鲁教版初三八年级上册数学期中考试题(供参考)
【鲁教版】八年级数学上期中试卷带答案(2)
一、选择题1.已知123n A A A A 、、中,1A 与2A 关于x 轴对称,2A 与3A 关于y 轴对称,3A 与4A 关于x 轴对称,4A 与5A 关于y 轴对称……,如果1A 在第二象限,那么100A 在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限 2.点1(1,2020)P a -和2(2017,1)P b -关于x 轴对称,则()2021a b +的值为( )A .1-B .1C .0D .2021- 3.平面直角坐标系中,点()2,3A -,()2,1B -,经过点A 的直线//a x 轴,点C 是直线a 上的一个动点,当线段BC 的长度最短时,点C 的坐标为( )A .()0,1-B .()1,2--C .()2,1--D .()2,3 4.如图,一个点在第一象限及x 轴、y 轴上移动,在第一秒钟,它从原点移动到点(1,0),然后按照图中箭头所示方向移动,即(0,0)→(1,0)→(1,1)→(0,1)→(0,2)→…,且每秒移动一个单位,那么第2020秒时,点所在位的坐标是( )A .(64,44)B .(45,5)C .(44,5)D .(44,4) 5.345-2π,0.其中无理数出现的频率为( )A .0.2B .0.4C .0.6D .0.86.5..的是( ) A 5B .253<<C .55D .|2552=7.已知一个表面积为212dm 的正方体,这个正方体的棱长为( )A .2dmB 2dmC 3dmD .3dm 8.已知()253y x x =+-,当x 分别取1,2,3,…,2021时,所对应y 值的总和是( )A .16162B .16164C .16166D .16168 9.如图,圆柱形玻璃杯高为11cm ,底面周长为30cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的爬行最短路线长为(杯壁厚度不计( )A .12cmB .17cmC .20cmD .25cm10.一个长方体盒子长24cm ,宽10cm ,在这个盒子中水平放置一根木棒,那么这根木棒最长(不计木棒粗细)可以是( )A .10cmB .24cmC .26cmD .28cm11.在平面直角坐标系中,点P(1-,3)到原点的距离是( ) A .10 B .4 C .22D .2 12.2002年8月在北京召开的国际数学家大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是13,小正方形的面积是1,直角三角形的较长直角边为a ,较短直角边为b ,则2()a b +的值为( )A .25B .19C .13D .169二、填空题13.在平面直角坐标系中,若点3(1)M ,与点()3N x ,的距离是8,则x 的值是________ 14.在平面直角坐标系中,点()3,4A -到x 轴的距离为________.15.5.(填“>”、“=”或“<”号)16.已知2(4)6y x x =-+,当x 分别取1,2,3,…,2021时,所对应y 值的总和是__.17.已知:15-=m m,则221m m -=_______. 18.如图,长方体的长5BE cm =,宽3AB cm =,高6BC cm =,一只小蚂蚁从长方体表面由A 点爬到D 点去吃食物,则小蚂蚁走的最短路程是__________cm .19.如图是一株美丽的勾股树,其作法为:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作两个正方形,计为②.依此类推…若正方形①的面积为16,则正方形③的面积是_____.20.如图,圆柱形玻璃板,高为12cm,底面周长为18cm,在杯内离杯底3cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的A处,则蚂蚁到达蜂蜜的最短距离______cm.三、解答题21.如图,在平面直角坐标系中,O为坐标原点,点A(4,1)B(1,1),C(4,5),D (6,﹣3),E(﹣2,5).(1)在坐标系中描出各点,并画出△AEC,△BCD.(2)求出△BCD的面积.22.如图1,在平面内取一个定点O ,自O 引一条射线O x ,设M 是平面内一点,点O 与点M 的距离为m (m >0), 以射线O x 为始边,射线OM 为终边的∠x OM 的度数为x °(x≥0).那么我们规定用有序数对(m ,x °)表示点M 在平面内的位置,并记为M (m ,x °).例如,在如图2中,如果OG=4,∠x OG=120°,那么点G 在平面内的位置记为G (4,120°).(1)如图3,如果点N 在平面内的位置记为N (6,35°),那么ON= ;xON ∠= °;(2)如图4,点A ,点B 在射线O x 上,点A ,B 在平面内的位置分别记为(a ,0°), (2a ,0°)点A ,E ,C 在同一条直线上. 且OE=BC .用等式表示∠OEA 与∠ACB 之间的数量关系,并证明.23.(1()03853 3.14π-+-; (2)解方程:()321160x --=.24.计算:(12337(1)(2)19-- (2)2|13(2)3+-25.某学校要对如图所示的一块地进行绿化,已知4m AD =,3m CD =,AD DC ⊥,13m AB =,12m BC =,求这块地的面积.26.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,当两个全等的直角三角形如图摆放时,可以用“面积法”来证明.将两个全等的直角三角形按如图所示摆放,其中∠DAB = 90°,求证:a2+b2=c2.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数,以及循环的规律就可以得到.【详解】解:A1与A2关于x轴对称,A2与A3关于y轴对称,A3与A4关于x轴对称,A4与A5关于y 轴对称,A1与A5是同一个点,四次一循环,100÷4=25,A100与A4重合,即第一象限,故选:A.【点睛】本题考查了关于x轴、y轴对称的点的坐标,关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.解析:A【分析】关于x 轴对称的点,横坐标相同,纵坐标互为相反数,可得a ,b 的值,进一步可得答案.【详解】解:∵1(1,2020)P a -和2(2017,1)P b -关于x 轴对称,得a-1=2017,1-b=2020.解得a=2018,b=-2019,∴()()()202120212021=2018201911a b +-=-=- 故选:A . 【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数. 3.D解析:D【分析】由经过点A 的直线a ∥x 轴,可知点C 的纵坐标与点A 的纵坐标相等,可设点C 的坐标(x ,3),根据点到直线垂线段最短,当BC ⊥a 时,点C 的横坐标与点B 的横坐标相等,即可得出答案.【详解】解:如右图所示,∵a ∥x 轴,点C 是直线a 上的一个动点,点A (-2,3),∴设点C (x ,3),∵当BC ⊥a 时,BC 的长度最短,点B (2,-1),∴x=2,∴点C 的坐标为(2,3).故选:D .【点睛】本题主要考查了平面直角坐标系中点的特征和点到直线垂线段最短,解答时注意应用数形结合思想.解析:D【分析】根据题意找到动点即将离开两坐标轴时的位置,及其与点运动时间之间的关系即可.【详解】观察可发现,点到(0,2)用4=22秒,到(3,0)用9=32秒,到(0,4)用16=42秒,则可知当点离开x轴时的横坐标为时间的平方,当点离开y轴时的纵坐标为时间的平方,此时时间为奇数的点在x轴上,时间为偶数的点在y轴上,∵2020=452﹣5=2025﹣5,∴第2025秒时,动点在(45,0),故第2020秒时,动点在(45,0)向左一个单位,再向上4个单位,即(44,4)的位置.故选:D.【点睛】本题考查了动点在平面直角坐标系中的运动规律,找到动点即将离开两坐标轴时的位置,及其与点运动时间之间的关系,是解题的关键.5.C解析:C【分析】根据无理数的意义和频率意义求解.【详解】=π是无限不循环小数,解:∵2∴π是有理数,∴由30.6=可得无理数出现的频率为0.6,5故选C .【点睛】本题考查无理数和频率的综合应用,熟练掌握无理数和频率的意义是解题关键.6.C解析:C【分析】根据无理数的定义,算术平方根的估算,平方根和化简绝对值依次判断即可.【详解】解:AB、23,说法正确,不符合题意;C、5的平方根是=,说法正确, 不符合题意;D、|22故选C.本题考查了平方根、算术平方根的估算,无理数的定义.注意一个正数的平方根有两个,它们互为相反数.7.B解析:B【分析】先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可.【详解】设正方形的棱长为a ,∵正方体有6个面且每个面都相等,∴正方体的一个面的面积为2,∴22a =,解得:a =∴dm . 故选:B .【点睛】本题主要考查了算术平方根的定义,求得正方形的一个面的面积是解题的关键. 8.A解析:A【分析】根据二次根式的性质和绝对值的性质尽心化简,然后代入求值即可求出答案案.【详解】对于5y x =+当3x ≤时, 5322y x x x =++-=+,∴当1x =时,4y =;当2x =时,6y =;当3x =时,8y =;当3x >时,538y x x =+-+=∴y 值的总和为:46888=4582019=16162y =++++⋅⋅⋅⋅⋅⋅+++⨯;故选A .【点睛】本题考查了二次根式,关键是熟练运用二次根式的性质,属于基础题型.9.B解析:B【分析】将杯子侧面展开,建立A 关于EF 的对称点A′,根据两点之间线段最短可知A′B 的长度即为所求.解:如图:将杯子侧面展开,作A关于EF的对称点A′,由题意可得:A′D的长度等于圆柱底面周长的一半,即A′D=15cm由对称的性质可得A′M=AM=DE=2,BE=11-5=6∴BD=DE+BE=8连接A′B,则A′B即为最短距离,2222++=(cm).'15817A D BD故选:B.【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.10.C解析:C【分析】根据题意可知木棒最长是底面长方形的对角线的长,利用勾股定理求解即可.【详解】解:长方体的底面是长方形,水平放置木棒,当木棒为该正方形的对角线时木棒最长,22241026+=,则最长木棒长为26cm,故选:C.【点睛】本题考查立体图形、勾股定理,由题意得出木棒最长是底面长方形的对角线的长是解答的关键.11.A解析:A【分析】根据平面直角坐标系中,两点间的距离公式,即可求解.【详解】∵P(1-,3),原点坐标为(0,0),∴点P(1-,3)到原点的距离=故选A .【点睛】本题主要考查平面直角坐标系中,两点间的距离公式,掌握“若A(x 1,y 1),B(x 2,y 2),则”,是解题的关键.12.A解析:A【分析】根据正方形的面积及直角边的关系,列出方程组,然后求解.【详解】 解:由条件可得:22131131240a b ab a b ⎧+=⎪-⎪=⎨⎪>>⎪⎩, 解之得:32a b =⎧⎨=⎩. 所以2()25a b +=,故选A【点睛】本题考查了正方形、直角三角形的性质及分析问题的推理能力和运算能力.二、填空题13.-7或9【分析】根据纵坐标相同可知MN ∥x 轴然后分点N 在点M 的左边与右边两种情况求出点N 的横坐标即可得解【详解】∵点M (13)与点N (x3)的纵坐标都是3∴MN ∥x 轴∵MN =8∴点N 在点M 的左边时x 解析:-7或9【分析】根据纵坐标相同可知MN ∥x 轴,然后分点N 在点M 的左边与右边两种情况求出点N 的横坐标,即可得解.【详解】∵点M (1,3)与点N (x ,3)的纵坐标都是3,∴MN ∥x 轴,∵MN =8,∴点N 在点M 的左边时,x =1−8=−7,点N 在点M 的右边时,x =1+8=9, ∴x 的值是-7或9.故答案为:-7或9.【点睛】本题考查了坐标与图形性质,注意分情况讨论求解.14.4【分析】根据点的坐标表示方法得到点A (3-4)到x 轴的距离是纵坐标的绝对值即|-4|然后去绝对值即可【详解】解:点A (3-4)到x 轴的距离为|-4|=4故答案为4【点睛】本题考查了点的坐标:在平面解析:4【分析】根据点的坐标表示方法得到点A (3,-4)到x 轴的距离是纵坐标的绝对值即|-4|,然后去绝对值即可.【详解】解:点A (3,-4)到x 轴的距离为|-4|=4.故答案为4.【点睛】本题考查了点的坐标:在平面直角坐标系中,过一个点分别作x 轴和y 轴的垂线,用垂足在x 轴和y 轴上的坐标分别表示这个点的横纵坐标.15.【分析】估算的大小与3比较即可【详解】解:∵4<5<9∴2<<3则<3故答案为:<【点睛】本题考查了实数大小比较熟练掌握运算法则是解本题的关键解析:<【分析】3比较即可.【详解】解:∵4<5<9,∴23,,故答案为:<.【点睛】本题考查了实数大小比较,熟练掌握运算法则是解本题的关键.16.4054【分析】先化简二次根式求出y 的表达式再将x 的取值依次代入然后求和即可得【详解】解:当时当时则所求的总和为故答案为:【点睛】本题考查了二次根式的化简求值绝对值运算等知识点掌握二次根式的化简方法 解析:4054【分析】先化简二次根式求出y 的表达式,再将x 的取值依次代入,然后求和即可得.【详解】解:646y x x x =+=--+当4x <时,46102y x x x =--+=-当4x ≥时,462y x x =--+=则所求的总和为(1021)(1022)(1023)222-⨯+-⨯+-⨯++++86422018=+++⨯4054=故答案为:4054.【点睛】本题考查了二次根式的化简求值、绝对值运算等知识点,掌握二次根式的化简方法是解题关键.17.【分析】先利用完全平方差公式求出的值再利用完全平方和公式求出的值最后利用平方差公式即可得【详解】则故答案为:【点睛】本题考查了完全平方公式平方差公式平方根熟记公式是解题关键解析:±【分析】 先利用完全平方差公式求出221m m +的值,再利用完全平方和公式求出1m m+的值,最后利用平方差公式即可得.【详解】 15m m -=, 22221252271m m m m ⎛⎫-+=+= ⎪⎭∴⎝+=, 22212279122m m m m +⎛⎫∴+= =⎪+⎝=⎭+,1m m ∴+=,则22111m m m m m m ⎛⎫-= ⎪⎛⎫+-=± ⎪⎭⎝⎭⎝故答案为:±【点睛】本题考查了完全平方公式、平方差公式、平方根,熟记公式是解题关键.18.10【分析】将长方体展开可分三种情况求出其值最小者即为最短路程【详解】如图①:AD=;如图②:AD=;如图③:AD=;∴AD 的最小值为故答案为:【点睛】本题依据两点之间线段最短考查了长方体的侧面展开解析:10【分析】将长方体展开,可分三种情况,求出其值最小者,即为最短路程.【详解】如图①:AD=22+=;311130如图②:22+==;8610010如图③:22+95106∴AD的最小值为10.故答案为:10.【点睛】本题依据“两点之间,线段最短”,考查了长方体的侧面展开图,解答时利用勾股定理进行分类讨论是解题的关键.19.【分析】根据勾股定理可得两条直角边的平方和等于斜边的平方即第①个正方形的面积=第②个正方形面积的两倍;同理第③个正方形面积是第②个正方形面积的一半依此类推即可解答【详解】解:第①个正方形的面积为16 解析:【分析】根据勾股定理可得两条直角边的平方和等于斜边的平方,即第①个正方形的面积=第②个正方形面积的两倍;同理,第③个正方形面积是第②个正方形面积的一半,依此类推即可解答.【详解】解:第①个正方形的面积为16,由分析可知:第②个正方形的面积为8,第③个正方形的面积为4,故答案为:4.【点睛】本题是图形类的变化规律题,考查了勾股定理与面积的关系及等腰直角三角形的性质,熟练掌握勾股定理是解答本题的关键.20.15【分析】在侧面展开图中过C作CQ⊥EF于Q作A关于EH的对称点A′连接A′C交EH于P连接AP则AP+PC就是蚂蚁到达蜂蜜的最短距离求出A′QCQ 根据勾股定理求出A′C即可【详解】解:沿过A的圆解析:15【分析】在侧面展开图中,过C 作CQ ⊥EF 于Q ,作A 关于EH 的对称点A′,连接A′C 交EH 于P ,连接AP ,则AP+PC 就是蚂蚁到达蜂蜜的最短距离,求出A′Q ,CQ ,根据勾股定理求出A′C 即可.【详解】解:沿过A 的圆柱的高剪开,得出矩形EFGH ,过C 作CQ ⊥EF 于Q ,作A 关于EH 的对称点A′,连接A′C 交EH 于P ,连接AP , 则AP+PC 就是蚂蚁到达蜂蜜的最短距离,∵AE=A′E ,A′P=AP ,∴AP+PC=A′P+PC=A′C ,∵CQ=12×18cm=9cm ,A′Q=12cm -3cm+3cm=12cm , 在Rt △A′QC 中,由勾股定理得:2222A'Q CQ 129+=+=15(cm),故答案为:15.【点睛】本题考查了平面展开-最短路径问题,勾股定理的应用,同时也考查了学生的空间想象能力.将图形侧面展开,利用轴对称的性质和勾股定理进行计算是解题的关键.三、解答题21.(1)见解析;(2)16【分析】(1)根据各点坐标描出点的位置,依次连接即可;(2)根据割补法,利用三角形面积公式计算可得.【详解】解:(1)如图所示:(2)S △BCD =12×4×4+12×4×4=16. 【点睛】 此题主要考查通过描点法画图、再网格图中通过割补法求三角形面积,正确看图是解题关键.22.(1)6;35;(2)用等式表示OEA ∠与ACB ∠之间的数量关系是OEA ∠=ACB ∠.证明见解析.【分析】(1)根据示例可求出结果;(2)过点O 作BC 的平行线交CA 的延长线于点F .证明△AOF ≌△ABC 可得OF=BC ,即可得OE=OF ,所以∠OEF=∠OFE ,进一步可得结论.【详解】解:(1)∵在如图2中,如果OG=4,∠x OG=120°,那么点G 在平面内的位置记为G (4,120°)∴如果点N 在平面内的位置记为N (6,35°),那么ON=6;xON ∠=35°;故答案为:6;35;(2)用等式表示OEA ∠与ACB ∠之间的数量关系是:OEA ∠=ACB ∠.证明:过点O 作BC 的平行线交CA 的延长线于点F .ACB F ∴∠=∠.∵点A , B 在平面内的位置分别记为(,0)a ︒,(2,0)a ︒,2OB OA ∴=OA AB ∴=在△AOF 和△ABC 中,,,,ACB F OAF BAC OA AB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ △AOF ≌△ABC .∴OF =BC .∵OE =BC .∴OE =OF .∴F OEA ∠=∠.又∵ACB F ∠=∠,∴OEA ACB ∠=∠.【点睛】本题考查了坐标与图形性质,三角形全等的判定与性质,证明△AOF ≌△ABC 是解答本题的关键.23.(1)4-;(2)3x =【分析】(1)根据立方根,绝对值,零指数幂分别计算,然后在相加减即可(2)先变形得()318x -=,再利用立方根的定义得到12x -=,解方程即可【详解】(1)原式(231=--+231=--4=(2)()32116x -=则()318x -=故12x -=解得3x =【点睛】本题考查了实数的混合运算,以及立方根解方程,掌握立方根的定义,零指数幂的性质是解题关键.24.(1)13;(2)3 【分析】(1)直接利用算术平方根的性质、二次根式的性质、立方根的性质分别化简在计算得出答案.(2)直接利用绝对值的性质、平方的的性质计算得出答案.【详解】解:(1)2337(1)(2)19-+-+ 16=1-29+4=1-23+1=3 (2)2|13|(2)3-+--=3143-+-=3【点睛】此题主要考查了实数运算,正确化简各数是解题关键.25.224cm .【分析】连接AC ,勾股定理计算AC=222234AD CD +=+,应用勾股定理的逆定理判定三角形ABC 是直角三角形,计算两个直角三角形的面积差即可.【详解】解:连接AC∵AD DC ⊥∴∠ADC=90°,在Rt △ADC 中,根据勾股定理,得AC=222234AD CD +=+ =5,在△ABC 中,∴22222251213AC BC AB +=+==,△ABC 是直角三角形,∴=-ABC ACD ABCD S SS 四边形 =51234-22⨯⨯ =242m ().【点睛】本题考查了勾股定理、勾股定理的逆定理的应用,得到△ABC 是直角三角形是解题的关键.同时考查了直角三角形的面积公式.26.证明见解析.【分析】根据ACD ABC ABD BCD ABCD S SS S S =+=+四边形即可得证.【详解】如图,过点D 作DF BC ⊥,交BC 延长线于点F ,连接BD ,则DF CE =,由全等三角形的性质得:AC DE b ==,DF CE AC AE b a ∴==-=-,ACD ABC ABD BCD ABCD S S S S S =+=+四边形,11112222AC DE AC BC AD AB BC DF ∴⋅+⋅=⋅+⋅, 即221111()2222b ba c a b a +=+⋅-,整理得:222+=a b c .【点睛】本题考查了勾股定理的证明,掌握“面积法”是解题关键.。
