虽然考虑到了很多因素,但为了建立模型,忽略了一些影响因素,具有 一定的局限性。 2.在建模过程中,简化了一些因素,得到了最优方案可能与实际有一定的出入。 模型的推广: 模型建立思想不但适合捕鱼方面,而且适合其它相关方面,只需稍加改动即可。
海洋渔业资源管理中的最优解模型建模分析
海洋渔业资源管理中的最优解模型建模分析海洋资源是人类生存和发展的重要基础,而渔业资源作为海洋资源的重要组成部分,在人类社会中具有重要的经济和生态价值。
然而,由于过度开发和不合理管理,海洋渔业资源面临着持续减少和生态破坏的风险。
因此,在海洋渔业资源管理中,寻求最优解的模型建模分析成为一项重要任务。
1. 问题定义在进行最优解模型建模分析之前,首先需要明确问题的定义。
问题的定义包括但不限于以下几个方面:- 渔业资源管理的目标:例如,保护渔业资源、提高渔业的可持续发展等。
- 目标变量和约束条件:例如,渔获量、捕捞成本、生态环境影响等。
- 决策变量:例如,渔业开发强度、禁渔期设置等。
2. 数据采集与处理为了进行最优解模型建模分析,需要收集相关的数据。
数据的采集包括但不限于以下几种方式:- 实地调查:通过对渔业资源的实地调查,获取相关的渔业资源分布、渔获量、捕捞方式等数据。
- 统计数据:通过研究历史统计数据,获取渔业资源的变化趋势、捕捞成本等数据。
- 模型模拟:通过建立数值模型,模拟渔业资源的变化过程,获取渔业资源的未来预测数据。
对采集到的数据进行处理,包括但不限于以下几种方式:- 数据清洗:清除采集到的数据中的错误、异常值。
- 数据整合:将来自不同来源的数据进行整合,形成一个完整的数据集。
- 数据转换:根据问题的需要,对数据进行转换,例如将文本数据转化为数值数据、进行数据标准化等。
3. 模型建立根据问题的定义和数据的情况,选择合适的模型进行建立。
在海洋渔业资源管理中,常见的模型包括但不限于以下几种:- 渔业资源评估模型:通过建立数学模型,对渔业资源的状况进行评估,如渔获量的估计模型、渔船数量的影响模型等。
- 渔业开发强度优化模型:通过建立数学模型,对渔业开发强度进行优化,使得资源利用最大化,如最优开发区位选择模型、最优捕捞量决策模型等。
- 生态影响评估模型:通过建立数学模型,评估渔业活动对生态环境的影响,如捕撒率模型、生态适应性评估模型等。
数学建模——最优捕鱼模型
最优捕鱼模型一.问题的重述捕鱼业在当今社会中十分重要的行业,捕鱼量的大小决定着捕鱼的经济效益,其中捕鱼量与捕鱼时间有着密切关联. 所以如何利用数学模型了解捕鱼量与捕鱼时间之间的关系,是一个具有现实意义的问题.现假设在一个鱼塘中投放若干鱼苗,鱼苗尾数随着时间的增长而减少,且相对减少率为常数;每尾鱼的重量随着时间增长而增加,且由于喂养引起的每尾鱼重量增加率与鱼的表面积成正比,由于消耗引起的减少率与其重量本身成正比. 分析如下问题:问题一:建立尾数和时间的微分方程并求解;问题二:建立每尾鱼重量和时间的微分方程并求解;问题三:用控制网眼的方法不捕小鱼,从一定时刻开始捕捞,用尾数的相对减少率表示捕捞能力,分析开始捕鱼的最佳时刻,使得捕获量最大,并建立相关模型.二.问题分析1.针对问题一,根据相对减少率的数学定义,可以建立鱼尾数和时间的微分方程;2.针对问题二,将鱼体假设为球体,得出鱼的表面积与它重量的关系,使得鱼的重量完全成为一个关于时间的函数,进一步建立出鱼重量与时间的微分方程;3.针对问题三,将捕捞行为看作连续的过程,瞬时捕捞量与瞬时捕鱼尾数、每尾鱼瞬时重量呈正相关关系,瞬时捕鱼尾数与捕捞能力有关,每尾鱼瞬时重量可由对问题二的解答得出,总捕捞量即为瞬时捕捞量关于时间的积分.三.基本假设1.假设自然因素不会对鱼的尾数产生影响;2.假设在整个捕捞过程中鱼没有繁衍行为;3.假设每尾鱼都均衡生长;4.假设在捕捞过程中鱼的条数连续;5.假设鱼为球体.四.符号表示五.模型建立与求解模型一. 鱼苗尾数的相对减少率为常数r . 由相对减少率的定义得()()()t t t t n n rn t +∆-=-∆ 即()()()00lim lim t t t t t t n n rn t +∆∆→∆→-=-∆ 即()t dn rn dt=- 解得0rt n n e -=模型二. 假设鱼为球体,体积为V ,表面积为S ,半径为R ,重量为G ,初始重量为0G ,鱼的密度为ρ;且每尾鱼的重量随着时间增长而增加,其中由于喂养引起的每尾鱼重量增加率与鱼表面积成正比(比例系数为1k ),由于消耗引起的减少率与其重量本身成正比(比例系数为2k ). 由343V R π=,2=4S R π,G V ρ=得2233S G ρ⎛⎫= ⎝⎭令23=b ρ⎛⎫ ⎝⎭又由于12=-dG k S k G dt,=0t ,0G G =所以231-11322+k t k b k b G e k k ⎡⎤⎫=⎢⎥⎪⎭⎣⎦模型三. 控制网眼不捕小鱼,鱼塘中瞬时鱼尾数用(t)n 表示,捕捞能力(E )可以用尾数的相对减少率1dn n dt表示,从T 时刻开始捕捞,使得捕捞量W 能够最大.