苏教版七年级上册数学知识点整理

合集下载

苏教版七年级上册数学第一单元知识点

苏教版七年级上册数学第一单元知识点

苏教版七年级上册数学第一单元知识点《有理数》知识点总结归纳正数和负数⒈正数和负数的概念负数:比0 小的数正数:比0 大的数0 既不是正数,也不是负数注意:①字母a 可以表示任意数,当a 表示正数时,-a 是负数;当 a 表示负数时,-a 是正数;当a 表示0 时,-a 仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a 就不能做出简单判断)②正数有时也可以在前面加“+”,有时“ +”省略不写。

所以省略“+”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8 ℃3.0 表示的意义⑴0 表示“ 没有”,如教室里有0 个人,就是说教室里没有人;⑵ 0 是正数和负数的分界线,0 既不是正数,也不是负数。

如:有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0 和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π 是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8?也是偶数,-1,-3,-5?也是奇数。

2. 有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数0正有理数负整数正分数有理数有理数0(0不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、0 统称为非负整数(也叫自然数)②负整数、0 统称为非正整数③正有理数、0 统称为非负有理数④负有理数、0 统称为非正有理数数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不1共8页可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。

苏教版初一上册知识点整理

苏教版初一上册知识点整理
【典型例题】
例1邮政编码由6个阿拉伯数字组成,它的前两位数表示省(自治区、直辖市),第三位数表示邮区代号,第四位数表示市(县)代号,最后两位数代表邮件投递局(所)代号。请你说出你学校所在地的邮政编码,并说出它的含义。
例2据广东省防总最新统计,2005年6月18日以来暴雨洪水灾害造成54人死亡和直接经济损失23.58亿元,大约有20万人的生活受到影响,而且各地水情、雨情、险情、灾情的威胁依然没有解除,可能要持续一个月。请推断:大约需要组织多少顶帐篷?多少千克救灾粮食?
知识点四:利用数轴处理简单实际问题
【典型例题】
例1已知A、B是数轴上的点。
(1)若点A表示-3,从点A出发,沿数轴移动4个单位长度到达B点,则B点表示的数是。
(2)若将点A向左移动3个单位长度,再向右移动5个单位长度,这时点A表示的数是0,那么点A原来表示的数是。
例2小明家、学校、书店在同一条笔直的东西走向大街。一天下午,小明从学校(记作O点)出发,向西走30m到了家里(记为A点),拿钱后从家向东走80m来到了书店(记作B点)买书,当他从书店出来向家走了65m时(记为C点)遇到了小红。
(3)0既不是正数,也不是负数。
【典型例题】
例1以下各数中,哪些是正数?哪些是负数?
5.8,46%,-,,0.2,-0.001.
例2有理数-7,10.1,-,80,0中,正数有,整数有,非负数有,正分数有。
知识点二:相反意义的量
基本知识:(1)相反意义的量可以用正数和负数来表示。如上升3m与下降2m可以表示成+3m与-2米;
例2长方形旧羊圈长70米,宽30米,想拆旧羊圈扩大面积,但没有多余的篱笆,怎么围可使面积更大?说说你的方法。
1.2活动思考
知识点一:根据图形寻找规律。

苏教版七年级数学上册基本知识点

苏教版七年级数学上册基本知识点

苏教版七年级数学学问点一、有理数1、正数:比0大的数是正数;2、负数:比0小的数是负数;3、0既不是正数也不是负数。

4、有理数包括整数和分数;整数包括正整数、0和负整数;分数包括正分数和负分数。

5、数轴:规定了原点、正方向和单位长度的直线叫做数轴,它包括三个方面:1)数轴的三要素:原点、正方向和单位长度,缺一不行。

2)数轴是一条直线,可以向两边无限延长。

3)原点的选定、正方向的取向、单位长度大小的确定都是依据须要“规定〞的。

6、数轴的画法1)画:画一条程度直线。

2)取:在直线上选取一点为原点,并在原点的下面标上“0〞。

3)定:确定正方向,画上箭头〔向右为正〕。

4)选:依据须要选取适当的长度作为单位长度。

依据须要从原点右向左选取各点。

7、数轴上的点及有理数的关系1)任何一个有理数都可以数轴的一个点来表示。

2)正数可以用原点右边的点表示,负数可以用原点左边的点表示,0用原点表示。

3)数轴上的点右边的点总比左边的点表示的数大(右边为数轴正方向)。

8、最小的正整数是“1〞;最大的负正数是“-1〞;没有最大的正整数,也没有最小的负整数。

9、肯定值的概念1)肯定值的几何意义:一个数a的肯定值就是数轴上表示a的点及原点的间隔,数a的肯定值记作“│a│〞。

2)肯定值的代数意义:一个正数的肯定值是它本身;一个负数的肯定值是它的相反数;0的肯定值是0.也就是说:假如a>0那么│a│=a;假如a< 0那么│a│=-a;假如a=0那么│a│=03) 肯定值的非负性:任何一个有理数的肯定值都不行能是一个负数,即非负数。

│a│≥04〕要求一个数〔或一个代数式〕的肯定值,首先应推断这个数〔或这个代数式的值〕是正数、0,还是负数。

再依据肯定值的意义确定去掉肯定值符号后的形式。

如:是正数,就等于它的本身;是负数,就等于它的相反数。

是0,就等于0。

5〕0是肯定值最小的有理数;肯定值等于同一正数的有理数有两个,它们互为相反数。

(完整版)苏教版七年级数学上册知识点(详细全面精华),推荐文档

(完整版)苏教版七年级数学上册知识点(详细全面精华),推荐文档

苏教版七年级数学上册知识点总结第一章有理数1.1 正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“ 没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

(3)0表示一个确切的量。

如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。

1.2 有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

3,整数也能化成分数,也是有理数注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数0 正有理数负整数正分数有理数有理数0(0不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数3.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。

苏教版七年级上册数学[角(基础)知识点整理及重点题型梳理]

苏教版七年级上册数学[角(基础)知识点整理及重点题型梳理]