【鲁教版】八年级数学上期中试卷(附答案)(2)
一、选择题1.下列命题正确的是( )A .全等三角形的对应边相等B .面积相等的两个三角形全等C .两个全等三角形一定成轴对称D .所有等腰三角形都只有一条对称轴 2.如图,在△ABC 中,∠BAC =90°,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,下面说法:①△ABE 的面积=△BCE 的面积;②∠AFG =∠AGF ;③∠FAG =2∠ACF ;④BH =CH .其中正确的是( )A .①②③④B .①②③C .②④D .①③ 3.如图所示,D 为 BC 上一点,且 AB =AC =BD ,则图中∠1 与∠2 的关系是( )A .∠1=2∠2B .∠1+∠2=180°C .∠1+3∠2=180°D .3∠2﹣∠1=180° 4.下列图案是轴对称图形的是有( )A .①②B .①③C .①④D .②③ 5.如图,在ABC 中,8AB AC ==厘米,6BC =厘米,点D 为AB 的中点.如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上,由C 点向A 点运动,为了使BPD CPQ △≌△,点Q 的运动速度应为( )A .1厘米/秒B .2厘米/秒C .3厘米/秒D .4厘米/秒 6.如图,ABC 和DEF 中,∠A=∠D ,∠C=∠F ,要使ABC DEF ≅,还需增加的条件是( )A .AB=EFB .AC=DFC .∠B=∠ED .CB=DE7.下列说法正确的是( )①近似数232.610⨯精确到十分位;②在2,()2--,38-,2--中,最小的是38-;③如图所示,在数轴上点P 所表示的数为15-+;④用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”;⑤如图,在ABC 内一点P 到这三条边的距离相等,则点P 是三个角平分线的交点.A .1B .2C .3D .4 8.如图,AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB 于点E ,S △ABC =7,DE =2,AB =4,则AC 长是( )A .2.5B .3C .3.5D .49.已知实数x 、y 满足|x -8y -0,则以x 、y 的值为两边长的等腰三角形周长是( )A .20或16B .20C .16D .1810.用若干根等长的小木棍搭建等边三角形(三边相等的三角形),搭建1个等边三角形最少需要3根小木棍,搭建2个等边三角形最少需要5根小木棍,搭建4个等边三角形最少需要小木棍的根数是( )A .12B .10C .9D .611.已知,D 是ABC ∠的边BC 上一点,//DE BA ,CBE ∠和CDE ∠的平分线交于点F ,若F α∠=,则ABE ∠的大小为( )A .αB .52αC .2αD .32α 12.正十边形每个外角等于( )A .36°B .72°C .108°D .150°二、填空题13.已知,如图,△ABC 是等边三角形,AE =CD ,BQ ⊥AD 于Q ,BE 交AD 于点P ,下列说法:①∠APE =∠C ,②AQ =BQ ,③BP =2PQ ,④AE +BD =AB ,其正确的个数是_____.14.如图,在ABC 中,=6AB ,=4AC ,点D ,E 分别在边AB ,AC 上,2BD AE CE ===,//CE AB 交DE 的延长线于点F ,则CF 的长为_____________.15.如图,已知ABC 的周长是8,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC 于D ,且3OD =,ABC 的面积是______.16.如图,ABC ∆中,ABC ∠与ACB ∠的平分线交于点F ,过点F 作//DE BC 交AB 于点D ,交AC 于点E ,那么下列结论:①BDF ∆和CEF ∆都是等腰三角形;②DE BD CE =+;③ADE ∆的周长等于AB 与AC 的和;④BF CF =;⑤若80A ∠=︒,则130BFC ∠=︒.其中正确的有_______.(填正确的序号).17.如图所示,AB AC =,AD AE =,BAC DAE ∠=∠,点D 在线段BE 上.若125∠=︒,230∠=︒,则3∠=______.18.多边形每一个内角都等于90︒,则从此多边形一个顶点出发的对角线有____条. 19.ABC 中,,AB AC 边上的高,CE BD 相交于点F ,,ABC ACB ∠∠的角平分线交于点G ,若=125CGB ∠︒,则CFB ∠=______.20.一个三角形的三个内角度数之比为2:3:5,那这个三角形一定是三角形__________.三、解答题21.如图,以△ABC 的两边AB 和AC 为腰在△ABC 外部作等腰Rt △ABD 和等腰Rt △ACE ,AB =AD ,AC =AE ,∠BAD =∠CAE =90°.(1)连接BE 、CD 交于点F ,如图①,求证:BE =CD ,BE ⊥CD ;(2)连接DE ,AM ⊥BC 于点M ,直线AM 交DE 于点N ,如图②,求证:DN =EN .22.如图,在ABC ∆中,AB AC =.(1)尺规作图:作边AB 的垂直平分线,交AB 于点D ,交AC 于点E ,连结BE ;(保留作图痕迹,不写作法)(2)若6AB =,4BC =,求BEC ∆的周长.23.在正方形网格中,网格线的交点叫做格点,三个顶点均在格点上的三角形叫做格点三角形.(1)在图1中计算格点三角形ABC的面积是__________;(每个小正方形的边长为1)(2)ABC是格点三角形.①在图2中画出一个与ABC全等且有一条公共边BC的格点三角形;②在图3中画出一个与ABC全等且有一个公共点A的格点三角形.24.已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于CE,垂足为H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并说明理由.25.如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将△ABC向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A′B′C′;(2)在图中画出△ABC的高CD,中线BE;(3)在图中能使S△ABC=S△PBC的格点P的个数有个(点P异于点A).26.如果一个多边形的内角和是外角和的3倍还多180°,那么这个多边形的边数是多少.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】分别利用全等三角形的性质以及等腰三角形的性质判断得出即可.【详解】解:A、全等三角形的对应边相等,是真命题;B、面积相等的两个三角形不一定全等,原命题是假命题;C、两个全等三角形不一定成轴对称,原命题是假命题;D、所有等腰三角形不一定都只有一条对称轴,如等边三角形有三条对称轴,原命题是假命题;故选:A.【点睛】本题主要考查了命题与定理,熟练掌握几何性质与判定是解题的关键.2.B解析:B【分析】根据等底等高的三角形的面积相等即可判断①;根据三角形内角和定理求出∠ABC=∠CAD,根据三角形的外角性质即可推出②;根据三角形内角和定理求出∠FAG=∠ACD,根据角平分线定义即可判断③;根据等腰三角形的判定判断④即可.【详解】∵BE是中线,∴AE=CE,∴△ABE的面积=△BCE的面积(等底等高的三角形的面积相等),故①正确;∵CF是角平分线,∴∠ACF=∠BCF,∵AD 为高,∴∠ADC =90°,∵∠BAC =90°,∴∠ABC +∠ACB =90°,∠ACB +∠CAD =90°,∴∠ABC =∠CAD ,∵∠AFG =∠ABC +∠BCF ,∠AGF =∠CAD +∠ACF ,∴∠AFG =∠AGF ,故②正确;∵AD 为高,∴∠ADB =90°,∵∠BAC =90°,∴∠ABC +∠ACB =90°,∠ABC +∠BAD =90°,∴∠ACB =∠BAD ,∵CF 是∠ACB 的平分线,∴∠ACB =2∠ACF ,∴∠BAD =2∠ACF ,即∠FAG =2∠ACF ,故③正确;根据已知条件不能推出∠HBC =∠HCB ,即不能推出BH =CH ,故④错误;故选:B .【点睛】本题考查了三角形内角和定理,三角形的外角性质,三角形的角平分线、中线、高,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键,题目比较好,属于中考题型.3.D解析:D【分析】根据三角形外角的性质得12C ∠+∠=∠,再根据等腰三角形的性质得B C ∠=∠,2BAD ∠=∠,由180BAC B C ∠+∠+∠=︒即可得出1∠与2∠的关系.【详解】解:∵2∠是ACD △的外角,∴12C ∠+∠=∠,∴∠C=∠2-∠1,∵AB AC =,∴B C ∠=∠,∵AB BD =,∴2BAD ∠=∠,∴112BAC BAD ∠=∠+∠=∠+∠,∵180BAC B C ∠+∠+∠=︒,∴122121180∠+∠+∠-∠+∠-∠=︒,即321180∠-∠=︒.故选:D .本题考查等腰三角形的性质,解题的关键是利用等腰三角形的性质得到相等的角. 4.C解析:C【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:①是轴对称图形,②不是轴对称图形,③不是轴对称图形,④是轴对称图形. 故选:C .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.D解析:D【分析】根据三角形全等的性质与路程、速度、时间的关系式求解.【详解】解:设△BPD ≌△CPQ 时运动时间为t ,点Q 的运动速度为v ,则由题意得:BP CP BD CQ =⎧⎨=⎩, 即3634t t vt =-⎧⎨=⎩, 解之得:14t v =⎧⎨=⎩, ∴点Q 的运动速度为4厘米/秒,故选D .【点睛】本题考查三角形全等的综合应用,熟练掌握三角形全等的判定与性质、路程、速度、时间的关系式及方程的思想方法是解题关键.6.B解析:B【分析】根据AAS 定理或ASA 定理即可得.【详解】在ABC 和DEF 中,,A C F D ∠∠∠=∠=,∴要使ABC DEF ≅,只需增加一组对应边相等即可,即需增加的条件是AB DE =或AC DF =或BC EF =,观察四个选项可知,只有选项B 符合,【点睛】本题考查了三角形全等的判定定理,熟练掌握三角形全等的判定定理是解题关键. 7.B解析:B【分析】根据近似数的精确度定义,可判断①;根据实数的大小比较,可判断②;根据点在数轴上所对应的实数,即可判断③;根据反证法的概念,可判断④;根据角平分线的性质,可判断⑤.【详解】①近似数232.610⨯精确到十位,故本小题错误; ②2,()22--=,382-=-,22--=-,最小的是38-,故本小题正确; ③在数轴上点P 所表示的数为110-+,故本小题错误;④用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角或三个钝角”,故本小题错误;⑤在ABC 内一点P 到这三条边的距离相等,则点P 是三个角平分线的交点,故本小题正确.故选B【点睛】本题主要考查近似数的精确度定义,实数的大小比较,点在数轴上所对应的实数,反证法的概念,角平分线的性质,熟练掌握上述知识点,是解题的关键.8.B解析:B【分析】作DH ⊥AC 于H ,如图,利用角平分线的性质得DH=DE=2,根据三角形的面积公式得12×2×AC+12×2×4=7,于是可求出AC 的值. 【详解】解:作DH ⊥AC 于H ,如图,∵AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB ,DH ⊥AC ,∴DH=DE=2,∵S △ABC =S △ADC +S △ABD ,∴12×2×AC+12×2×4=7,∴AC=3.故选:B.【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.这里的距离是指点到角的两边垂线段的长.9.B解析:B【分析】根据绝对值与二次根式的非负性即可求出x与y的值.由于没有说明x与y是腰长还是底边长,故需要分类讨论.【详解】由题意可知:x-4=0,y-8=0,∴x=4,y=8,当腰长为4,底边长为8时,∵4+4=8,∴不能围成三角形,当腰长为8,底边长为4时,∵4+8>8,∴能围成三角形,∴周长为:8+8+4=20,故选:B.【点睛】本题考查了算术平方根,以及三角形三边关系,解题的关键是正确理解非负性的意义,以及三角形三边关系,本题属于基础题型.10.D解析:D【分析】要先根据题意,画出图形,通过对图形观察,思考,得出需要小木棍的根数,然后图形对比,选出最少需要小木棍的根数.【详解】图1没有共用部分,要6根小木棍,图2有共用部分,可以减少小木棍根数,仿照图2得到图3,要7根小木棍,同法搭建的图4,要9根小木棍,如按图5摆放,外围大的等边三角形,可以得到5个等边三角形,要9根小木棍, 如按图6摆成三棱锥(西面体)就可以得到4个等边三角形,∴搭建4个等边三角形最少需要小木棍6根.故选:D【点睛】此题考查的是组成图形的边的条数,解答此题需要灵活利用立体空间思维解答. 11.C解析:C【分析】先利用角平分线和三角形外角的性质可得2BED α∠=,再根据平行线的性质定理即可得出ABE ∠的大小.【详解】解:如下图所示,∵CBE ∠和CDE ∠的平分线交于点F ,∴21,22C CBE DE ∠∠==∠∠,∵12F ∠+∠=∠,F α∠=,∴21α∠-∠=,∵EBD BED EDC ∠+∠=∠,∴22212ED D C BE EBD α∠∠-∠=∠-==∠,∵//DE BA ,∴2ABE BED α∠==∠,故选:C .【点睛】本题考查三角形外角的性质,平行线的性质定理,与角平分线有关的计算.正确理解三角形外角等于与它不相邻的两个内角之和是解题关键.12.A解析:A【分析】根据正十边形的外角和等于360︒,每一个外角等于多边形的外角和除以边数,即可得解.【详解】3601036︒÷=︒,∴正五边形的每个外角等于36︒,故选:A .【点睛】本题考查了正多边形的外角和、边数、外角度数之间的关系,熟记正多边形以上三者之间的关系是解题的关键.二、填空题13.3【分析】根据等边三角形的性质可得AB=AC ∠BAE=∠C=60°再利用边角边证明△ABE 和△CAD 全等然后得到∠1=∠2结合角的关系得到∠APE =∠C ;再结合30°直角三角形的性质得到BP =2PQ解析:3【分析】根据等边三角形的性质可得AB=AC ,∠BAE=∠C=60°,再利用“边角边”证明△ABE 和△CAD 全等.然后得到∠1=∠2,结合角的关系,得到∠APE =∠C ;再结合30°直角三角形的性质,得到BP =2PQ ;再结合边的关系,得到AC=AB ;即可得到答案.【详解】证明:如图所示:∵△ABC 是等边三角形,∴AB=AC ,∠BAE=∠C=60°,在△ABE 和△CAD 中,60AB AC BAE C AE CD =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABE ≌△CAD (SAS ),∴∠1=∠2,∴∠BPQ=∠2+∠3=∠1+∠3=∠BAC=60°,∴∠APE=∠C=60°,故①正确∵BQ ⊥AD ,∴∠PBQ=90°-∠BPQ=90°-60°=30°,∴BP=2PQ .故③正确,∵AC=BC .AE=DC ,∴BD=CE ,∴AE+BD=AE+EC=AC=AB ,故④正确,无法判断BQ=AQ ,故②错误,∴正确的有①③④,共3个;故答案为:3.【点睛】本题考查了全等三角形的判定与性质,等边三角形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,解题的关键是灵活运用所学知识解决问题.14.4【分析】根据ASA 证明△ADE ≌△CFE 得CF=AD 再求出AD 的长即可【详解】解:∵AB=6BD=2∴AD=AB-BD=6-2=4∵∴∠BAC=∠FCE 在△ADE 和△CFE 中∴△ADE ≌△CFE ∴解析:4【分析】根据ASA 证明△ADE ≌△CFE 得CF=AD ,再求出AD 的长即可.【详解】解:∵AB=6,BD=2∴AD=AB-BD=6-2=4∵//CE AB∴∠BAC=∠FCE ,在△ADE 和△CFE 中BAC FCE AE CEAED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE ≌△CFE∴CF=AD=4.故答案为:4.【点睛】此题主要考查了全等三角形的判定与性质,证明△ADE≌△CFE是解答此题的关键.15.12【分析】连接OA过O作OE⊥AB于EOF⊥AC于F根据角平分线的性质求出OE=OF=OD=3再根据三角形的面积公式求出即可【详解】解:连接OA过O作OE⊥AB于EOF⊥AC于F∵OBOC分别平分解析:12【分析】连接OA,过O作OE⊥AB于E,OF⊥AC于F,根据角平分线的性质求出OE=OF=OD=3,再根据三角形的面积公式求出即可.【详解】解:连接OA,过O作OE⊥AB于E,OF⊥AC于F,∵OB, OC分别平分∠ABC和∠ACB,OD⊥BC,OD=3,∴OE=OD=3,OF=OD=3,∵△ABC的周长是8,∴AB+BC+AC=8,∴△ABC的面积S=S△ABO+S△BCO+S△ACO=12×AB×OE+12×BC×OD+12×AC×OF=12×AB×3+12×BC×3+12×AC×3=12×3×(AB+BC+AC)=12×3×8=12,故答案为:12.【点睛】本题考查了三角形的面积和角平分线的性质,能根据角平分线的性质求出OE=OD=OF=3是解此题的关键.16.①②③⑤【分析】①根据平行线性质和角平分线定义可以得到DB=DFEF=EC从而得到△BDF和△CEF都是等腰三角形;②同①有DB=DFEF=EC 所以DE=DF+EF=BD+CE;③由②得:△ADE的解析:①②③⑤【分析】①根据平行线性质和角平分线定义可以得到DB=DF ,EF=EC ,从而得到△BDF 和△CEF 都是等腰三角形;②同①有DB=DF ,EF=EC ,所以DE=DF+EF=BD+CE ;③由②得:△ADE 的周长为:AD+DE+AE=AB+BD+CE+AE=AB+AC ;④因为∠ABC 不一定等于∠ACB ,所以∠FBC 不一定等于∠FCB ,所以BF 与CF 不一定相等;⑤由角平分线定义和三角形内角和定理可以得解.【详解】解:∵DE ∥BC ,∴∠DFB=∠FBC ,∠EFC=∠FCB ,∵△ABC 中,∠ABC 与∠ACB 的平分线交于点F ,∴∠DBF=∠FBC ,∠ECF=∠FCB ,∴∠DBF=∠DFB ,∠ECF=∠EFC ,∴DB=DF ,EF=EC ,即△BDF 和△CEF 都是等腰三角形;故①正确;∴DE=DF+EF=BD+CE ,故②正确;∴△ADE 的周长为:AD+DE+AE=AB+BD+CE+AE=AB+AC ;故③正确;∵∠ABC 不一定等于∠ACB ,∴∠FBC 不一定等于∠FCB ,∴BF 与CF 不一定相等,故④错误; 由题意知,1122FBC ABC FCB ACB ∠=∠∠=∠,, ∴()()11801802BFC FBC FCB ABC ACB ∠=︒-∠+∠=︒-∠+∠ =()()111801801801808022A ︒-︒-∠=︒-︒-︒ =130°,故⑤正确,故答案为①②③⑤.