其中减少量包括自然减少量(即第一模型中的减少量)和捕捞量.此时,-(t)0(t)=-at n n e En-0-0(e )11=-=-=a e at at d n dn E n dt n dt所以,--00(t)==1+(1+)at aT T Tan e an W En dt dt e a a a ∞∞=⎰⎰ 则,在此模型下,捕捞时间越早,捕捞量越大.模型四. 建立在模型三的基础上,捕捞量的大小不仅取决于鱼尾数(t)n ,还取决于鱼的重量G .即(t)TW En Gdt ∞=⎰所以,231--0113(t)22=+1+at k t T T an e k b k b W En Gdt e dt a k k ∞∞⎡⎤⎫=⎢⎥⎪⎭⎣⎦⎰⎰ 可根据此函数求得最大捕捞量所对应的时刻T .感谢下载!欢迎您的下载,资料仅供参考。
数学建模论文 捕鱼效益最大化模型
北京理工大学数学学院《常微分方程》小论文捕鱼业效益最大化的微分方程模型2012/12/18捕鱼业效益最大化常微分方程模型摘要在将可持续发展作为基本国策的大背景下,像渔业这样的再生资源应该在持续稳产的前提下追求效益的最大化。
本文考察一个渔场,首先建立在捕捞情况下渔场鱼量遵从的方程,分析鱼量稳定的条件,并且在稳定的前提下讨论渔场的效益最大化问题,最后提出相应的优化方案及建议。
关键字:渔场鱼量捕捞强度平衡点稳定条件效益一、问题分析如今人们大范围过度捕捞导致了渔业的日渐枯竭,近海资源已经被严重透支,到远洋争议海域捕鱼又充满了危险,近年不断有渔船被日韩海监船扣压,更有甚者,去年3月份与韩国海警爆发冲突,导致一人死亡,引发各种问题。
然而怎样才能实现捕鱼业效益的最大化呢?应该如何控制捕捞强度才能实现效益的最大化?本文就这些问题进行了以下分析:①建立渔场鱼量x,捕捞强度E关于t的微分方程;②由上述微分方程组求出平衡点并分析其稳定性;③在稳定条件下求出渔场效益;④对其效益进行分析提出优化方案.二、模型假设:(1)在无捕捞条件下,渔场中的余量x(t)的增长服从logistic规律(即阻滞增长模型);(2)单位时间的捕捞量(即产量)与渔场鱼量x(t)成正比,比例系数为E;(3)捕捞强度E(t)的变化率与利润成正比;(4)鱼的销售单价为常数p,单位捕捞率的费用为常数c;三、模型建立与求解1.在无捕捞条件下x(t)关于时间的微分方程) (1)ẋ(t)=f(x)=rx(1−xNr为固有增长率,N是环境容许的最大鱼量,用f(x)表示单位时间的增长量.2.捕捞情况下渔场鱼量满足的方程单位时间的捕捞量(即产量)与渔场鱼量x(t)成正比,比例系数为捕捞强度,于是单位时间的捕捞量为:h(x)=Ex (2)根据以上假设并记F(x)=f(x)-h(x)得到捕捞情况下渔场鱼量满足的方程为:)−Ex (3)x(t)=F(x)=rx(1−xN3.捕捞强度E(t)关于时间的微分方程E(t)=k(T−S) (4)k为比例常数,T为单位时间的收入,S为单位时间的支出.其中T=ph(x)=pEx, S=cE (5)4.求平衡点并分析其稳定性我们并不需要解方程(3)和(4)以得到x(t),E(t)的动态变化过程,只希望知道渔场的稳定鱼量和保持稳定的条件,即时间t足够长以后渔场鱼量x(t)的趋向,并由此确定此时的效益.接下来我们将求解方程(3)和(4)的平衡点并分析其稳定性.{ẋ(t )=u (x,E )=rx (1−x N )−Ex E (t )=v (x,E )=k (T −S )……(6) 将(5)式带入下面的代数方程组,{u (x,E )=0v(x,E)=0, 解出平衡点为,(0,0),(N ,0),(c p ,r(1−c Np )).稳定性分析:当x=0,E=0时,即渔场鱼量为0且捕捞强度为0,此种情况不具有分析意义;当x=N ,E=0时,即渔场鱼量为环境最大容纳量,没有捕捞,同样,这种情况也不具有分析意义;当x=c p ,E=r(1−c Np )时,由于(6)为非线性方程组,所以我们将采用线性近似的方法讨论此时的稳定性。
养鱼问题数学模型
楚雄师范学院2011年数学建模培训第一次测试论文题目:养鱼问题的数学模型姓名:系(院):数学系专业:数学与应用数学2011年5月8日养鱼问题的数学模型摘要:本文是根据原有的合理条件假设之下,结合我们现实生活中的实际问题,忽略部分次要因素,建立解决养鱼方案的优化模型问题。
笔者从几个简单的侧边具体描述和合理设计了三个基本的养育优化模型,都从不同方面反映了养鱼优化模型问题。
由于养鱼问题的复杂性、多变性、多样性,我们不得不忽略了部分养鱼的因素,并应用最优化、线性规划和动态规划模型给予以解决我们的养鱼最优化问题。
关键词:养鱼模型、最优化、动态规划、线性规划、最大利润一、问题重述设某地有一池塘,其水面面积约为100×1002m ,用来养殖某种鱼类。
在如下的假设下,设计能获取较大利润的三年的养鱼方案。
