有限元第三章 单元类型及单元刚度矩阵
合集下载
第3章 有限元方法的一般步骤

3 F1 + lAγ 2 −3 0 0 u1 3 3 2 0 u2 ( 2 + 2 )lAγ EA − 3 3 + 2 − 2 = − 2 2 + 1 − 1 u3 ( 2 + 1 )lAγ l 0 −1 0 0 1 u4 2 2 1 lAγ 2
2 n 一维单元: u = a1 + a2 x + a3 x + ..... + an x 2 2 n 二维单元: u = a1 + a2 x + a3 y + a4 x + a5 xy + a6 y ..... + an x 2 2 2 三维单元: u = a1 + a2 x + a3 y + a4 z + a5 x + a6 y + a7 z
2、单元的尺寸:单元尺寸影响解的收敛性,越细越精确。 、单元的尺寸:单元尺寸影响解的收敛性,越细越精确。 原则:1、在应力集中区域网格要细化; 2、网格边界尺寸比越近越好,即纵横比尽可能接近1;
3、结点的设置:通常结点均匀分布,另外根据结构尺寸, 、结点的设置:通常结点均匀分布,另外根据结构尺寸, 材料,及外部条件发生突变处设置结点。 材料,及外部条件发生突变处设置结点。
单元全部结点力: 单元全部结点力: 单元e中的虚位移: 单元 中的虚位移: 中的虚位移 单元e中的虚应变: 单元 中的虚应变: 中的虚应变 结点力虚功: 结点力虚功: 虚应变能: 虚应变能:
{ε } = [ B]{δ } e ∗ e T δV = ({δ } ) {F } δU = ∫∫∫ { } {σ }dxdydz ε
有限元分析 第三讲

Q1l 2 θ = 2 EJ
m1 l 2 2 EJ
θ =+
1
l
1 2
m1 l EJ
m1
2
l
1节点桡度 节点桡度 1节点转角 节点转角
Q1l 3 m1l 2 f1 = 1 = 3EJ 2 EJ m1l Q1l 2 θ1 = 0 = EJ 2 EJ
解得
Q1 =
12 EJ = k11 3 l 6 EJ m 1 = 2 = k 21 l
局部坐标下梁 单元刚度矩阵
[ ]
12 EJ k e = 3 6l l 12 6l
6l 4l 2 6l 2l 2
12 6l 12 6l
6l 2l 2 6l 4l 2
对称矩阵
上述由几何关系, 物理方程, 上述由几何关系 物理方程 受力和位移的关系求出单元刚度矩阵 的方法——直接刚度法 的方法 直接刚度法
整体座标下的单元刚度矩阵换算通式
[ K e ] = [T ]T [ K e ][T ]
思考: 整体刚度矩阵如何迭加? 思考 整体刚度矩阵如何迭加
§3.3 位移函数—虚功原理推导单元有限元格式 位移函数—
基本原理 将单元内任一点的位移表示成节点位移的某种函数——位 将单元内任一点的位移表示成节点位移的某种函数 位 移函数, 利用虚功原理, 推导单元的刚度矩阵. 移函数 利用虚功原理 推导单元的刚度矩阵.
对方程加" 项 扩展为: 对方程加"0"项,扩展为:
N1 EA 1 11 N = 2 l 1 1 2
N1 1 0 0 0 EA 0 N = 1 1 l 0 0 0 0
6l f1 2l 2 θ1 6l f 2 4l 2 θ 2
0 0 0 0 0 0
m1 l 2 2 EJ
θ =+
1
l
1 2
m1 l EJ
m1
2
l
1节点桡度 节点桡度 1节点转角 节点转角
Q1l 3 m1l 2 f1 = 1 = 3EJ 2 EJ m1l Q1l 2 θ1 = 0 = EJ 2 EJ
解得
Q1 =
12 EJ = k11 3 l 6 EJ m 1 = 2 = k 21 l
局部坐标下梁 单元刚度矩阵
[ ]
12 EJ k e = 3 6l l 12 6l
6l 4l 2 6l 2l 2
12 6l 12 6l
6l 2l 2 6l 4l 2
对称矩阵
上述由几何关系, 物理方程, 上述由几何关系 物理方程 受力和位移的关系求出单元刚度矩阵 的方法——直接刚度法 的方法 直接刚度法
整体座标下的单元刚度矩阵换算通式
[ K e ] = [T ]T [ K e ][T ]
思考: 整体刚度矩阵如何迭加? 思考 整体刚度矩阵如何迭加
§3.3 位移函数—虚功原理推导单元有限元格式 位移函数—
基本原理 将单元内任一点的位移表示成节点位移的某种函数——位 将单元内任一点的位移表示成节点位移的某种函数 位 移函数, 利用虚功原理, 推导单元的刚度矩阵. 移函数 利用虚功原理 推导单元的刚度矩阵.