【点睛】 本题考查了等腰三角形的判定和性质、角平分线的性质、平行线的性质及三角形的内角和定理;题目利用了两直线平行,内错角相等及等角对等边来判定等腰三角形;等量代换的利用是解答本题的关键.17.55°【分析】先证明△ABD ≌△ACE (SAS );再利用全等三角形的性质:对应角相等求得∠2=∠ABE ;最后根据三角形内角与外角的性质即可求出答案【详解】∵∴∠1+∠CAD=∠CAE+∠CAD ∴∠1【分析】先证明△ABD ≌△ACE (SAS );再利用全等三角形的性质:对应角相等,求得∠2=∠ABE ;最后根据三角形内角与外角的性质即可求出答案.【详解】∵BAC DAE ∠=∠,∴∠1+∠CAD=∠CAE+∠CAD ,∴∠1=∠CAE ;在△ABD 与△ACE 中,1AD AE CAE AB AC =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS );∴∠2=∠ABE ;∵∠3=∠ABE+∠1=∠1+∠2,∠1=25°,∠2=30°,∴∠3=55°.故答案为:55°.【点睛】本题考查了全等三角形的判定及性质,三角形的外角性质;将所求的角与已知角通过全等及内角、外角之间的关系联系起来是解答此题的关键.18.1【分析】先根据多边形内角和公式求出它是几边形就可以得到结果【详解】解:设这个多边形是n 边形解得∴是四边形∴从一个顶点出发的对角线有1条故答案是:1【点睛】本题考查多边形内角和公式解题的关键是掌握多 解析:1【分析】先根据多边形内角和公式求出它是几边形,就可以得到结果.【详解】解:设这个多边形是n 边形,()180290n n ︒-=︒,解得4n =,∴是四边形,∴从一个顶点出发的对角线有1条.故答案是:1.【点睛】本题考查多边形内角和公式,解题的关键是掌握多边形的内角和公式.19.110°【分析】根据三角形的内角和定理求出∠GBC +∠GCB 根据角平分线的定义求出∠ABC +∠ACB 从而求出∠A 根据三角形高的定义可得∠AEC=∠FDC=90°然后根据三角形的内角和定理求出∠ACE【分析】根据三角形的内角和定理求出∠GBC +∠GCB ,根据角平分线的定义求出∠ABC +∠ACB ,从而求出∠A ,根据三角形高的定义可得∠AEC=∠FDC=90°,然后根据三角形的内角和定理求出∠ACE ,最后利用三角形外角的性质即可求出结论.【详解】解:∵=125CGB ∠︒∴∠GBC +∠GCB=180°-∠CGB=55°∵,ABC ACB ∠∠的角平分线交于点G ,∴∠ABC=2∠GBC ,∠ACB=2∠GCB∴∠ABC +∠ACB=2∠GBC +2∠GCB=2(∠GBC +∠GCB )=110°∴∠A=180°-(∠ABC +∠ACB )=70°∵,AB AC 边上的高,CE BD 相交于点F ,∴∠AEC=∠FDC=90°,∴∠ACE=180°-∠AEC -∠A=20°∴CFB ∠=∠FDC +∠ACE=110°故答案为:110°.【点睛】此题考查的是三角形内角和定理、三角形外角的性质、三角形的高和角平分线,掌握三角形内角和定理、三角形外角的性质、三角形的高的定义和角平分线的定义是解题关键. 20.直角【分析】若三角形三个内角的度数之比为2:3:5利用三角形的内角和定理:三角形的内角和为180°可求出三个内角分别是36°54°90°则这个三角形一定是直角三角形【详解】解:设三角分别为2x3x5解析:直角【分析】若三角形三个内角的度数之比为2:3:5,利用三角形的内角和定理:三角形的内角和为180°,可求出三个内角分别是36°,54°,90°.则这个三角形一定是直角三角形.【详解】解:设三角分别为2x ,3x ,5x ,依题意得2x +3x +5x =180°,解得x =18°.故三个角的度数分别为36°,54°,90°.故答案为:直角.【点睛】此题主要考查了三角形的内角和定理:三角形的内角和为180°,熟练掌握三角形内角和定理是解决本题的关键.21.(1)见详解;(2)见详解.【分析】(1)只要证明△ABE ≌△ADC 即可解决问题;(2)延长AN 到G ,使AG=BC ,连接GE ,先证AEG CAB △≌△,再证GE ADN N △≌△即可解决问题.【详解】(1)证明:∵△ABD 和△ACE 都是等腰直角三角形,∴AB=AD ,AE=AC ,又∵∠BAD=∠CAE=90°,∴∠BAD+∠DAE=∠CAE+∠DAE ,即∠BAE=∠DAC ,∴△ABE ≌△ADC ,∴BE=DC ,∠ABE=∠ADC ,又∵∠DOF=∠AOB ,∠BOA+∠ABE=90°,∴∠ABE+∠DOF=90°∴∠ADC+∠DOF=90,即BE ⊥DC .(2)延长AN 到G 使AG=BC ,连接GE ,AM BC ⊥,AC 90MAC M ∴∠+∠=︒,90NAE MAC ∠+∠=︒,ACM=NAE ∴∠∠,同理可证:ABC DAN ∠=∠ AC=AE ,∴()AEG CAB SAS △≌△,GE AB AD ∴==,ABC G ∠=∠,DAN G ∴∠=∠,又NA=GNE D ∠∠,∴GE ADN N △≌△,DN=EN ∴.【点睛】此题考查了全等三角形的判定与性质,等腰三角形的性质,直角三角形的性质,辅助线是解此题的关键.22.(1)见详解;(2)10.【分析】(1)分别以A 、B 两点为圆心,以大于12AB 长度为半径画弧,在AB 两边分别相交于两点,然后过这两点作直线即为AB 的垂直平分线;(2)由中垂线的性质得AE =BE ,根据△EBC 的周长=BE +CE +BC =AE +CE +BC =AC +BC ,进而可得答案.【详解】(1)如图所示:(2)∵6AB =,∴6AC AB ==,∵DE 是AB 的垂直平分线,∴AE=BE ,∴BEC ∆的周长=BC+CE+BE=BC+CE+AE=BC+AC=4+6=10.【点睛】本题考查了线段的垂直平分线的性质及等腰三角形的性质及基本作图,解题的关键是掌握垂直平分线上的点到线段两端点的距离相等.23.(1)6;(2)①见解析;②见解析【分析】(1)用割补法求解即可;(2)根据“SSS”画图即可;(3)根据“SSS”画图即可;【详解】解:(1)5×3-12×3×3-12×2×2-12×5×1=6,故答案为:6;(2)①如图,'A BC即为所求,②如图,''AB C即为所求,【点睛】本题考查了“格点三角形的定义”以及全等三角形的判定方法,熟练掌握“SSS”是解答本题的关键.24.(1)证明见详解;(2)BE=CM,证明见详解;【分析】(1)首先根据点D是AB的中点,∠ACB=90°,可得出∠ACD=∠BCD=45°,判断出△AEC≌△CGB,即可得出AE=CG;(2)根据垂直的定义得出∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,再根据AC=BC,∠ACM=∠CBE=45°,得出△BCE≌△CAM,进而证明出BE=CM;【详解】(1)∵点D是AB的中点,AC=BC,∠ACB=90°,∴ CD⊥AB,∠ACD=∠BCD=45°,∴∠CAD=∠CBD=45°,∴∠CAE=∠BCG,又∵BF ⊥CE ,∴∠CBG+∠BCF=90°,又∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG ,在△AEC 和△CGB 中,⎧⎪⎨⎪⎩∠CAE=∠BCG AC=BC∠ACE=∠CBG ∴△AEC ≌△CGB(ASA),∴AE=CG ;(2)BE=CM ,∵CH ⊥HM ,CD ⊥ED ,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,∴∠CMA=∠BEC ,又∵∠ACM=∠CBE=45°,在△BCE 和△CAM 中,⎧⎪⎨⎪⎩∠BEC=∠CMA ∠CBE=∠ACM BC=AC , ∴△BCE ≌△CAM(AAS),∴ BE=CM .【点睛】本题主要考查了全等三角形的性质与判定,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS )和全等三角形的性质是解题的关键;25.(1)见解析;(2)见解析;(3)4.【分析】(1)利用网格特点和平移的性质,分别画出点A 、B 、C 的对应点A '、B '、C '即可; (2)利用网格特点,作CD ⊥AB 于D ,找出AC 的中点可得到BE ;(3)利用平行线的性质过点A 作出BC 的平行线进而得出符合题意的点.【详解】(1)如图所示:△A ′B ′C ′即为所求;(2)如图所示:CD 即为所求;(3)如图所示:能使S △PBC =S △ABC 的格点P 的个数有4个.故答案为:4.【点睛】此题主要考查了平移变换以及平行线的性质和三角形的高,利用平行线的性质得出P点位置是解题关键.26.这个多边形的边数是9【分析】多边形的内角和比外角和的3倍多180°,而多边形的外角和是360°,则内角和是1260度.n边形的内角和可以表示成(n−2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数.【详解】设这个多边形的边数为n,根据题意,得(n−2)•180=360×3+180,解得:n=9.则这个多边形的边数是9.【点睛】此题考查了多边形内角与外角,此题要结合多边形的内角和公式寻求等量关系,构建方程即可求解.。
【鲁教版】八年级数学上期中模拟试卷(带答案)
一、选择题1.“三等分角”大约是在公元前五世纪由古希腊人提出来的.借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA , OB 组成,两根棒在O 点相连并可绕O 转动,C 点固定,OC CD DE ==,点D ,E 可在槽中滑动,若72BDE ︒∠=,则CDE ∠的度数是( )A .84︒B .82︒C .81︒D .78︒2.如图所示,已知ABC 和DCE 均是等边三角形,点B 、C 、E 在同一条直线上,连接AE 、BD 、FG ,AE 与BD 交于点O ,AE 与CD 交于点G ,AC 与BD 交于点F ,则下列结论中:①AE BD =; ②AG BF =; ③FG//BE ; ④CF CG =,以上结论正确的有( )A .1个B .2个C .3个D .4个3.如图所示,在△ABC 中,内角∠BAC 与外角∠CBE 的平分线相交于点P ,BE =BC ,PB 与CE 交于点H ,PG ∥AD 交BC 于F ,交AB 于G ,连接CP .下列结论:①∠ACB =2∠APB ;②BP 垂直平分CE ;③PG =AG ;④CP 平分∠DCB ;其中,其中说法正确的有( )A .1个B .2个C .3个D .4个4.下列图案是轴对称图形的是有( )A .①②B .①③C .①④D .②③5.如图O 是ABC 内的一点,且O 到三边AB 、BC 、CA 的距离==OF OD OE .若70A ∠=︒,则BOC ∠( ).A .125°B .135°C .105°D .100°6.如图,,,AB AD CB CD AC BD ==、相交于点O ,则下列说法中正确的个数是( ) ①OD OB =;②点O 到CB CD 、的距离相等;③BDA BDC ∠=∠;④BD AC ⊥A .4B .3C .2D .17.如图,BD 是四边形ABCD 的对角线, AD//BC ,AB AD <,分别过点A ,C 作AE BD ⊥,CF BD ⊥,垂足分别为点E ,F ,若BE DF =,则图中全等的三角形有( )A .1对B .2对C .3对D .4对8.如图,AD 是ABC 的高,AD BD 8==,E 是AD 上的一点,BE AC 10==,AE 2=,BE 的延长线交AC 于点F ,则EF 的长为( )A .1.2B .1.5C .2.5D .39.下列四组线段中,不可以构成三角形的是( )A .4,5,6B .1.5,2,2.5C .13,14,15D .1,2,3 10.如图,线段BE 是ABC 的高的是( )A .B .C .D .11.正十边形每个外角等于( )A .36°B .72°C .108°D .150°12.如图,直线//,65,30AB CD A E ∠=︒∠=︒,则C ∠等于( )A .30°B .35°C .40°D .45°二、填空题13.如图,△ABC ≌△ADE ,点D 落在BC 上,且∠BAD =70°,则∠EDC =_____°.14.如图,在ABC 和ADE 中,90BAC DAE ∠=∠=︒,AB AC =,AD AE =,其中点C ,D ,E 在同一条直线上,连接BD ,BE .以下四个结论:①ACE DBC ∠=∠;②45ACE DBC ∠+∠=︒;③BD CE ⊥;④BD CE =.一定正确的是______.15.如图,AC//BD ,OA ,OB 分别平分BAC ∠和ABD ∠,OE AB ⊥,垂足为E ,如果OE 5=,那么AC 与BD 的距离是________16.如图,AB =8cm ,AC =5cm ,∠A =∠B ,点P 在线段AB 上以2cm/s 的速度由点A 向B 运动,同时,点Q 以x cm/s 的速度从点B 出发在射线BD 上运动,则△ACP 与△BPQ 全等时,x 的值为_____________17.如图,△ACB 和△DCE 中,AC =BC ,∠ACB =∠DCE =90°,∠ADC =∠BEC ,若AB =17,BD =5,则S △BDE =_______.18.如图,已知//,AB CD E 是直线AB 上方一点,G 为直线AB 下方一点,F 为直线CD 上一点,148EAF ︒∠=,3BAF BAG ∠=∠,3DCE DCG ∠=∠,则E ∠和G ∠的数量关系为___________.19.过n 边形的一个顶点有9条对角线,则n 边形的内角和为______.20.如图,在ABC ∆中,4ACB A ∠=∠,点D 在边AC 上,将BDA ∆沿BD 折叠,点A 落在点A '处,恰好BA AC '⊥于点E 且//BC DA ',则BDC ∠的度数为__________度.三、解答题21.小明遇到这样一个问题:如图①,在ABC 中,12AB =,8AC =,AD 是中线,求AD 的取值范围.她的做法是:过点B 作//BE AC 交AD 的延长线于点E ,证明BED CAD △≌△,经过推理和计算就可以使问题得到解决.按照上面的思路,请回答:(1)小红证明BED CAD △≌△的判定定理是:______;(2)AD 的取值范围是______;方法运用:(3)如图②,AD 是ABC 的中线,在AD 上取一点F ,连接BF 并延长交AC 于点E ,使AE EF =,求证:BF AC =.22.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点,A C 的坐标分别为()()3,5,0,3.A C -(1)请在如图所示的网格内作出平面直角坐标系并作出ABC ∆关于y 轴对称的111A B C ∆ (2)写出点1B 的坐标并求出111A B C ∆的面积.23.如图,在ABC 和BCD △中,90BAC BCD ︒∠=∠=,AB AC =,CB CD =;延长CA 至点E ,使AE AC =;延长CB 至点F ,使BF BC =.连接AD ,AF ,DF ,EF .延长DB 交EF 于点N .(1)求证:AD AF =;(2)求证:BD EF =.24.如图,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D ,E ,若9AD =,6DE =,求BE 的长.25.(1)一个多边形的内角和等于1800度,求这个多边形的边数.(2)一个多边形的每一个内角都是108°,求这个多边形的边数.26.如图,在BCD △中,D 为BC 上一点,12∠=∠,34∠=∠,60BAC ∠=︒,求DAC ∠,ADC ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据OC=CD=DE ,可得∠O=∠ODC ,∠DCE=∠DEC ,根据三角形的外角性质可知∠DCE=∠O+∠ODC=2∠ODC,进一步根据三角形的外角性质可知∠BDE=3∠ODC=72°,即可求出∠ODC的度数,进而求出∠CDE的度数.【详解】解:∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC,∴∠DCE=∠O+∠ODC=2∠ODC,∵∠O+∠OED=3∠ODC=∠BDE=72°,∴∠ODC=24°,∵∠CDE+∠ODC=180°-∠BDE=108°,∴∠CDE=108°-∠ODC=84°.故选:A.【点睛】本题主要考查了等腰三角形的性质以及三角形的外角性质,理清各个角之间的关系是解答本题的关键.2.D解析:D【分析】首先根据等边三角形性质得出BC=AC,CD=CE,∠ACB=∠ECD=60°,即可证明△BCD与△ACE全等、△BCF与△ACG全等以及△DFC与△EGC全等,最后利用全等三角形性质以及等边三角形性质证明即可.【详解】∵△ABC与△CDE为等边三角形,∴BC=AC,CD=CE,∠ACB=∠ECD=60°,∴∠ACB+∠ACD=∠ACD+∠ECD,∠ACD=60°,即:∠ACE=∠BCD,在△BCD与△ACE中,∵BC=AC,∠ACE=∠BCD,CD=CE,∴△BCD≌△ACE(SAS),∴AE=BD,即①正确;在△BCF与△ACG中,由①可知∠CBF=∠CAG,又∵AC=BC,∠BCF=∠ACG=60°,∴△BCF≌△ACG(ASA),∴AG=BF,即②正确;在△DFC与△EGC中,∵△BCF≌△ACG,∴CF=CG.即④正确;∵∠GCF =60°,∴△CFG为等边三角形,∴∠CFG=∠FCB=60°,∴FG∥BE,即③正确;综上,①②③④都正确.故选:D.【点睛】本题考查了等边三角形的性质,全等三角形的判定和性质以及平行线的判定,解题的关键是正确寻找全等三角形来解决问题,.3.D解析:D【分析】①根据角平分线的定义与三角形外角的性质可证此结论;②利用等腰三角形“三线合一”可证明此结论;③根据角平分线定义与平行线性质可得∠APG=∠BAP,再利用等腰三角形的判定可证此结论;④如下图,由角平分线的性质定理可得PM=PN,PM=PO,则PN =PO,即可证明结论.【详解】解:∵AP平分∠BAC,PB平分∠CBE,∴∠CAB=2∠PAB,∠CBE=2∠PBE,∵∠CBE=∠CAB+∠ACB,∠PBE=∠PAB+∠APB,即∠CBE=∠CAB+2∠APB,∴∠ACB=2∠APB.故①正确;∵BE=BC,BP平分∠CBE,∴BP垂直平分CE(三线合一).故②正确;∵AP平分∠BAC,∴∠CAP=∠BAP,∵PG∥AD,∴∠APG=∠CAP,∴∠APG=∠BAP,∴PG=AG.故③正确;如图,过点P作PM⊥AE于点M,PN⊥AD于点N,PO⊥BC于点O,∵AP平分∠BAC,PB平分∠CBE,∴PM=PN,PM=PO,∴PN =PO,∴CP平分∠DCB.故④正确.故选:D.【点睛】本题考查了角平分线的判定与性质、平行线的性质、等腰三角形的性质与判定,熟练掌握相关知识并能灵活运用所学知识进行论证是解题的关键.4.C解析:C【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:①是轴对称图形,②不是轴对称图形,③不是轴对称图形,④是轴对称图形.故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.A解析:A【分析】根据到角的两边距离相等的点在角的平分线上判断出点O是三角形三条角平分线的交点,再根据三角形的内角和定理求出∠ABC+∠ACB,然后求出∠OBC+∠OCB,再利用三角形的内角和定理列式计算即可得解.【详解】解:∵O到三边AB、BC、CA的距离OF=OD=OE,∴点O是三角形三条角平分线的交点,∵∠BAC=70°,∴∠ABC+∠ACB=180°-70°=110°,∴∠OBC+∠OCB= 12(∠ABC+∠ACB )= 12×110°=55°, 在△OBC 中,∠BOC=180°-(∠OBC+∠OCB )=180°-55°=125°.故选:A .【点睛】本题考查了角平分线判定定理,三角形的内角和定理,要注意整体思想的利用. 6.B解析:B【分析】先根据全等三角形的判定定理得出△ACD ≌△ACB ,△ABO ≌△ADO ,再根据全等三角形的性质即可得出结论.【详解】解:在△ABC 和△ADC 中,∵AB AD BC CD AC AC ⎧⎪⎨⎪⎩===,∴△ABC ≌△ADC (SSS ),∴∠BAC=∠DAC , ∠DCA=∠BCA∴点O 到CB 、CD 的距离相等.故②正确在△ABO 与△ADO 中AB AD BAC DAC OA OA ⎧⎪∠∠⎨⎪⎩===,∴△ABO ≌△ADO (SAS ),∴BO=DO ,∠BOA=∠DOA∵∠BOA+∠DOA=180°∴∠BOA=∠DOA=90°,即BD AC ⊥故①④正确;∵AD≠CD∴BDA BDC ∠≠∠,故③错误所以,正确的结论是①②④,共3个,故选:B .