苏教版七年级上册数学重难点突破知识点梳理及重点题型巩固练习角(基础)知识讲解【学习目标】1.掌握角的概念及角的表示方法,并能进行角度的换算及运算;2. 掌握借助三角尺或量角器画角的方法,并熟悉角大小的比较方法;3. 掌握角的和、差、倍、分关系,并会进行有关计算;5. 掌握余角、补角及对顶角的概念及性质,会用其性质进行有关计算;6.了解方位角、钟表上有关角,并能解决一些实际问题.【要点梳理】要点一、角的概念及表示1.角的定义:(1)定义一:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边.如图1所示,角的顶点是点O,边是射线OA、OB.图1 图2(2)定义二:角也可以看成是一条射线绕着它的端点旋转到另一个位置所成的图形,射线旋转时经过的平面部分是角的内部.如图2所示,射线OA绕它的端点O旋转到OB的位置时,形成的图形叫做角,起始位置OA是角的始边,终止位置OB是角的终边.要点诠释:(1)两条射线有公共端点,即角的顶点;角的边是射线;角的大小与角的两边的长短无关.(2)平角与周角:如图1所示射线OA绕点O旋转,当终止位置OB和起始位置OA成一条直线时,所形成的角叫做平角,如图2所示继续旋转,OB和OA重合时,所形成的角叫做周角.2.角的表示法:角的几何符号用“∠”表示,角的表示法通常有以下四种:要点诠释:在表示角时,要在靠近角的顶点处加上弧线,再注上相应数字或字母.3.角的画法(1)用三角板可以画出30°、45°、60°、90°等特殊角.(2)用量角器可以画出任意给定度数的角.(3)利用尺规作图可以画一个角等于已知角.要点二、角的比较与运算1.角度制及其换算角的度量单位是度、分、秒,把一个周角平均分成360等份,每一份就是1°的角,1°的160为1分,记作“1′”,1′的160为1秒,记作“1″”.这种以度、分、秒为单位的角的度量制,叫做角度制.1周角=360°,1平角=180°,1°=60′,1′=60″.要点诠释:在进行有关度分秒的计算时,要按级进行,即分别按度、分、秒计算,不够减,不够除的要借位,从高一位借的单位要化为低位的单位后再进行运算,在相乘或相加时,当低位得数大于60时要向高一位进位.2.角的比较:角的大小比较与线段的大小比较相类似,方法有两种.方法1:度量比较法.先用量角器量出角的度数,然后比较它们的大小.方法2:叠合比较法.把其中的一个角移到另一个角上作比较.如比较∠AOB和∠A′O′B′的大小:如下图,由图(1)可得∠AOB<∠A′O′B′;由图(2)可得∠AOB=∠A′O′B′;由图(3)可得∠AOB>∠A′O′B′.3.角的和、差关系如图所示,∠AOB是∠1与∠2的和,记作:∠AOB=∠1+∠2;∠1是∠AOB与∠2的差,记作:∠1=∠AOB-∠2.要点诠释:(1)用量角器量角和画角的一般步骤:①对中(角的顶点与量角器的中心对齐);②重合(一边与刻度尺上的零度线重合);③读数(读出另一边所在线的度数).(2) 利用三角板除了可以做出30°、45°、60°、90°外,根据角的和、差关系,还可以画出15°,75°,105°,120°,135°,150°,165°的角.4.角平分线从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线.如图所示,OC是∠AOB的角平分线,∠AOB=2∠AOC=2∠BOC,∠AOC=∠BOC =12∠AOB.要点诠释:由角平分线的概念产生的合情推理其思维框架与线段中点的思维框架一样.要点三、余角、补角、对顶角1.余角与补角(1)定义:一般地,如果两个角的和是一个直角,那么这两个角互为余角,简称互余,其中一个角叫做另一个角的余角.类似地,如果两个角的和是一个平角,那么这两个角互为补角,简称互补,其中一个角叫做另一个角的补角.(2)性质:同角(等角)的余角相等.同角(等角)的补角相等.要点诠释:(1)互余互补指的是两个角的数量关系,互余、互补的两个角只与它们的和有关,而与它们的位置无关.(2)一个锐角的补角比它的余角大90°.2.对顶角(1)定义:由两条直线相交构成的四个角中,有公共顶点没有公共边(相对)的两个角,互为对顶角.要点诠释:(1)对顶角满足的条件:①相等的两个角;②有公共顶点且一角的两边是另一角两边的反向延长线.(2)只有两条直线相交时,才能产生对顶角.两条直线相交时,除了产生对顶角外,还会产生邻补角,邻补角满足的条件:①有公共顶点;②有一条公共边,另一边互为反向延长线. (2)性质:对顶角相等.要点四、方位角在航行和测绘等工作中,经常要用到表示方向的角.例如,图中射线OA的方向是北偏东60°;射线OB的方向是南偏西30°.这里的“北偏东60°”和“南偏西30°”表示方向的角,就叫做方位角.要点诠释:(1)正东,正西,正南,正北4个方向不需要用角度来表示;(2)方位角必须以正北和正南方向作为“基准”,“北偏东60°”一般不说成“东偏北30°”;(3)在同一问题中观察点可能不止一个,在不同的观测点都要画出表示方向的“十字线”,确定其观察点的正东、正西、正南、正北的方向;(4)图中的点O是观测点,所有方向线(射线)都必须以O为端点.要点五、钟表上有关角问题钟表中共有12个大格,把周角12等分、每个大格对应30°的角,分针1分钟转6°,时针每小时转30°,时针1分钟转0.5°,利用这些关系,可帮助我们解决钟表中角度的计算问题.【典型例题】类型一、角的概念及表示1.下列语句正确的是 ( )A.两条直线相交,组成的图形叫做角.B.两条具有公共端点的线段组成的图形叫做角.C.两条具有公共端点的射线组成的图形叫做角.D.过同一点的两条射线组成的图形叫做角.【答案】C【解析】根据角的定义判断【总结升华】角不能仅仅看作是有公共端点的两条射线,角的两种描述中都隐含了组成角的一个重要元素,即两条射线间的相对位置关系,这是角与“有公共端点的两条射线”的重要区别.举一反三:【变式】写出图中(1)能用一个字母表示的角;(2)以B为顶点的角; (3)图中共有几个角(小于180°).【答案】解:(1)能用一个字母表示的角∠A、∠C.(2)以B为顶点的角∠ABE、∠ABC、∠CBE.(3)图中共有7个角.类型二、角度制的换算2. 把25.72°用度、分、秒表示; (2)把45°12′30″化成度(精确到百分位).【思路点拨】第(1)题中25.72°中含有两部分25°和0.72°,只要把0.72°化成分、秒即可.第(2)题中,45°12′30″含有三部分45°,12′和30″,其中45°已经是度,只要把12′和30″化成度即可.【答案与解析】解:(1)0.72°=0.72×60′=43.2′,0.2′=0.2×60″=12″,所以25.72°=25°43′12″.(2)130300.560'⎛⎫'''=⨯=⎪⎝⎭,112.512.50.2160⎛⎫'=⨯ ⎪⎝⎭°≈°所以45°12′30″≈45.21°.【总结升华】无论由高级单位向低级化还是由低级单位向高级化,都必须逐级进行,“越级”化单位容易出错.举一反三:【变式】 (1)把26.29°转化为度、分、秒表示的形式;(2)把33°24′36″转化成度表示的形式.【答案】 (1)26.29°=26°+0.29°=26°+0.29×60′=26°+17.4′=26°+17′+0.4×60″=26°17′+24″=26°17′24″(2)33°24′36″=33°+24′+36×160'⎛⎫⎪⎝⎭=33°+24′+0.6′=33°+24.6′=33°+24.6×160⎛⎫⎪⎝⎭°=33.41°【总结升华】在角度的和、差运算中应先统一单位,都化成度或分、秒表示,然后再进行计算.类型三、角的比较与运算3.不用量角器,比较图1和图2中角的大小.(用“>”连接)【思路点拨】图1中两角∠α、∠β均为锐角,因此,在不能测量的情形下,我们可以将图中的∠α向∠β平移,让∠α与∠β始边重合,观察终边的位置来比较角的大小.图2中的三个角按角的分类,∠1为锐角,∠2为直角,∠3为钝角,因此按照各自的范围就可以将它们的大小比较出来.【答案与解析】解:(1)如图所示,将∠α平移使∠α的始边与∠β的始边重合,发现∠α落在∠β内部,因此∠β>∠α.(2)由图可知∠1是锐角,∠1<90°,∠2是直角,即∠2=90°,∠3是钝角,即90°<∠3<180°,因此∠3>∠2>∠1.【总结升华】本例给出的两题是在不用量角器测量角的情况下比较角的大小,一种方法是叠合比较法,另外一种方法则是根据角的分类,由图形观察角的不同分类,按照常见的锐角<直角<钝角<平角<周角来比较大小.举一反三:【变式】已知∠AOB(如图所示),画一个角等于这个角.【答案】作法:如图,(1)以点O为圆心,适当长为半径画弧,分别交OA、OB于点C、D;(2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧l,交O′A′于点C′;(3)以点C′为圆心,CD长为半径画弧,交弧l于点D′;(4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.4. 如图所示,已知OC平分∠BOD,且∠BOC=20°,OB是∠AOD的平分线,求∠AOD的度数.【答案与解析】解:因为OC平分∠BOD,且∠BOC=20°,所以∠BOD=2∠BOC=2×20°=40°.又因为OB是∠AOD的平分线,所以∠AOD=2∠BOD=2×40°=80°.【总结升华】应用角的平分线的定义时根据两点:若OB是∠AOC的平分线,则①∠AOB=∠BOC=12∠AOC;②∠AOC=2∠AOB=2∠BOC,在解题时要学会灵活应用.【角 397364 角的有关计算例3】举一反三:【变式】已知:如图,OM是∠AOB的平分线,ON是∠BOC的平分线,∠AOC=80︒,求:∠MON.【答案】解:∵OM平分∠AOB,ON平分∠COB,∴∠MOB=12∠AOB,∠BON=12∠BOC.(角平分线的定义)∴∠MON=∠MOB+∠BON=12∠AOB+12∠BOC=12(∠AOB+∠BOC)=12∠AOC=12×80︒=40︒ .即∠MON=40︒.类型四、余角、补角、对顶角5.(2016春•曹县校级月考)一个角的补角比这个角的余角的2倍还多40°,求这个角的度数.【思路点拨】这类题目要先设出这个角的度数.设这个角为x°,分别写出它的余角和补角,根据题意写出等量关系,解之即可得到这个角的度数.【答案与解析】解:设这个角为x°,则其余角为(90﹣x)°,补角为(180﹣x)°,依题意有180﹣x=2(90﹣x)+40,解得x=40.答:这个角的度数是40°.【总结升华】本题考查了余角和补角,是基础题,列出方程是解题的关键.举一反三:【变式】(2015•崇左)下列各图中,∠1与∠2互为余角的是()A. B.C.D.【答案】C.解:四个选项中,只有选项C满足∠1+∠2=90°,即选项C中,∠1与∠2互为余角.类型五、方位角及钟表上有关角问题6.(2015•浦东新区三模)已知小岛A位于基地O的东南方向,货船B位于基地O的北偏东50°方向,那么∠AOB的度数等于.【答案】85°.【解析】解:如图:∵∠2=50°,∴∠3=40°,∵∠1=45°,∴∠AOB=∠1+∠3=45°+40°=85°,故答案为:85°.【总结升华】本题主要考查了方位角的概念,根据方位角的概念,画图正确表示出A,B的方位,注意东南方向是45度是解答此题的关键.7.计算: 4时15分时针与分针的夹角.【答案与解析】解法一:如下图,设4时15分时针与分针的夹角为∠α(注:夹角指小于180°的角),时针转过的角度为:30°×4+0.5°×15,分针转过的角度为:6°×15,所以∠α=30°×4+0.5°×15-6°×15=37.5°.解法二:如上图,∠AOC=30°×1=30°,∠BOC=0.5°×15=7.5°.所以∠AOB=37.5°.即4时15分时针与分针的夹角为37.5°.【总结升华】求钟表中时针与分针的夹角有两种方法:第一种方法利用时针与分针的每分钟转速求解,比如解法一;第二种方法直接根据图形求夹角,如解法二.。