① 鱼的存活空间为1kg /2m ;② 每1kg 鱼每天需要的饲料为0.05kg ,市场上鱼饲料的价格为0.2元/kg ;③ 鱼苗的价格忽略不计,每1kg 鱼苗大约有500条鱼;④ 鱼可四季生长,每天的生长重量与鱼的自重成正比,365天长为成鱼,成鱼的重量为2kg ;⑤池内鱼的繁殖与死亡均忽略;⑥若q 为鱼重,则此种鱼的售价为:⎪⎪⎩⎪⎪⎨⎧≤≤<≤<≤<=25.1/105.175.0/875.02.0/62.0/0q kg q kg q kg q kg Q 元元元元 ⑦该池内只能投放鱼苗。
二、问题分析本题主要是设计一个可以获得最佳的养鱼方案,我们知道鱼塘的面积,鱼的存活空间,不考虑鱼的繁殖与死亡,每1kg 鱼每天需要的饲料以及鱼长成成鱼的时间以及不同质量鱼的价格,将鱼的价位与鱼的“培养”时间联系起来,构建一个价格体系,绘制鱼的增长曲线图(图1),分析鱼的价值取向来考虑和设计一个最佳的养鱼方案。
但由于养鱼问题的复杂性,我们忽略了部分影响养鱼的因素,并应用线性规划和动态规划模型予以解决我们的养鱼问题。
6.5捕鱼业的持续收获 数学建模
1、问题陈述
对于一个渔场,若渔民们捕捞过度,可能 会导致鱼类资源枯竭。若捕捞的量过少,可 能经济效益比较少。如何控制捕捞力度,能 使鱼类资源持续发展下去?
6.4微分方程稳定性理论简介 6.4微分方程稳定性理论简介
对于形如 x′(t ) = f ( x) ⋯ (4) 效 益 模 型 : E R = (1 − 2 PN
C ) ⋯ ⋯ ⋯ (5) 捕捞过度:ES =r (1 − PN
二、捕鱼业的效益模型
1、模型假设 (1)设捕鱼的成本与捕捞率成正比,比例系数 (1)设捕鱼的成本与捕捞率成正比,比例系数 为C。 (2)鱼的销售单价为常数P (2)鱼的销售单价为常数P (3)单位时间所获利润为R(E) (3)单位时间所获利润为R(E) (4)独家捕捞 (4)独家捕捞
定义1 衡点。 称 f ( x ) = 0的 根 x0为 上 述 微 分 方 程 的 平
定 义2 解满 足
如果当x(t )充分接近x0时,微分方程的 lim x(t ) = x0
t →∞
则 称平 衡点 是稳定 的, 否则 称是 不稳定 的。
二、捕鱼业的产量模型
logistic模 (1)设鱼量的增加符合logistic模型,设r为固有 增长 率,N 为环境允许 的最大鱼量。 设鱼量的增 长率为r ( x), x(t )为t时刻鱼场的鱼量。
(2)设单位时间的捕鱼量为h( x), 与渔场的数量x(t ) 成正比,E为比例系数,即h( x) = Ex(t ), 称E为捕捞 率。
(3)独家捕捞。
x x′(t ) = rx(1 − ) − Ex N
⋯ ⋯ ⋯ (1)
E x0 = N (1 − ) ⋯ ⋯ ⋯ (2) r
数学模型_捕鱼业的持续收获
F ( x) f ( x) h( x)
捕捞情况下 渔场鱼量满足
x ( t ) F ( x ) rx (1
x N
) Ex
• 不需要求解x(t), 只需知道x(t)稳定的条件
产量模型
F ( x) 0
x ( t ) F ( x ) rx (1 x 0 N (1 E r
xm x
0
t
x(t)~S形曲线, x增加先快后慢
一阶微分方程的平衡点及其稳定性
x F (x) (1)
一阶非线性(自治)方程
F(x)=0的根x0 ~微分方程的平衡点
x
x x0
0 x x0
设x(t)是方程的解,若从x0 某邻域的任一初值出发,
都有 lim x ( t ) x 0 , 称x 是方程(1)的稳定平衡点 0 t
x 0 稳定 , x1不稳定
x 0 不稳定 , x1 稳定
E~捕捞强度
r~固有增长率
x0 稳定, 可得到稳定产量
x1 稳定, 渔场干枯
产量模型
在捕捞量稳定的条件下, 控制捕捞强度使产量最大
y hm h
x N
图解法
F ( x) f ( x) h( x)
y=rx y=E*x
P*
f ( x ) rx (1
x s N (1 Es r )
c p
T(E) S(E)
p , c
E s , xs
捕捞过度
0
ER E*
Es r
E
阻滞增长模型(Logistic模型)
dx dt rx
dx dt
r ( x ) x rx (1
优化设计数学建模
一、问题重述1、利用优化设计相关理论计算法,对某设计问题做优化设计。
要求如下:①列出优化数学模型;②选择所用优化算法;③画出程序框图;④程序编写;⑤程序调试运算结果。
现根据以上条件,结合生活实际,准备以铁板为材料设计一鱼缸,为了能使鱼儿有更大的生存空间,要求鱼缸容积最大。
现有边长为5米长的方形铁板,预备在四个角减去四个相等的方形面积,用以制成方形鱼缸,如何减能使鱼缸的容积最大。
二、问题分析2.1、对于此问题,我采用的数学模型包括三部分,即设计变量、目标函数和约束条件。