【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法是解题的关键. 7.C解析:C【分析】根据AD //BC 证得ADB CBD ∠=∠,由BE DF =得到BF=DE ,由此证明△ADE ≌△CBF ,得到AE=CF ,AD=CB ,由此证得△ABE ≌△CDF ,得到AB=CD ,由此利用SSS 证明△ABD ≌△CDB.【详解】解:∵AD //BC ,∴ADB CBD ∠=∠,BE DF =,BF DE ∴=,AE BD ⊥,CF BD ⊥,AED CFB ∠∠∴=90=,()ADE CBF ASA ∴≅,AE CF ∴=,AD CB =,∵∠AEB=∠CFD 90=,BE=DF ,()ABE CDF SAS ∴≅,AB CD ∴=,BD DB =,AB=CD ,AD CB =,()ABD CDB SSS ∴≅,则图中全等的三角形有:3对,故选:C .【点睛】此题考查三角形全等的判定定理:SSS 、SAS 、ASA 、AAS 、HL ,根据已知条件找到对应的边或角是解题的关键.8.A解析:A【分析】先证明Rt ACD ≌()Rt BED HL ,得CD ED AD AE 6==-=,CAD EBD ∠∠=,再证BE AC ⊥,然后由三角形面积关系求出BF 11.2=,则EF BF BE 1.2=-=.【详解】解:AD 是ABC 的高,AD BC ∴⊥,ADC BDE 90∠∠∴==︒,在Rt ACD 和Rt BED 中,AC BE AD BD =⎧⎨=⎩,Rt ACD ∴≌()Rt BED HL ,CD ED AD AE 826∴==-=-=,CAD EBD ∠∠=,C CAD 90∠∠+=︒,C EBD 90∠∠∴+=︒,BFC 90∠∴=︒,BE AC ∴⊥, ABC 的面积ABD =的面积ACD +的面积,111AC BF AD BD CD AD 222∴⨯=⨯+⨯, AC BF AD BD CD AD ∴⨯=⨯+⨯,即10BF 8886112=⨯+⨯=,BF 11.2∴=,EF BF BE 11.210 1.2∴=-=-=,故选:A .【点睛】本题考查了全等三角形的判定和性质、直角三角形的性质以及三角形面积等知识;证明三角形全等是解题的关键.9.D解析:D【分析】计算较小两边的和,与最大的边比较,大于最大的边时三角形存在,依此判断即可.【详解】∵4+5>6,∴能构成三角形;∵1.5+2>2.5,∴能构成三角形; ∵14+15>13, ∴能构成三角形;∵<1+2=3,∴不能构成三角形;故选D.【点睛】本题考查了已知线段长判断三角形的存在,熟记三角形存在的条件是解题的关键. 10.D解析:D【分析】根据高的画法知,过点B 作AC 边上的高,垂足为E ,其中线段BE 是△ABC 的高,再结合图形进行判断.【详解】A 选项中,BE ⊥BC ,BE 与AC 不垂直,此选项错误;B 选项中,BE ⊥AB ,BE 与AC 不垂直,此选项错误;C 选项中,BE ⊥AB ,BE 与AC 不垂直,此选项错误;D 选项中,BE ⊥AC ,∴线段BE 是△ABC 的高,此选项正确.故选:D .【点睛】本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.11.A解析:A【分析】根据正十边形的外角和等于360︒,每一个外角等于多边形的外角和除以边数,即可得解.【详解】3601036︒÷=︒,∴正五边形的每个外角等于36︒,故选:A .【点睛】本题考查了正多边形的外角和、边数、外角度数之间的关系,熟记正多边形以上三者之间的关系是解题的关键.12.B解析:B【分析】根据平行线和三角形外角的性质即可求出C ∠的大小.【详解】如图,设AE 和CD 交于点F ,∵//AB CD ,∴65A DFE ∠=∠=︒(两直线平行同位角相等),∵DFE ∠是CEF △的外角,∴653035C DFE E ∠=∠-∠=︒-︒=︒.故选:B .【点睛】本题考查平行线和三角形外角的性质.熟练利用两个性质证明和求解是解答本题的关键.二、填空题13.70【分析】根据全等三角形的性质可得对应角和对应边相等再根据等腰三角形的性质即可解答【详解】解:∵△ABC ≌△ADE ∴AB =AD ∠B =∠ADE ∴∠ADB =∠B ∵∠BAD =70°∴∠B =∠ADB=(1解析:70【分析】根据全等三角形的性质可得对应角和对应边相等,再根据等腰三角形的性质,即可解答.【详解】解:∵△ABC ≌△ADE ,∴AB =AD ,∠B =∠ADE ,∴∠ADB =∠B ,∵∠BAD =70°,∴∠B =∠ADB =(180°-70°)÷2=55°,∴∠EDC =180°-2×55°=70°.故答案是:70.【点睛】本题考查了全等三角形的性质,等腰三角形的性质以及平角的定义,熟记性质并准确识图是解题的关键.14.②③④【分析】根据题意易证△ABD ≌△ACE 根据三角形全等的性质及余角的性质角的和差关系可进行判断进而得出正确答案【详解】解:∠DAC=∠DAC △ABD ≌△ACEBD=CE ∠ABD=∠ACE④正确;解析:②③④【分析】根据题意易证△ABD ≌△ACE ,根据三角形全等的性质及余角的性质、角的和差关系可进行判断,进而得出正确答案.【详解】 解:90BAC DAE ∠=∠=︒,∠DAC=∠DAC ,∴BAD CAE ∠=∠,AB AC =,AD AE =,∴△ABD ≌△ACE ,∴BD=CE ,∠ABD=∠ACE ,④正确;∵AB AC =,90BAC ∠=︒,∴∠ABC=∠ACB=45°,即∠ABC=∠ABD+∠DBC=45°,∴45ACE DBC ∠+∠=︒,②正确;∵90BAC ∠=︒,∴∠ABC+∠ACB=90°,∴∠DBC+∠DCB=90°,∴BD ⊥CE ,③正确;∴由题意可知ACE DBC ∠=∠不一定成立,综上所述:②③④正确;故答案为:②③④.【点睛】本题主要考查全等三角形的性质与判定及直角三角形的性质,熟练掌握全等三角形的性质与判定及直角三角形的性质是解题的关键.15.【分析】过点作于作于利用平行线的性质可证得OM ⊥BD 进而可证得MN 为AC 和BD 的距离根据角平分线的性质可知OE=OM=OE 即可求得MN 的长度【详解】解:如图过点作于作于∵分别平分和∴又∥∴又∴三点共解析:10【分析】过点O 作OM AC ⊥于M ,作ON BD ⊥于N ,利用平行线的性质可证得OM ⊥BD ,进而可证得MN 为AC 和BD 的距离,根据角平分线的性质可知OE=OM=OE ,即可求得MN 的长度.【详解】解:如图,过点O 作OM AC ⊥于M ,作ON BD ⊥于N .∵OA 、OB 分别平分BAC ∠和ABD ∠,OE AB ⊥,∴OM OE ON 5===,又 AC ∥BD ,OM AC ⊥,∴OM BD ⊥,又ON BD ⊥,∴M ,O ,N 三点共线,∴ AC 与BD 之间的距离为MN=OM ON 10+=.故答案为:10.【点睛】本题考查求平行线间的距离、角平分线的性质、八个基本事实,熟练掌握角平分线的性质,作出AC 和BD 之间的距离是解答的关键.16.2或【分析】由∠A =∠B 可知△ACP 与△BPQ 全等时CP 和PQ 是对应边则分AP =BQ 和AP =PB 两种情况进行讨论即可【详解】设动点的运动时间为t 秒则AP =2tBP =AB -AP =8-2tBQ =xt ∵∠解析:2或5 2【分析】由∠A=∠B,可知△ACP与△BPQ全等时,CP和PQ是对应边,则分AP=BQ和AP=PB两种情况进行讨论即可.【详解】设动点的运动时间为t秒,则AP=2t,BP=AB-AP=8-2t,BQ=xt,∵∠A=∠B,∴CP和PQ是对应边,当△ACP与△BPQ全等时,①AP=BQ,即:2t= xt,解得:x=2,②AP=PB,即:2t=8-2t,解得:t=2,此时,BQ=AC,xt=5,即:2x=5,解得:x=5 2故填:2或52.【点睛】本题考查全等三角形的性质,“分类讨论”的数学思想是关键.17.30【分析】根据∠ACB=∠DCE=90°可得∠ACD=∠BCE利用三角形全等判定可得△ACD≌△BCE则BE=AD∠DAC=∠EBC再证明∠DBE=90°根据三角形面积计算公式便可求得结果【详解】解析:30【分析】根据∠ACB=∠DCE=90°,可得∠ACD=∠BCE,利用三角形全等判定可得△ACD≌△BCE,则BE=AD,∠DAC=∠EBC,再证明∠DBE=90°,根据三角形面积计算公式便可求得结果.【详解】解:∵∠ACB=∠DCE=90°,∴∠ACB-∠DCB=∠DCE-∠DCB.即∠ACD=∠BCE.∵AC=BC,∠ADC=∠BEC,∴△ACD≌△BCE.∴BE=AD,∠DAC=∠EBC.∵∠DAC+∠ABC=90°,∴∠EBC+∠ABC=90°.∴△BDE为直角三角形.∵AB =17,BD =5,∴AD =AB -BD =12.∴S △BDE =12BD ⋅BE =30. 故答案为:30.【点睛】本题考查了全等三角形的判定与性质,通过分析题意找出三角形全等的条件并能结合全等性质解决相应的计算问题是解题的关键.18.【分析】延长线段BA 交CE 于点M 过点G 作AB 的平行线GN 交CE 于点N 根据平行的性质得由得再根据三角形的外角的性质得即可求出和的数量关系【详解】解:如图延长线段BA 交CE 于点M 过点G 作AB 的平行线GN 解析:1483E G ∠=︒-∠【分析】延长线段BA 交CE 于点M ,过点G 作AB 的平行线GN 交CE 于点N ,根据平行的性质得G BAG GCD ∠=∠+∠,由3BAF BAG ∠=∠,3DCE DCG ∠=∠,得333G BAG DCG ∠=∠+∠,再根据三角形的外角的性质得E EMA EAF BAF ∠+∠=∠-∠,即可求出E ∠和G ∠的数量关系.【详解】解:如图,延长线段BA 交CE 于点M ,过点G 作AB 的平行线GN 交CE 于点N ,∵//AB CD ,∴////BH GN CD ,∴BAG AGN ∠=∠,NGC GCD ∠=∠,EMA ECD ∠=∠,∵G AGN NGC ∠=∠+∠,∴G BAG GCD ∠=∠+∠,∵3BAF BAG ∠=∠,3DCE DCG ∠=∠,∴333G BAG DCG ∠=∠+∠,∵EAB E EMA ∠=∠+∠,EAB EAF BAF ∠=∠-∠,∴E EMA EAF BAF ∠+∠=∠-∠,∴E ECD EAF BAF ∠+∠=∠-∠,∴31483E DCG BAG ∠+∠=︒-∠,∴()14833E BAG DCG ∠=︒-∠+∠,∴1483E G ∠=︒-∠.故答案是:1483E G ∠=︒-∠.【点睛】本题考查平行线的性质和三角形外角的性质,解题的关键是通过平行线的性质和三角形外角的性质找到角与角之间的数量关系.19.1800°【分析】根据n 边形从一个顶点出发可引出(n-3)条对角线可得n-3=9求出n 的值最后根据多边形内角和公式可得结论【详解】解:由题意得:n-3=9解得n=12则该n 边形的内角和是:(12-2解析:1800°【分析】根据n 边形从一个顶点出发可引出(n-3)条对角线,可得n-3=9,求出n 的值,最后根据多边形内角和公式可得结论.【详解】解:由题意得:n-3=9,解得n=12,则该n 边形的内角和是:(12-2)×180°=1800°,故答案为:1800°.【点睛】本题考查了多边形的对角线和多边形的内角和公式,掌握n 边形从一个顶点出发可引出(n-3)条对角线是解题的关键.20.54°【分析】根据折叠的性质及题意可在Rt △BEC 中求解∠C 及∠CBE 的度数从而计算∠ABD 的度数则∠BDC=∠A+∠ABD 即可计算出结果【详解】由题意可得:∠A=∠∠=∠CBE ∴则在Rt △BEC 中解析:54°【分析】根据折叠的性质及题意,可在Rt △BEC 中求解∠C 及∠CBE 的度数,从而计算∠ABD 的度数,则∠BDC=∠A+∠ABD ,即可计算出结果.【详解】由题意可得:∠A=∠A ',∠A '=∠CBE ,∴44ACB A CBE ∠=∠=∠,则在Rt △BEC 中,∠C+∠CBE=90°,即:5∠CBE=90°,∠CBE=18°,∴∠A=18°,∠C=72°,∠ABC=90°,∴72ABA ABC CBE '=-=︒∠∠∠,由折叠性质可知,ABD A BD '∠=∠,∴=36ABD A BD '∠=∠︒,∴54BDC ABD A ∠=∠+∠=︒故答案为:54°.【点睛】本体三角形的折叠问题,平行线的性质及三角形的外角定理,理解图形变化中的特点,准确结合题意计算是解题关键.三、解答题21.(1)角角边或者角边角(AAS 或ASA );(2)210AD <<;(3)见解析【分析】(1)由“ASA”或“AAS”可证△BED ≌△CAD ;(2)由全等三角形的性质可得AC=BE=8,由三角形的三边关系可求解;(3)延长AD 至H ,使AD=DH ,连接BH ,由“SAS”可证△BHD ≌△CAD ,可得AC=BH ,∠CAD=∠H ,由等腰三角形的性质可得∠H=∠BFH ,可得BF=BH=AC ;【详解】解:(1)∵AD 是中线,∴BD=CD ,又∵∠ADC=∠BDE ,∵//BE AC ,∴EBD C ∠=∠,E CAD ∠=∠,∴△BED ≌△CAD (ASA ),或△BED ≌△CAD (AAS ),故答案为:SAS 或AAS ;(2)∵△BED ≌△CAD ,∴AC=BE=8,在△ABE 中,AB-BE <AE <AB+BE ,∴4<2AD <20,∴2<AD <10,故答案为:2<AD <10;(3)过点B 作//BG AC 交AD 的延长线于点G ,则CAD BGD ∠=∠∵AD 是中线,∴BD CD =在ADC 和GDB △中∵CAD BGD ∠=∠,ADC GDB ∠=∠,BD CD =,∴ADC GDB ≌△△∴BG CA =∵AE EF =∴EAF AFE ∠=∠又∵CAD BGD ∠=∠,AFE BFG ∠=∠∴BGD BFG ∠=∠∴BG BF =,又∵BG CA =,∴BF AC =;【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,三角形的三边关系,添加恰当辅助线构造全等三角形是本题的关键.22.(1)见解析;(2)()11,1B ;面积4【分析】(1)根据A ,C 两点的坐标确定坐标系,分别作出A ,B ,C 关于y 轴对称的对应点A 1,B 1,C 1′即可;(2)由平面直角坐标系可得B 1的坐标,运用分割法可得111A B C ∆的面积.【详解】解:(1)如图所示,(2)点1B 的坐标为(1,1)111A B C ∆的面积=11134122324222⨯-⨯⨯-⨯⨯-⨯⨯ =12-1-3-4=4【点睛】此题主要考查了轴对称变换以及三角形面积求法,正确得出对应点位置是解题关键. 23.(1)证明见解析;(2)证明见解析【分析】(1)结合题意得:ABF BAC ACB ∠=∠+∠,ACD ACB BCD ∠=∠+∠,推导得ABF ACD ∠=∠;通过证明ABF ACD △≌△,即可完成证明;(2)根据(1)的结论ABF ACD △≌△得:BAF CAD ∠=∠;根据题意得90BAE ∠=;再通过证明AEF ABD △≌△,即可完成证明.【详解】(1) ∵ABF BAC ACB ∠=∠+∠,ACD ACB BCD ∠=∠+∠,90BAC BCD ︒∠=∠=∴ABF ACD ∠=∠∵BF BC =,CB CD =∴BF BC CD ==即AB AC ABF ACD BF CD =⎧⎪∠=∠⎨⎪=⎩∴ABF ACD △≌△∴AF AD =;(2)∵90BAC ︒∠=∴18090BAE BAC ∠=-∠=结合(1)的结论ABF ACD △≌△∴BAF CAD ∠=∠∵90EAF BAE BAF BAF ∠=∠-∠=-∠,90BAD BAC CAD CAD ∠=∠-∠=-∠ ∴EAF BAD ∠=∠∵AE AC =,AB AC =∴AE AC AB ==即AF AD EAF BAD AE AB =⎧⎪∠=∠⎨⎪=⎩∴AEF ABD △≌△∴BD EF =.【点睛】本题考查了三角形外角、全等三角形的知识;解题的关键是熟练掌握三角形外角、全等三角形的性质,从而完成求解.24.3【分析】根据同角的余角相等可得EBC DCA ∠=∠,根据“AAS”可证CEB △≌ADC ,可得9AD CE ==,即可求BE 的长.【详解】解:∵BE CE ⊥,AD CE ⊥,∴90E ADC ∠=∠=︒,∴90EBC BCE ∠+∠=︒.∵90BCE ACD ∠+∠=︒,∴EBC DCA ∠=∠.在CEB △和ADC 中,E ADC EBC ACD BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴CEB △≌ADC (AAS ),∴BE CD =,9AD CE ==,∴963BE CD CE DE ==-=-=.【点睛】本题考查了全等三角形的判定和性质,直角三角形的性质,熟练运用全等三角形的判定是本题的关键.25.(1)十二边形;(2)五边形【分析】(1)n 边形的内角和可以表示成(n−2)•180°,设这个正多边形的边数是n ,就得到方程,从而求出边数;(2)根据多边形外角的性质进行计算即可.【详解】解:(1)设这个多边形是n 边形,根据题意得:2180(10)80n ⨯︒=︒﹣,解得:12n =.故这个多边形是十二边形;(2)18010872︒-︒=︒,多边形的边数是:360725÷=.则这个多边形是五边形.故这个多边形的边数为5.【点睛】此题考查了多边形的内角和定理和多边形外角和,注意多边形的内角和为:(n−2)×180°.26.∠DAC=20°,∠ADC=80°【分析】设∠1=∠2=x ,再用x 表示出∠3的度数,由三角形内角和定理得出∠2+∠4的度数,进而可得出x 的值,由此得出结论.【详解】设∠1=∠2=x ,则∠3=∠4=2x ,∵∠BAC=60°,∴∠2+∠4=180°-60°=120°,即x+2x=120°,∴x=40°,即∠ADC=80°,∴∠DAC=∠BAC-∠1=60°-40°=20°.【点睛】本题考查的是三角形内角和外角的相关知识,熟知三角形内角和是180°是解答此题的关键.。
2024-2025学年鲁教版(五四制)八年级数学上册期中测试题
2024-2025学年鲁教版(五四制)八年级数学上册期中测试题1.下列式子从左到右变形是因式分解的是()A.B.C.D.2.下列因式分解正确的是()A.B.C.D.3.当时,下列分式没有意义的是()A.B.C.D.4.如果分式与的值相等,则的值是()A.9B.7C.5D.35.为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是()捐款数额10203050100人数24531A.众数是100B.中位数是30C.极差是20D.平均数是30 6.多项式与的公因式是()A.B.C.D.7.若的三边a,b,c满足,那么的形状是()A.等腰三角形B.直角三角形C.等边三角形D.锐角三角形8.把分解因式得,则的值是()A.3B.2C.D.19.若关于x的方程无解,则m的值为()A.0B.4或6C.6D.0或410.某运输公司运输一批货物,已知大货车比小货车每辆多运输5吨货物,且大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同.设每辆大货车运货x吨,则所列方程正确的是()A.B.C.D.11.小明解分式方程的过程下.解:去分母,得.①去括号,得.②移项、合并同类项,得.③化系数为1,得.④以上步骤中,开始出错的一步是()A.①B.②C.③D.④12.观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是()A.B.C.D.13.若,则的值为()A.B.C.D.14.关于x的分式方程的解为正数,且关于y的不等式组的解集为,则所有满足条件的整数a的值之和是()A.13B.15C.18D.2015.团队游客年龄的方差分别是,,,导游小明最喜欢带游客年龄相近龄的团队,则他在甲、乙、丙三个的中应选______.16.分解因式:________.17.定义一种新运算:对于任意的非零实数a,b,.若,则x的值为___________.18.若关于x的分式方程(m为常数)有增根,则增根是_______.19.若关于x的方程有增根,则k的值为________.20.已知代数式是一个完全平方式,则实数t的值为____________.21.若关于x的分式方程的解大于1,则m的取值范围是______________.22.化简分式:(1)(2).23.解分式方程:(1)(2).24.先化简,再求值:,其中是使不等式成立的正整数.25.某学校开展“家国情•诵经典”读书活动.为了解学生的参与程度,从全校学生中随机抽取200人进行问卷调查,获取了他们每人平均每天阅读时间的数据(m/分钟).将收集的数据分为A,B,C,D,E五个等级,绘制成如下统计图表(尚不完整):平均每天阅读时间统计表等级人数(频数)A(10≤m<20)5B(20≤m<30)10C(30≤m<40)xD(40≤m<50)80E(50≤m≤60)y请根据图表中的信息,解答下列问题:(1)求x的值;(2)这组数据的中位数所在的等级是;(3)学校拟将平均每天阅读时间不低于50分钟的学生评为“阅读达人”予以表扬.若全校学生以1800人计算,估计受表扬的学生人数.26.某商店决定购进一批香椿,已知甲种香椿每件的进价比乙种香椿每件的进价少6元,花180元购买甲种香椿的件数与花240元购买乙种香椿的件数相等.(1)求甲、乙两种香椿每件的进价;(2)由于畅销,第一批购进的香椿已经售罄,现该商店决定用4320元再购进一批甲、乙两种香椿共200件,结果恰逢批发商进行调价,甲种香椿在第一批进价的基础上9折销售,而乙种香椿比第一批进价提高了,则最多可购买乙种香椿多少件?27.我们知道形如的二次三项式可以分解因式为,所以.但小白在学习中发现,对于还可以使用以下方法分解因式..这种在二次三项式中先加上9,使它与的和成为一个完全平方式,再减去9,整个式子的值不变,从而可以进一步使用平方差公式继续分解因式了.(1)请使用小白发现的方法把分解因式;(2)填空:;(3)请用两种不同方法分解因式.。
