全等三角形和三角形全等的条件一对一辅导讲义
《全等三角形》 讲义
《全等三角形》讲义一、全等三角形的定义能够完全重合的两个三角形叫做全等三角形。
两个全等的三角形,经过平移、翻转、旋转后,依然能够完全重合。
比如说,我们有两个三角形△ABC 和△DEF,如果将△ABC 放到△DEF 上,它们的三条边和三个角都能够一一对应且完全重合,那么我们就说△ABC 和△DEF 是全等三角形。
二、全等三角形的性质1、全等三角形的对应边相等这意味着,如果△ABC ≌△DEF,那么 AB = DE,BC = EF,AC = DF。
2、全等三角形的对应角相等例如,在上述两个全等三角形中,∠A =∠D,∠B =∠E,∠C =∠F。
3、全等三角形的周长相等因为全等三角形的对应边相等,所以它们的周长也必然相等。
4、全等三角形的面积相等由于两个三角形完全重合,所以它们所覆盖的面积也是相同的。
三、全等三角形的判定方法1、“边边边”(SSS)如果两个三角形的三条边分别对应相等,那么这两个三角形全等。
比如有△ABC 和△DEF,AB = DE,BC = EF,AC = DF,那么就可以判定△ABC ≌△DEF。
2、“边角边”(SAS)如果两个三角形的两条边及其夹角分别对应相等,那么这两个三角形全等。
假设在△ABC 和△DEF 中,AB = DE,AC = DF,∠A =∠D,那么△ABC ≌△DEF。
3、“角边角”(ASA)如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等。
比如,在△ABC 和△DEF 中,∠A =∠D,AB = DE,∠B =∠E,就可以得出△ABC ≌△DEF。
4、“角角边”(AAS)如果两个三角形的两个角和其中一个角的对边分别对应相等,那么这两个三角形全等。
例如,在△ABC 和△DEF 中,∠A =∠D,∠B =∠E,BC = EF,那么△ABC ≌△DEF。
5、“斜边、直角边”(HL)这是专门用于判定直角三角形全等的方法。
如果两个直角三角形的斜边和一条直角边分别对应相等,那么这两个直角三角形全等。
一对一讲义全等三角形
学海教育一对一个性化辅导讲义学员姓名 学校年级及科目教师课 题 全等三角形的概念、性质及判定授课时间:教学目标1知道什么是全等三角形 2会判定两个三角形是否全等 3会运用全等三角形的性质【基础知识梳理】一、全等三角形1.定义:能够完全重合的两个三角形叫做全等三角形。
2.全等三角形的性质①全等三角形的对应边相等、对应角相等。
②全等三角形的周长相等、面积相等。
③全等三角形的对应边上的对应中线、角平分线、高线分别相等。
3.全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS ”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS ”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA ”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS ”)斜边、直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL ”) 4.证明两个三角形全等的基本思路:方法指引证明两个三角形全等的基本思路:(1):已知两边----找第三边(SSS )找夹角(SAS )(2):已知一边一角---已知一边和它的邻角找是否有直角(HL )已知一边和它的对角找这边的另一个邻角(ASA )找这个角的另一个边(SAS)找这边的对角(AAS )找一角(AAS )已知角是直角,找一边(HL )(3):已知两角---找两角的夹边(ASA)找夹边外的任意边(AAS )练习二、角的平分线:1.(性质)角的平分线上的点到角的两边的距离相等 2.(判定)角的内部到角的两边的距离相等的点在角的平分线上 三、学习全等三角形应注意以下几个问题:1.要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;2.表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;3.有三个角对应相等或有两边及其中一边的对角对应相等的两个三角形不一定全等; 4.时刻注意图形中的隐含条件,如 “公共角” 、“公共边”、“对顶角”【基础自测】1.下列说法中,正确的有( )①正方形都是全等形;②等边三角形都是全等形;③形状相同的图形是全等形;④大小相同的图形是全等形;⑤能够完全重合的图形是全等形。
三角形全等_基础篇_1对1教案_原创高质量
教学目标1、了解三角形全等的各种性质。
2、深刻理解三角形全等判定方法。
3、初步了解尺规作图。
教学重点全等三角形判定教学难点全等三角形判定教学过程知识点一:全等三角形的性质1、观察下列几组图形:(1)(2)(3)(4)(5)说出每组图形中上、下两个图形的异同之处2、全等图形的定义:形状与大小都完全相同的两个图形就是即:能够完全重合的两个图形叫做全等形.3、推得出全等三角形的概念:对应角:、对应边:。
“全等”符号:读作“全等于”例如:三角形ABC全等于三角形DEF,用式子表示为______________4、将△ABC沿直线BC平移得△DEF;将△ABC沿BC翻折180°得到△DBC;将△ABC 旋转180°得△AED.甲DCABFE 乙DCAB丙DCABE议一议:各图中的两个三角形全等吗?不难得出: ≌△DEF ,△ABC ≌ ,△ABC ≌ . 注:书写时对应顶点字母写在对应的位置上。
结论:一个图形经过平移、翻折、旋转后,位置变化了,•但 、 都没有改变,所以平移、翻折、旋转前后的图形5、例1:如图,已知△ABE ≌△ACD ,∠ADE=∠AED ,∠B=∠C ,•指出其他的对应边和对应角.DCABE6、练习1:(1)、如下图△ABC ≌△DFE,∠A 的对应角是∠D,∠B 的对应角∠F,则∠C 与____是对应角;AB 与_____是对应边, BC 与_____是对应边, AC 与____是对应边.(2)、如下图,ABD ≌△ACD ,则∠BAD 的对应角是 ,∠ABD 的对应角是 ,∠ADB 的对应角是 ,AB 与_____是对应边, BD 与_____是对应边,AD 与____是对应边.BACD(3)你能否直接从记作∆ABC ≌ ∆DEF 中判断出所有的对应顶点、对应边和对应角?8、全等三角形的性质:全等三角形的对应边、对应角相等。
9、例2:(1)、如图,△OCA ≌△OBD ,C 和B ,A 和D 是对应顶点,•说出这两个三角形中相等的边和角.D CABO(2)、已知:△ABC ≌△DFE ,∠A=96°,∠B=25°,DF=10cm .求∠E 的度数及AB 的长.10、练习2:(1)、如图1,若△ABC ≌△EFC,且CF=3cm,∠EFC=64°,则BC=__ ___cm,∠B=__ _.BA EF CBAECD图1 图2(2)、如图2,BE ⊥AC,垂足为D,且AD=CD,BD=ED,若∠ABC=54°,则∠E 等于( ) A.25° B.27° C.30° D.45°(3)如图,已知CD ⊥AB 于D ,BE ⊥AC 于E ,△ABE ≌△ACD ,∠C= 20°,AB=10,AD= 4, G 为AB 延长线上一点.求∠EBG 的度数和CE 的长.知识点二:全等三角形判定一、全等三角形判定定理:1、三组对应边分别相等的两个三角形全等(SSS)在△ABC和△DEF中AB=DEBC=EFCA=FD∴△ABC ≌△DEF(SSS)2、有两边及其夹角对应相等的两个三角形全等(SAS)在△ABC与△DEF中AC=DF∠C=∠FBC=EF∴△ABC≌△DEF(SAS)3、有两角及其夹边对应相等的两个三角形全等(ASA)在△ABC和△DEF中∠A=∠D (已知)AB=DE(已知)∠B=∠E(已知)∴△ABC≌△DEF(ASA)4、有两角及一角的对边对应相等的两个三角形全等(AAS) 在△ABC和△DFE中∠A=∠D ,∠C=∠FAB=DE∴△ABC≌△DFE(AAS)5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL)Rt△ABC和Rt△A′B′C′中AB=AB (直角边)BC = B′C′(斜边)∴Rt△ABC≌Rt△A′B′C′(HL)二、全等三角形的性质1、全等三角形的对应角_相等____2、全等三角形的对应边、对应中线、对应高、对应角平分线_相等__注意:1、斜边、直角边公理(HL)只能用于证明直角三角形的全等,对于其它三角形不适用。
八年级数学辅导讲义——全等三角形
八年级数学辅导讲义教学内容: 【基础知识回顾】知识点一:全等三角形的概念: .知识点二: 全等三角形的性质:(1) . (2) . 知识点三:判定两个三角形全等的方法.(1) (2) (3)(4) (5) (只对 来说) 知识点四:角平分线的性质及判定.(1)角平分线的性质: . (2)角平分线的判定: .(3)三角形三个内角平分线的性质: .ODCBAEDCBA【考点例析】考点一:考查全等三角形的性质定理及判定定理.例1 如图,AC 和BD 相交于点O ,BO =DO ,AO =CO , 则图中全等三角形共有多少对( )A 、1对B 、2对C 、3对D 、4对考点二:考查全等三角形与垂直平分线的应用.例2 如图所示,在ABC ∆中,AC AB =,BD 平分ABC ∠, AD BC BD ==,DE AB ⊥.(1)求A ∠的度数;(2)求证:AE BE =.考点三:全等三角形与等边三角形的综合运用.例3 已知ABC ∆和DEB ∆为等边三角形,点B D A 、、在同一直线上,如图1所示. (1)求证:AE DC =;(2)若AE BN CD BM ⊥⊥,,垂足分别为N M 、,如图2,求证:BMN ∆是等边三角形.例4 如图所示,ABC ∆为等边三角形,D 为BC 边上的一点,且AC DF AB DE ⊥⊥,,若AB C ∆的高为32,求DF DE +的值. 考点四:角平分线与全等三角形的综合运用.例5 如图所示,在ABC ∆中,AD 平分BAC ∠,B C ∠=∠2,求证:CD AC AB +=. 考点五:等腰三角形与全等三角形的综合运用.例 6 如图所示,ABC ∆为等腰三角形,AB AC =,点,D E 分别在AB 和AC 的延长线上,且BD CE =,DE 交BC 于点G ,求证:DG GE =.考点六:考查中线与全等三角形的综合运用.例7 如图所示,AD 是ABC ∆的中线,求证:AC AB AD +<2。