对方程加" 项 扩展为: 对方程加"0"项,扩展为:
N1 EA 1 11 N = 2 l 1 1 2
N1 1 0 0 0 EA 0 N = 1 1 l 0 0 0 0
6l f1 2l 2 θ1 6l f 2 4l 2 θ 2
0 0 0 0 0 0
有限元 第3讲补充_平面问题-整体刚度矩阵

12
整体刚度矩阵
通过以上组装过程可以得到组装整体刚度矩阵的一般规则: 1 )结构中的等效节点力是相关单元结点力的叠加,整体 刚度矩阵的子矩阵是相关单元的单元刚度矩阵子矩阵的集成; 2)当整体刚度矩阵中的子矩阵K rs 中r=s时,该节点(节点r 或s)被哪几个单元所共有,则K rs 就是这几个单元的刚度矩阵 e 中的子矩阵 K rs 的相加。如 K 33 应该是单元①-④中对应子矩阵 (1) (2) (3) (4) 的集成,即 K33 K33 K33 K33 K33
0
0
0
0 1 0 2 (2) 0 3 K 0 4 0 5
式中: Fi (2) ——②号单元中第i(i=1,3,4)节点所受力;
K (2) ——②号单元的扩大刚度矩阵。
y
4 ④ ② ① 1 2 3③ 5
(1)
0 0
0 0
0 0 1 0 0 2 (1) 0 0 3 K 0 0 4 0 0 5
4 ④ ② ① 1 2 3③
5
x
o
K (1) ——①号单元的扩大刚度矩阵或称为单元贡献矩阵。
5
整体刚度矩阵
y
4 ④ ② ① 14 ④ ② ① 1 2 3③ 5
x
o
(1) (2) (1) (1) (2) (2) K11 K11 K12 K13 K13 K14 0 (1) (1) (3) (1) (3) (3) K 22 K 22 K 23 K 23 0 K 25 K 21 (1) (2) (1) (3) (1) (2) (3) (4) (2) (4) (3) (4) K 31 K 31 K 32 K 32 K 33 K 33 K 33 K 33 K 34 K 34 K 35 K 35 (2) (2) (4) (2) (4) (4) 0 K 43 K 43 K 44 K 44 K 45 K 41 (3) (3) (4) (4) (3) (4) 0 K K K K K K 52 53 53 54 55 55
整体刚度矩阵
通过以上组装过程可以得到组装整体刚度矩阵的一般规则: 1 )结构中的等效节点力是相关单元结点力的叠加,整体 刚度矩阵的子矩阵是相关单元的单元刚度矩阵子矩阵的集成; 2)当整体刚度矩阵中的子矩阵K rs 中r=s时,该节点(节点r 或s)被哪几个单元所共有,则K rs 就是这几个单元的刚度矩阵 e 中的子矩阵 K rs 的相加。如 K 33 应该是单元①-④中对应子矩阵 (1) (2) (3) (4) 的集成,即 K33 K33 K33 K33 K33
0
0
0
0 1 0 2 (2) 0 3 K 0 4 0 5
式中: Fi (2) ——②号单元中第i(i=1,3,4)节点所受力;
K (2) ——②号单元的扩大刚度矩阵。
y
4 ④ ② ① 1 2 3③ 5
(1)
0 0
0 0
0 0 1 0 0 2 (1) 0 0 3 K 0 0 4 0 0 5
4 ④ ② ① 1 2 3③
5
x
o
K (1) ——①号单元的扩大刚度矩阵或称为单元贡献矩阵。
5
整体刚度矩阵
y
4 ④ ② ① 14 ④ ② ① 1 2 3③ 5
x
o
(1) (2) (1) (1) (2) (2) K11 K11 K12 K13 K13 K14 0 (1) (1) (3) (1) (3) (3) K 22 K 22 K 23 K 23 0 K 25 K 21 (1) (2) (1) (3) (1) (2) (3) (4) (2) (4) (3) (4) K 31 K 31 K 32 K 32 K 33 K 33 K 33 K 33 K 34 K 34 K 35 K 35 (2) (2) (4) (2) (4) (4) 0 K 43 K 43 K 44 K 44 K 45 K 41 (3) (3) (4) (4) (3) (4) 0 K K K K K K 52 53 53 54 55 55
有限元法与ANSYS技术-刚度矩阵

k
N
Re
e1
(r)
上式左边就是弹性体所有单元刚度矩阵的总和,
称为弹性体的整体刚度矩阵(或简称为总刚),记为
[K]。注意到(3-28)式,有
N
N
K k BT DBtdxdy (3-38)
e1
e1
若写成分块矩阵的形式,则