模型如下:其中,设裁去铁块的边长为:x(0<x<2.5)则鱼缸的容积可表示成函数:y=-x*(5-2*x)^2上述问题则可以描述为:求变量:x使函数:min y=-x*(5-2*x)^2(前加有”负”号,,故所求最大容积为最小y值)...........................................................................(1*)约束条件:0<x<2.5(保证能够做成鱼缸)2.2、本模型采用无约束优化数学模型,运用一位搜索中的0.618法进行最优值求解,通过Visio软件制作流程图,结合MATLAB软件进行编程(因C语言编程多次调试没能成功),plot函数进行绘图分析,最终成功的调试得出运算结果。
三、程序框图四、程序编写及函数图像4.1求极值所用程序如下:function q=line_s(a,b)N=10000;r=0.01;a=0;b=1.5;for k=1:N;v=a+0.382*(b-a);u=a+0.618*(b-a);fv=-25*v+20*v^2-4*v^3;fu=-25*u+20*u^2-4*u^3;if fv>fuif b-v<=rufubreak;elsea=v;v=u;u=a+0.618*(b-a);endelseif u-a<=rv-fvbreak;elseb=u;u=v;v=a+0.382*(b-a);endk=k+1endend4.2 函数曲线图程序如下:如下曲线所得y值为负,前面(1*)已作解释。
最优捕鱼问题
最优捕鱼策略优化模型摘要“最优捕鱼策略” 的数学模型通过鱼在单位时间内的死亡率来年调整捕鱼强度系数对现有的鱼进行捕捞并获取最大的产量。
由于鱼的生长具有周期性,每一种鱼的数量的改变对整个循环都有影响,因此必须综合考虑,以使每个种年龄段的鱼的数量不破坏的情况下的到最大产量,利用数学知识联系实际问题,作出相应的解答和处理。
问题一:根据已经掌握的人口模型,将鱼的死亡同人口增长联系起来,每种鱼的死亡也有相应的关系,从开始到一个循环的结束,死亡量由大到小,而死亡率保持不变。
通过对死亡率的分析讨论发现)()(t x k r dtdx+-= 经过不定积分可知tk r t e x x )()0()(+-=在此基础上对死亡和捕获量进行综合分析,从而避开了考虑具体的谁先谁后的问题。
通过使用了非线性等式的约束来实现可持续收获,采用了微分方程和非线性规划方法来解决该优化问题。
利用了MATLAB 软件工具求的每年年初的各年龄组鱼的量、最大捕捞量和捕捞强度系数。
得到了各年龄组鱼群的年初的量分别为111019599.1⨯,1110537395.0⨯,,102414672.011⨯7103959.8⨯(单位为条)。
最优的捕捞强度系数为四龄鱼的捕捞强度系数:()年/136279.174=k ,最大量为111088708.3max ⨯=(克)。
在第二问中,模型中通过对鱼群的循环周期考虑可知四年一个循环但模型中将5年作为一个周期来建立模型,这样可以得到最大捕捞量,综合题目一中的模型最终捕在保证破坏最少的情况下的最大产量,由于捞强度系数为未知量,在实现5年后鱼群的生产能力不受到太大破坏的前提下,通过最后一年的量与初始量相等建立模型并利用MATLAB 软件进行求解,求出最大捕捞量,收获的最大量。
求得的捕捞强度系数分别为18.217266(1/年),总收获量为1210604751.1⨯ 克,即160.4751万吨。
关键词:微分方程. 最大捕捞量. 捕捞强度系数. 死亡率. 非线性规划一.问题的提出(略)二.问题分析该问题是一个涉及到微分方程的优化问题,初步分析为非线性规划问题。
建模论文 最优化捕鱼措施
最佳捕鱼策略摘要渔业作为一种再生资源产业,在可持续发展的时代主题下,保证其持续稳产是形势所趋。
本文利用微分方程和非线性规划理论,探讨在可持续收获的条件下,如何通过调整捕捞强度系数,实现捕鱼量的最大化。
针对问题一,首先推导出鱼群产卵、自然死亡、年龄随时间变化等诸因素与各年龄组鱼群数量的数学表达式,结合可持续捕捞,形成一组约束条件,以年捕获量最大作为目标函数,建立非线性规划模型。
用Lingo 编程求解得到:当捕捞强度系数k 取17.36时,年捕获量最大,为3.88×1011克。
然后利用Matlab 画出了在保证可持续捕获的前提下,年度捕获量随捕捞强度系数k 变化的图象,并经过多次计算,验证了结果的准确性和稳定性。
针对问题二,在问题一模型的基础之上,修改约束条件。
首先采用每年的捕捞努力量固定,但各年彼此之间的捕捞努力量不尽相同的方式,然后采用每年的捕捞努力量都保持不变的方式,并将两个模型比较得出采用模型二收益更大。
鉴于此问是多元非线性规划问题,且数据较大,为了得到全局最优解,我们采用Matlab 进行求解,最终得到结果为:1k2k3k4k5kGG13.8815.8818.3633.095.52121.7210⨯得到最大的捕获量为1.72⨯1012克,从而制定出最佳捕鱼策略。
此外,在模型的推广中,改变模型一的假设,在认为4龄鱼一年后仍为4龄鱼的基础上,对问题一进行了改进,得出的结果虽相差甚微,但是思路更具逻辑性。