1-4 全等三角形概念及性质 讲义 2021-2022学年浙教版八年级数学上册
1.4全等三角形概念及性质知识点梳理1、全等图形(1)全等形的概念能够完全重合的两个图形叫做全等形.(2)全等三角形能够完全重合的两个三角形叫做全等三角形.(3)三角形全等的符号“全等”用符号“≌”表示.注意:在记两个三角形全等时,通常把对应顶点写在对应位置上.(4)对应顶点、对应边、对应角把两个全等三角形重合到一起,重合的顶点叫做对应顶点;重合的边叫做对应边;重合的角叫做对应角.2、全等三角形的性质(1)性质1:全等三角形的对应边相等性质2:全等三角形的对应角相等说明:①全等三角形的对应边上的高、中线以及对应角的平分线相等②全等三角形的周长相等,面积相等③平移、翻折、旋转前后的图形全等(2)关于全等三角形的性质应注意①全等三角形的性质是证明线段和角相等的理论依据,应用时要会找对应角和对应边.②要正确区分对应边与对边,对应角与对角的概念,一般地:对应边、对应角是对两个三角形而言,而对边、对角是对同一个三角形的边和角而言的,对边是指角的对边,对角是指边的对角.题型梳理题型一全等图形辨析及性质1.下列说法:①全等三角形的形状相同、大小相等②全等三角形的对应边相等、对应角相等③面积相等的两个三角形全等④全等三角形的周长相等其中正确的说法为()A.①②③④B.①②③C.②③④D.①②④2.小明学习了全等三角形后总结了以下结论:①全等三角形的形状相同、大小相等;②全等三角形的对应边相等、对应角相等;③面积相等的两个三角形是全等图形;④全等三角形的周长相等.其中正确的结论个数是()A.1B.2C.3D.43.下列说法正确的是()A.全等三角形是指形状相同的三角形B.全等三角形是指面积相等的两个三角形C.全等三角形的周长和面积相等D.所有等边三角形是全等三角形4.下列说法中正确的是()A.两个面积相等的图形,一定是全等图形B.两个等边三角形是全等图形C.两个全等图形的面积一定相等D.若两个图形周长相等,则它们一定是全等图形5.下列说法:①全等图形的形状相同、大小相等;②三边对应相等的两个三角形全等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等,其中正确的说法为()A.①②④B.①③④C.②③④D.①②③④6.下列各组的两个图形属于全等图形的是()A.B.C.D.7.如图,已知△ABC的六个元素,则下列甲、乙、丙三个三角形中和△ABC全等的图形是.8.我们知道能完全重合的图形叫做全等图形,因此,如果两个四边形能完全重合,那么这两个四边形全等,也就是说,当两个四边形的四个内角、四条边都分别对应相等时,这两个四边形全等.请借助三角形全等的知识,解决有关四边形全等的问题.如图,已知,四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,∠B=∠B′,∠C=∠C′,现在只需补充一个条件,就可得四边形ABCD≌四边形A′B′C′D′.下列四个条件:①∠A=∠A′;②∠D=∠D′;③AD=A′D′;④CD=C′D′(1)其中,符合要求的条件是.(直接写出编号)(2)选择(1)中的一个条件,证明四边形ABCD≌四边形A′B′C′D′.题型二全等三角形对应角相等1.已知图中的两个三角形全等,则∠1等于()A.72°B.60°C.50°D.58°2.如图,点E,F在线段BC上,△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,AF与DE交于点M,则∠DCE=()A.∠B B.∠A C.∠EMF D.∠AFB3.如图,△ACB≌△A′CB′,∠ACA′=30°,则∠BCB′的度数为()A.20°B.30°C.35°D.40°4.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()5.如图,△AOB≌△ADC,点B和点C是对应顶点,∠O=∠D=90°,记∠OAD=α,∠ABO=β,当BC∥OA时,α与β之间的数量关系为()A.α=βB.α=2βC.α+β=90°D.α+2β=180°6.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°7.如图,△ABC≌△A′B′C,∠ACB=90°,∠A′CB=20°,则∠BCB′的度数为()A.20°B.40°C.70°D.90°8.如图,已知△ABC≌△ADE,若∠B=40°,∠C=75°,则∠EAD的度数为()9.已知图中的两个三角形全等,则∠α度数是()A.50°B.58°C.60°D.72°10.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=.11.如图,D在BC边上,△ABC≌△ADE,∠EAC=40°,则∠B的度数为.12.已知:如图,△OAD≌△OBC,且∠O=70°,∠C=25°,则∠AEB=度.13.如图,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C=度.14.如图,若△OAD≌△OBC,且∠O=65°,∠C=20°,则∠OAD=度.15.如图,A、C、N三点在同一直线上,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,若△MNC≌△ABC,则∠BCM:∠BCN=.16.已知图中的两个三角形全等,则∠1等于度.17.如图,△ABC≌△ADE,且AE∥BD,∠BAD=130°,则∠BAC度数的值为.18.如图,已知△ABC≌△ADE,若∠A=60°,∠B=40°,则∠BED的大小为.19.如图,△ABC≌△ADE,BC的延长线分别交AD,DE于点F,G,且∠DAC=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.20.如图,在△ABC≌△DEC,点D在AB上,且AB∥CE,∠A=75°,求∠DCB的度数.题型三全等三角形对应边相等1.如图:若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A .2B .2.5C .3D .52.已知△ABC 的三边长分别为3,4,5,△DEF 的三边长分别为3,3x ﹣2,2x +1,若这两个三角形全等,则x 的值为( )A .2B .2或73C .73或32D .2或73或323.如图,△ABC ≌△DEF ,BC =7,EC =4,则CF 的长为( )A .2B .3C .5D .74.如图,已知△ABC ≌△ADE ,若AB =7,AC =3,则BE 的值为 .5.一个三角形的三边为2、5、x ,另一个三角形的三边为y 、2、6,若这两个三角形全等,则x +y = .6.已知△ABC 三边长分别为3,5,7,△DEF 三边长分别为3,3x ﹣2,2x ﹣1,若这两个三角形全等,则x 为 .7.一个三角形的三边为3、5、x ,另一个三角形的三边为y、3、6,若这两个三角形全等,则x﹣y=.8.如图,△ACF≌△ADE,AD=12,AE=5,求DF的长.题型五全等三角形性质综合运用1.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE2.如图,若△ABC≌△ADE,则下列结论中一定成立的是()A.AC=DE B.∠BAD=∠CAE C.AB=AE D.∠ABC=∠AED3.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论:其中正确的是()①AC=AF,②∠F AB=∠EAB,③EF=BC,④∠EAB=∠F AC,A.①②B.①③④C.①②③④D.①③4.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC5.如图,点D,E在△ABC的边BC上,△ABD≌△ACE,其中B,C为对应顶点,D,E 为对应顶点,下列结论不一定成立的是()A.AC=CD B.BE=CD C.∠ADE=∠AED D.∠BAE=∠CAD 6.如图,AB∥ED,CD=BF,若△ABC≌△EDF,则还需要补充的条件可以是()A.AC=EF B.BC=DF C.AB=DE D.∠B=∠E7.如图,△ABC≌△ADE,线段BC的延长线过点E,与线段AD交于点F,∠ACB=∠AED =105°,∠CAD=5°,∠B=50°,则∠DEF的度数.8.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,(1)当DE=8,BC=5时,线段AE的长为;(2)已知∠D=35°,∠C=60°,①求∠DBC的度数;②求∠AFD的度数.9.如图,△ABD≌△EBC,AB=3cm,BC=6cm,(1)求DE的长.(2)若A、B、C在一条直线上,则DB与AC垂直吗?为什么?10.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,若DE=10,BC=4,∠D=30°,∠C=70°.(1)求线段AE的长.(2)求∠DBC的度数.答案与解析题型一全等图形辨析及性质1.下列说法:①全等三角形的形状相同、大小相等②全等三角形的对应边相等、对应角相等③面积相等的两个三角形全等④全等三角形的周长相等其中正确的说法为()A.①②③④B.①②③C.②③④D.①②④【分析】根据全等三角形概念:能够完全重合的两个三角形叫做全等三角形可得答案.【解答】解:①全等三角形的形状相同、大小相等,说法正确;②全等三角形的对应边相等、对应角相等,说法正确;③面积相等的两个三角形全等,说法错误;④全等三角形的周长相等,说法正确;故选:D.2.小明学习了全等三角形后总结了以下结论:①全等三角形的形状相同、大小相等;②全等三角形的对应边相等、对应角相等;③面积相等的两个三角形是全等图形;④全等三角形的周长相等.其中正确的结论个数是()A.1B.2C.3D.4【分析】直接利用全等三角形的性质分别分析得出答案.【解答】解:①全等三角形的形状相同、大小相等,正确;②全等三角形的对应边相等、对应角相等,正确;③面积相等的两个三角形是全等图形,错误;④全等三角形的周长相等,正确.故选:C.3.下列说法正确的是()A.全等三角形是指形状相同的三角形B.全等三角形是指面积相等的两个三角形C.全等三角形的周长和面积相等D.所有等边三角形是全等三角形【分析】能够完全重合的两个图形叫做全等形.做题时严格按定义逐个验证.