K11 K1i K1 j K1m K1n
Ki1
Kii
T tdxdy
(g)
这里我们假定单元的厚度t为常量。把(d )式及(3-16)式 代入上式,并将提到积分号的前面,则有
({ }e )T BT DBetdxdy
根据虚位移原理,由(f)和(h)式可得到单元的虚功方程, 即
({ }e )T Re ({ }e )T BT DBe tdxdy
注意到虚位移是任意的,所以等式两边与相乘的项应该相等, 即得
图中有两种编码:一是节点总码:1、2、3、4;二是节 点局部码,是每个单元的三个节点按逆时针方向的顺序各自 编码为1,2,3。
图中两个单元的局部码与总码的对应关系为:
单元 1 : 1,2,3
1,2,3
单元 2 : 1,2,3
3,4,1
或:
单元 1 : 1,2,3
1,2,3
单元 2 : 1,2,3
1,3,4
e
ui
vi
u j
v j
um
T
vm
且假设单元内各点的虚位移为{f *},并具有与真实位移 相同的位移模式。
故有
ቤተ መጻሕፍቲ ባይዱ
f N e
(c)
参照(3-13)式,单元内的虚应变{ *}为
B e
(d)
于是,作用在单元体上的外力在虚位移上所做的功可写
汽车结构有限元分析03单元类型及单元分析

1.一维单元分析 ; 2.二维单元分析; 3.三维单元分析 ; 4.板壳单元 ; 5.其它各种单元介绍; 6.单元选用;
1.一维单元分析
主要有:杆单元、梁单元、管单元等 。
1.1杆单元---最简单的两节点一维单元, 用于杆件承受轴向力分析。
设杆单元横截面积为A,长度为l,轴 向分布载荷q为(x) 。单元2个节点的位移 向量为: e ui u j T
由空间弹性力学几何方程,得应变表达式:
{} [B]{ }e [[B1 ][B2 ][B20 ]]{ }e
由空间弹性力学物理方程,单元内的应力可 以表示成:
[ ] [D][ ] [D][B]{ }e [S]{ }e
单元刚度矩阵为 :
[k]e
[B]T [D][B]dV
[k1e1
[k
e 21
这其中设定单元位移模式,利用虚功 原理建立单元节点力与节点位移关系并组建 单元刚度矩阵的过程,我们将其称为单元分 析。
为了使有限元法的解在单元尺寸逐步趋 小时能够收敛于精确解,所构造的单元位移 函数必须满足以下三方面的条件:
1)位移模式中必须包括反映刚体位移的项;
2)位移模式中必须包括反映常应变的线性位 移项;
这样空间梁单元就由3个节点组成i,,j,k 点必
须在一个平面内,但不能共线。i节点到j节
点为单元坐标系的x轴,y轴(或z轴)在节点i、
j和k构成的平面上且与x轴垂直,应用右手定
则可以确定另一坐标iz, 轴j, k(或y轴)。
三点
确定后,单元坐标系即确定,梁单元的截面
方位也就完全确定下来。所增加的一个用于
] ]
[k1e2 ]
[k
e 22
]
[k1e20
[k
1.一维单元分析
主要有:杆单元、梁单元、管单元等 。
1.1杆单元---最简单的两节点一维单元, 用于杆件承受轴向力分析。
设杆单元横截面积为A,长度为l,轴 向分布载荷q为(x) 。单元2个节点的位移 向量为: e ui u j T
由空间弹性力学几何方程,得应变表达式:
{} [B]{ }e [[B1 ][B2 ][B20 ]]{ }e
由空间弹性力学物理方程,单元内的应力可 以表示成:
[ ] [D][ ] [D][B]{ }e [S]{ }e
单元刚度矩阵为 :
[k]e
[B]T [D][B]dV
[k1e1
[k
e 21
这其中设定单元位移模式,利用虚功 原理建立单元节点力与节点位移关系并组建 单元刚度矩阵的过程,我们将其称为单元分 析。
为了使有限元法的解在单元尺寸逐步趋 小时能够收敛于精确解,所构造的单元位移 函数必须满足以下三方面的条件:
1)位移模式中必须包括反映刚体位移的项;
2)位移模式中必须包括反映常应变的线性位 移项;
这样空间梁单元就由3个节点组成i,,j,k 点必
须在一个平面内,但不能共线。i节点到j节
点为单元坐标系的x轴,y轴(或z轴)在节点i、
j和k构成的平面上且与x轴垂直,应用右手定
则可以确定另一坐标iz, 轴j, k(或y轴)。
三点
确定后,单元坐标系即确定,梁单元的截面
方位也就完全确定下来。所增加的一个用于
] ]
[k1e2 ]
[k
e 22
]
[k1e20
[k
计算固体力学第三章_1

TSINGHUA UNIVERSITY
8. 可处理大变形和非线形材料带来的非线形问题.