苏教版七年级上册数学知识点总结

苏教版七年级上册数学知识点总结

七年级数学(上)知识点总结第一章数学与我们同行知识点1 数字与生活生活中我们所遇到的很多数字都蕴含着很多的数学问题,数学已成为人们表达与交流的工具。

例如,身份证号码、学生的学籍号、火车的列次等。

知识点2 图形与生活生活中充满了图形,多姿多彩的图形不仅美化了我们的生活,还包含着丰富的信息和数学知识。

知识点3 动手操作动手操作主要是让学生在实际操作的基础上设计相关的图形及制作相关图案。

这类题病根是培养学生的创新能力和实践能力。

动手操作包括折叠、裁剪、拼图等各种活动。

知识点4 找规律这类问题主要是通过一些数字或图形信息,寻求其内在的共同之处,也就是具有规律性的问题。

知识点5 统计知识在进行生产、生活和科学研究时,往往需要收集数据,并把数据加以分类、整理,需要求出数据的平均数,或者制成统计表、统计图,用来反应所了解的情况,这样的工作就是统计。

第二章有理数2.1正数与负数正数:大于零的数,正数前面可以放“+”来表示(通常省略不写)。

正数可分为正整数和正分数。

负数:小于零的数,负数前面放上“-”来表示。

负数可分为负整数和负分数。

注意:0既不是正数,也不是负数。

同时,0属于偶数、整数、非正数、非负数、非正整数、非负整数。

我们把正整数、零和负整数统称为整数,正分数、负分数统称分数。

2.2 有理数与无理数整数和分数统称为有理数。

我们把能够写成分数形式(m、n是整数,n≠0)的数叫做有理数。

实际上,有限小数和循环小数都可以化为分数,它们都是有理数。

无限不循环小数叫做无理数。

有理数有理数知识点提示: (1)有理数可按不同标准分类,标准不同,分类也不同。

(2)在分类时,要注意0的地位和意义。

(3)有理数的分类方法有很多,不论采取哪种分类方法,在对有理数分类时,都要做到不重不漏。

(4)习惯上,把正整数、0统称为非负整数(也叫自然数);把负整数、0统称为非正整数,正有理数、0统称为非负有理数,负有理数、0统称为非正有理数。

苏教版初一数学上册知识点

苏教版初一数学上册知识点

苏教版初一数学上册知识点苏教版初一数学上册知识点1普查:为了一定的目的而对考察对象进行的全面调查.总体:所要考察对象的全体称为总体个休:组成总体的每一个考察对象称为个体.抽样调查:从总体中抽取部分个体进行调查.样本:总体中抽取的一部分个体叫做总体的一个样本.样本容量:样本中个体的`数目.频数:每个对象出现的次数频率:每个对象出现的次数与总次数的比值苏教版初一数学上册知识点21定义在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴,并且对称轴用点画线表示;这时,我们也说这个图形关于这条直线对称。

比如说圆、正方形、等腰三角形、等边三角形、等腰梯形等。

2举例例如等腰三角形、正方形、等边三角形、等腰梯形和圆和正多边形都是轴对称图形.有的轴对称图形有不止一条对称轴,但轴对称图形最少有一条对称轴。

圆有无数条对称轴,都是经过圆心的直线。

要特别注意的是线段,它有两条对称轴,一条是这条线段所在的直线,另一条是这条线段的中垂线。

3性质1.对称轴是一条直线。

2.垂直并且平分一条线段的'直线称为这条线段的垂直平分线,或中垂线。

线段垂直平分线上的点到线段两端的距离相等。

3.在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等。

4.在轴对称图形中,沿对称轴将它对折,左右两边完全重合。

5.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线6.图形对称。

定理定理1:关于某条直线对称的两个图形是全等形。

定理2:如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线。

定理3:两个图形关于某条直线对称,如果对称轴和某两条对称线段的延长线相交,那么交点在对称轴上。

定理3的逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

生活作用1、为了美观,比如天安门,对称就显的美观漂亮;2、保持平衡,比如飞机的两翼;3、特殊工作的需要,比如五角星,剪纸苏教版初一数学上册知识点31.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;(2)有理数的分类:①②(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数0和正整数;a>0a是正数;a<0a是负数;a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)相反数的.和为0a+b=0a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:或;绝对值的问题经常分类讨论;(3);;(4)|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|,.5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;倒数是本身的数是±1;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.7.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an或(a-b)n=(b-a)n. 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a2是重要的非负数,即a2≥0;若a2+|b|=0a=0,b=0;(4)据规律底数的小数点移动一位,平方数的小数点移动二位.15.科学记数法:把一个大于10的数记成a某10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.苏教版初一数学上册知识点4一个整数a和一个非零整数b的比是有理数(rationalnumber)正数与负数像3,2,1。