【鲁教版】八年级数学上期中试卷(及答案)(1)
一、选择题1.如图,在边长为9的等边△ABC 中,CD ⊥AB 于点D ,点E 、F 分别是边AB 、AC 上的两个点,且AE=CF=4cm ,在CD 上有一动点P ,则PE +PF 的最小值是( )A .4B .4.5C .5D .82.剪纸是我国传统的民间艺术.将一张纸片按图①,②中的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是( )A .B .C .D .3.若a b c 、、是ABC 的边,且222()()()0,a b a c b c -+-+-=则ABC 是( ). A .锐角三角形 B .直角三角形 C .钝角三角形 D .等边三角形 4.如图所示,在△ABC 中,内角∠BAC 与外角∠CBE 的平分线相交于点P ,BE =BC ,PB 与CE 交于点H ,PG ∥AD 交BC 于F ,交AB 于G ,连接CP .下列结论:①∠ACB =2∠APB ;②BP 垂直平分CE ;③PG =AG ;④CP 平分∠DCB ;其中,其中说法正确的有( )A .1个B .2个C .3个D .4个5.下列说法正确的( )个.①0.09的算术平方根是0.03;②1的立方根是±1;③3.110<3.2;④两边及一角分别相等的两个三角形全等.A .0B .1C .2D .36.如图,在△ABC 中,AB=5,AC=3,AD 是BC 边上的中线,AD 的取值范围是( )A .1<AD <6B .1<AD <4C .2<AD <8 D .2<AD <4 7.如图,下列结论中正确的是( )A .12A ∠>∠>∠B .12A ∠>∠>∠C .21A ∠>∠>∠D .21A ∠>∠>∠ 8.如图,AB =4cm ,AC =BD =3cm ,∠CAB =∠DBA ,点P 在线段AB 上以1cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.设运动时间为t (s ),当△ACP 与△BPQ 全等时,则点Q 的运动速度为( )cm/s .A .0.5B .1C .0.5或1.5D .1或1.5 9.下列说法正确的是 ( )A .一直角边对应相等的两个直角三角形全等B .斜边相等的两个直角三角形全等C .斜边相等的两个等腰直角三角形全等D .一边长相等的两个等腰直角三角形全等 10.将一副三角板和一张对边平行的纸条按图中方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则1∠的度数是( )A .10°B .15°C .20°D .25° 11.已知两条线段15cm a =,8cm b =,下列线段能和a ,b 首尾相接组成三角形的是( )A .20cmB .7cmC .5cmD .2cm 12.在下列长度的四根木棒中,能与2m 、5m 长的两根木棒钉成一个三角形的是( ) A .2m B .3m C .5m D .7m 二、填空题13.如图,等边ABC 的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点.若2AE =,当EF CF +取最小值时,ECF ∠的度数为___________度.14.如图,△ABE ≌△ADC ≌△ABC ,若∠1=130°,则∠α的度数为________.15.如图,线段AB ,CD 相交于点O ,AO=BO ,添加一个条件, 能使AOC BOD ≅,所添加的条件的是___________________________.16.如图,已知 O 为△ABC 三边垂直平分线的交点,且∠A =50°,则∠BOC 的度数为_____度.17.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于点P ,已知AD =AE .若△ABE ≌△ACD ,则可添加的条件为_____.18.如图,BF 平分∠ABD ,CE 平分∠ACD ,BF 与CE 交于G ,若130,90BDC BGC ∠=︒∠=︒,则∠A 的度数为_________.19.对于一个四边形的四个内角,下面四个结论中,①可以四个角都是锐角;②至少有两个角是锐角;③至少有一个角是钝角;④最多有三个角是钝角;所有正确结论的序号是______.20.如图所示,∠A+∠B+∠C+∠D+∠E+∠F=____.(填写度数).三、解答题21.如图,在△ABC 中, AB =AC .过点A 作BC 的平行线交∠ABC 的角平分线于点D ,连接CD .(1)求证:△ACD 为等腰三角形.(2)若∠BAD =140°,求∠BDC 的度数.22.如图,已知四边形ABCD 中,60B ∠=,边8cm AB BC ==,动点P ,Q 同时从A ,B 两点出发,分别沿AB ,BC 方向匀速运动,其中点P 运动的速度是每秒1cm ,点Q 运动的速度是每秒2cm ,当点Q 到达点C 时,P ,Q 两点都停止运动,设运动时间为t 秒.解答下列问题:(1)AP =_______________,BP =______________,BQ =______________.(用含t 的式子表示)(2)当点Q 到达点C 时,PQ 与AB 的位置关系如何.请说明理由.(3)在点P 与点Q 的运动过程中,BPQ 是否能成为等边三角形.若能,请求出t 的值.若不能,请说明理由.23.已知ABC 是等腰直角三角形,90ACB ∠=︒,BC AC =.直角顶点C 在x 轴上,锐角顶点B 在y 轴上,过点A 作AD x ⊥轴,垂足为点D .当点B 不动,点C 在x 轴上滑动的过程中.(1)如图1,当点C 的坐标是()1,0-,点A 的坐标是()3,1-时,请求出点B 的坐标; (2)如图2,当点C 的坐标是()1,0时,请写出点A 的坐标;(3)如图3,过点A 作直线AE y ⊥轴,交y 轴于点E ,交BC 延长线于点F .AC 与y 轴交于点G .当y 轴恰好平分ABC ∠时,请写出AE 与BG 的数量关系.24.如图①,∠BAD=90°,AB=AD ,过点B 作BC ⊥AC 于点C ,过点D 作DE ⊥CA 的延长线点E ,由∠1+∠2=∠D+∠2=90°,得∠1=∠D ,又∠ACB=∠AED=90°,AB=AD ,得△ABC ≌△DAE 进而得到AC=DE ,BC=AE , 我们把这个数学模型称为“K 字”模型或“一线三等角”模型.请应用上述“一线三等角”模型,解决下列问题:(1)如图②,∠BAD=∠CAE=90°,AB=AD ,AC=AE ,连接BC 、DE ,且BC ⊥AH 于点H ,DE 与直线AH 交于点G ,求证:点G 是DE 的中点.(2)如图③,在平面直角坐标系中,点A 为平面内任意一点,点B 的坐标为(4,1),若△AOB 是以OB 为斜边的等腰直角三角形,请直接写出点A 的坐标.25.△ABC中,三个内角的平分线交于点O,过点O作OD⊥OB,交边BC于点D.(1)如图1,猜想∠AOC与∠ODC的关系,并说明你的理由;(2)如图2,作∠ABC外角∠ABE的平分线交CO的延长线于点F.①求证:BF∥OD;②若∠F=35°,求∠BAC的度数.26.图①、图②、图③都是5×5的网格,每个小正方形的顶点称为格点,△ABC的顶点均在格点上,在图①、图②、图③给定网格中,仅用无刻度的直尺,按下列要求完成画图,并保留作图痕迹.(1)在图①中边AB上找到格点D,并连接CD,使CD将△ABC面积两等分;(2)在图②中△ABC的内部找到格点E,并连接BE、CE,使△BCE是△ABC面积的14.(3)在图③中△外部画一条直线l,使直线l上任意一点与B、C构成的三角形的面积是△ABC的18.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】作点E关于AD的对称点G,所以连接FG,与CD的交点即为P点.此时PF+PE=FG最小,通过计算证明△AFG是等边三角形,从而得出结果.【详解】作点E关于AD的对称点G,连接FG与CD的交点即为P点,如图:∴PG=PE,此时PF+PE=PF+ PG有最小值,最小值为FG,∵△ABC是边长为9等边三角形,且CD⊥AB,AE=CF=4,∴AD=BD=1AB=4.5,AF=AC-CF=9-4=5,∠A=60 ,2∴ED=GD= AD- AE=4.5-4=0.5,∴AG=AE+ED+GD=5= AF,∴△AFG是等边三角形,∴FG= AF=5,∴PF+PE的最小值是5,故选:C.【点睛】本题主要考查了轴对称-最短路径问题,等边三角形的判定和性质,掌握轴对称-最短路径的确定方法是解题的关键.2.A解析:A【分析】对于此类问题,只要依据翻折变换,知道剪去了什么图形即可判断,也可动手操作,直观的得到答案.【详解】解:按照图中的顺序,向右对折,向上对折,从斜边处剪去一个直角三角形,从直角顶点处剪去一个等腰直角三角形,展开后实际是从原菱形的四边处各剪去一个直角三角形,从菱形的中心剪去一个正方形,可得:.故选:A .【点睛】本题主要考查了剪纸问题,解决这类问题要熟知轴对称图形的特点,关键是准确的找到对称轴.一般方法是动手操作,拿张纸按照题目的要求剪出图案,展开即可得到正确的图案.3.D解析:D【分析】由偶次方的非负性质得出a-b=0,a-c=0,b-c=0,得出a=b=c ,即可得出结论.【详解】解:∵222()()()0,a b a c b c -+-+-=,∴a-b=0,a-c=0,b-c=0,∴a=b ,a=c ,b=c ,∴a=b=c ,∴这个三角形是等边三角形;故选:D .【点睛】本题考查了等边三角形的判定、偶次方的非负性质;熟练掌握等边三角形的判定方法,由偶次方的非负性质得出a=b=c 是解题的关键.4.D解析:D【分析】①根据角平分线的定义与三角形外角的性质可证此结论;②利用等腰三角形“三线合一”可证明此结论;③根据角平分线定义与平行线性质可得∠APG =∠BAP ,再利用等腰三角形的判定可证此结论;④如下图,由角平分线的性质定理可得PM=PN ,PM=PO ,则PN =PO ,即可证明结论.【详解】解:∵AP 平分∠BAC ,PB 平分∠CBE ,∴∠CAB =2∠PAB ,∠CBE =2∠PBE ,∵∠CBE =∠CAB +∠ACB ,∠PBE =∠PAB +∠APB ,即∠CBE =∠CAB +2∠APB ,∴∠ACB =2∠APB .故①正确;∵BE=BC,BP平分∠CBE,∴BP垂直平分CE(三线合一).故②正确;∵AP平分∠BAC,∴∠CAP=∠BAP,∵PG∥AD,∴∠APG=∠CAP,∴∠APG=∠BAP,∴PG=AG.故③正确;如图,过点P作PM⊥AE于点M,PN⊥AD于点N,PO⊥BC于点O,∵AP平分∠BAC,PB平分∠CBE,∴PM=PN,PM=PO,∴PN =PO,∴CP平分∠DCB.故④正确.故选:D.【点睛】本题考查了角平分线的判定与性质、平行线的性质、等腰三角形的性质与判定,熟练掌握相关知识并能灵活运用所学知识进行论证是解题的关键.5.B解析:B【分析】根据平方根、立方根、无理数的估算和三角形全等判定定理进行判断即可.【详解】解:①0.09的算术平方根是0.3,不是0.03,因此①不正确;②1的立方根是1,不是±1,因此②不正确;③因为3.12=9.91,3.22=10.24,而9.91<10<10.24,所以3.110<3.2,因此③正确;④只有两边夹角对应相等的两个三角形全等,而两边及一角分别相等的两个三角形不一定全等.因此④不正确;所以正确的只有③,故选:B.【点睛】本题考查平方根、立方根、无理数的估算以及三角形全等判定定理,掌握平方根、立方根的意义、掌握无理数的估算方法和三角形全等的判断方法是正确判断的前提. 6.B解析:B【分析】先延长AD 到E ,且AD DE =,并连接BE ,由于ADC BDE ∠=∠,BD DC =,利用SAS 易证ADC EDB ≌,从而可得AC BE =,在ABE △中,再利用三角形三边的关系,可得28AE <<,从而易求14AD <<.【详解】解:延长AD 到E ,使AD DE =,连接BE ,则AE=2AD ,∵AD DE =,ADC BDE ∠=∠,BD DC =,∴ADC EDB ≌()SAS ,3BE AC ∴==,在AEB △中,AB BE AE AB BE -<<+,即53253AD -<<+,∴14AD <<.故选:B .【点睛】此题主要考查三角形三边关系:两边之和大于第三边,两边之差小于第三边. 7.D解析:D【分析】三角形的一个外角等于与它不相邻的两个内角的和,三角形的一个外角大于任何一个与它不相邻的内角.【详解】解:∵∠2是△BCD 的外角,∴∠2>∠1,∵∠1是△ABC 的外角,∴∠1>∠A ,∠>∠>∠.∴21A故选D.【点睛】本题考查了三角形外角的性质,熟练掌握三角形外角的性质是解答本题的关键.8.D解析:D【分析】设点Q的运动速度是x cm/s,有两种情况:①AP=BP,AC=BQ,②AP=BQ,AC=BP,列出方程,求出方程的解即可.【详解】解:设点Q的运动速度是x cm/s,∵∠CAB=∠DBA,∴△ACP与△BPQ全等,有两种情况:①AP=BP,AC=BQ,则1×t=4-1×t,则3=2x,解得:t=2,x=1.5;②AP=BQ,AC=BP,则1×t=tx,4-1×t=3,解得:t=1,x=1,故选:D.【点睛】本题考查了全等三角形的判定的应用,以及一元一次方程的应用,掌握方程的思想和分类讨论思想是解此题的关键.9.C解析:C【分析】根据全等三角形的判定定理:SSS、SAS、ASA、AAS、HL定理针对四个选项分别进行判断即可.【详解】A. 一直角边对应相等的两个直角三角形不一定全等,还要知道它的边或角才能证明,故此选项错误;B. 斜边相等的两个直角三角形不一定全等,还要知道它的边或角才能证明,故此选项错误;C. 斜边相等的两个等腰直角三角形全等,对应角相等,根据AAS即可证明全等,故此选项正确;D. 一边长相等的两个等腰直角三角形不一定全等,必须说明是对应边相等,故此选项错误.故选:C.【点睛】本题考查了全等三角形的判定,掌握证明三角形全等的条件尤其是必须含有边这个条件是解题的关键.10.B解析:B【分析】延长两三角板重合的边与直尺相交,根据两直线平行,内错角相等求出∠2,再利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,由平行线的性质可得∠2=30°,∠1=∠3-∠2=45°-30°=15°.故选:B.【点睛】本题考查了平行线的性质及三角形外角的性质,三角板的知识,熟记平行线的性质,三角板的度数是解题的关键.11.A解析:A【分析】根据三角形任意两边的和大于第三边,进行分析判断.【详解】A、15+8=23>20,能组成三角形,符合题意;B、7+8=15,不能组成三角形,不合题意;C、5+8=13<15,不能组成三角形,不合题意;D、2+8=10<15,不能组成三角形,不合题意.故选:A.【点睛】本题主要考查了三角形的三边关系,要注意三角形形成的条件:任意两边之和大于第三边,三角形的两边差小于第三边.但通常不需一一验证,其简便方法是将较短两边之和与较长边比较.12.C解析:C【分析】判定三条线段能否构成三角形,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】解:设三角形的第三边为x m,则5-2<x <5+2即3<x <7,∴当x=5时,能与2m 、5m 长的两根木棒钉成一个三角形,故选:C .【点睛】本题考查了三角形的三边关系的运用,解题时注意:三角形两边之和大于第三边,三角形的两边差小于第三边.二、填空题13.30【分析】由等边三角形三线合一可知:点B 和点C 关于AD 成轴对称连接BE 交AD 于点F 此时取得最小值进而求出的度数即可【详解】∵是等边三角形是边上的中线∴AD ⊥BCAD 平分∠BAC ∴点B 和点C 关于AD解析:30【分析】由等边三角形三线合一,可知:点B 和点C 关于AD 成轴对称,连接BE 交AD 于点F ,此时,EF CF +取得最小值,进而,求出ECF ∠的度数即可.【详解】∵ABC ∆是等边三角形,AD 是BC 边上的中线,∴AD ⊥BC ,AD 平分∠BAC ,∴点B 和点C 关于AD 所在直线成轴对称,连接BE 交AD 于点F ,则BF=CF ,∴EF CF +=EF+BF=BE ,即:此时,EF CF +取得最小值,∵等边ABC ∆的边长为4,2AE =,∴E 是AC 的中点,∴BE 平分∠ABC ,∵点F 是角平分线AD 与BE 的交点,∴CF 平分∠BCA ,即:∠FCA=12∠ACB=12×60°=30°, ∴∠ECC=30°.故答案是:30.【点睛】本题主要考查等边三角形中,两线段和最小时,求角的度数,通过轴对称,把两线段和化为两点之间的一条线段的长,是解题的关键.14.100°【分析】根据全等三角形对应角相等可得然后根据周角等于求出再根据三角形的内角和定理求出从而得解【详解】解:(对顶角相等)故答案为:【点睛】本题考查了全等三角形对应角相等的性质三角形的内角和定理 解析:100°【分析】根据全等三角形对应角相等可得1BAE ∠=∠,ACB E ∠=∠,然后根据周角等于360︒求出2∠,再根据三角形的内角和定理求出2α∠=∠,从而得解.【详解】解:ABE ADC ABC ∆≅∆≅∆,1130BAE ∴∠=∠=︒,ACB E ∠=∠,23601360130130100BAE ∴∠=︒-∠-∠=︒-︒-︒=︒,180DFE E α∴∠=︒-∠-∠,1802AFC ACD ∠=︒-∠-∠,DFE AFC ∠=∠(对顶角相等),1801802E ACD α∴︒-∠-∠=︒-∠-∠,2100α∴∠=∠=︒.故答案为:100︒.【点睛】本题考查了全等三角形对应角相等的性质,三角形的内角和定理,对顶角相等的性质,准确识图,找出对应角是解题的关键.15.或或或【分析】先根据对顶角相等可得再根据三角形全等的判定定理即可得【详解】由对顶角相等得:当时由定理可证当时由定理可证当时由定理可证当时则由定理可证故答案为:或或或【点睛】本题考查了对顶角相等三角形 解析:CO DO =或A B ∠=∠或C D ∠=∠或//AC BD【分析】先根据对顶角相等可得AOC BOD ∠=∠,再根据三角形全等的判定定理即可得.【详解】由对顶角相等得:AOC BOD ∠=∠,AO BO =,∴当CO DO =时,由SAS 定理可证AOC BOD ≅,当A B ∠=∠时,由ASA 定理可证AOC BOD ≅,当C D ∠=∠时,由AAS 定理可证AOC BOD ≅,当//AC BD 时,则A B ∠=∠,由ASA 定理可证AOC BOD ≅,故答案为:CO DO =或A B ∠=∠或C D ∠=∠或//AC BD .【点睛】本题考查了对顶角相等、三角形全等的判定定理等知识点,熟练掌握三角形全等的判定定理是解题关键.16.100【分析】连接AO 延长交BC 于D 根据线段垂直平分线的性质可得OB=OA=OC 再根据等腰三角形的等边对等角和三角形的外角性质可得∠BOC=2∠A 即可求解【详解】解:连接AO 延长交BC 于D ∵O 为△A 解析:100【分析】连接AO 延长交BC 于D ,根据线段垂直平分线的性质可得OB=OA=OC ,再根据等腰三角形的等边对等角和三角形的外角性质可得∠BOC=2∠A ,即可求解.