全等形的面积和周长相等.【解答】解:A、全等三角形不仅仅形状相同而且大小相同,错;B、全等三角形不仅仅面积相等而且要边、角完全相同,错;C、全等则重合,重合则周长与面积分别相等,则C正确.D、完全相同的等边三角形才是全等三角形,错.故选:C.4.下列说法中正确的是()A.两个面积相等的图形,一定是全等图形B.两个等边三角形是全等图形C.两个全等图形的面积一定相等D.若两个图形周长相等,则它们一定是全等图形【分析】依据全等图形的定义和性质进行判断即可.【解答】解:全等的两个图形的面积、周长均相等,但是周长、面积相等的两个图形不一定全等.故选:C.5.下列说法:①全等图形的形状相同、大小相等;②三边对应相等的两个三角形全等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等,其中正确的说法为()A.①②④B.①③④C.②③④D.①②③④【分析】根据全等形和全等三角形的概念知进行做题,对选项逐一进行验证,符合性质的是正确的,与性质、定义相矛盾的是错误的.【解答】解:由全等三角形的概念可知:全等的图形是完全重合的,所以①全等图形的形状相同、大小相等是正确的;重合则对应边、对应角是相等的,周长与面积也分别相等,所以①②③④都正确的.故选:D.6.下列各组的两个图形属于全等图形的是()A.B.C.D.【分析】根据全等形是能够完全重合的两个图形进行分析判断.【解答】解:A、两个图形能够完全重合,故本选项正确.B、圆内两条相交的线段不能完全重合,故本选项错误;C、两个正方形的边长不相等,不能完全重合,故本选项错误;D、两只眼睛下面的嘴巴不能完全重合,故本选项错误;故选:A.7.如图,已知△ABC的六个元素,则下列甲、乙、丙三个三角形中和△ABC全等的图形是乙、丙.【分析】甲不符合三角形全等的判断方法,乙可运用SAS判定全等,丙可运用AAS证明两个三角形全等.【解答】解:由图形可知,甲有一边一角,不能判断两三角形全等,乙有两边及其夹角,能判断两三角形全等,丙得出两角及其一角对边,能判断两三角形全等,根据全等三角形的判定得,乙丙正确.故答案为:乙、丙.8.我们知道能完全重合的图形叫做全等图形,因此,如果两个四边形能完全重合,那么这两个四边形全等,也就是说,当两个四边形的四个内角、四条边都分别对应相等时,这两个四边形全等.请借助三角形全等的知识,解决有关四边形全等的问题.如图,已知,四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,∠B=∠B′,∠C=∠C′,现在只需补充一个条件,就可得四边形ABCD≌四边形A′B′C′D′.下列四个条件:①∠A=∠A′;②∠D=∠D′;③AD=A′D′;④CD=C′D′(1)其中,符合要求的条件是 ①②④ .(直接写出编号)(2)选择(1)中的一个条件,证明四边形ABCD ≌四边形A ′B ′C ′D ′.【分析】(1)根据题意即可得到结论;(2)连接AC 、A ′C ′,根据全等三角形的判定和性质定理即可得到结论.【解答】解:(1)符合要求的条件是①②④,故答案为:①②④;(2)选④,证明:连接AC 、A ′C ′,在△ABC 与△A ′B ′C ′中,{AB =A′B′∠B =∠B′BC =B′C′,∴△ABC ≌△A ′B ′C ′(SAS ),∴AC =A ′C ′,∠ACB =∠A ′C ′B ′,∵∠BCD =∠B ′C ′D ′,∴∠BCD ﹣∠ACB =∠B ′C ′D ′﹣∠A ′C ′B ′,∴∠ACD =∠A ′C ′D ′,在△ACD 和△A ′C ′D 中,{AC =A′C′∠ACD =∠A′C′D′CD =C′D′,∴△ACD ≌△A ′C ′D ′(SAS ),∴∠D=∠D,∠DAC=∠D′A′C′,DA=D′A′,∴∠BAC+∠DAC=∠B′A′C′+∠D′A′C′,即∠BAD=∠B′A′D′,∴四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,AD=A′D′,DC=D′C′,∠B=∠B′,∠BCD=∠B′C′D′,∠D=∠D′,∠BAD=∠B′A′D′,∴四边形ABCD≌四边形A′B′C′D′.题型二全等三角形对应角相等1.已知图中的两个三角形全等,则∠1等于()A.72°B.60°C.50°D.58°【分析】根据三角形内角和定理求得∠2=58°;然后由全等三角形是性质得到∠1=∠2=58°.【解答】解:如图,由三角形内角和定理得到:∠2=180°﹣50°﹣72°=58°.∵图中的两个三角形全等,∴∠1=∠2=58°.故选:D.2.如图,点E,F在线段BC上,△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,AF与DE交于点M,则∠DCE=()A.∠B B.∠A C.∠EMF D.∠AFB【分析】由全等三角形的性质:对应角相等即可得到问题的选项.【解答】解:∵△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,∴∠DCE=∠B,故选:A.3.如图,△ACB≌△A′CB′,∠ACA′=30°,则∠BCB′的度数为()A.20°B.30°C.35°D.40°【分析】根据全等三角形的性质得到∠ACB=∠A′CB′,根据角的和差计算得到答案.【解答】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,∴∠ACB﹣∠A′CB=∠A′CB′﹣∠A′CB,即∠BCB′=∠ACA′,又∠ACA′=30°,∴∠BCB′=30°,故选:B.4.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.35°C.30°D.25°【分析】根据三角形的内角和定理列式求出∠BAC,再根据全等三角形对应角相等可得∠DAE=∠BAC,然后根据∠EAC=∠DAE﹣∠DAC代入数据进行计算即可得解.【解答】解:∵∠B=80°,∠C=30°,∴∠BAC=180°﹣80°﹣30°=70°,∵△ABC≌△ADE,∴∠DAE=∠BAC=70°,∴∠EAC=∠DAE﹣∠DAC,=70°﹣35°,=35°.故选:B.5.如图,△AOB≌△ADC,点B和点C是对应顶点,∠O=∠D=90°,记∠OAD=α,∠ABO=β,当BC∥OA时,α与β之间的数量关系为()A.α=βB.α=2βC.α+β=90°D.α+2β=180°【分析】根据全等三角形对应边相等可得AB=AC,全等三角形对应角相等可得∠BAO =∠CAD,然后求出∠BAC=α,再根据等腰三角形两底角相等求出∠ABC,然后根据两直线平行,同旁内角互补表示出∠OBC,整理即可.【解答】解:∵△AOB≌△ADC,∴AB=AC,∠BAO=∠CAD,∴∠BAC=∠OAD=α,在△ABC中,∠ABC=12(180°﹣α),∵BC∥OA,∴∠OBC=180°﹣∠O=180°﹣90°=90°,∴β+12(180°﹣α)=90°,整理得,α=2β.故选:B.6.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°【分析】本题根据全等三角形的性质并找清全等三角形的对应角即可.【解答】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,即∠ACA′+∠A′CB=∠B′CB+∠A′CB,∴∠ACA′=∠B′CB,又∠B′CB=30°∴∠ACA′=30°.故选:B.7.如图,△ABC≌△A′B′C,∠ACB=90°,∠A′CB=20°,则∠BCB′的度数为()A.20°B.40°C.70°D.90°【分析】根据全等三角形对应角相等,∠ACB=∠A′CB′,所以∠BCB′=∠BCB′,再根据角的和差关系代入数据计算即可.【解答】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,∴∠BCB′=∠A′CB′﹣∠A′CB=70°.故选:C.8.如图,已知△ABC≌△ADE,若∠B=40°,∠C=75°,则∠EAD的度数为()A.65°B.70°C.75°D.85°【分析】根据全等三角形的性质求出∠D和∠E,根据三角形内角和定理求出即可.【解答】解:∵△ABC≌△ADE,∠B=40°,∠C=75°,∴∠B=∠D=40°,∠E=∠C=75°,∴∠EAD=180°﹣∠D﹣∠E=65°,故选:A.9.已知图中的两个三角形全等,则∠α度数是()A.50°B.58°C.60°D.72°【分析】根据全等三角形对应角相等解答即可.【解答】解:∵两个三角形全等,∴α=50°.故选:A.10.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=120°.【分析】根据全等三角形的性质求出∠C的度数,根据三角形内角和定理计算即可.【解答】解:∵△ABC≌△A′B′C′,∴∠C=∠C′=24°,∴∠B=180°﹣∠A﹣∠C=120°,故答案为:120°.11.如图,D在BC边上,△ABC≌△ADE,∠EAC=40°,则∠B的度数为70°.【分析】根据全等三角形的性质得出AB=AD,∠BAC=∠DAE,求出∠BAD=∠EAC=40°,根据等腰三角形的性质得出∠B=∠ADB,即可求出答案.【解答】解:∵△ABC≌△ADE,∴AB=AD,∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC,∵∠EAC=40°,∴∠BAD=40°,∵AB=AD,∴∠B=∠ADB=12(180°﹣∠BAD)=70°,故答案为:70°.12.已知:如图,△OAD≌△OBC,且∠O=70°,∠C=25°,则∠AEB=120度.【分析】结合已知运用两三角形全等及一个角的外角等于另外两个内角的和,就可以得到∠CAE,然后又可以得到∠AEB.【解答】解:∵△OAD≌△OBC,∴∠D=∠C=25°,∴∠CAE=∠O+∠D=95°,∴∠AEB=∠C+∠CAE=25°+95°=120°.故填12013.如图,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C=30度.【分析】因为三个三角形为全等三角形,则对应边相等,从而得到∠C=∠CBD=∠DBA,再利用这三角之和为90°,求得∠C的度数.【解答】解:∵△ADB≌△EDB≌△EDC,∴∠ADB=∠EDB=∠EDC,∠DEC=∠DEB∠=A,又∵∠ADB+∠EDB+∠EDC=180°,∠DEB+∠DEC=180°∴∠EDC=60°,∠DEC=90°,在△DEC中,∠EDC=60°,∠DEC=90°∴∠C=30°.