TSINGHUA UNIVERSITY
TSINGHUA UNIVERSITY
3 协调模型分析
1. 建立协调模型的一般方法
大部分有限单元,都是根据虚功原理, 或由它导出的能量 原理建立的, 这类单元统称为“协调模型”或“相容模 型”(Conforming model)。
每个节点有三个转动 分量和三个位移分量.
TSINGHUA UNIVERSITY
TSINGHUA UNIVERSITY
如图1.4, 用120个节点和297个平面应变三角形单 元模拟. 将对称性应用于整个杆端的一半. 此分析 的目的是找出杆端应力集中最高的位置.
TSINGHUA UNIVERSITY
TSINGHUA UNIVERSITY
有限元法无论对什么样的结构(杆系,平面,三维, 板壳)分析过程是一样的,一般为:
有限元法基本步骤:
TSINGHUA UNIVERSITY
有限元法基本步骤
将物体划分为具体有相关节点的等价系统,选择最适当 的单元类型来最接近的模拟实际的物理性能. 所用的单元总 数和给顶物体内单元大小和类型的变化是需要工程判断的 主要问题. 单元必须小到可以给出有用的结果,又必须足够大以节省 计算费用.
一点的位移列阵: 一点的应变列阵:
一点的应力列阵:
一点的体积力列阵: 一点的表面力列阵:
边界外法线方向余弦矩阵:
其中:
平衡方程:(内力与体积力的关系方程)
写成矩阵形式:
其中
A - 微分算子矩阵
几何方程:(应变与位移的关系方程)
写成矩阵形式:
物理方程(应力与应变的关系方程)
8. 可处理大变形和非线形材料带来的非线形问题.
TSINGHUA UNIVERSITY
TSINGHUA UNIVERSITY
3 协调模型分析
1. 建立协调模型的一般方法
大部分有限单元,都是根据虚功原理, 或由它导出的能量 原理建立的, 这类单元统称为“协调模型”或“相容模 型”(Conforming model)。
每个节点有三个转动 分量和三个位移分量.
TSINGHUA UNIVERSITY
TSINGHUA UNIVERSITY
如图1.4, 用120个节点和297个平面应变三角形单 元模拟. 将对称性应用于整个杆端的一半. 此分析 的目的是找出杆端应力集中最高的位置.
TSINGHUA UNIVERSITY
TSINGHUA UNIVERSITY
有限元法无论对什么样的结构(杆系,平面,三维, 板壳)分析过程是一样的,一般为:
有限元法基本步骤:
TSINGHUA UNIVERSITY
有限元法基本步骤
将物体划分为具体有相关节点的等价系统,选择最适当 的单元类型来最接近的模拟实际的物理性能. 所用的单元总 数和给顶物体内单元大小和类型的变化是需要工程判断的 主要问题. 单元必须小到可以给出有用的结果,又必须足够大以节省 计算费用.