关键词:微分方程 多元非线性规划 马尔萨斯人口增长模型一、 问题重述为了保护人类赖以生存的自然环境,可再生资源(如渔业,林业资源)的开发必须适度。
一种合理、简化的策略是,在实现可持续收获的前提下,追求最大产量或最佳效益。
考虑对鳀鱼的最优捕捞策略,该种鱼的基本信息如表1所示;表1. 鳀鱼的基本信息1龄鱼 2龄鱼 3龄鱼 4龄鱼 平均重量 5.0711.5517.8622.99自然死亡率 0.8产卵量 00.5545×1051.109×105这种鱼为季节性集中产卵繁殖,产卵和孵化期为每年的最后4个月,卵孵化并成活为1龄鱼,成活率(1龄鱼条数与产卵量n 之比)为1.22ⅹ1011/(1.22ⅹ1011 + n ).渔业管理部门规定,每年只允许在产卵孵化期前的8个月进行捕捞作业。
最佳捕鱼策略——数学建模论文
最佳捕鱼策略摘要为了实现鳀鱼持续的经济效益,可持续的捕捞方案必不可少。
本文建立了最优化模型,求出了在可持续条件下最大的鳀鱼年收获量以及自然死亡率和捕捞强度系数对模型的影响,并向渔业管理部门提出的鳀鱼资源利用的政策建议。
针对问题一,以一年为周期,年初各个年龄组鳀鱼的数量由上一年相关年龄组的数量决定,分别建立微分方程,得到各个年龄组鳀鱼数量与时间的关系式。
以可持续条件下各个年龄组鳀鱼数量相同为约束条件,以捕捞的3、4龄鱼最大数量为目标函数建立最优化模型。
采用Lingo17.0对模型进行求解,得到年初1龄鱼的数量为1110195994.1⨯条,年初2龄鱼的数量为1010373946.5⨯条,年初3龄鱼的数量为1010414670.2⨯条,年初4龄鱼的数量为710395523.8⨯条,年收获量最大值为1110887536.3⨯克。
针对问题二,由模型I 得出年收获量是自然死亡率和捕捞强度系数的关系。
将捕捞强度系数赋一固定值,用Matlab 软件得出了在4龄鱼的捕捞强度系数为5的情况下,年收获量和自然死亡率成反向关系。
针对问题三,由前述得到的年收获量与自然死亡率和捕捞强度系数的关系,运用Matlab2016求解得到当4龄鱼的捕捞强度系数(k)以0.01为步长,从0到20分布时对应的F(k)的数值,并以k 的取值为横坐标,对应的F(k)为纵坐标,绘制捕获量F(m)随捕捞强度系数变化的曲线图,得出年收获量与捕捞强度系数成正向关系。
最后,本文从提高捕捞技术、保护鳀鱼苗种和生存环境、开发产业链等四个方面对鳀鱼资源的综合利用提出了建议。
关键词:年收获量最优化模型1问题重述和分析本题是最优化问题,此问涉及的各个变量为:每条1龄鱼、2龄鱼、3龄鱼、4龄鱼的平均重量分别是 5.1g、11.6g、17.9g、23.0g,自然死亡率为0.8,各个年龄组鳀鱼产卵量情况,产卵孵化期为每年后4月,3龄鱼和4龄鱼捕捞强度系数比为0.42:1,卵的存活率等。
【实验】数学建模实验报告最优捕鱼策略
【关键字】实验最优捕鱼策略一.实验目的:1、了解与熟练掌握常系数线性差分方程的解法;2、通过最优捕鱼策略建模案例,使用MA TLAB软件认识与掌握差分方程模型在实际生活方面的重要作用。
二.实验内容:(最优捕鱼策略)生态学表明,对可再生资源的开发策略应在事先可持续收获的前提下追求最大经济效益。
考虑具有4个年龄鱼:1龄鱼,… ,4龄鱼的某种鱼。
该鱼类在每年后4个月季节性集中产卵繁殖。
而据规定,捕捞作业只允许在前8个月进行,每年投入的捕捞能力固定不变,单位时间捕捞量与个年龄鱼群条数的比率称为捕捞强度系数。
使用只能捕捞3、4龄鱼的网眼的拉网,其两个捕捞强度系数比为0.42:1.渔业上称这种方式为固定力量捕捞。
该鱼群本身有如下数据:1.各年龄组鱼的自然死亡率为0.8(1/年),其平均质量分别为5.07,11.55,17.86,22.99(单位:g);2.1龄鱼和2龄鱼不产卵,产卵期间,平均每条4龄鱼产卵量为1.109ⅹ105(个),3龄鱼为其一半;3.卵孵化的成活率为1.22ⅹ1011/(1.22ⅹ1011 + n)(n为产卵总量);有如下问题需要解决:1)分析如何实现可持续捕获(即每年开始捕捞时各年龄组鱼群不变),并在此前提下得到最高收获量;2)合同要求某渔业公司在5年合同期满后鱼群的生产能力不能受到太大的破坏,承包时各年龄组鱼群数量为122,29.7,10.1,3.29(ⅹ109条),在固定努力量的捕捞方式下,问该公司应采取怎样的捕捞策略,才能使总收获量最高。
三. 模型建立假设a、鱼群总量的增加虽然是离散的,但对大规模鱼群而言,我们可以假设鱼群总量的变化随时间是连续的;b、龄鱼到来年分别长一岁成为i + 1龄鱼,i = 1,2,3;c、4龄鱼在年末留存的数量占全部数量的比率相对很小,可假设全部死亡。
d、连续捕获使各年龄组的鱼群数量呈周期性变化,周期为1年,可以只考虑鱼群数量在1年内的变化情况。