故答案为:30.14.如图,若△OAD≌△OBC,且∠O=65°,∠C=20°,则∠OAD=95度.【分析】运用全等求出∠D=∠C,再用三角形内角和即可求.【解答】解:∵△OAD≌△OBC,∴∠OAD=∠OBC;在△OBC中,∠O=65°,∠C=20°,∴∠OBC=180°﹣(65°+20°)=180°﹣85°=95°;∴∠OAD=∠OBC=95°.故答案为:95.15.如图,A、C、N三点在同一直线上,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,若△MNC≌△ABC,则∠BCM:∠BCN=1:4.【分析】根据三角形内角和定理分别求出∠A、∠ABC、∠ACB,根据全等三角形的性质、三角形的外角的性质计算即可.【解答】解:∵∠A:∠ABC:∠ACB=3:5:10,∠A+∠ABC+∠ACB=180°,∴∠A=30°,∠ABC=50°,∠ACB=100°,∵△MNC≌△ABC,∴∠N=∠ABC=50°,∠M=∠A=30°,∴∠MCA=∠M+∠N=80°,∴∠BCM=20°,∠BCN=80°,∴∠BCM:∠BCN=1:4,故答案为:1:4.16.已知图中的两个三角形全等,则∠1等于58度.【分析】利用三角形的内角和等于180°求出边b所对的角的度数,再根据全等三角形对应角相等解答.【解答】解:如图,∠2=180°﹣50°﹣72°=58°,∵两个三角形全等,∴∠1=∠2=58°.故答案为:58.17.如图,△ABC≌△ADE,且AE∥BD,∠BAD=130°,则∠BAC度数的值为25°.【分析】根据全等三角形的性质,可以得到AB=AD,∠BAC=∠DAE,从而可以得到∠ABD=∠ADB,再根据AE∥BD,∠BAD=130°,即可得到∠DAE的度数,从而可以得到∠BAC的度数.【解答】解:∵△ABC≌△ADE,∴AB=AD,∠BAC=∠DAE,∴∠ABD=∠ADB,∵∠BAD=130°,∴∠ABD=∠ADB=25°,∵AE∥BD,∴∠DAE=∠ADB,∴∠DAE=25°,∴∠BAC=25°,故答案为:25°.18.如图,已知△ABC≌△ADE,若∠A=60°,∠B=40°,则∠BED的大小为100°.【分析】根据全等三角形的对应角相等求出∠D,根据三角形的外角性质计算,得到答案.【解答】解:∵△ABC≌△ADE,∴∠D=∠B=40°,∴∠BED=∠A+∠D=60°+40°=100°,故答案为:100°.19.如图,△ABC≌△ADE,BC的延长线分别交AD,DE于点F,G,且∠DAC=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.【分析】先根据全等三角形的性质得∠BAC=∠DAE,由于∠DAE+∠CAD+∠BAC=120°,则可计算出∠BAC=55°,所以∠BAF=∠BAC+∠CAD=65°,根据三角形外角性质可得∠DFB=∠BAF+∠B=90°,∠DGB=65°.【解答】解:∵△ABC≌△ADE,∴∠BAC=∠DAE,∵∠EAB=120°,∴∠DAE+∠CAD+∠BAC=120°,∵∠CAD=10°,∴∠BAC=12(120°﹣10°)=55°,∴∠BAF=∠BAC+∠CAD=65°,∴∠DFB=∠BAF+∠B=65°+25°=90°;∵∠DFB=∠D+∠DGB,∴∠DGB=90°﹣25°=65°.20.如图,在△ABC≌△DEC,点D在AB上,且AB∥CE,∠A=75°,求∠DCB的度数.【分析】利用全等三角形的性质可得AC=CD,∠ACB=∠DCE,然后分别计算出∠ACD 和∠ADC的度数,进而可得答案.【解答】解:∵△ABC≌△DEC,∴AC=CD,∠ACB=∠DCE,∴∠A=∠ADC,∵∠A=75°,∴∠ADC=75°,∴∠ACD=180°﹣75°﹣75°=30°,∴∠ACB =30°, ∵AB ∥CE ,∴∠DCE =∠ADC =75°, ∴∠ACB =75°,∴∠DCB =75°﹣30°=45°. 题型三 全等三角形对应边相等1.如图:若△ABE ≌△ACF ,且AB =5,AE =2,则EC 的长为( )A .2B .2.5C .3D .5【分析】根据全等三角形性质求出AC ,即可求出答案. 【解答】解:∵△ABE ≌△ACF ,AB =5, ∴AC =AB =5, ∵AE =2,∴EC =AC ﹣AE =5﹣2=3, 故选:C .2.已知△ABC 的三边长分别为3,4,5,△DEF 的三边长分别为3,3x ﹣2,2x +1,若这两个三角形全等,则x 的值为( )A .2B .2或73C .73或32D .2或73或32【分析】首先根据全等三角形的性质即可得到结论.【解答】解:∵△ABC与△DEF全等,∴3+4+5=3+3x﹣2+2x+1,解得:x=2,故选:A.3.如图,△ABC≌△DEF,BC=7,EC=4,则CF的长为()A.2B.3C.5D.7【分析】利用全等三角形的性质可得EF=BC=7,再解即可.【解答】解:∵△ABC≌△DEF,∴EF=BC=7,∵EC=4,∴CF=3,故选:B.4.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为4.【分析】根据△ABC≌△ADE,得到AE=AC,由AB=7,AC=3,根据BE=AB﹣AE即可解答.【解答】解:∵△ABC≌△ADE,∴AE=AC,∵AB=7,AC=3,∴BE=AB﹣AE=AB﹣AC=7﹣3=4.故答案为:4.5.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=11.【分析】根据已知条件分清对应边,结合全的三角形的性质可得出答案.【解答】解:∵这两个三角形全等,两个三角形中都有2∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5∴x+y=11.故答案为:11.6.已知△ABC三边长分别为3,5,7,△DEF三边长分别为3,3x﹣2,2x﹣1,若这两个三角形全等,则x为3.【分析】直接利用全等三角形的性质周长相等,进而得出答案.【解答】解:∵△ABC三边长分别为3,5,7,△DEF三边长分别为3,3x﹣2,2x﹣1,这两个三角形全等,∴3+5+7=3+3x﹣2+2x﹣1,解得:x=3.故答案为:3.7.一个三角形的三边为3、5、x,另一个三角形的三边为y、3、6,若这两个三角形全等,则x﹣y=1.【分析】根据全等三角形的对应边相等分别求出x、y,计算即可.【解答】解:∵两个三角形全等,∴x=6,y=5,∴x﹣y=6﹣5=1,故答案为:1.8.如图,△ACF≌△ADE,AD=12,AE=5,求DF的长.【分析】直接利用全等三角形的性质得出AC=AD,进而得出答案.【解答】解:∵△ACF≌△ADE,AD=12,AE=5,∴AC=AD=12,AE=AF=5,∴DF=12﹣5=7.题型五全等三角形性质综合运用1.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE 【分析】根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选:D.2.如图,若△ABC≌△ADE,则下列结论中一定成立的是()A.AC=DE B.∠BAD=∠CAE C.AB=AE D.∠ABC=∠AED 【分析】根据全等三角形的性质即可得到结论.【解答】解:∵△ABC≌△ADE,∴AC=AE,AB=AD,∠ABC=∠ADE,∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE.故A,C,D选项错误,B选项正确,故选:B.3.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论:其中正确的是()①AC=AF,②∠F AB=∠EAB,③EF=BC,④∠EAB=∠F AC,A.①②B.①③④C.①②③④D.①③【分析】根据全等三角形的对应边相等,全等三角形的对应角相等可得AC=AF,EF=CB,∠EAF=∠BAC,再利用等式的性质可得∠EAB=∠F AC.【解答】解:∵△ABC≌△AEF,∴AC=AF,EF=CB,∠EAF=∠BAC,∴∠EAF﹣∠BAF=∠BAC﹣∠BAF,∴∠EAB=∠F AC,正确的是①③④,故选:B.4.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC【分析】根据全等三角形的性质得出对应角相等,对应边相等,推出两三角形面积相等,周长相等,再逐个判断即可.【解答】解:A、∵△ABD≌△CDB,∴△ABD和△CDB的面积相等,故本选项错误;B、∵△ABD≌△CDB,∴△ABD和△CDB的周长相等,故本选项错误;C、∵△ABD≌△CDB,∴∠A=∠C,∠ABD=∠CDB,∴∠A+∠ABD=∠C+∠CDB≠∠C+∠CBD,故本选项正确;D、∵△ABD≌△CDB,∴AD=BC,∠ADB=∠CBD,∴AD∥BC,故本选项错误;故选:C.5.如图,点D,E在△ABC的边BC上,△ABD≌△ACE,其中B,C为对应顶点,D,E 为对应顶点,下列结论不一定成立的是()A.AC=CD B.BE=CD C.∠ADE=∠AED D.∠BAE=∠CAD 【分析】根据全等三角形的对应边相等、对应角相等判断即可.【解答】解:∵△ABD≌△ACE,∴BD=CE,∴BE=CD,B成立,不符合题意;∠ADB=∠AEC,∴∠ADE=∠AED,C成立,不符合题意;∠BAD=∠CAE,∴∠BAE=∠CAD,D成立,不符合题意;AC不一定等于CD,A不成立,符合题意,故选:A.6.如图,AB∥ED,CD=BF,若△ABC≌△EDF,则还需要补充的条件可以是()A.AC=EF B.BC=DF C.AB=DE D.∠B=∠E【分析】因为AB∥ED,所以∠B=∠D,又因为CD=BF,则添加AB=DE后可根据SAS 判定△ABC≌△DEF.【解答】解:∵AB∥ED,∵∠B=∠D,∵CD=BF,CF=FC,∴BC=DF.在△ABC和△DEF中BC=DF,∠B=∠D,AB=DE,∴△ABC≌△DEF.故选:C.7.如图,△ABC≌△ADE,线段BC的延长线过点E,与线段AD交于点F,∠ACB=∠AED =105°,∠CAD=5°,∠B=50°,则∠DEF的度数30°.【分析】由△ACB的内角和定理求得∠CAB=25°;然后由全等三角形的对应角相等得到∠EAD=∠CAB=25°.