一点的位移列阵: 一点的应变列阵:
一点的应力列阵:
一点的体积力列阵: 一点的表面力列阵:
边界外法线方向余弦矩阵:
其中:
平衡方程:(内力与体积力的关系方程)
写成矩阵形式:
其中
A - 微分算子矩阵
几何方程:(应变与位移的关系方程)
写成矩阵形式:
物理方程(应力与应变的关系方程)
单元类型及单元刚度矩阵课件

面积单元的刚度矩阵可以通过解析方 法或数值方法计算得到。
它具有四个节点,每个节点具有三个 自由度:x、y和z方向的位移。
体积单元
体积单元是一种几何 形状,通常用于模拟 结构中的三维实体或 区域。
体积单元的刚度矩阵 可以通过解析方法或 数值方法计算得到。
它具有八个节点,每 个节点具有三个自由 度:x、y、z方向的 位移。
移。
线性单元的刚度矩阵可以通过解 析方法或数值方法计算得到。
角点单元
角点单元是一种特殊类型的线 性单元,通常用于模拟结构中 的角点或连接两个线性单元的 节点。
它具有三个自由度:x、y和z方 向的位移。
角点单元的刚度矩阵可以通过 解析方法或数值方法计算得到。
面积单元
面积单元是一种几何形状,通常用于 模拟结构中的平面区域或曲面上的小 区域。
单击此处添加正文,文字是您思想的提一一二三四五 六七八九一二三四五六七八九一二三四五六七八九文, 单击此处添加正文,文字是您思想的提炼,为了最终 呈现发布的良好效果单击此4*25}
通过稳定性分析,可以评估结构的承载安全性和预防 失稳的措施。
PART 04
单元类型选择与注意事项
选择依据
计算精度
根据模型精度要求选择合适的单 元类型,例如,对于复杂形状或 精细结构,应选择高阶单元以提
2023 WORK SUMMARY
单元类型及单元刚度 矩阵课件
REPORTING
CATALOGUE
• 单元类型介绍 • 单元刚度矩阵
PART 01
单元类型介绍
线性单元
线性单元是一种简单的几何形状, 通常用于模拟结构中的直线段或 平面区域。
它具有两个节点,每个节点具有 三个自由度:x、y和z方向的位
单元刚度矩阵的获得

单元刚度矩阵的获得
单元刚度矩阵(Element Stiffness Matrix)是用来描述力学系
统中单元的刚度性能的矩阵。
获得单元刚度矩阵的一种常见方法是使用有限元分析(Finite Element Analysis,FEA)。
以下是一般步骤:
1. 确定单元类型和几何形状:单元可以是一维(beam、bar)、二维(plate、shell)或三维(solid)的。
定好单元类型后,还
需要确定几何形状和坐标系。
2. 假设单元内部的位移场:假设单元内部的位移场,通常为多项式形式,例如线性位移场或二次位移场。
3. 应变-位移关系:根据材料的弹性模量和泊松比等物理参数,建立应变-位移关系,通常为线性关系。
4. 单元刚度矩阵推导:通过将整个单元分解为小单元,并以每个小单元的位移场和应变-位移关系为基础,将其变换到整个
单元的系统方程中。
然后,根据能量方法,使用变分原理和积分方法求解线性方程组,以获得单元刚度矩阵。
5. 单元刚度矩阵合并:如果有多个单元组成整个系统,则需要将每个单元的刚度矩阵合并成整个系统的刚度矩阵。
需要注意的是,单元刚度矩阵的获得依赖于特定的单元类型和分析方法,因此具体的推导过程可能会有所不同。
同时,也可以使用商业有限元软件或数值计算软件来自动生成单元刚度矩阵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( m ! )( n ! ) ( m n 1)!
可以直接应用
x2
x1
dx ( x 2 x1 )
m 1 n 2
二、一维单元及其单元刚度阵
1.杆单元
元素的计算
k 22 EA l
2
●二次杆单元
2
l
0
( 4 2 1) dx
2
EA 3l
7 EA 3l EA 3l 1
y Qy1 1 Mz1 z l MZ2 Qy2 2 x
二、一维单元及其单元刚度阵
2.三次梁单元
Hermite位移插值多项式
v ( x ) (1 2
x0 0l
)(
xl 0l
2
) v1 (1 2
2
xl l0
2
)(
x0 l0
) v2
2
( x 0 )( N 1
1 1 ; 2
F i(1) (3) l F ξ j(2) x
二、一维单元及其单元刚度阵
1.杆单元
l
●二次杆单元
l
( x )( x l ) ( x 0 )( x ) 2 2 u ( x 0 )( x l ) u u(x) u1 2 3 l l l l ( )( l ) l( ) ( )( ) 2 2 2 2
e T l
k B D B dV
代入,得
这是一次杆单元的单刚阵,它对 称、对角线元素大于零且奇异!