苏教版初中数学七年级上册有理数知识点总结

苏教版初中数学七年级上册有理数知识点总结

苏教版初中数学七年级上册有理数知识点总结
1、有理数的概念
(1)正整数、0、负整数统称为整数(0和正整数统称为自然数)。

(2)正分数和负分数统称为分数。

(3)正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

2、理解:只有能化成分数的数才是有理数。

(1)π是无限不循环小数,不能写成分数形式,不是有理数。

(2)②有限小数和无限循环小数都可化成分数,都是有理数。

3、注意:
引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

4、有理数的分类
(1)按有理数的意义分类:
(2)按正、负来分类:
(3)总结:
①正整数、0统称为非负整数(也叫自然数)
②负整数、0统称为非正整数
③正有理数、0统称为非负有理数
④负有理数、0统称为非正有理数。

苏教版初一数学知识点

苏教版初一数学知识点

苏教版初一数学知识点苏教版初一数学知识点概述一、数与代数1. 有理数的认识- 正数、负数、整数、分数、小数、正有理数、负有理数、非负数 - 有理数的比较大小- 有理数的加法、减法、乘法、除法运算法则- 有理数的绝对值2. 整式的加减- 单项式的概念和表示- 多项式的概念和表示- 同类项和合并同类项- 去括号法则和添括号法则- 整式的加减运算3. 一元一次方程- 方程的概念- 一元一次方程的建立和解法- 方程解的检验4. 线性不等式和不等式组- 不等式的概念- 线性不等式的解法- 不等式组的解集求解二、几何1. 线段、射线、直线- 线段的性质和表示- 射线和直线的定义- 两点间的距离2. 角的初步认识- 角的定义- 角的表示方法- 角的分类:锐角、直角、钝角3. 平行线- 平行线的定义- 平行线的性质- 平行线的判定4. 三角形的初步认识- 三角形的定义和分类- 三角形的内角和外角- 三角形的边长关系5. 四边形的初步认识- 四边形的定义和分类- 矩形、正方形的性质和判定6. 圆的初步认识- 圆的定义和性质- 圆的直径、半径、弦、弧、切线 - 圆周角和圆心角的关系三、统计与概率1. 统计- 数据的收集和整理- 频数和频率的概念- 条形图、折线图、饼图的绘制和解读2. 概率- 随机事件的概念- 可能性的判断- 简单事件发生的可能性计算四、解题方法与技巧1. 列方程解应用题- 理解题意,找出等量关系- 建立方程或方程组- 求解方程,验证答案2. 几何证明题的解题步骤- 理解题意,画出图形- 找出已知条件和需要证明的结论- 按照逻辑顺序进行证明以上是苏教版初一数学的主要知识点概述。

在学习过程中,学生应该注重理解和掌握每个知识点的概念、性质和运算法则,并能够运用所学知识解决实际问题。

同时,培养良好的解题习惯和技巧,提高解题效率和准确率。

苏教版七年级上册数学[直线、射线、线段(基础)知识点整理及重点题型梳理]

苏教版七年级上册数学[直线、射线、线段(基础)知识点整理及重点题型梳理]