则结合已知条件易求∠EAB的度数;最后利用△AEB的内角和是180度和图形来求∠DEF的度数.【解答】解:∵∠ACB=105°,∠B=50°,∴∠CAB=180°﹣∠B﹣∠ACB=180°﹣50°﹣105°=25°.又∵△ABC≌△ADE,∴∠EAD=∠CAB=25°.又∵∠EAB=∠EAD+∠CAD+∠CAB,∠CAD=5°,∴∠EAB=25°+5°+25°=55°,∴∠AEB=180°﹣∠EAB﹣∠B=180°﹣55°﹣50°=75°,∴∠DEF=∠AED﹣∠AEB=105°﹣75°=30°.故答案为:30°8.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,(1)当DE=8,BC=5时,线段AE的长为3;(2)已知∠D=35°,∠C=60°,①求∠DBC的度数;②求∠AFD的度数.【分析】(1)根据全等三角形的性质得出AB=DE=8,BE=BC=5,即可求出答案;(2)①根据全等三角形的性质得出∠A=∠D=35°,∠DBE=∠C=60°,根据三角形内角和定理求出∠ABC,即可得出答案;②根据三角形外角性质求出∠AEF,根据三角形外角性质求出∠AFD即可.【解答】解:(1)∵△ABC≌△DEB,DE=8,BC=5,∴AB=DE=8,BE=BC=5,∴AE=AB﹣BE=8﹣5=3,故答案为:3;(2)①∵△ABC≌△DEB∴∠A=∠D=35°,∠DBE=∠C=60°,∵∠A+∠ABC+∠C=180°,∴∠ABC=180°﹣∠A﹣∠C=85°,∴∠DBC=∠ABC﹣∠DBE=85°﹣60°=25°;②∵∠AEF是△DBE的外角,∴∠AEF=∠D+∠DBE=35°+60°=95°,∵∠AFD是△AEF的外角,∴∠AFD=∠A+∠AEF=35°+95°=130°.9.如图,△ABD≌△EBC,AB=3cm,BC=6cm,(1)求DE的长.(2)若A、B、C在一条直线上,则DB与AC垂直吗?为什么?【分析】(1)根据全等三角形对应边相等可得BD=BC=6cm,BE=AB=3cm,然后根据DE=BD﹣BE代入数据进行计算即可得解;(2)DB⊥AC.根据全等三角形对应角相等可得∠ABD=∠EBC,又A、B、C在一条直线上,根据平角的定义得出∠ABD+∠EBC=180°,所以∠ABD=∠EBC=90°,由垂直的定义即可得到DB⊥AC.【解答】解:(1)∵△ABD≌△EBC,∴BD=BC=6cm,BE=AB=3cm,∴DE=BD﹣BE=3cm;(2)DB⊥AC.理由如下:∵△ABD≌△EBC,∴∠ABD=∠EBC,又∵∠ABD+∠EBC=180°,∴∠ABD=∠EBC=90°,∴DB⊥AC.10.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,若DE=10,BC=4,∠D=30°,∠C=70°.(1)求线段AE的长.(2)求∠DBC的度数.【分析】(1)根据全等三角形的性质得到AB=DE=10,BE=BC=4,结合图形计算,得到答案;(2)根据全等三角形的性质得到∠BAC=∠D=30°,∠DBE=∠C=70°,根据三角形内角和定理求出∠ABC,计算即可.【解答】解:(1)∵△ABC≌△DEB,DE=10,BC=4,∴AB=DE=10,BE=BC=4,∴AE=AB﹣BE=6;(2)∵△ABC≌△DEB,∠D=30°,∠C=70°,∴∠BAC=∠D=30°,∠DBE=∠C=70°,∴∠ABC=180°﹣30°﹣70°=80°,∴∠DBC=∠ABC﹣∠DBE=10°.。
初三中考第一轮复习全等三角形(一对一教案)
初三中考第⼀轮复习全等三⾓形(⼀对⼀教案)学科教师辅导讲义学员编号:年级:课时数:学员姓名:辅导科⽬:学科教师:授课类型T全等三⾓形判定 C 全等三⾓形的判定特点T 中考题型分析授课⽇期及时段教学内容⼀、同步知识梳理1.判定和性质⼀般三⾓形直⾓三⾓形判定边⾓边(SAS)、⾓边⾓(ASA)⾓⾓边(AAS)、边边边(SSS)具备⼀般三⾓形的判定⽅法斜边和⼀条直⾓边对应相等(HL)性质对应边相等,对应⾓相等对应中线相等,对应⾼相等,对应⾓平分线相等注:①判定两个三⾓形全等必须有⼀组边对应相等;②全等三⾓形⾯积相等.2.证题的思路:)找任意⼀边()找两⾓的夹边(已知两⾓)找夹已知边的另⼀⾓()找已知边的对⾓(找已知⾓的另⼀边(边为⾓的邻边)任意⾓(若边为⾓的对边,则找已知⼀边⼀⾓)找第三边()找直⾓()找夹⾓(已知两边AASASAASAAASSASAASSSSHLSAS⼆、同步题型分析题型1:边边边(SSS)的证明(.★.)例..1.:.已知:如图1,AD=BC.AC=BD.试证明:∠CAD=∠DBC.图1提⽰:证明△ABD≌△BAC,得到∠BAD=∠ABC,∠DBA=∠CAB,通过∠BAD—∠CAB=∠ABC—∠DBA,证明∠CAD=∠DBC。
题型2:边⾓边(SAS)的证明(.★.)例..1.:.已知:如图2,AB=AC,BE=CD.求证:∠B=∠C.图2提⽰:由....AB=AC,BE=CD,得到AD=AE,证明△ABD≌△ACE,得到∠B=∠C(.★.)例..2.:.已知:如图3,AB=AD,AC=AE,∠1=∠2.求证:BC=DE.图3提⽰:由....∠1=∠2,得到∠BAC=∠DAE,证明△BAC≌△DAE,得到BC=DE(.★★..3.:.如图4,将两个⼀⼤、⼀⼩的等腰直⾓三⾓尺拼接(A、B、D三点共线,AB=CB,EB=DB,..)例∠ABC=∠EBD=90°),连接AE、CD,试确定AE与CD的位置与数量关系,并证明你的结论.图4提⽰:延长..AB=CB,EB=DB,∠ABE=∠CBD=90°,证明△ABE≌△CBD,得到..F.,由.....AE..交.CD..于点AE=CD,∠EAB=∠DCB,再由∠CDB+∠DCB=90o,得到∠CEF+∠ECF=90°,证明AE⊥CD 题型3:⾓边⾓(ASA)、⾓⾓边(AAS)的证明(.★.)例..1.:.已知:如图5,AB ⊥AE ,AD ⊥AC ,∠E =∠B ,DE =CB .求证:AD =AC .图5提⽰:由....AB ⊥AE ,AD ⊥AC ,得到∠CAB =∠DAE ,根据∠E =∠B ,DE =CB ,证明△C AB≌△DAE ,得到AD =AC(.★★..)例..2.:.已知:如图6,在△MPN 中,H 是⾼MQ 和NR 的交点,且MQ =NQ .求证:HN =PM .图6提⽰:由....MQ 和NR 是△MPN 的⾼,得到∠MQP =∠NRP =90°,继⽽得到∠PMQ =∠PNR ,结合MQ =NQ ,证明△PMQ ≌△HNQ ,得到HN =PM(.★★..)例..3.:.阅读下题及⼀位同学的解答过程:如图7,AB 和CD 相交于点O ,且OA =OB ,∠A =∠C .那么△AOD 与△COB 全等吗?若全等,试写出证明过程;若不全等,请说明理由.答:△AOD ≌△COB .证明:在△AOD 和△COB 中,∠=∠=∠=∠),(),(),(对顶⾓相等已知已知COB AOD OB OA C A∴△AOD ≌△COB (ASA ).图7问:这位同学的回答及证明过程正确吗?为什么?提⽰:⼀定要找准对应边和对应⾓题型4、斜边和⼀条直⾓边对应相等(HL )(.★★..).已知:如图7,AC =BD ,AD ⊥AC ,BC ⊥BD .求证:AD =BC ;图7提.⽰:连接....DC ..,即可证明.....△ADC ≌△BCD三、课堂达标检测(★)检测题1:如图(1),点P 是AB 上任意⼀点,ABC ABD ∠=∠,还应补充⼀个条件,才能推出APC APD △≌△.从下列条件中补充⼀个条件,不⼀定能....推出APC APD △≌△的是()A .BC BD =B .AC AD = C .ACB ADB ∠=∠D .CAB DAB ∠=∠答案:B(★)检测题2:如图2,已知AD AB =,DAC BAE ∠=∠,要使 ABC △≌ADE △,可补充的条件是(写出⼀个即可).答案:AE=AC(★★)检测题3:如图,在△ABE 中,AB =AE,AD =AC,∠BAD =∠EAC, BC 、DE 交于点O.求证:(1) △ABC ≌△AED ; (2) OB =OE .图(3)CADP B图(1)A CEBD(2)BDA⼀、专题精讲(★★)题型⼀:全等三⾓形证明等量例1:2010四川宜宾,13(3),5分)如图,分别过点C、B作△ABC的BC边上的中线AD及其延长线的垂线,垂⾜分别为E、F.求证:BF=CE.提⽰:证明△CED≌△BFD题型⼆:全等三⾓形证明位置关系(★★)例2:如图所⽰,已知,AD为△ABC的⾼,E为AC上⼀点,BE交AD于F ,且有BF=AC,FD=CD.求证:BE⊥AC提⽰:证明△BDF≌△ADC题型三、构造全等证明结论(★★)例3:如图,已知E是正⽅形ABCD的边CD 的中点,点F在BC上,且∠DAE=∠FAE.求证:AF=AD+CFABDCEF提⽰:证明△DBA ≌△ECA(★★★)检测题2:△DAC, △EBC 均是等边三⾓形,AE,BD 分别与CD,CE 交于点M,N,求证:(1)AE=BD (2)CM=CN (3) △CMN 为等边三⾓形(4)MN ∥BC提⽰:(1)证明△ACE ≌△DCB (2)△ACM ≌△DCN 或△EMC ≌△BNC(★★★)检测题3:如图甲,在△ABC 中,∠ACB 为锐⾓.点D 为射线BC 上⼀动点,连接AD ,以AD 为⼀边且在AD 的右侧作正⽅形ADEF .解答下列问题:(1)如果AB=AC ,∠BAC=90o.①当点D 在线段BC 上时(与点B 不重合),如图⼄,线段CF 、BD 之间的位置关系为,数量关系为.②当点D 在线段BC 的延长线上时,如图丙,①中的结论是否仍然成⽴,为什么?D AMEAFFEAFA(2)如果AB≠AC,∠BAC≠90o,点D在线段BC上运动.试探究:当△ABC满⾜⼀个什么条件时,CF⊥BC(点C、F重合除外)?画出相应图形,并说明理由.(画图不写作法)提⽰:证明△ABD≌△ACF即可三、学法提炼1、专题特点:主要是了解全等三⾓形的运⽤特点,全等三⾓形的构造⽅法2、解题⽅法:主要是从全等三⾓形的四⼤条件⼊⼿(公共边、公共⾓、重合边、重合⾓),运⽤已知条件,达到全等证明3、注意事项:在条件运⽤中,⼀定要清楚条件所适⽤的判定,不能张冠李戴。
三角形及其全等 初三人教版数学讲义 一对一
星级 教学目标
教学重难点
授课日期及时段
三角形及其全等
年 级:初三 辅导科目:数学
课 时 数: 学科教师:
T—基础梳理
C—难点梳理
★
★★
1、三角形的相关概念及边角性质; 2、全等三角形的概念,性质及判定.