Al B
T
D B
1 1
EA 1 l 1
二、一维单元及其单元刚度阵
1.杆单元 ●一次杆单元
当上述单元用于描述仅受扭转变形的杆件时, 其单刚阵类似于一次杆单元的单刚阵,为:
●一次杆单元
N1 1 ; N 2
得 N 1 1 ; N 2 2
u ( x ) 1 u1 2 u 2
dN u1 d u 2
2
1 dN 1 dx d dx l d l d
6 EJ l
2
z
二、一维单元及其单元刚度阵
2.三次梁单元
元素的计算
k 13
l
EJ
36
z
0
l
4
( 2 1)( 1 2 ) dx
k 33
EA l
2
l
0
( 4 1 4 2 ) dx
2 l
16
k 12
EA l
0
( 4 2 1)( 4 2 1)dx
二、一维单元及其单元刚度阵
1.杆单元
元素的计算
k 13 EA l
2
●二次杆单元
l
0
( 4 1 1)( 4 1 4 2 )dx
d v dx
d 2N1 y 2 dx
2 2
d N2 dx
2
2
d N3 dx
2
2
B
e
N 2 N 3
v1 2 1 d N4 2 v2 dx 2
其中
B y N 1
6 l l 6 l 2 l
2 2
2 l2 1 ) (1 2 2 )
2
( 2 2 1 )
二、一维单元及其单元刚度阵
2.三次梁单元
单元应力为 单元刚度矩阵
E
D
E
k B D B dV
e T V
2.三次梁单元
元素的计算
k 22
l
l
EJ
4
z
0
l
2
( 3 2 ) dx
2
4 EJ l
z
k 33
EJ
36
z
0
l
4
(1 2 ) dx
2
12 EJ l
3
z
k 44
l
l
EJ
4
z
0
l
2
( 3 1) dx
2
4 EJ l
z
k 12
EJ
12
z
0
l
3
( 2 1)( 3 2 ) dx
●二次杆单元
u(x)
所以单元内点位移为
N 1
N2
u1 N 3 u 2 u 3
2
e
几何矩阵为
B ( 4 1 1)
l
1
( 4 2 1)
( 4 1 4 2 )
二、一维单元及其单元刚度阵
1.杆单元
单元应力为 单元刚度矩阵
k
e
GJ l
1 1
1 1
Mn i(1) l Mn ξ j(2) x
二、一维单元及其单元刚度阵
1.杆单元
●二次杆单元 单元有三个节点,如图所示,端点编号为i、j, 三个节点依次为1、3、2。单元位移可以根据抛物 线插值(亦称三点两次拉氏插值)获得,即
同样令
0 x xi 1 x x j
12 6l 12 6l 6l 4l
2
12 6l 12 6l
k
e
EJ l
3
z
6l 2l
2
6l 2 2l 6l 2 4l
元素的计算
k 11
l
EJ
36
z
0
l
4
( 2 1) dx
2
12 EJ l
3
z
二、一维单元及其单元刚度阵
令
N 1 ( 2 1)( 1) 2 1 1
2
N 2 2
2
2 2
2 2
N 3 4 (1 ) 4 1 2
二、一维单元及其单元刚度阵
1.杆单元
单元应变
1 dN 1 l d dN d u1 dN 1 u 2 B d u3
F i(1) l F ξ j(2) x
0 1
x xi x xj
二、一维单元及其单元刚度阵
1.杆单元 ●一次杆单元
根据形状函数的定义,我们知道,形状函数是 描述或反映单元内点位移与单元节点位移的关系。 对于上述问题,已知节点位移为ui,uj,而要求节点 间任一内点的位移,显然可以根据线性插值来计算 (二点一次拉氏插值),即
●二次杆单元
E
D
E
k A B
e l
T
元素的计算
k 11 EA l
2 l
7 EA D B dx 1 3l 8
1) dx
2
1 7 8
8 8 16
( 4
0
EA 3l
1
7
一、形状函数类型及其特征
ngrange型形状函数,这时节点广义位移为节 点位移,不含节点位移导数,它与单元的几何形状、 单元节点分布和节点数有关。所以,该类形状函数 在单元几何形状、节点分布和节点数一定时也随之 确定。
2.Hermite型形状函数,其节点广义位移包含节点 位移和节点位移导数。
第三章 单元类型及单元刚度矩阵
一、形状函数类型及其特征
ngrange型形状函数 2.Hermite型形状函数
二、一维单元及其单元刚度阵
1.杆单元 2.三次梁单元 三、二维单元及其单元刚度阵 1.三角形单元 2.矩形单元
四、三维单元及其单元刚度阵