苏教版七年级上册数学重难点突破知识点梳理及重点题型巩固练习直线、射线、线段(基础)知识讲解【学习目标】1.理解直线、射线、线段的概念,掌握它们的区别和联系;2. 利用直线、线段的性质解决相关实际问题;3.利用线段的和差倍分解决相关计算问题.【要点梳理】要点一、直线1.概念:直线是最简单、最基本的几何图形之一,是一个不作定义的原始概念,直线常用“一根拉得紧的细线”、“一张纸的折痕”等实际事物进行形象描述.2. 表示方法:(1)可以用直线上的表示两个点的大写英文字母表示,如图1所示,可表示为直线AB(或直线BA).(2)也可以用一个小写英文字母表示,如图2所示,可以表示为直线l.3.基本性质:经过两点有一条直线,并且只有一条直线.简单说成:两点确定一条直线.要点诠释:直线的特征:(1)直线没有长短,向两方无限延伸.(2)直线没有粗细.(3)两点确定一条直线.(4)两条直线相交有唯一一个交点.4.点与直线的位置关系:(1)点在直线上,如图3所示,点A在直线m上,也可以说:直线m经过点A.(2)点在直线外,如图4,点B在直线n外,也可以说:直线n不经过点B.要点二、线段1.概念:直线上两点和它们之间的部分叫做线段.2.表示方法:(1)线段可用表示它两个端点的两个大写英文字母来表示,如图所示,记作:线段AB或线段BA.(2)线段也可用一个小写英文字母来表示,如图5所示,记作:线段a.3. “作一条线段等于已知线段”的两种方法:法一:用圆规作一条线段等于已知线段.例如:下图所示,用圆规在射线AC 上截取AB =a .法二:用刻度尺作一条线段等于已知线段.例如:可以先量出线段a 的长度,再画一条等于这个长度的线段.4.基本性质:两点的所有连线中,线段最短.简记为:两点之间,线段最短.如图6所示,在A ,B 两点所连的线中,线段AB 的长度是最短的.要点诠释:(1)线段是直的,它有两个端点,它的长度是有限的,可以度量,可以比较长短.(2)连接两点间的线段的长度,叫做这两点的距离.(3)线段的比较:①度量法:用刻度尺量出两条线段的长度,再比较长短.②叠合法:利用直尺和圆规把线段放在同一条直线上,使其中一个端点重合,另一个端点位于重合端点同侧,根据另一端点与重合端点的远近来比较长短.5.线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点.如图7所示,点C 是线段AB 的中点,则12AC CB AB ==,或AB =2AC =2BC .要点诠释:若点C 是线段AB 的中点,则点C 一定在线段AB 上.要点三、射线1.概念:直线上一点和它一侧的部分叫射线,这个点叫射线的端点.如图8所示,直线l 上点O 和它一旁的部分是一条射线,点O 是端点.l2.特征:是直的,有一个端点,不可以度量,不可以比较长短,无限长.3.表示方法:(1)可以用两个大写英文字母表示,其中一个是射线的端点,另一个是射线上除端点外的任意一点,端点写在前面,如图8所示,可记为射线OA .(2)也可以用一个小写英文字母表示,如图8所示,射线OA 可记为射线l . 要点诠释:(1)端点相同,而延伸方向不同,表示不同的射线.如图9中射线OA ,射线OB 是不同的射线.图6 图7图8(2)端点相同且延伸方向也相同的射线,表示同一条射线.如图10中射线OA 、射线OB 、射线OC 都表示同一条射线.要点四、直线、射线、线段的区别与联系1.直线、射线、线段之间的联系(1)射线和线段都是直线上的一部分,即整体与部分的关系.在直线上任取一点,则可将直线分成两条射线;在直线上取两点,则可将直线分为一条线段和四条射线.(2)将射线反向延伸就可得到直线;将线段一方延伸就得到射线;将线段向两方延伸就得到直线.2.三者的区别如下表要点诠释:(1) 联系与区别可表示如下:(2)在表示直线、射线与线段时,勿忘在字母的前面写上“直线”“射线”“线段”字样.【典型例题】类型一、相关概念1.下列说法中,正确的是( )A .射线OA 与射线AO 是同一条射线B .线段AB 与线段BA 是同一条线段C .过一点只能画一条直线D .三条直线两两相交,必有三个交点图9 图10【答案】B【解析】射线OA的端点是O,射线AO的端点是A,所以射线OA与射线AO不是同一条射线,故A错误;过一点能画无数条直线,所以C错误;三条直线两两相交,有三个交点或一个交点(三条直线相交于一点时),所以D错误;线段AB与线段BA是同一条线段,所以B正确.【总结升华】直线和线段用两个大写字母表示时,与字母的前后顺序无关,但射线必须是表示端点的字母写在前面,不能互换.举一反三:【变式1】以下说法中正确的是()A.延长线段AB到C B.延长射线ABC.直线AB的端点之一是A D.延长射线OA到C【答案】A【变式2】如图所示,请分别指出图中的线段、射线和直线的条数,并把它们分别表示出来.【答案】解:如下图所示,在直线上点A左侧和点C右侧分别任取点X和Y.图中有6条射线:射线AX、射线AY、射线BX、射线BY、射线CX、射线CY.有3条线段:线段AB(或BA)、线段BC(或CB)、线段AC(或CA)有1条直线:直线AC(或AB,BC).类型二、有关作图2.如图所示,线段a,b,且a>b.用圆规和直尺画线段:(1)a+b;(2)a-b.【答案与解析】解:(1) 画法如图(1),画直线AF,在直线AF上画线段AB=a,再在AB的延长线上画线段BC=b,线段AC就是a与b的和,记作AC=a+b.(2) 画法如图(2),画直线AF,在直线AF上画线段AB=a,再在线段AB上画线段BD=b,线段AD就是a与b的差,记作AD=a-b.【总结升华】在画线段时,为使结果更准确,一般用直尺画直线,用圆规量取线段的长度.举一反三:【变式1】如图,C是线段AB外一点,按要求画图:(1)画射线CB;(2)反向延长线段AB;(3)连接AC,并延长AC至点D,使CD=AC.【答案】解:【直线、射线、线段397363 按语句画图3(3)】【变式2】用直尺作图:P是直线a外一点,过点P有一条线段b与直线a不相交.【答案】解:类型三、有关条数及长度的计算3.如图,A、B、C、D为平面内任意三点都不在同一条直线上的四点,那么过其中两点,可画出条直线.【思路点拨】根据两点确定一条直线即可计算出直线的条数.【答案】6条直线【解析】由两点确定一条直线知,点A与B,C,D三点各确定一条直线,同理点B与C、D各确定一条直线,C 与D 确定一条直线,综上:共有直线:3+2+1=6(条).【总结升华】平面上有n 个点,其中任意三点不在一条直线上,则最多确定的直线条数为:(1)123...(1)2n n n -++++-=. 举一反三:【变式1】如图所示,已知线段AB 上有三个定点C 、D 、E .(1)图中共有几条线段?(2)如果在线段CD 上增加一点,则增加了几条线段?你能从中发现什么规律吗?【答案】解:(1)线段的条数:4+3+2+1=10(条);(2)如果在线段CD 上增加一点P ,则P 与其它五个点各组成一条线段,因此,增加了5条线段.(注解:若在线段AB 上增加一点,则增加2条线段,此时线段总条数为1+2;若再增加一点,则又增加了3条线段,此时线段总条数为1+2+3;…;当线段AB 上增加到n 个点(即增加n -2个点)时,线段的总条数为1+2+……+(n -1)=21n(n -1) .) 【变式2】)如图直线m 上有4个点A 、B 、C 、D ,则图中共有________条射线.【答案】84.(2016春•启东市月考)已知点C 在线段AB 上,线段AC=7cm ,BC=5cm ,点M 、N 分别是AC 、BC 的中点,求MN 的长度.【思路点拨】根据M 、N 分别为AC 、BC 的中点,根据AC 、BC 的长求出MC 与CN 的长,由MC+CN 求出MN 的长即可.【答案与解析】解:∵AC=7cm ,BC=5cm ,点M 、N 分别是AC 、BC 的中点,∴MC=AC=3.5cm ,CN=BC=2.5cm ,则MN=MC+CN=3.5+2.5=6(cm ).【总结升华】此题考查了线段的和差,熟练掌握线段中点定义是解本题的关键.【直线、射线、线段397363画图计算例2】举一反三:【变式】在直线l 上按指定方向依次取点A 、B 、C 、D ,且使AB :BC :CD=2:3:4,如图所示,若AB 的中点M 与CD 的中点N 的距离是15cm ,求AB 的长.【答案】解:依题意,设AB =2x cm ,那么BC =3x cm ,CD =4x cm .则有: MN=BM+BC+CN= x+3x+2x=15解得:52 x=所以AB=2x =5252⨯=cm.类型四、最短问题5.(2015•新疆)如图所示,某同学的家在A处,星期日他到书店去买书,想尽快赶到书店,请你帮助他选择一条最近的路线()A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B【答案】B.【解析】根据两点之间的线段最短,可得C、B两点之间的最短距离是线段CB的长度,所以想尽快赶到书店,一条最近的路线是:A→C→F→B.【总结升华】“两点之间线段最短”在实际生活中有广泛的应用,此类问题要与线段的性质联系起来,这里线段最短是指线段的长度最短,连接两点的线段的长度叫做两点间的距离,线段是图形,线段长度是数值.举一反三:【变式】 (1)如图1所示,把原来弯曲的河道改直,A、B两地间的河道长度有什么变化?(2)如图2,公园里设计了曲折迂回的桥,这样做对游人观赏湖面风光有什么影响?与修一座直的桥相比,这样做是否增加了游人在桥上行走的路程?说出上述问题中的道理.【答案】解:(1)河道的长度变小了.(2)由于“两点之间,线段最短”,这样做增加了游人在桥上行走的路程,有利于游人更好地观赏湖面风光,起到“休闲”的作用.。

初一数学上册苏教版知识点

初一数学上册苏教版知识点

初一数学上册苏教版知识点七年级数学知识点变量之间的关系一理论理解1、若Y随X的变化而变化,则X是自变量Y是因变量。

自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量,数值保持不变的量叫做常量。

3、若等腰三角形顶角是y,底角是x,那么y与x的关系式为y=180-2x.2、能确定变量之间的关系式:相关公式①路程=速度×时间②长方形周长=2×(长+宽)③梯形面积=(上底+下底)×高÷2④本息和=本金+利率×本金×时间。

⑤总价=单价×总量。

⑥平均速度=总路程÷总时间二、列表法:采用数表相结合的形式,运用表格可以表示两个变量之间的关系。

列表时要选取能代表自变量的一些数据,并按从小到大的顺序列出,再分别求出因变量的对应值。

列表法的特点是直观,可以直接从表中找出自变量与因变量的对应值,但缺点是具有局限性,只能表示因变量的一部分。

三.关系式法:关系式是利用数学式子来表示变量之间关系的等式,利用关系式,可以根据任何一个自变量的值求出相应的因变量的值,也可以已知因变量的值求出相应的自变量的值。