1、三角形的相关概念及边角性质;
2、全等三角形的概念,性质及判定.
小结
基础梳理
C—难点梳理
二、全等三角形
1、三角形全等的判定 三角形全等的判定定理: (1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”) (2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”) (3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。 直角三角形全等的判定: 对于特殊的直角三角形,判定它们全等时,还有 HL 定理(斜边、直角边定理):有斜边和一条直角边对 应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)
AD=DB,AE=EC,可得 DE∥BC,∠ADE=∠ABF=30°,所以 AF= 1 AB=4,由勾股定理可得 BF=4 3 .故选 D. 2
3
9、(2015 湖南常德,15,3 分)如图,在△ABC 中, B 40 ,三角形 ABC 的外角 DAC和ACF 的平分线 交于点 E,则 AEC 70 度.
长是( D )
A.5
B.7
C.8
D.10
8、(2016 辽宁葫芦岛第 9 题)如图,在△ABC 中,点 D,E 分别是边 AB,AC 的中点,AF⊥BC,垂足为点 F,∠ ADE=30°,DF=4,则 BF 的长为( )
《全等三角形》讲义(完整版)
全等三角形讲义一、知识点总结全等三角形定义:形状大小相同,并且能够完全重合的两个三角形叫做全等形三角形。
补充说明:重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等 全等三角形判定定理:(1)边边边定理:三边对应相等的两个三角形全等。
(简称SSS ) (2)边角边定理:两边和它们的夹角对应相等的两个三角形全等。
(简称SAS) (3)角边角定理:两角和它们的夹边对应相等的两个三角形全等。
(简称ASA ) (4)角角边定理:两个角和其中一个角的对边对应相等的两个三角形全等。
(简称AAS ) (5)斜边、直角边定理:斜边和一条直角边对应相等的两个直角三角形全等。
(简称HL ) 角平分线的性质:在角平分线上的点到角的两边的距离相等.∵OP 平分∠AOB ,PM ⊥OA 于M ,PN ⊥OB 于N , ∴PM=PN角平分线的判定:到角的两边距离相等的点在角的平分线上.∵PM ⊥OA 于M ,PN ⊥OB 于N ,PM=PN ∴OP 平分∠AOB三角形的角平分线的性质:三角形三个内角的平分线交于一点,并且这一点到三边的距离等。
二、典型例题举例A BC PMNO A BC PMNO例1、如图,△ABN ≌△ACM,∠B 和∠C 是对应角,AB 与AC 是对应边,写出其他对应边和对应角.例2、如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架.求证:△ABD ≌△ACD .例3、已知:点A 、F 、E 、C 在同一条直线上, AF =CE ,BE ∥DF ,BE =DF . 求证:△ABE ≌△CDF .例4、如图:D 在AB 上,E 在AC 上,AB =AC ,∠B =∠C .求证AD =AE .例5、如图:∠1=∠2,∠3=∠4 求证:AC=AD例6、如图,B 、E 、F 、C 在同一直线上,AF ⊥BC 于F ,DE ⊥BC 于E ,AB=DC ,BE=CF ,你认为AB 平行于CD 吗?说说你的理由D CB ACADB123 4例7、如图1,△ABC 的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,试判断△ABC 与△AEG 面积之间的关系,并说明理由.例8、如图,OC 是∠AOB 的平分线,P 是OC 上的一点,PD ⊥OA 交OA 于D ,PE ⊥OB 交OB 于E ,F 是OC 上的另一点,连接DF ,EF ,求证DF =EF例9、如图,△ABC 中,AD 是它的角平分线,P 是AD 上的一点,PE ∥AB 交BC 于E ,PF ∥AC 交BC 于F ,求证:D 到PE 的距离与D 到PF 的距离相等例10、如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 面积是282cm ,AB =20cm ,AC =8cm ,求DE 的长.AGF C BDE图1AEB DCFAB CDE D C EFBA 例10、已知:BE ⊥CD ,BE =DE ,BC =DA ,求证:① △BEC ≌△DAE ;②DF⊥BC .例11、如图,已知:E 是∠AOB 的平分线上一点,EC ⊥OB ,ED ⊥OA ,C ,D 是垂足,连接CD ,求证:(1)∠ECD=∠EDC ;(2)OD=OC ;(3)OE 是CD 的中垂线.三、专题版块专题一: 全等三角形的判定和性质的应用例1、如图,在△ABC 中,AB=AC , BAC=40°,分别以AB 、AC 为边作两个等腰三角形ABD 和ACE ,使∠BAD=∠CAE=90°.(1)求∠DBC 的度数.(2)求证:BD=CE.例2、如图,A B ∥CD,AF ∥DE,BE=CF,求证:AB=CD.例3、如图在△ABC 中,BE 、CF 分别是AC 、AB 边上的高,在BE 延长线上截取BM =AC ,在CF 延长线上截到CN =AB ,求证:AM =AN 。
全等三角形讲义
全等三角形讲义(总14页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--全等三角形一、知识点:1.全等形的定义2.全等三角形的定义3.对应顶点、对应边、对应角的定义4.全等三角形的性质二、重难点:1.全等三角形的概念2.对应顶点、对应边、对应角的定义3.全等三角形的性质三、考点全等三角形的性质一、全等形1. 叫做全等形。
全等用符号表示,读作2.两个图形是否为全等形,关键是看两个图形的是否相同,是否相等,而与图形所在的无关;判断两个图形是否是全等形,只要把它们在一起,看是否完全;一个图形经过、、等变换后,所得到的图形与原图形全等。
例题:1.下列说法不正确的是()A.形状相同的两个图形是全等形 B.大小不同的两个图形不是全等形C. 形状、大小都相同的两个图形是全等形D.能够完全重合的两个图形是全等形2.下列说法正确的是()A.面积相等的两个图形是全等图形 B.周长相等的两个图形是全等图形C. 形状相同的两个图形是全等图形D.能够重合的两个图形是全等图形二、全等三角形1. 叫做全等三角形2. 两个全等三角形重合在一起,重合的顶点叫做,重合的边叫做,重合的角叫做3.寻找对应因素的方法:①全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;②全等三角形对应边所对的角是对应角,两个对应边所夹的角是对应角;③全等三角形的公共角是对应角;④全等三角形的公共边是对应边;⑤全等三角形中的对顶角是对应角;⑥全等三角形中一对最长(短)的边是对应边,一对最大(小)的角是对应角例题:1.下面是两个全等的三角形,按下列图形的位置摆放,指出它们的对应顶点、对应边、对应角oO BCDCDABCDCBD2.将ABC ∆沿直线BC 平移,得到DEF ∆,说出你得到的结论,说明理由B AD3.如图,,ACD ABE ∆≅∆AB 与AC ,AD 与AE 是对应边,已知: 30,43=∠=∠B A ,求ADC ∠的大小。
全等三角形讲义整理讲义
全等三角形讲义整理讲义一、全等三角形的定义与判定条件1.1 定义全等三角形是指两个三角形的三边分别相等,三个角度也是完全相等的三角形。
1.2 判定条件两个三角形全等的条件有以下几点: - SSS(边边边):若两个三角形各边分别相等,则两个三角形全等。
- SAS(边角边):若两个三角形两边和夹角都相等,则两个三角形全等。
- ASA(角边角):若两个三角形的两角和一边相等,则两个三角形全等。
- RHS(直角斜边边):若两个直角三角形的斜边和一条直角边相等,则两个三角形全等。
二、全等三角形的性质2.1 全等三角形的对应角度和对应边长相等对于全等三角形,它的三个角度分别对应,三个边长也对应,也就是说:在全等三角形中,任意两个角度应相等,边长也是相等的。
2.2 全等三角形的任意一对对应边和对应角都相等对于全等三角形,若两个三角形是全等的,那么它们对应的任意一个角度和边长都是相等的。
2.3 全等三角形的对边平行对于全等三角形来说,如果我们将两个全等三角形重合,那么对应边就会重合,此时,它们的对边将会互相平行。
三、全等三角形的应用3.1 计算两个全等三角形之间的比例关系通过全等三角形的性质,我们可以计算出两个全等三角形之间的比例关系,这在解决一些类似于“影子问题”等数学题目时非常实用。