1.六面体单元 3.曲线等参元 2.四面体单元
第三章 单元类型及单元刚度矩阵
l
( B D B dA )dx
l T 0 A 2
引入
Jz
0 l
( E y
A
N T N dA )dx
A
y dA
2
EJ
0
N T N dx z
二、一维单元及其单元刚度阵
2.三次梁单元
单 元 刚 度 矩 阵
l (1 )
2( x l) x 2 1 ( l ) ( 3 2 ) l x l )
2
N 4 ( x l )(
l ( 1)
2
二、一维单元及其单元刚度阵
2.三次梁单元
根据平面梁弯曲变形公式(忽略剪切变形)
y
一、形状函数类型及其特征
在第二章中,曾经讨论过单元内点位移函数假设 适应满足的4项原则。 ●包含单元的刚体位移 ●包含单元的常应变状态 ●保证不偏惠各坐标轴 ●保证单元内位移连续
体现位移函数完备性 体现位移函数几何不变性 体现位移函数协调性
一、形状函数类型及其特征
要保证位移函数的几何不变性,位移函数多项 式的各项应根据帕斯卡三角形来选择。 二维单元的帕斯卡三角形
有限元法的基本原理是将结构划分成单元,在单 元内用较简单的函数描述单元位移,即
~ u (x)
m
N i ( x)qi
i 1
这是对单元位移u(x)的近似。在前面两章的介绍 中,我们讲过,是用单元的节点位移来描述单元内 点位移,这里所用的变量qi,是节点位移的一种推 广,即一组广义坐标,或称广义节点位移,包括节 点位移和节点位移导数。Ni为形状函数。根据单元 广义节点位移的不同,形状函数分两类:Langrange 和Hermite型。
可以直接应用
x2
x1
dx ( x 2 x1 )
m 1 n 2
二、一维单元及其单元刚度阵
1.杆单元
元素的计算
k 22 EA l
2
●二次杆单元
2
l
0
( 4 2 1) dx
2
EA 3l
7 EA 3l EA 3l 1
y Qy1 1 Mz1 z l MZ2 Qy2 2 x
二、一维单元及其单元刚度阵
2.三次梁单元
Hermite位移插值多项式
v ( x ) (1 2
x0 0l
)(
xl 0l
2
) v1 (1 2
2
xl l0
2
)(
x0 l0
) v2
2
( x 0 )( N 1
1 1 ; 2
F i(1) (3) l F ξ j(2) x
二、一维单元及其单元刚度阵
1.杆单元
l
●二次杆单元
l
( x )( x l ) ( x 0 )( x ) 2 2 u ( x 0 )( x l ) u u(x) u1 2 3 l l l l ( )( l ) l( ) ( )( ) 2 2 2 2
e T l
k B D B dV
代入,得
这是一次杆单元的单刚阵,它对 称、对角线元素大于零且奇异!
Al B
T
D B
1 1
EA 1 l 1
二、一维单元及其单元刚度阵
1.杆单元 ●一次杆单元
当上述单元用于描述仅受扭转变形的杆件时, 其单刚阵类似于一次杆单元的单刚阵,为:
●一次杆单元
N1 1 ; N 2
得 N 1 1 ; N 2 2
u ( x ) 1 u1 2 u 2
dN u1 d u 2
2
1 dN 1 dx d dx l d l d
6 EJ l
2
z
二、一维单元及其单元刚度阵
2.三次梁单元
元素的计算
k 13
l
EJ
36
z
0
l
4
( 2 1)( 1 2 ) dx
k 33
EA l
2
l
0
( 4 1 4 2 ) dx
2 l
16
k 12
EA l
0
( 4 2 1)( 4 2 1)dx
二、一维单元及其单元刚度阵
1.杆单元
元素的计算
k 13 EA l
2
●二次杆单元
l
0
( 4 1 1)( 4 1 4 2 )dx
d v dx
d 2N1 y 2 dx
2 2
d N2 dx
2
2
d N3 dx
2
2
B
e
N 2 N 3
v1 2 1 d N4 2 v2 dx 2
其中
B y N 1
6 l l 6 l 2 l
2 2
2 l2 1 ) (1 2 2 )
2
( 2 2 1 )
二、一维单元及其单元刚度阵
2.三次梁单元
单元应力为 单元刚度矩阵
E
D
E
k B D B dV
e T V
2.三次梁单元
元素的计算
k 22
l
l
EJ
4
z
0
l
2
( 3 2 ) dx
2
4 EJ l
z
k 33
EJ
36
z
0
l
4
(1 2 ) dx