【详解】解:连接AO 延长交BC 于D ,∵O 为△ABC 三边垂直平分线的交点,∴OB=OA=OC ,∴∠OBA=∠OAB ,∠OCA=∠OAC ,∵∠BOD=∠OBA+∠OAB=2∠OAB ,∠COD=∠OCA+∠OAC=2∠OAC ,∴∠BOC=∠BOD+∠COD=2∠OAB+2∠OAC=2∠BAC ,∵∠BAC=50°,∴∠BOC=100°.故答案为:100.【点睛】本题考查线段垂直平分线的性质、等腰三角形的性质、三角形的外角性质,属于基础题型,熟练掌握它们的性质和运用是解答的关键.17.AB =AC 或∠B =∠C 或∠AEB =∠ADC (答案不唯一)【分析】根据全等三角形的判定定理(SASASAAASSSS )即可得出答案【详解】解:添加条件:AB =AC 在△ABE 和△ACD 中∴△ABE ≌△A解析:AB =AC 或∠B =∠C 或∠AEB =∠ADC (答案不唯一)【分析】根据全等三角形的判定定理(SAS ,ASA ,AAS ,SSS )即可得出答案.【详解】解:添加条件:AB =AC ,在△ABE 和△ACD 中,AB AC A A AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS );添加条件:∠B =∠C ,在△ABE 和△ACD 中,B C A A AE AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (AAS );添加条件:∠AEB =∠ADC ,在△ABE 和△ACD 中,AEB ADC AE ADA A ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABE ≌△ACD (ASA );故答案为:AB =AC 或∠B =∠C 或∠AEB =∠ADC (答案不唯一).【点睛】此题主要考查了全等三角形的判定,关键是掌握判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .18.50°【分析】连接BC 根据三角形内角和定理可求得∠DBC +∠DCB 的度数再利用三角形内角和定理及角平分线的定义可求得∠ABC +∠ACB 的度数即可求得∠A 的度数【详解】解:连接BC ∵∠BDC =130°解析:50°【分析】连接BC ,根据三角形内角和定理可求得∠DBC +∠DCB 的度数,再利用三角形内角和定理及角平分线的定义可求得∠ABC +∠ACB 的度数,即可求得∠A 的度数.【详解】解:连接BC ,∵∠BDC=130°,∴∠DBC+∠DCB=180°−∠BDC=50°,∵∠BGC=90°,∴∠GBC+∠GCB=180°−∠BGC=90°,∴∠GBD+∠GCD=(∠GBC+∠GCB)−(∠DBC+∠DCB)=40°,∵BF平分∠ABD,CE平分∠ACD,∴∠ABD+∠ACD=2∠GBD+2∠GCD=80°,∴∠ABC+∠ACB=(∠ABD+∠ACD)+(∠DBC+∠DCB)=130°,∴∠A=180°−(∠ABC+∠ACB)=180°−130°=50°.故答案为:50°.【点睛】本题主要考查了与角平分线有关的三角形内角和问题,根据题意作出辅助线,构造出三角形是解答此题的关键.19.④【分析】四边形的内角和是根据四边形内角的性质选出正确选项【详解】解:①错误如果四个角都是锐角那么内角和就会小于;②错误可以是四个直角;③错误可以是四个直角;④正确故选:④【点睛】本题考查四边形内角解析:④【分析】四边形的内角和是360︒,根据四边形内角的性质选出正确选项.【详解】解:①错误,如果四个角都是锐角,那么内角和就会小于360︒;②错误,可以是四个直角;③错误,可以是四个直角;④正确.故选:④.【点睛】本题考查四边形内角的性质,解题的关键是掌握四边形内角的性质.20.360°【分析】连接BE先利用三角形内角和定理得出∠C+∠D=∠PBE+∠PEB 继而在四边形ABEF中利用内角和定理进行求解即可【详解】连接BE∵∠C+∠D+∠DPC=180°∠PBE+∠PEB+∠解析:360°【分析】连接BE ,先利用三角形内角和定理得出∠C+∠D=∠PBE+∠PEB ,继而在四边形ABEF 中利用内角和定理进行求解即可.【详解】连接BE ,∵∠C+∠D+∠DPC=180°,∠PBE+∠PEB+∠BPE=180°,∠DPC=∠BPE ,∴∠C+∠D=∠PBE+∠PEB ,在四边形ABEF 中,∠A+∠ABE+∠BEF+∠F=(4-2)×180°=360°,∴∠A+∠ABP+∠PBE+∠PEB+∠PEF+∠F=360°,∴∠A+∠ABP+∠C+∠D+∠PEF+∠F=360°,故答案为:360°.【点睛】本题考查了三角形内角和定理以及四边形内角和的应用,正确添加辅助线,准确识图,熟练应用相关知识是解题的关键.三、解答题21.(1)证明见解析;(2)50BDC ∠=︒.【分析】(1)根据平行线的性质和角平分线的定义可得∠ADB=∠ABD ,从而可得AB=AD ,再依据等量代换即可得出结论;(2)根据等腰三角形等边对等角可求得∠ADB=20°,再依据角平分线的性质、平行线的性质和等腰三角形等边对等角求得70ADC ∠=︒,最后利用角的和差即可求得结论.【详解】解:(1)证明:∵AD ∥BC ,∴∠ADB=∠DBC ,∵BD 为∠ABC 的平分线,∴∠ABD=∠DBC ,∴∠ADB=∠ABD ,∴AB=AD ,∵AB =AC ,∴AC=AD ,即△ACD 为等腰三角形;(2)∵AB=AD ,∠BAD =140°,∴∠ADB=∠ABD=1802BAD ︒-∠=20°, ∴∠ABC=∠ABD+∠DBC=2∠ABD=40°,∵AB =AC ,∴∠ACB=∠ABC=40°,∵AD ∥BC ,∴∠DAC=∠ACB=40°,∵AC=AD , ∴180702DAC ADC ACD ︒-∠∠=∠==︒, ∴50AD DC AD C B B ∠-∠=∠=︒. 【点睛】本题考查等腰三角形的性质和判定,平行线的性质,角平分线的有关证明.(1)中需正确识别角平分线与平行线所构成的等腰三角形;(2)中能根据等边对等角依次计算角度是解题关键.22.(1)AP t =,8BP t =-,2BQ t =;(2)PQ AB ⊥,理由见解析;(3)能,当t 为83时,BPQ 为等边三角形 【分析】(1)根据点P 、Q 的运动速度解答;(2)连接AC ,得到△ABC 为等边三角形,根据等腰三角形的三线合一证明; (3)根据等边三角形的判定定理列出方程,解方程即可.【详解】解:(1)AP t =,8BP t =-,2BQ t =故答案为:t ;8-t ;2t ;(2)PQ AB ⊥.理由如下:连接AC∵AB BC =,60B ∠=,∴ABC 是等边三角形.∵Q 的速度是每秒2cm ,故当Q 与C 重合时,t 4= 又P 的速度是每秒1cm ,=8cm AB ,∴=4AB BP =又∵=CA CB ,∴PQ AB ⊥.(3)能.∵60B ∠=,∴当BP BQ =时,BPQ 为等边三角形,∴82t t -=. ∴83t =. ∴当t 为83时,BPQ 为等边三角形. 【点睛】 本题考查的是等腰三角形的性质、等边三角形的判定和性质,掌握等腰三角形的三线合一、等边三角形的判定定理和性质定理是解题的关键.23.(1)(0,2);(2)(-1,-1);(3)BG=2AE ,理由见详解【分析】(1)先证明Rt∆ADC ≅Rt∆COB ,结合条件,即可得到答案; (2)先证明∆ADC ≅∆COB ,结合点B ,C 的坐标,求出AD ,OD 的长,即可得到答案; (3)先证明∆BGC ≅∆AFC ,再证明∆ABE ≅∆FBE ,进而即可得到答案. 【详解】(1)∵点C 的坐标是()1,0-,点A 的坐标是()3,1-,∴AD=OC ,又∵AC=BC ,∴Rt∆ADC ≅ Rt∆COB (HL ),∴OB=CD=2,∴点B 的坐标是(0,2);(2)∵AD ⊥x 轴,∴∠DAC+∠ACD=90°,又∵∠OCB+∠ACD=90°,∴∠DAC=∠OCB ,又∵∠ADC=∠COB=90°,AC=BC ,∴∆ADC ≅ ∆COB (AAS ),∵点C 的坐标是()1,0∴AD=OC=1,∵点B 的坐标是(0,2),∴CD=OB=2,∴OD=2-1=1,∴点A 的坐标是(-1,-1);(3)BG=2AE ,理由如下:∵ABC 是等腰直角三角形,90ACB ∠=︒,BC AC =,AE y ⊥轴,∴∠BCA=∠ACF=90°,∠AEG=90°,∴∠GBC+∠BGC=90°,∠GAE+∠AGE=90°,又∵∠BGC=∠AGE ,∴∠GBC=∠FAC ,在∆BGC 和 ∆AFC 中,∵∠GBC=∠FAC ,BC AC =, ∠GBC=∠FAC ,∴∆BGC ≅∆AFC (ASA ),∴BG=AF ,∵BE ⊥AF ,y 轴恰好平分ABC ∠,∴∠ABE=∠FBE ,∠AEB=∠FEB=90°,BE=BE ,∴∆ABE ≅∆FBE ,∴AE=FE ,∴AF=2AE∴BG=2AE .【点睛】本题主要考查等腰直角三角形的性质,全等三角形的判定和性质,熟练掌握“一线三垂直”模型,是解题的关键.24.(1)见解析;(2)A(32,52)或(52,-32). 【分析】(1)过点D 作DM ⊥AM 交AG 于点M ,过点E 作EN ⊥AG 于点N .根据“K 字模型”即可证明AH=DM 和AH=EN ,即EN=DM ,再根据全等三角形的判定和性质即可证明DG=EG ,即点G 是DE 的中点.(2)分情况讨论①当A 点在OB 的上方时,作AC 垂直于y 轴,BE 垂直于x 轴,CA 和EB 的延长线交于点D .根据“K 字模型”即可证明AC BD OC AD DE ===,,再利用B 点坐标即可求出A 点坐标.②当A 点在OB 的下方时,作AP 垂直于y 轴,BM 垂直于x 轴,PA 和BM 的延长线交于点Q .同理即能求出A 点坐标.【详解】(1)如图,过点D 作DM ⊥AM 交AG 于点M ,过点E 作EN ⊥AG 于点N ,则∠DMA=90°,∠ENG=90°.∵∠BHA=90 ,∴∠2+∠B=90°.∵∠BAD=90°,∴∠1+∠2=90°.∴∠B=∠1 . 在△ABH 和△DAM 中1BHA AMD B AB DA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABH ≅△DAM (AAS ),∴AH=DM .同理 △ACH ≅△EAN (AAS ),∴ AH=EN .∴EN=DM .在△DMG 和△ENG 中MGD NGE DMG ENG DM EN ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△DMG ≅△ENG (AAS ).∴DG=EG .∴点G 是DE 的中点.(2)根据题意可知有两种情况,A 点分别在OB 的上方和下方.①当A 点在OB 的上方时,如图,作AC 垂直于y 轴,BE 垂直于x 轴,CA 和EB 的延长线交于点D .利用“K 字模型”可知ACO BDA ≅,∴AC BD OC AD DE ===,,设AC x =,则BD x =,∵1DE BD BE x =+=+,∴1OC AD DE x ===+,又∵4CD AD AC =+=,即14x x ++=, 解得32x =,∴32AC =,35122DE =+=. 即点A 坐标为(32,52).②当A 点在OB 的下方时,如图,作AP 垂直于y 轴,BM 垂直于x 轴,PA 和BM 的延长线交于点Q .根据①同理可得:52AP=,32MQ=.即点A坐标为(52,32-).【点睛】本题考查了三角形全等的判定和性质.熟练利用三角形的判定方法是解答本题的关键.25.(1)∠AOC=∠ODC,理由见解析;(2)①见解析;②70°【分析】(1)根据角平分线的定义得到∠OAC+∠OCA=12(180°−∠ABC),∠OBC=12∠ABC,由三角形的内角和得到∠AOC=90°+∠OBC,∠ODC=90°+∠OBD,于是得到结论;(2)①由角平分线的性质得到∠EBF=90°−∠DBO,由三角形的内角和得到∠ODB=90°−∠OBD,于是得到结论;②由角平分线的性质得到∠FBE=12(∠BAC+∠ACB),∠FCB=12ACB,根据三角形的外角的性质即可得到结论.【详解】(1)∠AOC=∠ODC,理由:∵三个内角的平分线交于点O,∴∠OAC+∠OCA=12(∠BAC+∠BCA)=12(180°﹣∠ABC),∵∠OBC=12∠ABC,∴∠AOC=180°﹣(∠OAC+∠OCA)=90°+12∠ABC=90°+∠OBC,∵OD⊥OB,∴∠BOD=90°,∴∠ODC=90°+∠OBD,∴∠AOC=∠ODC;(2)①∵BF平分∠ABE,∴∠EBF=12∠ABE=12(180°﹣∠ABC)=90°﹣∠DBO,∵∠ODB=90°﹣∠OBD,∴∠FBE=∠ODB,∴BF∥OD;②∵BF平分∠ABE,∴∠FBE=12∠ABE=12(∠BAC+∠ACB),∵三个内角的平分线交于点O,∴∠FCB=12∠ACB,∵∠F=∠FBE﹣∠BCF=12(∠BAC+∠ACB)﹣12∠ACB=12∠BAC,∵∠F=35°,∴∠BAC=2∠F=70°.【点睛】本题考查了平行线的性质和判定,角平分线的定义,三角形的内角和,三角形的外角的性质,熟练掌握三角形的外角的性质是解题的关键.26.(1)见解析图;(2)见解析图;(3)见解析图【分析】(1)根据三角形中线的性质可知,当CD为△ABC在AB边上的中线时,可将其面积平分,即找到AB的中点,连接AE即可;(2)可按照△BCE与△ABC都以BC为底边进行分析,当都以BC为底边时,△ABC 的高为4,从而使得△BCE的高为1即可;(3)延续(2)的解题思路,都以BC为底边,要使得构成的三角形的面积是△ABC的1 8,则让构成的三角形的高为12即可,则在BC下方12个单位处作平行于BC的直线即为所求.【详解】如图所示:(1)D在格点上,也为AB的中点,故CD即为所求;(2)当点E在直线m上,且三角形内部时,均满足题意,如图△BCE,此时答案不唯一,符合要求即可;(3)如图,直线l即为所求.【点睛】本题主要考查作图-应用与设计作图,充分理解三角形中线的性质,以及灵活运用底相等时,面积之比等于高之比进行图形构造是解题关键.。
【鲁教版】八年级数学上期中试卷(带答案)(2)
一、选择题1.已知锐角AOB ∠,如图(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作弧MN ,交射线OB 于点D ,连接CD ;(2)分别以点,C D 为圆心,CD 长为半径作弧,两弧交于点P ,连接,CP DP ; (3)作射线OP 交CD 于点Q .根据以上作图过程及所作图形,有如下结论:①//CP OB ;②2CP QC =;③AOP BOP ∠=∠;④CD OP ⊥.其中正确的有( )A .①②③④B .②③④C .③④D .③2.等腰三角形的两边a ,b 满足7260a b -+-=,则它的周长是( ) A .17 B .13或17 C .13 D .193.剪纸是我国传统的民间艺术.将一张纸片按图①,②中的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是( )A .B .C .D .4.等腰三角形的一个内角是50度,它的一腰上的高与底边的夹角是( )度 A .25或60 B .40或60 C .25或40 D .405.下列四个命题中,真命题是( )A .如果 ab =0,那么a =0B .面积相等的三角形是全等三角形C .直角三角形的两个锐角互余D .不是对顶角的两个角不相等6.下列各命题中,假命题是( )A .有两边及其中一边上的中线对应相等的两个三角形全等B .有两边及第三边上高对应相等的两个三角形全等C .有两角及其中一角的平分线对应相等的两三角形全等D .有两边及第三边上的中线对应相等的两三角形全等7.如图,已知△ABC 的周长是20,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于,且OD=2,△ABC 的面积是( )A .20B .24C .32D .408.如图,在Rt ABC 中,C 90∠=,AD 是BAC ∠的平分线,若AC 3=,BC 4=,则ABD ACD S :S 为( )A .5:4B .5:3C .4:3D .3:49.下列说法正确的是( )A .射线AB 和射线BA 是同一条射线B .连接两点的线段叫两点间的距离C .两点之间,直线最短D .七边形的对角线一共有14条10.如图,//AB CD ,40C ∠=︒,60A ∠=︒,则F ∠的度数为( )A .10°B .20°C .30°D .40° 11.在△ABC 中,∠A =x °,∠B =(2x +10)°,∠C 的外角大小(x +40)°,则x 的值等于( )A .15B .20C .30D .4012.如图,为估计池塘岸边A 、B 的距离,小方在池塘的一侧选取一点O ,测得OA =15米,OB=10米,A 、B 间的距离不可能是( )A .20米B .15米C .10米D .5米二、填空题13.如图,已知60AOB ︒∠=,点P 在边OA 上, 10OP =,点,M N 在边OB 上, PM PN =,若3,MN =则OM 的长是__________.14.如图,已知在ABC ∆和ADC ∆中,,ACB ACD ∠=∠请你添加一个条件:_________,使ABC ADC ∆≅∆(只添一个即可).15.如图,ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC 交BC 于点D ,DE ⊥AB ,垂足为E ,且AB =10cm ,则DEB 的周长是_____cm .16.△ABC 中,∠A =50°,当∠B =____________时,△ABC 是等腰三角形.17.如图,四边形ABDC 中,对角线AD 平分BAC ∠,136ACD ∠=︒,44BCD ∠=︒,则ADB ∠的度数为_____18.2016年2月6日凌晨,宝岛高雄发生6.7级地震,得知消息后,中国派出武警部队探测队,探测队探测出某建筑物下面有生命迹象,他们在生命迹象上方建筑物的一侧地面上的,A B 两处,用仪器探测生命迹象C ,已知探测线与地面的夹角分别是30︒和60︒(如图),则C ∠的度数是_________.19.如图,飞机P 在目标A 的正上方,飞行员测得目标B 的俯角为30°,那么APB ∠的度数为______°.20.如图,线段AD ,BE ,CF 两两相交于点H ,I ,G ,分别连接AB ,CD ,EF .则A B C D E F ∠+∠+∠+∠+∠+∠=____.三、解答题21.在等边ABC ∆中,(1)如图1,P ,Q 是BC 边上两点,AP AQ =,20BAP ∠=︒,求AQB ∠的度数; (2)点P ,Q 是BC 边上的两个动点(不与B ,C 重合),点P 在点Q 的左侧,且AP AQ =,点Q 关于直线AC 的对称点为M ,连接AM ,PM .①依题意将图2补全;②求证:PA PM =.22.如图,等边三角形ABC 中,AD BC ⊥,垂足为D ,点E 在线段AD 上,45EBC ∠=︒,求ACE ∠的度数.23.如图,在ABC 中,按以下步骤作图:①以点B 为圆心,任意长为半径作弧,分别交BA ,BC 于点M ,N ;再以点N 为圆心,MN 长为半径作弧交前面的弧于点F ,作射线BF 交AC 的延长线于点E .②以点B 为圆心,BA 长为半径作弧交BE 于点D ,连接CD .请你观察图形,解答下列问题.(1)由尺规作图可证得BMN BFN ≌△△,依据是____________;(2)求证:ABC DBC △≌△;(3)若100BAC ∠=︒,50E ∠=︒,求∠ACB 的度数.24.将Rt ABC △的直角顶点C 置于直线l 上,AC BC =,分别过点 A 、B 作直线l 的垂线,垂足分别为点D 、E ,连接AE .若3BE =, 5DE =.求ACE △的面积.25.已知:在RT △ABC 中,∠ACB ═90°,CD ⊥AB ,AE 是∠CAB 的角平分线,AE 与CD 交于点F .(1)如图1,求证:∠CEF =∠CFE .(2)如图2,过点E 作EG ⊥AB 于点G ,请直接写出图中与∠CAE 互余的所有角.26.如图,已知在ABC 中,90C ∠=︒,BE 平分ABC ∠,且//BE AD ,20BAD ∠=︒,求AEB ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由作图易判断射线OP 为AOB ∠的角平分线,又为CD 的垂直平分线,CDP 为等边三角形,由它们的性质逐项判断即可.