3.2 解决几何题目在解决几何题目时,有些问题常常需要使用到全等三角形的性质,例如,通过证明两个三角形全等,来计算出未知的边长或角度等。
四、常见误区4.1 认为两个形状相同的图形就是全等三角形形状相同的图形不一定是全等三角形,两个三角形只有在三边或者两边一角相等的情况下才能被认定为全等的。
4.2 认为两个三角形的相似一定就是全等的两个相似的三角形不一定是全等的三角形,相似三角形只是其中的边长成比例。
五、全等三角形是一种非常重要的基础概念,它的应用十分广泛,对于许多与求解边长、角度有关的几何题目都有很大的帮助,也对于对称性的研究、空间几何、画图以及设计等领域有着重要的意义。
全等三角形讲义知识点+典型例题(完美打印版)
BPAa【变式1】如图,在t R ABC △中,AB AC =,90BAC ∠=︒,过点A 的任一直线AN ,BD AN ⊥于D ,BD AN ⊥于E求证:DE BD CE =-NEDCBA【变式2】如图,在ABC △中,90ACB ∠=︒,AC BC =,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E ,求证:DE AD BE =+.EDCBA专题 三角形的尺规作图知识点解析作三角形的三种类型:① 已知两边及夹角作三角形: 作图依据------SAS ② 已知两角及夹边作三角形: 作图依据------ASA ③ 已知三边作三角形: 作图依据------SSS典型例题【例1】作一条线段等于已知线段。
已知:如图,线段a . 求作:线段AB ,使AB = a .【例2】作一个角等于已知角。
已知:如图,∠AOB 。
求作:∠A’O’B’,使A’O’B’=∠AOB【例3】已知三边作三角形已知:如图,线段a,b,c.求作:△ABC,使AB = c,AC = b,BC = a.作法:【例4】已知两边及夹角作三角形已知:如图,线段m,n, ∠α.求作:△ABC,使∠A=∠α,AB=m,AC=n.【例5】已知两角及夹边作三角形已知:如图,∠α,∠β,线段c .求作:△ABC,使∠A=∠α,∠B=∠β,AB=c.随堂练习1.根据已知条件作符合条件的三角形,在作图过程中主要依据是()A.用尺规作一条线段等于已知线段;B.用尺规作一个角等于已知角C.用尺规作一条线段等于已知线段和作一个角等于已知角;D.不能确定2.已知三角形的两边及其夹角,求作这个三角形时,第一步骤应为()A.作一条线段等于已知线段B.作一个角等于已知角C.作两条线段等于已知三角形的边,并使其夹角等于已知角D.先作一条线段等于已知线段或先作一个角等于已知角3.用尺规作一个直角三角形,使其两条直角边分别等于已知线段时,实际上就是已知的条件是()A.三角形的两条边和它们的夹角B.三角形的三条边C.三角形的两个角和它们的夹边;D.三角形的三个角4.已知三边作三角形时,用到所学知识是()A.作一个角等于已知角B.作一个角使它等于已知角的一半C.在射线上取一线段等于已知线段D.作一条直线的平行线或垂线专题利用三角形全等测距离知识点解析一、利用三角形全等测距离目的:变不可测距离为可测距离。
三角形全等的判定(讲义)
11.2 三角形全等的判定考点:全等三角形判定的五条性质⎪⎪⎪⎩⎪⎪⎪⎨⎧全等相等的两个直角三角形斜边和一条直角边对应角形全等对边对应相等的两个三两个角和其中一个角的相等的两个三角形全等两角和它们的夹边对应相等的两个三角形全等两边和它们的夹角对应角形全等三边对应相等的两个三HL AAS ASA SAS SSS 其中形全等对应相等,那么两三角对应相等,任意一组边归为一条:已知两组角⎩⎨⎧⎭⎬⎫AAS ASA 【典型题解】例1、如图,已知AB=CD,BC=AD,求证△ABC ≌△CDA.分析:已知两组边相等,很显然还差一组边或一组角就可以证明两个三角形全等。
当我们无法从现有的图形找出我们所需要的条件时,就应该很自然地想到借助辅助线。
作辅助线的意识是在几何的学习中尤为重要的。
证明:连接AC ,在△ABC 和△CDA 中,有⎪⎩⎪⎨⎧===CA AC DA BC CD AB△ABC ≌△CDA(SSS)例2:在△ABC 中,D 是BC 中点,且AD ⊥BC.求证△ABD ≌△ACD.证明: D 是BC 的中点∴BD=CD又AD ⊥BC∴∠ADC=∠ADB在△ABD 和△ACD 中⎪⎩⎪⎨⎧=∠=∠=AD AD ADB ADC CDBD∴△ABD ≌△ACD(SAS)例3:如图所示,D 在AB 上,E 在AC 上,AB=AC, ∠B=∠C.求证:AD=AE证明:在△ABE 和△ACD 中C O BD A D C B A (2) (1) ⎪⎩⎪⎨⎧=∠=∠∠=∠AC AB C B A A∴△ABE ≌△ACD(ASA)∴AD=AE例4:如图,AB ⊥BC, AD ⊥DC, ∠1=∠2.求证:AB=AD证明:在△ABC 和△ADC 中⎪⎩⎪⎨⎧=∠=∠∠=∠AC AC D B 21∴△ABC ≌△ADC(AAS)∴AB=AD例5:在∠AOB 的两边OA 和OB 上分别取OM=ON ,MC ⊥OA ,NC ⊥OB .MC 与NC 交于C 点.求证:∠MOC=∠NOC .证明:在Rt △MOC 和Rt △NOC 中⎩⎨⎧==OC OC ON OM ∴Rt △MOC ≌Rt △NOC(HL)∴∠MOC=∠NOC【举一反三】1. 如图(1),如果△AOC ≌ △BOD ,则对应边是 ,对应角是________; 如图(2),△ABC ≌ △CDA ,则对应边是 ,对应角是 。
全等三角形及三角形全等的条件一对一辅导讲义
课题全等三角形及三角形全等的条件1、掌握全等三角形对应边相等、对应角相等的性质,并能进行简单的推理计算。
教学目的2、理解并掌握三角形全等的判定定理,能准确找到判定定理的条件,并熟练运用。
教学内容一、课前检测1.如图(1),△ABC中,AB=AC,AD平分∠BAC,则__________≌__________.2.斜边和一锐角对应相等的两直角三角形全等的根据是__________,底边和腰相等的两个等腰三角形全等的根据是__________.3.已知△ABC≌△DEF,△DEF的周长为32 cm,DE=9 cm,EF=12 cm则AB=____________,BC=____________,AC=____________.图(1)图(2)图(3)4.如图(2),AC=BD,要使△ABC≌△DCB还需知道的一个条件是__________5.如图(3),若∠1=∠2,∠C=∠D,则△ADB≌__________,理由______________________.6.不能确定两个三角形全等的条件是()A.三边对应相等B.两边及其夹角相等C.两角和任一边对应相等D.三个角对应相等7·△ABC和△DEF中,AB=DE,∠A=∠D,若△ABC≌△DEF还需要()A.∠B=∠E B.∠C=∠F C.AC=DF D.前三种情况都可以8·在△ABC和△A′B′C′中①AB=A′B′②BC=B′C′③AC=A′C′④∠A=∠A′⑤∠B=∠B′⑥∠C=∠C′,则下列哪组条件不能保证△ABC≌△A′B′C′()A.具备①②④B.具备①②⑤C.具备①⑤⑥D.具备①②③参考答案:1.△ADB△ADC2.ASA(或AAS)SSS3.9 cm12 cm11 cm4.∠ACB=∠DBC或AB=CD 5.△ACB AA S 6·D 7·D 8·A二、知识梳理知识要点:要点1:全等三角形的概念及其性质(1)全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。
全等三角形的性质及判定(讲义及答案)
15. 已知:如图,点 D 在 AB 上,点 E 在 AC 上,AB=AC,∠B=∠C.
求证:△ADC≌△AEB. A
第 6 题图 第 7 题图
7. 如图,某同学把一块三角形的玻璃打碎成 3 块,现要到玻璃店去配一块完
全一样的玻璃,那么最省事的方法是( )
A.带①去 B.带②去 C.带③去 D.①②③都带去
C
第 11 题图 第 12 题图
12. 如图,点 B,E,C,F 在同一直线上,在△ABC 与△DEF 中,AB=DE,
2. _____________________的两个三角形叫做全等三角形,全等用符号
“_________”表示.全等三角形的__________相等,____________相等.
3. 全等三角形的判定定理:______________________________.
精讲精练
C
B
D
3. 如图,△ABC≌△DEC,对应边___________,__________,___________,
对应角_______________,_______________,
______________. A
D
知识点睛
1. 不在同一直线上,首尾顺次相接,△
2. 能够完全重合,≌,对应边,对应角
16. 已知:如图,AB=CD,AB∥CD.求证:△ABD≌△CDB.