(且可设xi(t):在t时刻i龄鱼的条数,i = 1,2,3,4;n:每年的产卵量;k:4龄鱼捕捞强度系数;2ai0:每年初i龄鱼的数量,i = 1,2,3,4;)进而可建立模型如下:max(total(k))=17.86t∈[0,1],x1(0)= n ×t∈[0,1],x2(0)= x1(1)t∈[0,2/3],x3(0)= x2(1)s.t. t∈[2/3,1],x3(-)= x3(+)t∈[0,2/3],x4(0)= x3(1)t∈[2/3,1],x4(-)= x4(+)四. 模型求解(含经调试后正确的源程序)1.先建立一个buyu.m的M文件:function y=buyu(x);global a40 total k;syms k a10;x1=dsolve('Dx1=-0.8*x1','x1(0)=a10');t=1;a20=subs(x1);x2=dsolve('Dx2=-0.8*x2','x2(0)=a20');t=1;a30=subs(x2);x31=dsolve('Dx31=-(0.8+0.4*k)*x31','x31(0)=a30');t=2/3;a31=subs(x31);x32=dsolve('Dx32=-0.8*x32','x32(2/3)=a31');t=1;a40=subs(x32);x41=dsolve('Dx41=-(0.8+k)*x41','x41(0)=a40');t=2/3;a41=subs(x41);x42=dsolve('Dx42=-0.8*x42','x42(2/3)=a41');t=2/3;a31=subs(x31);nn=1.109*10^5*(0.5*a31+a41);Equ=a10-nn*1.22*10^11/(1.22*10^11+nn);S=solve(Equ,a10);a10=S(2,1);syms t;k=x;t3=subs(subs(int(0.42*k*x31,t,0,2/3)));t4=subs(subs(int(k*x41,t,0,2/3)));total=17.86*t3+22.99*t4;y=subs((-1)*total)2.再建立一个buyu1.m的M文件:global a10 a20 a30 a40 total;[k,mtotal]=fminbnd('buyu',0,20);ezplot(total,0,25);xlabel('');ylabel('');title('');format long;ktotal=-mtotal;a10=eval(a10)a20=eval(a20)a30=eval(a30)a40=eval(a40)format shortclear五.结果分析1.鱼总量与时间图:2.可以看出捕捞强度对收获量的影响:实验输出数据:y =-3.6757e+011y =-3.9616e+011y =-4.0483e+011y =-4.0782e+011y =-4.0802e+011y =-4.0805e+011y =-4.0805e+011y =-4.0805e+011y =-4.0805e+011y =-4.0805e+011y =-4.0805e+011y =y =-4.0667e+011k =18.25976795085083total =4.080548655562244e+011 a10 =1.195809275167686e+011a20 =5.373117428928620e+010a30 =2.414297288420686e+010a40 =8.330238542343275e+007则k=18.25976795085083时,最高年收获量为total=4.080548655562244×1011(克),此时每年年初1,2,3,4年龄组鱼的数量分别为:1.195809275167686×10115.373117428928620×10102.414297288420686×10108.330238542343275×107六.实验总结本次实验的目的是了解差分方程(递推关系)的建立及求解,以及掌握用差分方程(递推关系)来求解现实问题的方法。
数学建模养鱼问题
研究获得三年养鱼利润最优模型摘要在我们日常生活中,都有这么些相关的例子。
那么这里我们将基于求利润最优化的养鱼规划问题,根据鱼的存活空间有限,以及鱼本身的生长情况,可以假设鱼在长成成鱼后生长非常缓慢,近似为不生长,未成年鱼的生长模型为指数增长模型,得出鱼的增长函数,对于的价格进行预知,将利润的最大化问题着手于研究养鱼周期、捕鱼次数及每次捕鱼的重量,结合鱼的生长模型充分利用池塘空间,在合理假设条件下建立数学模型,并借助MATLAB软件编程计算,通过比较分析各模型的最优解,确定出三年获得较大利润的最优养鱼方案,为养殖户提供有用的参考。
关键字:Matlab 指数增长模型养鱼周期捕鱼次数捕鱼重量较大利润一、 问题重述设某地有一池塘,其水面面积约为100×1002m ,用来养殖某种鱼类。
在如下的假设下,设计能获取较大利润的三年的养鱼方案。