【详解】由作图(1)(2)可知OC=OD ,CP=DP ,∴射线OP 为AOB ∠的角平分线,又为CD 的垂直平分线.∴即=AOP BOP ∠∠,CD OP ⊥,故③④正确;由作图(2)可知CP=CD=DP ,即CDP 为等边三角形,又∵CD OP ⊥,∴CP=2CQ ,故②正确;若//CP OB ,则=CPO BOP ∠∠,又∵=AOP BOP ∠∠,∴=CPO AOP ∠∠,∴OC=PC ,故只有当OC=PC 时,//CP OB ,故①错误.综上,正确的有②③④.故选:B .【点睛】本题考查角平分线的判定和性质,线段垂直平分线的判定和性质,等边三角形的判定和性质.理解作图步骤隐藏的已知信息是解答本题的关键.2.A解析:A【分析】根据绝对值和二次根式的性质求出a ,b ,再根据等腰三角形的性质判断即可;【详解】∵70a -=,∴70260a b -=⎧⎨-=⎩, 解得73a b =⎧⎨=⎩, ∵a ,b 是等腰三角形的两边,∴当7a =为腰时,三边分别为7,7,3,符合三角形三边关系,此时三角形的周长77317++=;当3b =为腰时,三边为3,3,7,由于33+<7,故不符合三角形的三边关系; ∴三角形的周长为17.故答案选A .【点睛】本题主要考查了等腰三角形的性质、绝对值性质和二次根式的性质,准确计算是解题的关键.3.A解析:A【分析】对于此类问题,只要依据翻折变换,知道剪去了什么图形即可判断,也可动手操作,直观的得到答案.【详解】解:按照图中的顺序,向右对折,向上对折,从斜边处剪去一个直角三角形,从直角顶点处剪去一个等腰直角三角形,展开后实际是从原菱形的四边处各剪去一个直角三角形,从菱形的中心剪去一个正方形,可得:.故选:A.【点睛】本题主要考查了剪纸问题,解决这类问题要熟知轴对称图形的特点,关键是准确的找到对称轴.一般方法是动手操作,拿张纸按照题目的要求剪出图案,展开即可得到正确的图案.4.C解析:C【分析】当顶角为50°时和底角为50°两种情况进行求解.【详解】当顶角为50°时,底角为:(180°−50°)÷2=65°.此时它的一条腰上的高与底边的夹角为:90°−65°=25°.当底角为50°时,此时它的一条腰上的高与底边的夹角为:90°−50°=40°.故选:C.【点睛】本题考查等腰三角形的性质,等腰三角形中两个底角相等.同时考查了分类讨论的思想.5.C解析:C【分析】根据有理数的乘法、全等三角形的概念、直角三角形的性质、对顶角的概念判断即可.【详解】解:A、如果ab=0,那么a=0或b=0或a、b同时为0,本选项说法是假命题,不符合题意;B、面积相等的三角形不一定全等,本选项说法是假命题,不符合题意;C、直角三角形的两个锐角互余,本选项说法是真命题,符合题意;D、不是对顶角的两个角可能相等,本选项说法是假命题,不符合题意;故选:C.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,判断命题的真假关键是要熟悉课本中的性质定理.6.B解析:B【分析】根据全等三角形的判定定理进行证明并依次判断.【详解】解:A、有两边及其中一边上的中线对应相等的两个三角形全等,可利用证两步全等的方法求得,是真命题;B、高有可能在内部,也有可能在外部,是不确定的,不符合全等的条件,原命题是假命题;C、有两角及其中一角的平分线对应相等的两三角形全等,可利用证两步全等的方法求得,是真命题;D、有两边及第三边上的中线对应相等的两三角形全等,可利用证两步全等的方法求得,是真命题;故选:B.【点睛】此题考查全等三角形的判定定理:SSS、SAS、ASA、AAS、HL,灵活判定命题真假,熟记定理并灵活应用解决问题是解题的关键.7.A解析:A【分析】连接OA,过O作OE⊥AB于E,OF⊥AC于F;然后利用角平分线定理可得OF=OE=DO=2,然后用S△ABC=S△AOC+S△OBC+S△ABO求解即可.【详解】解:如图:连接OA,过O作OE⊥AB于E,OF⊥AC于F,∵OB,OC分别平分∠ABC和∠ACB,∴OD=OE,OF=OD,即OF=OE=DO=2,∴S△ABC=12×2AC+12×2BC +12×2AB=12×2(AC+BC+AB)= AC+BC+AB=20.故答案为A.【点睛】本题主要考查了角平分线定理,正确作出辅助线、利用角平分线定理得到OF=OE=DO=2是解答本题的关键.8.B解析:B【分析】过D 作DF AB ⊥于F ,根据角平分线的性质得出DF =DC ,再根据三角形的面积公式求出ABD 和ACD 的面积,最后求出答案即可.【详解】解:过D 点作DF AB ⊥于F ,∵AD 平分CAB ∠,C 90∠=(即AC BC ⊥),∴DF CD =,设DF CD R ==,在Rt ABC 中,C 90∠=,AC 3=,BC 4=, ∴22AB 5AC BC =+=, ∴ABD 115SAB DF 5R R 222=⨯⨯=⨯⨯=,ACD 113S AC CD 3R R 222=⨯⨯=⨯⨯=, ∴ABD ACD 5S :S R 2⎛⎫= ⎪⎝⎭:3R 5:32⎛⎫= ⎪⎝⎭, 故选:B.【点睛】本题考查了角平分线的性质和三角形的面积,能根据角平分线的性质求出DF =CD 是解此题的关键.9.D解析:D【分析】根据两点之间线段最短,数轴上两点间的距离的求解,射线的定义,多边形的对角线对各小题分析判断即可得解.【详解】解:A 、射线AB 和射线BA 是不同的射线,故本选项不符合题意;B 、连接两点的线段的长度叫两点间的距离,故本选项不符合题意;C 、两点之间,线段最短,故本选项不符合题意;D 、七边形的对角线一共有7(73)142条,正确故选:D【点睛】本题考查了两点之间线段最短,数轴上两点间的距离的求解,射线的定义,多边形的对角线,熟练掌握概念是解题的关键.10.B解析:B【分析】利用平行线和三角形外角的性质即可求解.【详解】∵//AB CD ,∴60DEF A ∠=∠=︒.∵DEF C F ∠=∠+∠,∴604020F DEF C ∠=∠-∠=︒-︒=︒.故选:B .【点睛】本题考查平行线和三角形外角的性质,熟练利用其性质找到角的等量关系是解答本题的关键.11.A解析:A【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,列出方程求解即可.【详解】解:∵∠C 的外角=∠A+∠B ,∴x+40=2x+10+x ,解得x=15.故选:A .【点睛】本题考查了三角形的外角性质,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.12.D解析:D【分析】连接AB ,根据三角形三边的数量关系得到AB 长的范围,即可得出结果.【详解】解:如图,连接AB ,∵15AO m =,10OB m =,∴15101510AB -<<+,即525AB <<.故选:D .【点睛】本题考查三角形的三边关系,解题的关键是掌握三角形两边之和大于第三边,两边之差小于第三边的性质.二、填空题13.5【分析】作PH ⊥MN 于H 如图根据等腰三角形的性质得MH=NH=MN=15在Rt △POH 中由∠POH=60°得到∠OPH=30°则根据在直角三角形中30°角所对的直角边等于斜边的一半可得OH=OP=解析:5【分析】作PH ⊥MN 于H ,如图,根据等腰三角形的性质得MH=NH=12MN=1.5,在Rt △POH 中由∠POH=60°得到∠OPH=30°,则根据在直角三角形中,30°角所对的直角边等于斜边的一半可得OH=12OP=5,然后计算OH-MH 即可. 【详解】作PH ⊥MN 于H ,如图,∵PM=PN ,∴MH=NH=12MN=1.5, 在Rt △POH 中,∵∠POH=60°,∴∠OPH=30°,∴OH=12OP=12×10=5,∴OM=OH-MH=5-1.5=3.5.故答案为:3.5.【点睛】本题考查了含30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.也考查了等腰三角形的性质.14.或或【分析】要判定△ABC ≌△ADC 已知AC 是公共边具备了一组边和一组角对应相等故添加CB=CD ∠BAC=∠DAC ∠B=∠D 后可分别根据SASASAAAS 能判定△ABC ≌△ADC 【详解】解:添加CB解析: BC DC =或CAB CAD ∠=∠或B D ∠=∠【分析】要判定△ABC ≌△ADC ,已知ACB ACD ∠=∠,AC 是公共边,具备了一组边和一组角对应相等,故添加CB=CD 、∠BAC=∠DAC 、∠B=∠D 后可分别根据SAS 、ASA 、AAS 能判定△ABC ≌△ADC .【详解】解:添加CB=CD ,结合ACB ACD ∠=∠,AC=AC ,根据SAS ,能判定△ABC ≌△ADC ; 添加∠BAC=∠DAC ,结合ACB ACD ∠=∠,AC=AC ,根据ASA ,能判定△ABC ≌△ADC ; 添加∠B=∠D ,结合ACB ACD ∠=∠,AC=AC ,根据AAS ,能判定△ABC ≌△ADC ; 故添加的条件是 BC DC =或CAB CAD ∠=∠或B D ∠=∠.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.10【分析】由已知利用角的平分线上的点到角的两边的距离相等可得到DE =CDAC =AE 加上BC =AC 三角形的周长为BE+BD+DE =BE+CB =AE+BE 于是周长可得【详解】解:∵AD 平分∠BAC 交B解析:10【分析】由已知利用角的平分线上的点到角的两边的距离相等可得到DE =CD ,AC =AE ,加上BC =AC ,三角形的周长为BE+BD+DE =BE+CB =AE+BE ,于是周长可得.【详解】解:∵AD 平分∠BAC 交BC 于点D ,DE ⊥AB ,∠C =90°,∴CD =DE ,∵AD=AD ,∴ACD AED ≅,∴AC=AE ,又∵AC =BC , ∴△DEB 的周长=DB+DE+BE =AC+BE =AB =10.故填:10.【点睛】本题主要考查角平分线的性质以及全等三角形的证明,解题的关键是理解并掌握角平分线的性质以及全等三角形的证明方法.16.50°或80°或65°【分析】由已知条件根据题意分三种情况讨论:①∠A 是顶角;②∠A 是底角∠B =∠A 时③∠A 是底角∠B =∠A 时利用三角形的内角和进行求解【详解】①∠A 是顶角∠B =(180°−∠A )÷解析:50°或80°或65°【分析】由已知条件,根据题意,分三种情况讨论:①∠A 是顶角;②∠A 是底角,∠B =∠A 时,③∠A 是底角,∠B =∠A 时,利用三角形的内角和进行求解.【详解】①∠A 是顶角,∠B =(180°−∠A )÷2=65°;②∠A 是底角,∠B =∠A =50°.③∠A 是底角,∠A =∠C =50°,则∠B =180°−50°×2=80°,∴当∠B 的度数为50°或65°或80°时,△ABC 是等腰三角形.故答案为:50°或65°或80°.【点睛】本题考查了等腰三角形的判定及三角形的内角和定理;分情况讨论是正确解答本题的关键.17.【分析】先添加辅助线过点作交的延长线于点过点作交的延长线于点过点作于点根据角平分线的判定性质定义以及三角形外角的性质邻补角的定义角的和差等可求得【详解】解:过点作交的延长线于点过点作交的延长线于点过 解析:46︒【分析】先添加辅助线“过点D 作DE AB ⊥交AB 的延长线于点E ,过点D 作DF AC ⊥交AC 的延长线于点F ,过点D 作DG BC ⊥于点G ”,根据角平分线的判定、性质、定义以及三角形外角的性质、邻补角的定义、角的和差等可求得()1462ADB CBE BAC ∠=∠-∠=︒. 【详解】 解:过点D 作DE AB ⊥交AB 的延长线于点E ,过点D 作DF AC ⊥交AC 的延长线于点F ,过点D 作DG BC ⊥于点G ,如图:∵AD 平分BAC ∠,DE AB ⊥,DF AC ⊥ ∴12BAD BAC ∠=∠,DE DF = ∵136ACD ∠=︒ ∴18044DCF ACD ∠=︒-∠=︒∵44BCD ∠=︒,92ACB ACD BCD ∠=∠-∠=︒∴CD 平分BCF ∠∵DF AC ⊥,DG BC ⊥∴DF DG =∴DE DG =∵DE AB ⊥,DG BC ⊥∴BD 平分CBE ∠ ∴12DBE CBE ∠=∠ ∴ADB DBE BAD ∠=∠-∠1122CBE BAC =∠-∠ ()12CBE BAC =∠-∠ 12BCA =∠ 46=︒.故答案是:46︒【点睛】本题考查了角平分线的判定、性质、定义以及三角形外角的性质、邻补角的定义、角的和差等,熟练掌握相关知识点是解题的关键.18.【分析】先由题意得CAB=30°∠ABD=60°再由三角形的外角性质即可得出答案【详解】解:∵探测线与地面的夹角为30°和60°∴∠CAB=30°∠ABD=60°∵∠ABD=∠CAB+∠C∴∠C=6解析:30︒【分析】先由题意得CAB=30°,∠ABD=60°,再由三角形的外角性质即可得出答案.【详解】解:∵探测线与地面的夹角为30°和60°,∴∠CAB=30°,∠ABD=60°,∵∠ABD=∠CAB+∠C,∴∠C=60°-30°=30°,故答案为:30°.【点睛】本题考查了三角形的外角的性质,对顶角,解题的关键是熟练掌握三角形的外角性质,比较简单.19.60【分析】先由题意得到∠A=∠B=根据直角三角形两锐角互余求得结果【详解】∵飞机P在目标A的正上方飞行员测得目标B的俯角为30°∴∠A=∠CPB=∵CP∥AB∴∠B=∠CPB=∴=-∠B=故答案为解析:60【分析】先由题意得到∠A=90︒,∠B=30,根据直角三角形两锐角互余求得结果.【详解】∵飞机P在目标A的正上方,飞行员测得目标B的俯角为30°,∴∠A=90︒,∠CPB=30,∵CP∥AB,∴∠B=∠CPB=30,∠=90︒-∠B=60︒,∴APB故答案为:60.【点睛】此题考查直角三角形两锐角互余的性质,理解飞行员测得目标B 的俯角为30°得到∠B=30是解题的关键.20.360°【分析】根据三角形的外角性质和三角形的内角和求出即可【详解】解:∵∠BHI=∠A+∠B ∠DIF=∠C+∠D ∠FGH=∠E+∠F ∴∠BHI+∠DIF+∠FGH=∠A+∠B +∠C+∠D+∠E+∠解析:360°【分析】根据三角形的外角性质和三角形的内角和求出即可.【详解】解:∵∠BHI=∠A+∠B ,∠DIF=∠C+∠D ,∠FGH=∠E+∠F ,∴∠BHI+∠DIF+∠FGH=∠A+∠B+∠C+∠D+∠E+∠F ,∵∠BHI+∠DIF+∠FGH=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°,故答案为:360°.【点睛】本题考查了三角形的外角和定理,三角形的外角性质的应用,主要考查学生运用定理进行推理的能力,注意:三角形的一个外角等于和它不相邻的两个内角的和,三角形的外角和等于360°.三、解答题21.(1)80°;(2)①见解析;②见解析【分析】(1)根据等边三角形的性质求解即可;(2)①根据题意画图即可;②过点A 作AH BC ⊥于点H ,根据等边三角形的性质得到PAB QAC ∠=∠,再根据点Q ,M 关于直线AC 对称,得到AP=AM ,得到APM ∆为等边三角形,即可得到答案;【详解】(1)ABC ∆为等边三角形,60B ∴∠=︒,80APC BAP B ∴∠=∠+∠=︒, AP AQ =,80AQB APC ∴∠=∠=︒;(2)①补全图形如图所示,②证明:过点A 作AH BC ⊥于点H ,如图.ABC ∆为等边三角形,AP AQ =,BAH CAH ∴∠=∠,PAH QAH ∠=∠,PAB QAC ∴∠=∠,点Q ,M 关于直线AC 对称,QAC MAC ∴∠=∠,AQ AM =,60MAC PAC PAB PAC ∴∠+∠=∠+∠=︒,AP AM =,APM ∴∆为等边三角形,PA PM ∴=.【点睛】本题主要考查了等边三角形的判定与性质,准确分析判断是解题的关键.22.15°【分析】根据等边三角形的性质可得∠ACB 的度数,并证得 AD 是BC 的垂直平分线,利用线段垂直平分线性质定理可得BE=CE ,再由等腰三角形的性质可求得∠ECB 的度数,即可求得结论.【详解】解:∵△ABC 是等边三角形,AD BC ⊥ ,∴60ACB ∠=︒,BD CD =,∴AD 是BC 的重直平分线,点E 在线段AD 上∴BE CE =.∵45EBC ∠=︒,∴45ECB EBC ∠=∠=︒,∴6045=15ACE ACB ECB ∠=∠-∠=︒-︒︒.【点睛】此题考查了等边三角形的性质、线段垂直平分线的性质等知识,掌握相关的性质定理并能灵活应用所学知识是解题的关键.23.(1)SSS ;(2)见解析;(3)65°.【分析】(1)根据同圆的半径相等,BM=BN=BF ,MN=FN ,符合了SSS ;(2)根据(1)知,∠ABC=∠DBC ,BC 是公共边,BA=BD ,符合SAS 原理;(3)△ABE 中,求出∠ABD=30°,从而求得∠ABC=15°,利用三角形外角和定理即可得到答案.【详解】(1)根据基本作图,得BM=BF ,BN=BN ,MN=NF ,符合SSS 原理,故应该填SSS ;(2)由(1)得ABC DBC ∠=∠.∵AB =DB ,BC =BC ,∴△ABC ≌△DBC (SAS );(3)∵∠BAC =100°,∠E =50°,∴∠ABE =30°,∵△MBN ≌△FBN ,∴∠ABC=∠DBC , ∴1152DBC ABE ∠=∠=︒, ∴∠ACB =∠DBC +∠E =15°+50°=65°.【点睛】本题主要考查了基本作图,解答时,清楚同圆半径相等,熟记三角形全等判定的基本原理是解题的关键.24.32【分析】根据AAS 即可证明ACD CBE ≌,根据全等三角形的对应边相等,得出3CD BE ==, AD CE =,所而 358CE CD DE =+=+=,从而求出AD 的长,则可得到ACE △的面积.【详解】解:∵ AD CE ⊥, BE CE ⊥,∴90ADC CEB ∠=∠=︒,∵90ACB ∠=︒,∴90ACD CBE ECB ∠=∠=︒-∠,在ACD △与CBE △中,ADCCEB ACDCBE AC BC∴ACD CBE ≌(AAS) ∴ 3CD BE ==, AD CE =,∵ 358CE CD DE =+=+=,∴ 8AD =.ACE 118832 22S CE AD△.【点睛】本题考查全等三角形的判定与性质,余角的性质等知识,熟悉相关性质是解题的关键.25.(1)见解析;(2)图中与∠CAE互余的角有∠CEA,∠GEA,∠CFE,∠DFA.【分析】(1)根据角平分线的定义可得∠DAF=∠CAE,再根据等角的余角相等、对顶角相等,可得∠CEF=∠CFE;(2)根据互余的两个角的和为90°求解即可.【详解】(1)证明:∵∠ACB═90°,CD⊥AB,∴∠DAF+∠AFD=90°,∠CAE+∠CEF=90°,又∵AE是∠CAB的角平分线,∴∠DAF=∠CAE,∴∠AFD=∠CEF,又∵∠AFD=∠CFE,∴∠CEF=∠CFE;(2)∵EG⊥AB于点G,∴∠DAF+∠GEA=90°,由(1)可知∠DAF=∠CAE,∠CAE+∠CEF=90°,∠CEF=∠CFE=∠DFA,∴图中与∠CAE互余的角有∠CEA,∠GEA,∠CFE,∠DFA.【点评】本题考查了角平分线的定义和余角的定义,解决本题的关键是熟记余角的定义.26.110°【分析】根据平行线的性质和三角形外角的性质即可得到结论.【详解】∵BE∥AD,∴∠ABE=∠BAD=20°,∵BE平分∠ABC,∴∠EBC=∠ABE=20°,∵∠C=90°,∴∠AEB=∠C+∠CBE=90°+20°=110°.【点睛】考查了三角形的外角的性质、平行线的性质和角平分线的定义,解题关键是正确识别图形得出图中角之间的关系.。
2022-2023学年鲁教版五四制八年级上期中复习数学试卷含答案解析