四、图像注意:a.认真理解图象的含义,注意选择一个能反映题意的图象;b.从横轴和纵轴的实际意义理解图象上特殊点的含义(坐标),特别是图像的起点、拐点、交点八、事物变化趋势的描述:对事物变化趋势的描述一般有两种:1.随着自变量x的逐渐增加(大),因变量y逐渐增加(大)(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而增加(大));2.随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小).注意:如果在整个过程中事物的变化趋势不一样,可以采用分段描述.例如在什么范围内随着自变量x的逐渐增加(大),因变量y逐渐增加(大)等等.九、估计(或者估算)对事物的估计(或者估算)有三种:1.利用事物的变化规律进行估计(或者估算).例如:自变量x每增加一定量,因变量y的变化情况;平均每次(年)的变化情况(平均每次的变化量=(尾数-首数)/次数或相差年数)等等;2.利用图象:首先根据若干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量y的值;3.利用关系式:首先求出关系式,然后直接代入求值即可.初一数学知识点一元一次方程的应用1.一元一次方程解应用题的类型(1)探索规律型问题;(2)数字问题;(3)销售问题(利润=售价﹣进价,利润率=利润进价×100%);(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);(5)行程问题(路程=速度×时间);(6)等值变换问题;(7)和,差,倍,分问题;(8)分配问题;(9)比赛积分问题;(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).2.利用方程解决实际问题的基本思路:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答。

苏教版初一上册数学知识点整理

苏教版初一上册数学知识点整理

《有理数》知识点总结归纳正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

如:有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数 0 正有理数负整数正分数有理数有理数 0 (0不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。

2.数轴上的点与有理数的关系⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

苏教版七年级上册数学[数轴 知识点整理及重点题型梳理]

苏教版七年级上册数学[数轴  知识点整理及重点题型梳理]

苏教版七年级上册数学[数轴知识点整理及重点题型梳理] 苏教版七年级上册数学重难点突破知识点梳理及重点题型巩固练习数轴——知识讲解【学习目标】1.理解数轴的概念及三要素,能正确画出数轴;2.能用数轴上的点表示有理数,初步感受数形结合的思想方法;3.能利用数轴比较有理数的大小.【要点梳理】要点一、数轴定义:规定了原点、正方向和单位长度的直线叫做数轴.要点诠释:(1)定义中的“规定”二字是说原点的选定、正方向的取向、单位长度大小的确定,都是根据需要“规定”的.通常,习惯取向右为正方向.(2)长度单位与单位长度是不同的,单位长度是根据需要选取的代表“1”的线段,而长度单位是为度量线段的长度而制定的单位.有km、m、dm、cm等.要点二、数轴的画法(1)画一条直线(通常画成水平位置);(2)在这条直线上取一点作为原点,这点表示0;(3)规定直线上向右为正方向,画上箭头;(4)再选取适当的长度,从原点向右每隔一个单位长度取一点,依次标上1,2,3,…从原点向左,每隔一个单位长度取一点,依次标上-1,-2,-3,…要点诠释:(1)原点的位置、单位长度的大小可根据实际情况适当选取.(2)确定单位长度时根据实际情况,有时也可以每隔两个(或更多的)单位长度取一点.要点三、数轴与有理数的关系任何一个有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数,还可以表示其他数,比如.要点诠释:(1)一般地,数轴上原点右边的点表示正数,左边的点表示负数;反过来也对,即正数用数轴上原点右边的点表示,负数用原点左边的点表示,零用原点表示.(2)一般地,在数轴上表示的两个数,右边的数总比左边的数大.【典型例题】类型一、数轴的概念及画法1.(2015秋?沧州期末)下列各图中,能正确表示数轴的是()A. B.C. D.【思路点拨】根据数轴的三要素:原点、正方向、单位长度,即可解答.【答案】D【解析】解:由数轴的三要素:原点、正方向、单位长度,可知D 正确;故选:D .【总结升华】数轴是一条直线,可以向两端无限延伸;数轴的三要素:原点、正方向、单位长度缺一不可.2.(2015?徐州校级模拟)一只蚂蚁沿数轴从点A 向右直爬15个单位到达点B ,点B 表示的数为﹣2,则点A 所表示的数为()A. 15B. 13C. -13D.-17 【答案】D【解析】设点A 所表示的数为x ,x+15=﹣2,解得:x=﹣17,故选:D .【总结升华】本题考查的是数轴的知识,掌握数轴的概念和性质是解题的关键,点在数轴上的运动规律是向左减,向右加.举一反三:【变式】如图为北京地铁的部分线路.假设各站之间的距离相等且都表示为一个单位长.现以万寿路站为原点,向右的方向为正,那么木樨地站表示的数为________,古城站表示的数为________;如果改以古城站为原点,那么木樨地站表示的数变为________.【答案】3,-5,8 类型二、利用数轴比较大小3.在数轴上表示2.5,0,34-,-1,-2.5,114,3有理数,并用“<”把它连接起来.【思路点拨】根据数轴的三要素先画好数轴,表示数的字母要依次对应有理数,然后根据在数轴上表示的两个数,右边的数总比左边的数大,比较大小.【答案与解析】如图所示,点A 、B 、C 、D 、E 、F 、G 分别表示有理数2.5,0,34-,-1,-2.5,114,3.由上图可得:312.5101 2.5344-<-<-<<<< 【总结升华】注意数轴上整单位的点一般用细短线表示,而表示题目中的数的点,应画成实心的小圆点.举一反三:【变式1】有理数a 、b 在数轴上的位置如图所示,下列各式不成立的是()A .b ﹣a >0B .﹣b <0C .﹣a >﹣bD .﹣ab <0【答案】D【变式2】填空:大于763 且小于767的整数有______个;比5小于0;正数大于一切负数. 33小的非负整数是____________.【答案】11;0,1,2,34.若p ,q 两数在数轴上的位置如下图所示,请用“<”或“>”填空.①p______q;②-p______0;③-p______-q ;④-p______q ;【答案】>;<;<;>【解析】根据相反数的几何意义,将p ,q ,-p ,-q 均表示在数轴上,如下图:然后再根据数轴上右边的数比左边的数大,及原点右边的点表示大于0的正数,而原点左边的点表示小于0的负数,可得上述答案.【总结升华】在数轴上表示的两个数,右边的数总比左边的数大.正数都大于0;负数都。