① 鱼的存活空间为1kg /2m ;② 每1kg 鱼每天需要的饲料为0.05kg ,市场上鱼饲料的价格为0.2元/kg ; ③ 鱼苗的价格忽略不计,每1kg 鱼苗大约有500条鱼;④ 鱼可四季生长,每天的生长重量与鱼的自重成正比,365天长为成鱼,成鱼的重量为2kg ;⑤池内鱼的繁殖与死亡均忽略; ⑥若q 为鱼重,则此种鱼的售价为:⎪⎪⎩⎪⎪⎨⎧≤≤<≤<≤<=25.1/105.175.0/875.02.0/62.0/0q kg q kg q kg q kgQ 元元元元⑦该池内只能投放鱼苗。
二、 模型假设(1)、养鱼者的经营模式为“放鱼苗喂饲料捕捞,销售全部捕捞”周期循环,每个周期只投放一次鱼苗。
(2)、在饲养过程中,不考虑意外灾害,如洪灾、旱灾,台风等等。
(3)、鱼可以一年四季生长,未成年鱼每天生长的重量与鱼的自重成正比。
(4)、鱼的繁殖和死亡均可以忽略。
(5)、捕捞鱼时采取承包不放水的方式。
(6)、每个周期分n 次捕捞销售,每相隔两次捕捞时间间隔相同,n>=2;且在捕捞时,部分鱼对其它鱼的生长不造成影响,捕出的鱼能全部按预定价格销售。
最优捕鱼策略-数学建模
西安邮电大学(理学院)数学建模报告最优捕鱼策略专业名称:信息与计算科学班级: 1302班学生姓名:张梦倩学号(8位): 07131057指导教师:支晓斌摘要为了保护人类赖以生存的自然环境,可再生资源(如渔业、林业资源)的开发必须适度。
本文实际上就是为了解决渔业上最优捕鱼策略问题,即在可持续捕捞的前提下,追求捕捞量的最大化。
问题一采用条件极值列方程组的方法求解,即1龄鱼的数量由3龄鱼和4龄鱼的产卵孵化而来;2,3龄鱼的数量分别由上一年1龄鱼,2龄鱼生长而来;4龄鱼由上一年的3龄鱼和上一年末存活的4龄鱼组成。
最后得到:只要每年1-8月份3、4龄鱼捕捞总量小于、,就可以实现总捕捞量最大为;对结果分析得到捕捞的对象主要是3龄鱼,当3龄与4龄鱼的捕捞系数发生变化时,总的捕捞量变化不大。
问题二给出年初各龄鱼的数量,要求在5年后鱼群的生产能力没有受到太大的破坏的前提下,使5年的总收获量最大,即在5年内鱼群能够可持续繁殖和生长。
本题以5年的总捕获量为目标函数,以5年后各龄鱼的数量没有发生太大的变化为条件,建立承包期总产量模型。
最终得到的捕捞策略如表1-1。
只要各年龄鱼每年的捕捞数量小于表1-1中的数量,就可以实现5年后鱼群的生产能力没有发生太大的变化。
一、问题重述为了保护人类赖以生存的自然环境,可再生资源(如渔业、林业资源)的开发必须适度。
一种合理、简化的策略是,在实现可持续收获的前提下,追求最大产量或最佳效益。
考虑对某种鱼(鲳鱼)的最优捕捞策略:假设这种鱼分4个年龄组:称1龄鱼,……,4龄鱼。
各年龄组每条鱼的平均重量分别为5.07,11.55,17.86,22.99(克);各年龄组鱼的自然死亡率均为0.8(1/年);这种鱼为季节性集中产卵繁殖,平均每条4龄鱼的产卵量为1.109×105(个);3龄鱼的产卵量为这个数的一半,2龄鱼和1龄鱼不产卵,产卵和孵化期为每年的最后4个月;卵孵化并成活为1龄鱼,成活率(1龄鱼条数与产卵总量n之比)为1.22×1011/(1.22×1011+n).渔业管理部门规定,每年只允许在产卵卵化期前的8个月内进行捕捞作业。
渔场鱼量最优化模型
景德镇陶瓷学院数学模型课程设计学院:信息工程学院班级:信息小组成员:捕鱼业的持续收获摘要 运用微分方程稳定性理论,建立渔场鱼量的自然生长服从种族增长规律Gompertz 模型的情况下,分析了鱼量稳定的条件,并且在稳定的前提下,使用图解法和微分法讨论如何控制捕捞使持续产量达到最大和经济效率达到最大并且研究捕捞过度问题。
最后,对模型的优缺点进行了讨论。
关键词:Gompertz 模型 稳定性 微分法 捕捞过度正文问题复述可持续发展是一项基本国策,对于像渔业、林业这样的再生资源,一定要适度开发,不能为了一时的高产去“涸泽而渔”,应该在持续稳产的前提下追求产量或利益最优化。
已知某渔场鱼量的自然生长服从种族增长规律Gompertz 模型:rxln xN,其中r 是固有增长率,N 是环境容许的最大鱼量。
产量模型一.模型假设1.假设鱼群的数量随时间连续地,甚至是可微地变化;2.假设鱼群生活在一个稳定的环境中,即其增长率与时间无关;3.种群的增长是种群个体死亡与繁殖共同作用的结果;4.资源有限的生存环境对种群的繁衍,生长有抑制作用,而且这一作用与鱼群的数量是成正比的;5.渔场鱼量的自然增长服从Gompertz 模型。