2
12 EJ l
3
z
k 44
l
l
EJ
4
z
0
l
2
( 3 1) dx
2
4 EJ l
z
k 12
EJ
12
z
0
l
3
( 2 1)( 3 2 ) dx
●二次杆单元
u(x)
所以单元内点位移为
N 1
N2
u1 N 3 u 2 u 3
2
e
几何矩阵为
B ( 4 1 1)
l
1
( 4 2 1)
( 4 1 4 2 )
二、一维单元及其单元刚度阵
1.杆单元
单元应力为 单元刚度矩阵
k
e
GJ l
1 1
1 1
Mn i(1) l Mn ξ j(2) x
二、一维单元及其单元刚度阵
1.杆单元
●二次杆单元 单元有三个节点,如图所示,端点编号为i、j, 三个节点依次为1、3、2。单元位移可以根据抛物 线插值(亦称三点两次拉氏插值)获得,即
同样令
0 x xi 1 x x j
12 6l 12 6l 6l 4l
2
12 6l 12 6l
k
e
EJ l
3
z
6l 2l
2
6l 2 2l 6l 2 4l
元素的计算
k 11
l
EJ
36
z
0
l
4
( 2 1) dx
2
12 EJ l
3
z
二、一维单元及其单元刚度阵
令
N 1 ( 2 1)( 1) 2 1 1
2
N 2 2
2
2 2
2 2
N 3 4 (1 ) 4 1 2
二、一维单元及其单元刚度阵
1.杆单元
单元应变
1 dN 1 l d dN d u1 dN 1 u 2 B d u3
F i(1) l F ξ j(2) x
0 1
x xi x xj
二、一维单元及其单元刚度阵
1.杆单元 ●一次杆单元
根据形状函数的定义,我们知道,形状函数是 描述或反映单元内点位移与单元节点位移的关系。 对于上述问题,已知节点位移为ui,uj,而要求节点 间任一内点的位移,显然可以根据线性插值来计算 (二点一次拉氏插值),即
●二次杆单元
E
D
E
k A B
e l
T
元素的计算
k 11 EA l
2 l
7 EA D B dx 1 3l 8
1) dx
2
1 7 8
8 8 16
( 4
0
EA 3l
1
7
一、形状函数类型及其特征
ngrange型形状函数,这时节点广义位移为节 点位移,不含节点位移导数,它与单元的几何形状、 单元节点分布和节点数有关。所以,该类形状函数 在单元几何形状、节点分布和节点数一定时也随之 确定。
2.Hermite型形状函数,其节点广义位移包含节点 位移和节点位移导数。
第三章 单元类型及单元刚度矩阵
一、形状函数类型及其特征
ngrange型形状函数 2.Hermite型形状函数
二、一维单元及其单元刚度阵
1.杆单元 2.三次梁单元 三、二维单元及其单元刚度阵 1.三角形单元 2.矩形单元
四、三维单元及其单元刚度阵
1.六面体单元 3.曲线等参元 2.四面体单元
第三章 单元类型及单元刚度矩阵
l
( B D B dA )dx
l T 0 A 2
引入
Jz
0 l
( E y
A
N T N dA )dx
A
y dA
2
EJ
0
N T N dx z
二、一维单元及其单元刚度阵
2.三次梁单元
单 元 刚 度 矩 阵
l (1 )
2( x l) x 2 1 ( l ) ( 3 2 ) l x l )
2
N 4 ( x l )(
l ( 1)
2
二、一维单元及其单元刚度阵
2.三次梁单元
根据平面梁弯曲变形公式(忽略剪切变形)
y
一、形状函数类型及其特征
在第二章中,曾经讨论过单元内点位移函数假设 适应满足的4项原则。 ●包含单元的刚体位移 ●包含单元的常应变状态 ●保证不偏惠各坐标轴 ●保证单元内位移连续
体现位移函数完备性 体现位移函数几何不变性 体现位移函数协调性
一、形状函数类型及其特征
要保证位移函数的几何不变性,位移函数多项 式的各项应根据帕斯卡三角形来选择。 二维单元的帕斯卡三角形
有限元法的基本原理是将结构划分成单元,在单 元内用较简单的函数描述单元位移,即
~ u (x)
m
N i ( x)qi
i 1
这是对单元位移u(x)的近似。在前面两章的介绍 中,我们讲过,是用单元的节点位移来描述单元内 点位移,这里所用的变量qi,是节点位移的一种推 广,即一组广义坐标,或称广义节点位移,包括节 点位移和节点位移导数。Ni为形状函数。根据单元 广义节点位移的不同,形状函数分两类:Langrange 和Hermite型。