A D
B C
A 2
B C
第 8 题图 第 9 题图
9. 如图,∠1=∠2,若加上一个条件_______________________,
O
B D
11. 如图,AB=AD,∠1=∠2,如果要使△ABC≌△ADE,还需要添加一个条
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题全等三角形及三角形全等的条件教学目的1、掌握全等三角形对应边相等、对应角相等的性质,并能进行简单的推理计算。
2、理解并掌握三角形全等的判定定理,能准确找到判定定理的条件,并熟练运用。
教学内容一、课前检测1.如图(1),△ABC中,AB=AC,AD平分∠BAC,则__________≌__________.2.斜边和一锐角对应相等的两直角三角形全等的根据是__________,底边和腰相等的两个等腰三角形全等的根据是__________.3.已知△ABC≌△DEF,△DEF的周长为32 cm,DE=9 cm,EF=12 cm则AB=____________,BC=____________,AC=____________.图(1)图(2)图(3)4.如图(2),AC=BD,要使△ABC≌△DCB还需知道的一个条件是__________ 5.如图(3),若∠1=∠2,∠C=∠D,则△ADB≌__________,理由______________________.6.不能确定两个三角形全等的条件是()A.三边对应相等B.两边及其夹角相等C.两角和任一边对应相等D.三个角对应相等7·△ABC和△DEF中,AB=DE,∠A=∠D,若△ABC≌△DEF还需要()A.∠B=∠E B.∠C=∠F C.AC=DF D.前三种情况都可以8·在△ABC和△A′B′C′中①AB=A′B′②BC=B′C′③AC=A′C′④∠A=∠A′⑤∠B=∠B′⑥∠C=∠C′,则下列哪组条件不能保证△ABC≌△A′B′C′()A.具备①②④B.具备①②⑤C.具备①⑤⑥D.具备①②③参考答案:1.△ADB△ADC2.ASA(或AAS)SSS3.9 cm 12 cm 11 cm 4.∠ACB=∠DBC或AB=CD5.△ACB AA S 6·D 7·D 8·A二、知识梳理知识要点:要点1:全等三角形的概念及其性质(1)全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。
(2)全等三角形性质:对应边相等、对应角相等、周长相等、面积相等要点2:全等三角形的判定(1)两边及夹角对应相等SAS;(2)两角及夹边对应相等ASA;(3)两角及其中一角的对边对应相等AAS;(4)三边对就应相等SSS。
要点3:找全等三角形的对应边,对应角的方法(1)若给出对应顶点即可找出对应边和对应角。
(2)若给出一些对应边或对应角,则按照对应边所对的角是对应角,反之,对应角所对的边是对应边就可找出其他几组对应边和对应角。
(3)按照两对对应边所夹的角是对应角,两对对应角所夹的边是对应边来准确找出对应角和对应边。
(4)一般情况下,在两个全等三角形中,公共边、公共角、对顶角等往往是对应边,对应角。
要点4:寻找两个三角形全等的途径(1)三角形全等的判定是这个单元的重点,也是平面几何的重点①有两组对应角相等时;找②有两组对应边相等时;找③有一边,一邻角相等时;找④有一边,一对角相等时;找任一组角相等(AAS)(2)利用两个三角形的公共边或公共角寻找对应关系,推得新的等量元素如图(一)中的AD,图(二)中的BC都是相应三角形的公共元素。
图(三)中如有BF=CE,利用公有的线段FC就可推出BC=EF。
图(四)中若有∠DAB=∠EAC,就能推出∠DAC=∠BAE。
三、例题讲解:例1. 如图,,,,A F E B 四点共线,AC CE ⊥,BD DF ⊥,AE BF =,AC BD =。
求证:ACF BDE ∆≅∆。
. 思路分析:从结论ACF BDE ∆≅∆入手,全等条件只有AC BD =;由AE BF =两边同时减去EF 得到AF BE =,又得到一个全等条件。
还缺少一个全等条件,可以是CF DE =,也可以是A B ∠=∠。
由条件AC CE ⊥,BD DF ⊥可得90ACE BDF ∠=∠=,再加上AE BF =,AC BD =,可以证明ACE BDF ∆≅∆,从而得到A B ∠=∠。
解答过程:AC CE ⊥,BD DF ⊥∴90ACE BDF ∠=∠=在Rt ACE ∆与Rt BDF ∆中AE BFAC BD=⎧⎨=⎩∴Rt ACE Rt BDF ∆≅∆(HL) ∴A B ∠=∠ AE BF =∴AE EF BF EF -=-,即AF BE = 在ACF ∆与BDE ∆中AF BE A B AC BD =⎧⎪∠=∠⎨⎪=⎩∴ACF BDE ∆≅∆(SAS)解题后的思考:本题的分析方法实际上是“两头凑”的思想方法:一方面从问题或结论入手,看还需要什么条件;另一方面从条件入手,看可以得出什么结论。
再对比“所需条件”和“得出结论”之间是否吻合或具有明显的联系,从而得出解题思路。
小结:本题不仅告诉我们如何去寻找全等三角形及其全等条件,而且告诉我们如何去分析一个题目,得出解题思路例2. 如图,在ABC ∆中,BE 是∠ABC 的平分线,AD BE ⊥,垂足为D 。
求证:21C∠=∠+∠。
思路分析:直接证明21C ∠=∠+∠比较困难,我们可以间接证明,即找到α∠,证明2α∠=∠且1C α∠=∠+∠。
也可以看成将2∠“转移”到α∠。
那么α∠在哪里呢?角的对称性提示我们将AD 延长交BC 于F ,则构造了△FBD,可以通过证明三角形全等来证明∠2=∠DFB,可以由三角形外角定理得∠DFB=∠1+∠C 。
解答过程:延长AD 交BC 于F 在ABD ∆与FBD ∆中90ABD FBD BD BDADB FDB ⎧∠=∠⎪=⎨⎪∠=∠=⎩ ∴ABD FBD ∆≅∆(ASA ∴2D FB ∠=∠ 又1DFB C ∠=∠+∠ ∴21C ∠=∠+∠。
解题后的思考:由于角是轴对称图形,所以我们可以利用翻折来构造或发现全等三角形。
例3. 如图,在ABC ∆中,AB BC =,90ABC ∠=。
F 为AB 延长线上一点,点E 在BC上,BE BF =,连接,AE EF 和CF 。
求证:AE CF =。
思路分析:可以利用全等三角形来证明这两条线段相等,关键是要找到这两个三角形。
以线段AE 为边的ABE ∆绕点B 顺时针旋转90到CBF ∆的位置,而线段CF 正好是CBF ∆的边,故只要证明它们全等即可。
解答过程:90ABC ∠=,F 为AB 延长线上一点 ∴90ABC CBF ∠=∠= 在ABE ∆与CBF ∆中AB BC ABC CBF BE BF =⎧⎪∠=∠⎨⎪=⎩∴ABE CBF ∆≅∆(SAS)∴AE CF=。
解题后的思考:利用旋转的观点,不但有利于寻找全等三角形,而且有利于找对应边和对应角。
小结:利用三角形全等证明线段或角相等是重要的方法,但有时不容易找到需证明的三角形。
这时我们就可以根据需要利用平移、翻折和旋转等图形变换的观点来寻找或利用辅助线构造全等三角形。
例4. 如图,D 是ABC ∆的边BC 上的点,且CD AB =,ADB BAD ∠=∠,AE 是ABD ∆的中线。
求证:2AC AE =。
思路分析:要证明“2AC AE =”,不妨构造出一条等于2AE 的线段,然后证其等于AC 。
因此,延长AE 至F ,使EF AE =。
解答过程:延长AE 至点F ,使EF AE =,连接DF 在ABE ∆与FDE ∆中AE FE AEB FED BE DE =⎧⎪∠=∠⎨⎪=⎩∴ABE FDE ∆≅∆(SAS)∴B EDF ∠=∠ADF ADB EDF ∠=∠+∠,ADC BAD B ∠=∠+∠又ADB BAD ∠=∠∴ADF ADC ∠=∠AB DF =,AB CD =∴DF DC =在ADF ∆与ADC ∆中AD AD ADF ADC DF DC =⎧⎪∠=∠⎨⎪=⎩∴ADF ADC ∆≅∆(SAS) ∴AF AC =又2AF AE =∴2AC AE =。
解题后的思考:三角形中倍长中线,可以构造全等三角形,继而得出一些线段和角相等,甚至可以证明两条直线平行。
四、课堂练习 一、选择题:1. 能使两个直角三角形全等的条件是( )A. 两直角边对应相等B. 一锐角对应相等C. 两锐角对应相等D. 斜边相等 2. 根据下列条件,能画出唯一ABC ∆的是( )A. 3AB =,4BC =,8CA =B. 4AB =,3BC =,30A ∠=C. 60C ∠=,45B ∠=,4AB =D. 90C ∠=,6AB =3. 如图,已知12∠=∠,AC AD =,增加下列条件:①AB AE =;②BC ED =;③C D ∠=∠;④B E ∠=∠。
其中能使ABC AED ∆≅∆的条件有( )A. 4个B. 3个C. 2个D. 1个(第3题) (第4题) (第5题) (第6题)4. 如图,已知AB CD =,BC AD =,23B ∠=,则D ∠等于( )A. 67B. 46C. 23D. 无法确定二、填空题:5. 如图,在ABC ∆中,90C ∠=,ABC ∠的平分线BD 交AC 于点D ,且:2:3CD AD =,10AC cm =,则点D 到AB 的距离等于__________cm ;6. 将一张正方形纸片按如图的方式折叠,,BC BD 为折痕,则CBD ∠的大小为_________;三、解答题:7. 如图,ABC ∆为等边三角形,点,M N 分别在,BC AC 上,且BM CN =,AM 与BN 交于Q 点。
求AQN ∠的度数。
8. 如图,90ACB ∠=,AC BC =,D 为AB 上一点,AE CD ⊥,BF CD ⊥,交CD 延长线于F 点。
求证:BF CE =。
9. 如图,已知AE ⊥AD ,AF ⊥AB ,AF=AB ,AE=AD=BC ,AD//BC.求证:(1)AC=EF ,(2)AC ⊥EF10. 已知:如图,在Rt △ABC 中,AB=AC ,∠BAC=90°,∠1=∠2,CE ⊥BD 的延长线于E.求证:BD=2CE.参考答案一、选择题:1. A2. C3. B4. C 二、填空题:5. 46. 90 三、解答题:7. 解:ABC ∆为等边三角形 ∴AB BC =,60ABC C ∠=∠= 在ABM ∆与BCN ∆中AB BC ABC C BM CN =⎧⎪∠=∠⎨⎪=⎩∴ABM BCN ∆≅∆(SAS)∴NBC BAM∠=∠∴60AQN ABQ BAM ABQ NBC ∠=∠+∠=∠+∠=。
8. 证明:AE CD ⊥,BF CD ⊥∴90F AEC ∠=∠=∴90ACE CAE ∠+∠= 90ACB ∠=∴90ACE BCF ∠+∠=∴CAE BCF ∠=∠在ACE ∆与CBF ∆中F AEC CAE BCF AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ACE CBF ∆≅∆(AAS) ∴BF CE =。