二.符号说明符号 含义X(t) 时刻t 渔场中的鱼量 r 固有增长率 N 坏境容许的最大鱼量 f(x) 单位时间的增长量 E 单位时间捕捞率 h(x) 单位时间的捕捞量 X 0 平衡点 X 1 平衡点 h m 最大持续产量E M 获得最大产量的捕捞强度 X 0*最大的持续产量此时的稳定平衡点三.模型建立1.在无捕捞条件下x(t)的增长服从Gompertz 规律,即x.(t)=f(x)=rxln x N(1)2.单位时间的捕捞量(即产量)与渔场鱼量x(t)成正比,捕捞强度为E ,可以用比如捕鱼肉眼的大小或出海渔船数量来控制其大小,于是单位时间的捕捞量为:h(x)=Ex. (2) 根据以上假设并记F(X)=f(x)-h(x) 得到捕捞情况下渔场鱼量满足x.(t)=F(X)= rxln x N- Ex (3)四.模型的求解令F(x)=0 得到两个平衡点X0=NeE r-,X1=0 (4)不难算出F '(x )=rln x N-r-E,所以F '(X0)=-r, F '(X1)=∞若Ne Er -(X0)=-r<0,即r>0 (5) 时X0点稳定,X1点不稳定 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
养鱼问题的最优模型
摘 要:本文是根据鱼本身的生长情况,求利润最大化的养鱼规划及解决养鱼问题的数学模型,并利用相关分析解决我们的养鱼问题。
利用线性回归、微分方程分析研究鱼苗的产值,来获取最佳综合效益。
关键词:养鱼模型 线性规划 最大利润 微分方程
一、问题重述
在某地有一个池塘,其水面面积约为100×1002m ,用来养殖某种鱼类。
在如下的假设下,设计能获取较大利润的三年的养鱼方案。
①鱼的存活空间为1kg /2m ;
②每1kg 鱼每天需要的饲料为0.05kg ,市场上鱼饲料的价格为0.2元/kg ;
③鱼苗的价格忽略不计,每1kg 鱼苗大约有500条鱼;
④鱼可四季生长,每天的生长重量与鱼的自重成正比,365天长为成鱼,成鱼的重量为2kg ;
⑤池内鱼的繁殖与死亡均忽略;
⑥若q 为鱼重,则此种鱼的售价为:
⎪⎪⎩⎪⎪⎨⎧≤≤<≤<≤<=2
5.1/105.175.0/875.02.0/62.0/0q kg q kg q kg q kg
Q 元元元元
⑦该池内只能投放鱼苗。
二、问题分析
要设计获得最大利润的养鱼方案,首先不考虑鱼的制约条件,如环境,由各种竞争导致的灭亡。
由鱼塘的面积、鱼的存活空间,每1kg 鱼每天需要的饲料,
以及鱼饲料的价格,分析鱼的价值取向来考虑和设计一个最佳的养鱼方案。
但是由于养鱼的复杂性,忽略部分影响养鱼的因素,并应用线性规划模型解决养鱼问题。
三、 模型假设
1、鱼塘只有鱼苗;
2、不考虑鱼的繁殖以及由生存环境、不受时间、季节的限制来构成的死亡因素;
3、鱼苗成鱼的过程服从生长系数。
4、放入的鱼苗不受个体差异的影响,都能按照题目所给的条件生长,同时放入的 鱼苗在相同的时间内都能长到同样大。
5、鱼可四季生长,每天的生长重量与鱼的自重成正比,365天长为成鱼,成鱼的重量为2kg ;
四、符号说明
以下为本文中使用的符号:
1 0q 最初放入的鱼的数量
2 k 鱼每天增重的比例
3 t 时间(第t 天)
4 )(t q 每条鱼在t 天下的重量
5 )(t C 每条鱼在养殖t 天的条件下需要的饲料费用
6 M 三年的收益总额
五、模型求解
根据池塘的容量,由鱼苗长成成鱼时的质量为2kg ,每条鱼的存活空间为1kg/m 2,则最初放入的鱼的数量为0q ,可由已知条件得到以下微分方程:
kq dt
t dq )
( (1)
kt
e q t q 0
)(= (2) 500
1
0=
q (3) 2)365(=q (4) 通过计算可以得出: 01983.0=k
故 :养殖t 天的条件下每条鱼的重量为)(t q ,则
01983
.0500
1)(e t q = (5)
根据已知条件计算出:;
2)365(;5.1)334(;
75.0)313(;2.0)243(====q q q q
每天每公斤鱼的成本:.01.02.005.0元=⨯
鱼的重量和养殖时间的关系表
我们知道,01983.0=k ,养殖t 天的条件下每条鱼的重量为)(t q :
⎪⎪⎩⎪⎪⎨⎧≤≤<≤<≤<=2
5.1/105.175.0/875.02.0/62.0/0q kg q kg q kg q kg
Q 元元元元
设养殖t 天的条件下每条鱼需要的饲料费用为)(t C
∑∑==+=⨯⨯+=t
i i t
i i
k k t C 1
1
)1(5000/12.005.0)1(500/1)( (6)
三种鱼的情况分析:
计算可得:每条鱼的平均利润为24.506667元。
如果把5000条鱼养进池塘,3年后鱼所获得的收益为:
24=
⨯
.
⨯(元)
51
5000
367650
3
六、模型评价
本文是根据原有假设,利用空间换取时间,结合实际情况,忽略部分次要因素,建立解决养鱼问题的数学模型。
由鱼塘中的鱼苗的数量,计算出鱼长成成鱼的后所得的利润,根据一年所得的利润,写此论文,我们理解了最优化模型的求解,也掌握了最优化问题MATLAB软件的使用。
通过数学建模的训练,能够掌握数学建模的思想,提高了计算机求解数学问题的能力,学会了理论联系实际,具体问题具体分析。
七、参考文献
[1]王向东等编,《数学实验》,高等教育出版社
[2]姜启源等编,《数学模型》,高等教育出版社
[3]数学工程学报2007。