苏教版七年级上册数学知识点归纳总结

苏教版七年级上册数学知识点归纳总结

一、整数1.1 整数的概念整数是由自然数、0以及它们的负数组成的数集,用来表示有向量的数量。

1.2 整数的比较与运算比较整数大小时,可以通过数轴上的位置来判断。

整数的加减法遵循符号相同则相加,符号不同则相减的规则。

二、有理数2.1 有理数的概念有理数包括整数和分数,是可以表示为两个整数之比的数。

2.2 有理数的加减乘除有理数的加减乘除遵循相同大小的数加减得到的结果仍然是同符号的数,相乘相同符号得正,相乘不同符号得负的规则。

有理数的除法可以转化为乘法运算。

三、代数3.1 代数表达式代数表达式是由数字、代数符号和运算符组成的式子,可以包括单项式、多项式等。

3.2 代数式的加减乘除代数式的加减乘除遵循相同项相加减、同底数指数相乘、指数相除的规则。

四、方程与方程组4.1 方程的概念方程是含有未知数的等式,通过求解可以得到未知数的值。

4.2 一元一次方程一元一次方程是形如ax+b=0的方程,可以通过逆运算求解出未知数的值。

4.3 解方程的基本原则解方程时,可以通过逐步化简、消去分母、合并同类项等步骤来求解未知数的值。

五、比例和比例方程5.1 比例的概念比例是两个等量的比值关系,可以表示为a:b=c:d。

5.2 比例的性质和运算比例的性质包括等比例和反比例,比例的运算包括比例乘除的运算法则。

六、百分数6.1 百分数的概念百分数是每百份之一的比例,可以表示为百分数/100=实际比例。

6.2 百分数的应用百分数可以用来表示比例关系、增减量等,应用广泛。

七、不等式7.1 不等式的概念不等式是含有大于、小于、大于等于、小于等于等符号的数学式子。

7.2 不等式的性质和解法不等式可以通过加减消去、移项、乘除等方法求解未知数的范围。

八、数据的收集和整理8.1 统计数据的方式统计数据可以通过调查、观察、抽样等方式进行收集。

8.2 统计数据的整理和分析统计数据可以通过频数、频率、累积频数等方式进行整理和分析。

九、图形的认识和绘制9.1 基本图形的认识和性质基本图形包括直线、线段、射线、角等,具有各自的特点和性质。

苏教版七年级上册数学知识点

苏教版七年级上册数学知识点

苏教版七年级上册数学知识点苏教版七年级上册数学知识点概述一、数与代数1. 有理数的认识- 正数、负数、整数、分数、小数、正有理数、负有理数、非负数 - 有理数的比较大小- 有理数的加法和减法运算- 有理数的乘法和除法运算- 有理数的乘方2. 整式的加减- 单项式的概念和运算- 多项式的概念和运算- 合并同类项- 整式的加减运算法则3. 一元一次方程- 方程的概念- 解一元一次方程- 方程的解的检验- 方程的应用问题二、几何1. 线段、射线、直线- 线段的性质- 射线和直线的定义- 两点间的距离2. 角的概念与分类- 角的定义- 角的度量- 角的分类(锐角、直角、钝角、平角、周角)3. 角的运算- 角的和与差- 角的倍数关系4. 三角形初步- 三角形的定义和分类- 三角形的内角和定理- 等腰三角形和等边三角形的性质三、统计与概率1. 统计- 数据的收集和整理- 频数和频率的概念- 绘制统计表和统计图(条形图、折线图)2. 概率- 随机事件的概念- 可能性的判断- 概率的初步认识四、解题方法与技巧1. 列方程解应用题- 根据问题的条件列出方程- 解方程得到答案2. 利用图形解决几何问题- 通过作图辅助理解问题- 运用几何定理和性质解决问题3. 分析法和综合法- 分析法:从已知条件出发,逐步推导出答案- 综合法:从问题的目标出发,逐步寻找解题途径以上是苏教版七年级上册数学的主要知识点概述。

在学习过程中,学生应注重理解和掌握每个知识点的概念、性质和运算规则,通过大量的练习来提高解题能力和应用能力。

同时,培养良好的逻辑思维和数学思维,为以后的学习打下坚实的基础。

七年级上苏教版数学知识点

七年级上苏教版数学知识点

七年级上苏教版数学知识点苏教版七年级数学是初中阶段的入门课程,涵盖了初中数学的基础知识点。

本文将介绍苏教版七年级上册的数学知识点,包括数的概念、整数、分数、小数、代数式等。

数的概念数是数学中最基本的概念。

在七年级数学中,学生需要学习数的概念、分类及其表示方法。

数可分为自然数、整数、有理数、无理数、实数等。

七年级学生需要知道如何将数用数轴表示出来,并学习数的加减乘除法。

整数整数是由正整数、负整数和0组成的数集。

在七年级数学中,学生需要学习整数的概念及其加减乘除法。

他们还需要学习如何在数轴上表示整数,并且掌握整数的绝对值、相反数等概念。

分数分数是指整数和整数的比值,也可以理解为某一数量分成若干份,其中的一份。

七年级学生需要学习分数的概念及其加减乘除法。

他们还需要了解分数化简和通分等基本操作,并且在数轴上表示分数。

小数小数是指有限的十进制小数和无限循环小数。

七年级学生需要学习小数的概念,学会将小数表示成分数,学会小数的加减乘除法,以及小数的化简和比较大小。

代数式代数式是由数、字母及连接符号组成的表示某种数学关系的式子。

七年级学生需要学习代数式的基本概念,了解字母的取值范围和变量、系数、常数等概念。

他们还需要学会代数式的加减乘除法和简化代数式等基本操作。

总结苏教版七年级上册数学的知识点涵盖了数的概念、整数、分数、小数、代数式等基本内容。

学生应当认真学习每个知识点,可以适当使用数学工具辅助学习,如数轴、计算器等。

通过反复练习,可以提高自己的数学水平。

2023年苏教版七年级数学全册知识点总结

2023年苏教版七年级数学全册知识点总结

苏科版数学知识点第二章:有理数一、实数与数轴1、整数分为正整数,0和负整数。

正整数和0统称自然数。

能被2整除旳整数称为偶数,被2除余1旳整数叫作奇数。

2、分数:可以写成两个整数之比旳不是整数旳数,叫做分数。

分数都可以转化为有限小数或循环小数。

反之,有限小数或循环小数都可以转化为分数。

3、有理数:整数和分数统称有理数。

4、无理数:无限不循环小数称为无理数。

5、实数:有理数和无理数统称为实数。

⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无理数负分数正分数分数负整数正整数整数有理数实数0 6、数轴:规定了原点、正方向、单位长度旳直线称为数轴。

原点、正方向、单位长度是数轴旳三要素。

7、数轴上旳点和实数旳对应关系:数轴上旳每一种点都表达一种实数,而每一种实数都可以用数轴上旳唯一旳点来表达。

实数和数轴上旳点是一一对应旳关系。

二、绝对值与相反数8、绝对值:在数轴上表达一种数旳点与原点旳距离,叫做这个数旳绝对值。

设数轴上原点为O,点A表达旳数为a,则a A =O ,设数轴上点A 表达旳数为a ,点B 表达旳数为b,则b a -=AB9、一种正数旳绝对值等于它自身,一种负数旳绝对值等于它旳相反数,0旳绝对值为0.反过来,绝对值等于它自身旳数为非负数(正数或0),绝对值等于它旳相反数为非正数(负数或0).10、相反数:符号不一样,绝对值相等旳两个数互为相反数。

0旳相反数是0.在数轴上互为相反数旳两个数表达旳点,分居在原点两侧,并且到原点旳距离相等。

相反数等于自身旳数只有0.在一种数前面添上“+”号还表达这个数,在一种数前面添上“—”号,就表达求这个数旳相反数。

二、实数大小旳比较11、在数轴上表达两个数,右边旳数总比左边旳数大。

12、正数不小于0;负数不不小于0;正数不小于一切负数;两个负数绝对值大旳反而小。

三、实数旳运算13、加法:(1)同号两数相加,取本来旳符号,并把它们旳绝对值相加;(2)异号两数相加,取绝对值较大旳加数旳符号,并用较大旳绝对值减去较小旳绝对值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《有理数》知识点总结归纳正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

如:有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数 0 正有理数负整数正分数有理数有理数 0 (0不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。

2.数轴上的点与有理数的关系⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。

(如,数轴上的点π不是有理数)3.利用数轴表示两数大小⑴在数轴上数的大小比较,右边的数总比左边的数大;⑵正数都大于0,负数都小于0,正数大于负数;⑶两个负数比较,距离原点远的数比距离原点近的数小。

4.数轴上特殊的最大(小)数⑴最小的自然数是0,无最大的自然数;⑵最小的正整数是1,无最大的正整数;⑶最大的负整数是-1,无最小的负整数5.a可以表示什么数⑴a>0表示a是正数;反之,a是正数,则a>0;⑵a<0表示a是负数;反之,a是负数,则a<0⑶a=0表示a是0;反之,a是0,,则a=06.数轴上点的移动规律根据点的移动,向左移动几个单位长度则减去几,向右移动几个单位长度则加上几,从而得到所需的点的位置。

相反数⒈相反数只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。

注意:⑴相反数是成对出现的;⑵相反数只有符号不同,若一个为正,则另一个为负;⑶0的相反数是它本身;相反数为本身的数是0。

2.相反数的性质与判定⑴任何数都有相反数,且只有一个;⑵0的相反数是0;⑶互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=03.相反数的几何意义在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。

0的相反数对应原点;原点表示0的相反数。

说明:在数轴上,表示互为相反数的两个点关于原点对称。

4.相反数的求法⑴求一个数的相反数,只要在它的前面添上负号“-”即可求得(如:5的相反数是-5);⑵求多个数的和或差的相反数是,要用括号括起来再添“-”,然后化简(如;5a+b的相反数是-(5a+b)。

化简得-5a-b);⑶求前面带“-”的单个数,也应先用括号括起来再添“-”,然后化简(如:-5的相反数是-(-5),化简得5)5.相反数的表示方法⑴一般地,数a 的相反数是-a ,其中a是任意有理数,可以是正数、负数或0。

当a>0时,-a<0(正数的相反数是负数)当a<0时,-a>0(负数的相反数是正数)当a=0时,-a=0,(0的相反数是0)6.多重符号的化简多重符号的化简规律:“+”号的个数不影响化简的结果,可以直接省略;“-”号的个数决定最后化简结果;即:“-”的个数是奇数时,结果为负,“-”的个数是偶数时,结果为正。

绝对值⒈绝对值的几何定义一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。

2.绝对值的代数定义⑴一个正数的绝对值是它本身;⑵一个负数的绝对值是它的相反数;⑶0的绝对值是0.可用字母表示为:①如果a>0,那么|a|=a;②如果a<0,那么|a|=-a;③如果a=0,那么|a|=0。

可归纳为①:a≥0,<═> |a|=a (非负数的绝对值等于本身;绝对值等于本身的数是非负数。

)②a≤0,<═> |a|=-a (非正数的绝对值等于其相反数;绝对值等于其相反数的数是非正数。

)3.绝对值的性质任何一个有理数的绝对值都是非负数,也就是说绝对值具有非负性。

所以,a取任何有理数,都有|a|≥0。

即⑴0的绝对值是0;绝对值是0的数是0.即:a=0 <═> |a|=0;⑵一个数的绝对值是非负数,绝对值最小的数是0.即:|a|≥0;⑶任何数的绝对值都不小于原数。

即:|a|≥a;⑷绝对值是相同正数的数有两个,它们互为相反数。

即:若|x|=a(a>0),则x=±a;⑸互为相反数的两数的绝对值相等。

即:|-a|=|a|或若a+b=0,则|a|=|b|;⑹绝对值相等的两数相等或互为相反数。

即:|a|=|b|,则a=b或a=-b;⑺若几个数的绝对值的和等于0,则这几个数就同时为0。

即|a|+|b|=0,则a=0且b=0。

(非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0)4.有理数大小的比较⑴利用数轴比较两个数的大小:数轴上的两个数相比较,左边的总比右边的小;⑵利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小;异号两数比较大小,正数大于负数。

5.绝对值的化简①当a≥0时, |a|=a ;②当a≤0时, |a|=-a6.已知一个数的绝对值,求这个数一个数a的绝对值就是数轴上表示数a的点到原点的距离,一般地,绝对值为同一个正数的有理数有两个,它们互为相反数,绝对值为0的数是0,没有绝对值为负数的数。

有理数的加减法1.有理数的加法法则⑴同号两数相加,取相同的符号,并把绝对值相加;⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;⑶互为相反数的两数相加,和为零;⑷一个数与零相加,仍得这个数。

2.有理数加法的运算律⑴加法交换律:a+b=b+a⑵加法结合律:(a+b)+c=a+(b+c)在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律:①互为相反数的两个数先相加——“相反数结合法”;②符号相同的两个数先相加——“同号结合法”;③分母相同的数先相加——“同分母结合法”;④几个数相加得到整数,先相加——“凑整法”;⑤整数与整数、小数与小数相加——“同形结合法”。

3.加法性质一个数加正数后的和比原数大;加负数后的和比原数小;加0后的和等于原数。

即:⑴当b>0时,a+b>a ⑵当b<0时,a+b<a ⑶当b=0时,a+b=a4.有理数减法法则减去一个数,等于加上这个数的相反数。

用字母表示为:a-b=a+(-b)。

5.有理数加减法统一成加法的意义在有理数加减法混合运算中,根据有理数减法法则,可以将减法转化成加法后,再按照加法法则进行计算。

在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式。

如:(-8)+(-7)+(-6)+(+5)=-8-7-6+5.和式的读法:①按这个式子表示的意义读作“负8、负7、负6、正5的和”②按运算意义读作“负8减7减6加5”6.有理数加减混合运算中运用结合律时的一些技巧:Ⅰ.把符号相同的加数相结合(同号结合法)(-33)-(-18)+(-15)-(+1)+(+23)原式=-33+(+18)+(-15)+(-1)+(+23) (将减法转换成加法)=-33+18-15-1+23 (省略加号和括号)=(-33-15-1)+(18+23) (把符号相同的加数相结合) =-49+41 (运用加法法则一进行运算) =-8 (运用加法法则二进行运算)Ⅱ.把和为整数的加数相结合 (凑整法) (+6.6)+(-5.2)-(-3.8)+(-2.6)-(+4.8)原式=(+6.6)+(-5.2)+(+3.8)+(-2.6)+(-4.8) (将减法转换成加法)=6.6-5.2+3.8-2.6-4.8 (省略加号和括号)=(6.6-2.6)+(-5.2-4.8)+3.8 (把和为整数的加数相结合) =4-10+3.8 (运用加法法则进行运算)=7.8-10 (把符号相同的加数相结合,并进行运算) =-2.2 (得出结论)Ⅲ.把分母相同或便于通分的加数相结合(同分母结合法)-53-21+43-52+21-87 原式=(-53-52)+(-21+21)+(+43-87)=-1+0-81=-181Ⅳ.既有小数又有分数的运算要统一后再结合(先统一后结合)(+0.125)-(-343)+(-381)-(-1032)-(+1.25) 原式=(+81)+(+343)+(-381)+(+1032)+(-141)=81+343-381+1032-141 =(343-141)+(81-381)+1032=221-3+1032 =-3+1361=1061Ⅴ.把带分数拆分后再结合(先拆分后结合) -351+10116-12221+4157原式=(-3+10-12+4)+(-51+157)+(116-221) =-1+154+2211=-1+308+3015-307Ⅵ.分组结合2-3-4+5+6-7-8+9…+66-67-68+69原式=(2-3-4+5)+(6-7-8+9)+…+(66-67-68+69)=0Ⅶ.先拆项后结合(1+3+5+7...+99)-(2+4+6+8 (100)有理数的乘除法 1.有理数的乘法法则法则一:两数相乘,同号得正,异号得负,并把绝对值相乘;(“同号得正,异号得负”专指“两数相乘”的情况,如果因数超过两个,就必须运用法则三) 法则二:任何数同0相乘,都得0;法则三:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数; 法则四:几个数相乘,如果其中有因数为0,则积等于0.2.倒数乘积是1的两个数互为倒数,其中一个数叫做另一个数的倒数,用式子表示为a ·a1=1(a ≠0),就是说a 和a 1互为倒数,即a 是a 1的倒数,a1是a 的倒数。

相关文档
最新文档