2022-2023学年鲁教版(五四制)八年级上册数学期中复习试卷一.选择题(共12小题,满分48分,每小题4分)1.下列等式从左到右的变形,属于因式分解的是()A.8x2y3=2x2⋅4 y3B.(x+1)(x﹣1)=x2﹣1C.3x﹣3y﹣1=3(x﹣y)﹣1D.x2﹣8x+16=(x﹣4)22.下列各式能用完全平方公式进行分解因式的是()A.x2+1B.x2+2x﹣1C.x2+x+1D.x2+4x+43.下列因式分解正确的是()A.x n+1﹣3x n=x n+1(1﹣)B.2﹣8a2=2(1﹣2a)(1﹣2a)C.x2+2x+1=(x﹣1)2D.a2﹣a=(a+4)(a﹣4)4.若a,b,c是△ABC的三边长,且a2﹣15b2﹣c2+2ab+8bc=0,则下列式子的值为0的是()A.a+5b﹣c B.a﹣5b+c C.a﹣3b+c D.a﹣3b﹣c5.某校把学生的纸笔测试、实践能力、成长纪录三项成绩分别按50%、20%、30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、丙三人的各项成绩如表(单位:分),纸笔测试实践能力成长记录甲908395乙989095丙808890学期总评成绩优秀的是()A.甲B.乙、丙C.甲、乙D.甲、丙6.全民反诈,刻不容缓!某中学开展了“防诈骗”知识竞赛.某参赛小组6名同学的成绩(单位:分)分别为:85,82,86,82,83,92.关于这组数据,下列说法错误的是()A.众数是82B.中位数是84C.方差是84D.平均数是857.甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s2如下表:甲乙丙丁11.111.110.910.9平均数(米)方差s2 1.1 1.2 1.3 1.4若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择()A.甲B.乙C.丙D.丁8.在代数式,,(m+n),,中,分式个数是()A.1个B.2个C.3个D.4个9.下列从左边到右边的变形正确的是()A.=B.=(c≠0)C.+=D.+=110.若关于x的方程有增根,则m的值是()A.﹣5B.7C.5D.﹣311.计算+的结果等于()A.B.3C.D.12.某农场开挖一条长480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x米,那么求x时所列方程正确的是()A.B.C.D.二.填空题(共6小题,满分24分,每小题4分)13.当x=2时,分式的值为0,则k、m必须满足的条件是k=,m.14.因式分解:9﹣p2=.15.在中考体育考试中,满分40分,某校10名男生的考试成绩如右表所示,则他们的平均成绩是分.成绩3537383940人数1233116.已知关于x的分式方程=1的解是非负数,则m的取值范围是.17.某项工作由甲、乙两人合做需6天完成,若甲单独做需15天完成,乙单独做需x天完成,则可得方程为.18.下面是一个按某种规律排列的数阵:根据数阵排列的规律,第10行从左向右数第8个数是.三.解答题(共7小题,满分78分)19.(16分)分解因式(1)(x2﹣3)2﹣2(x2﹣3)+1;(2)m2(a﹣2)+(2﹣a).20.(12分)计算.(1)﹣1﹣2﹣(﹣4.5)﹣20%(2)﹣2×(﹣)4﹣|﹣1﹣3|+(﹣4)﹣1621.(10分)甲、乙两人两次同时到一家粮油店去买油,两次的油价有变化,但他们两人的购买方式不一样,其中甲每次总是买10斤油.而乙每次只拿出10元钱来买油.商店也按价计算卖给乙.设前后两次的油价分别是x元/斤和y元/斤(x>0、y>0,x≠y),请问这两种购买方式哪一种合算?请结合计算说明.22.(8分)先化简,再求值:﹣1,其中x=5.23.(10分)解下列方程:(1)+=3;(2)﹣=.24.(10分)随着我国人民生活水平和质量的提高,百岁寿星日益增多.某市是中国的长寿之乡,截至2020年2月底,该市五个地区的100周岁以上的老人分布如表(单位:人):一二三四五地区性别男性2130384220女性3950737037根据表格中的数据得到条形图如图:解答下列问题:(1)请把统计图中地区二和地区四中缺失的数据、图形补充完整;(2)填空:该市五个地区100周岁以上老人中,男性人数的平均数是人,女性人数的中位数是人;(3)预计2025年该市100周岁以上的老人将比2020年2月的统计数增加100人,请你估算2025年地区一增加100周岁以上的男性老人多少人.25.(12分)某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.(1)求一件A,B型商品的进价分别为多少元?(2)若该欧洲客商购进A,B型商品共160件进行试销,其中A型商品的件数不大于B型的件数,且不小于78件,已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出,则共有哪几种进货方案?(3)在第(2)问条件下,哪种方案利润最大?并求出最大利润.参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.解:①是单项式的变形,不是因式分解;②是多项式乘以多项式的形式,不是因式分解;③左侧是多项式加减,右侧也是多项式加减,不是因式分解;④符合因式分解的定义,结果是整式的积,因此D正确;故选:D.2.解:根据完全平方公式:a2±2ab+b2=(a±b)2可得,选项A、B、C都不能用完全平方公式进行分解因式,D、x2+4x+4=(x+2)2.故选:D.3.解:A、原式=x n(x﹣3),不符合题意;B、原式=2(1﹣2a)(1+2a),符合题意;C、原式=(x+1)2,不符合题意;D、原式=a(a﹣4),不符合题意,故选:B.4.解:∵a2﹣15b2﹣c2+2ab+8bc=0,∴(a2+2ab+b2)﹣(16b2﹣8bc+c2)=0,∴(a+b)2﹣(4b﹣c)2=0,∴(a+5b﹣c)(a﹣3b+c)=0,∵a,b,c是△ABC的三边长,∴a+b>c,则a+5b>c,∴a+5b﹣c>0,∴a﹣3b+c=0,故选:C.5.解:根据题意得:甲的总评成绩是:90×50%+83×20%+95×30%=90.1,乙的总评成绩是:98×50%+90×20%+95×30%=95.5,丙的总评成绩是:80×50%+88×20%+90×30%=84.6,则学期总评成绩优秀的有甲、乙二人,故选:C.6.解:数据85,82,86,82,83,92.A.这组数据的众数是82,故选项A正确;B.数据82,82,83,85,86,92的中位数是:=84,故选项B正确;C.它们的方差是:[(85﹣84)2+(82﹣84)2+(86﹣84)2+(82﹣84)2+(83﹣84)2+(92﹣84)2]=×(1+4+4+4+1+64)=×78=13.故选项C错误;D.它们的平均数是:=85,故选项D正确.故选:C.7.解:从平均数看,成绩好的同学有甲、乙,从方差看甲、乙两人中,甲方差小,即甲发挥稳定,故选:A.8.解:,,分母中均含有字母,因此它们是分式.,(m+n)分母中不含有字母,因此不是分式.故选:C.9.解:A、≠,故选项错误;B、=(c≠0),故选项正确;C、+=,故选项错误;D、+=,故选项错误.故选:B.10.解:∵分式方程有增根,∴x﹣3=0,解得x=3,,﹣1=,2x﹣(x﹣3)=1﹣m,x+3=1﹣m,把x=3代入原方程得m=﹣5,故选:A.11.解:+=;故选:D.12.解:原计划用时为:,实际用时为:.所列方程为:﹣=4,故选:A.二.填空题(共6小题,满分24分,每小题4分)13.解:由分子x﹣k=2﹣k=0,解得:k=2;又x+m=2+m≠0即:m≠﹣2.故答案为2、≠﹣2.14.解:9﹣p2=(3﹣p)(3+p).故答案为:(3﹣p)(3+p).15.解:由题意知,平均成绩=(35+37×2+38×3+39×3+40)÷10=38(分).故答案为38.16.解:解分式方程=1,得x=m﹣1,∵解是非负数,∴m﹣1≥0,∴m≥1,故答案为m≥1.17.解:甲6天的工作量为:,乙6天的工作量为:.所列方程为:+=1.18.解:观察数字的变化可知:第1行第1个数是1,第2行从左向右数第2个数是2,第3行从左向右数第3个数是3,…发现规律,第10行从左向右数第10个数是10=,∴第10行从左向右数第9个数是=3,第10行从左向右数第8个数是=7,故答案为7.三.解答题(共7小题,满分78分)19.解:(1)(x2﹣3)2﹣2(x2﹣3)+1=(x2﹣3﹣1)2=(x+2)2(x﹣2)2;(2)m2(a﹣2)+(2﹣a)=m2(a﹣2)﹣(a﹣2)=(a﹣2)(m2﹣1)=(a﹣2)(m﹣1)(m+1).20.解:(1)原式=﹣1﹣2+4.5﹣20%=﹣3.7+4.5=0.8;(2)原式=﹣2×﹣4﹣4﹣1=﹣9.21.解:由题意可知,甲两次买油的平均单价为:=乙两次买油的平均单价为:==∴﹣==∵x>0、y>0,x≠y∴(x﹣y)2>0,2xy>0∴>0∴>∴乙的购买方式比较合算.22.解:原式=•﹣1=﹣1=,当x=5时,原式=1.23.解:(1)+=3,去分母,得2x﹣5=3(2x﹣1),解得x=,经检验,x=是原方程的根;(2)﹣=,去分母,得7(x﹣1)﹣6x=﹣3(x+1),解得x=1,经检验,x=1是原方程的增根,∴原方程无解.24.解:(1)根据图表给出的数据补图如下:(2)男性人数的平均数是:(21+30+38+42+20)÷5=30.2(人),把女性人数从小到大排列,中位数是50人;故答案为:30.2,50;(3)[21÷(21+30+38+42+20+39+50+73+70+37)]×100=5(人).答:2025年地区一增加100周岁以上的男性老人5人.25.解:(1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+10)元,依题意得:=×2,解得:x=150,经检验,x=150是原方程的解且符合题意,∴x+10=160.答:一件A型商品的进价为160元,一件B型商品的进价为150元.(2)设购进A型商品m件,则购进B型商品(160﹣m)件,依题意得:,解得:78≤m≤80,又∵m为整数,∴m可以为78,79,80,∴共有3种进货方案,方案1:购进A型商品78件,B型商品82件;方案2:购进A型商品79件,B型商品81件;方案1:购进A型商品80件,B型商品80件.(3)方案1获得的利润为(240﹣160)×78+(220﹣150)×82=11980(元);方案2获得的利润为(240﹣160)×79+(220﹣150)×81=11990(元);方案3获得的利润为(240﹣160)×80+(220﹣150)×80=12000(元).∵11980<11990<12000,∴方案3购进A型商品80件,B型商品80件获得利润最大,最大利润为12000元.。
鲁教版八年级数学上册期中达标检测卷附答案
鲁教版八年级数学上册期中达标检测卷一、选择题(本大题共12道小题,每小题3分,满分36分) 1.下列各式可以用完全平方公式进行因式分解的是( )A .a 2+2a +14B .a 2-a +14 C .x 2-2x +4 D .x 2-xy +y 22.若多项式x 2+mx -8因式分解的结果为(x +4)(x -2),则常数m 的值为( )A .-2B .2C .-6D .63.已知当x =-2时,分式x -1□无意义,则□中可以是( )A .2-xB .x -2C .2x +4D .x +44.若实数x 满足x 2-2x -1=0,则2x 3-7x 2+4x -2 019的值为( )A .2 021B .-2 021C .2 022D .-2 0225.能使分式x 2-1x 2-2x +1的值为0的x 的值是( )A .x =-1B .x =1C .x =±1D .x =06.分式a -2bab (a ,b 均为正数),字母的值都扩大为原来的2倍,则分式的值( )A .不变B .扩大为原来的2倍C .缩小为原来的12D .缩小为原来的147.计算2÷1+m 1-m·(m 2-1)的结果是( )A .-m 2-2m -1B .2(m -1)2C .2m 2-4m -2D .-2m 2+4m -2 8.若关于x 的分式方程2x -3+x +m 3-x =1有增根,则m 的值为( ) A .3B .0C .-1D .-39.某工程队承接了60万平方米的绿化工程,由于情况有变……设原计划每天绿化的面积为x万平方米,列方程为60(1-20%)x-60x=30,根据方程可知省略的部分是()A.实际工作时每天的工作效率比原计划提高了20%,结果提前30天完成了这一任务B.实际工作时每天的工作效率比原计划提高了20%,结果延迟30天完成了这一任务C.实际工作时每天的工作效率比原计划降低了20%,结果延迟30天完成了这一任务D.实际工作时每天的工作效率比原计划降低了20%,结果提前30天完成了这一任务10.在一次射击训练中,一个小组的成绩如下表.已知该小组的平均成绩为8.1环,那么成绩为8环的人数为()成绩/环7 8 9人数 2 3A.4 B.5 C.6 D.711.如图是某市一周以来流感病毒病例数的统计图,则这七天病例数的中位数和众数分别是()A.中位数是25,众数是23 B.中位数是33,众数是23C.中位数是25,众数是33 D.中位数是33,众数是3312.已知一组数据:5,4,3,4,9,关于这组数据,下列描述:①平均数是5;②中位数是4;③众数是4;④方差是4.4. 其中正确的个数为( )A .1B .2C .3D .4二、填空题(本大题共6道小题,每小题3分,满分18分) 13.分解因式:3x 2-6x 2y +3xy 2=________. 14.分式4x -3与1x 的差为0,则x 的值为________. 15.化简x 2÷x ·y 6x ⎝ ⎛⎭⎪⎫-x y 23=________.16.为了践行“首都市民卫生健康公约”,某班级举办“七步洗手法”比赛活动,李明的单项成绩如下表所示:(各项成绩均按百分制计)综合成绩(百分制),则李明的最终得分是________分.17.若一组数据21,14,x ,y ,9的众数和中位数分别是21和15,则这组数据的平均数为________.18.若关于y 的方程y y -1-m 2y 2-y =y -1y 有增根,则m 的值为________.三、解答题(本大题共7道小题,满分66分) 19.(9分)因式分解:(1)4a 3b 2-10ab 3c ; (2)a 4-b 4;(3)a 4b -6a 3b +9a 2b .20.(7分)先化简,再求值:⎝ ⎛⎭⎪⎫1+1a 2-1÷a 3(a +1),其中a =4.21.(8分)若数a 使关于x 的不等式组⎩⎪⎨⎪⎧3x -12<4(x -2),5x -a ≤3有且仅有三个整数解,且使关于y 的分式方程3y y -2+a +122-y =1有整数解,求满足条件的所有a的值之和.22.(10分)对于二次三项式a 2+6a +9,可以用公式法将它分解成(a +3)2的形式,但对于二次三项式a 2+6a +8,就不能直接应用完全平方式了,我们可以在二次三项式中先加上一项9,使其成为完全平方式,再减去9这项,使整个式子的值保持不变,于是有:a 2+6a +8=a 2+6a +9-9+8=(a +3)2-1=[(a +3)+1][(a +3)-1]=(a +4)(a +2).请仿照上面的做法,将下列各式因式分解:(1)x 2-6x -16; (2)x 2+2ax -3a 2.23.(10分)学校为了了解八年级学生对“八礼四仪”的掌握情况,对该年级的500名学生进行了问卷测试,并随机抽取了10名学生的问卷,统计成绩如下:(1)计算这10(2)如果得分不少于9分的定义为“优秀”,估计这500名学生对“八礼四仪”掌握情况优秀的人数.(3)小明所在班级共有40人,他们全部参加了这次测试,平均分为7.8分.小明的测试成绩是8分,小明说,我的测试成绩在班级中等偏上,你同意他的观点吗?为什么?24.(10分)某中学购买A,B两种品牌篮球分别花费了2400元、1950元,且购买的A品牌篮球数量是B品牌篮球数量的2倍,购买一个B品牌篮球比购买一个A品牌篮球多花50元.(1)求购买一个A品牌、一个B品牌的篮球各需多少元.(2)该中学决定再次购进A,B两种品牌篮球共30个,恰逢百货商场对两种品牌篮球的售价进行调整,A品牌篮球售价比第一次购买时提高了10%,B品牌篮球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌篮球的总费用不超过3 200元,那么该中学此次最多可购买多少个B品牌篮球?25.(12分)为弘扬泰山文化,某校举办了“泰山诗文大赛”活动,小学、初中部根据初赛成绩,各选出了5名选手组成小学代表队和初中代表队参加学校的决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表:平均数/分中位数/分众数/分小学部85初中部85 100(2)(3)计算两个队决赛成绩的方差并判断哪一个队选手成绩较为稳定.答案一、1.B 2.B 3.C 4.D 5.A 6.C 7.D8.C 【点拨】方程两边都乘(x -3),得2-(x +m )=x -3,∵原方程有增根,∴最简公分母x -3=0,解得x =3,当x =3时,m =-1.故选C. 9.C10.B 【点拨】设成绩为8环的人数为x ,根据题意,得7×2+8x +9×32+x +3=8.1,解得x =5,经检验:x =5是原分式方程的解,∴成绩为8环的人数为5.故选B. 11.A 【点拨】把这些数从小到大排列,中位数是第4个数为25,则中位数是25;∵23出现了2次,出现的次数最多,∴众数是23.故选A.12.D 【点拨】这组数据由小到大排列为3,4,4,5,9,则平均数为15×(3+4+4+5+9)=5,中位数为4,众数为4,方差为15×[(3-5)2+(4-5)2+(4-5)2+(5-5)2+(9-5)2]=4.4.所以①②③④都正确.故选D. 二、13.3x (x -2xy +y 2) 14.-1 15.-x 3 16.9717.16 【点拨】∵这组数据21,14,x ,y ,9的中位数是15,∴x ,y 中必有一个数是15.又∵这组数据21,14,x ,y ,9的众数是21,∴x ,y 中必有一个数是21,∴x ,y 所表示的数为15和21中的一个,∴x =15×(21+14+15+21+9)=16. 18.±1三、19.解:(1)4a 3b 2-10ab 3c =2ab 2(2a 2-5bc ); (2)a 4-b 4=(a 2+b 2)(a 2-b 2)=(a 2+b 2)(a +b )(a -b ); (3)a 4b -6a 3b +9a 2b =a 2b (a 2-6a +9)=a 2b (a -3)2. 20.解:⎝ ⎛⎭⎪⎫1+1a 2-1÷a 3(a +1)=a 2-1+1(a +1)(a -1)·3(a +1)a=a 2(a +1)(a -1)·3(a +1)a=3aa -1. 当a =4时,原式=3×44-1=4. 21.解:解不等式组⎩⎨⎧3x -12<4(x -2)5x -a ≤3得-4<x ≤a +35.∵⎩⎨⎧3x -12<4(x -2)5x -a ≤3有且仅有三个整数解, ∴-1≤a +35<0,解得-8≤a <-3. 解分式方程3y y -2+a +122-y =1,得y =a +102. ∵y =a +102为整数,且-8≤a <-3,∴a =-8或-6或-4.∵当a =-6时,y =2,原分式方程无解,故将a =-6舍去. ∴所有满足条件的a 的值之和是-8-4=-12. 22.解:(1)x 2-6x -16 =x 2-6x +9-9-16 =(x -3)2-25 =(x -3+5)(x -3-5) =(x +2)(x -8); (2)x 2+2ax -3a 2 =x 2+2ax +a 2-a 2-3a 2 =(x +a )2-(2a )2 =(x +a +2a )(x +a -2a ) =(x +3a )(x -a ).23.解:(1)10×3+9×3+8×2+7×1+6×13+3+2+1+1=8.6(分),即这10名学生这次测试的平均得分是8.6分; (2)500×3+33+3+2+1+1=300(名),即估计这500名学生对“八礼四仪”掌握情况优秀的人数为300名.(3)不同意.因为成绩中等偏上,指小明成绩超过了班级一半以上的同学,也就是说他的成绩应超过中位数.虽然小明的成绩超过了平均分,但未必能超过中位数.24.解:(1)设购买一个A 品牌的篮球需x 元,则购买一个B 品牌的篮球需(x +50)元,由题意,得2 400x =1 950x +50×2,解得x =80,经检验x =80是原方程的解, x +50=130.即购买一个A 品牌的篮球需80元,购买一个B 品牌的篮球需130元.(2)设该中学此次可购买a 个B 品牌篮球,则购买A 品牌篮球(30-a )个,由题意,得80×(1+10%)(30-a )+130×0.9a ≤3 200,解得a ≤19929, ∵a 是整数,∴a 最大等于19,∴该中学此次最多可购买19个B 品牌篮球. 25.解:(1)85,80,85. (2)小学部的决赛成绩较好.∵两个队的平均数相同,小学部的中位数高,∴小学部的决赛成绩较好. (3)∵s 2小=15×[(75-85)2+(80-85)2+(85-85)2+(85-85)2+(100-85)2]=70, s 2初=15×[(70-85)2+(100-85)2+(100-85)2+(75-85)2+(80-85)2]=160, ∴s 2小<s 2初,∴小学队选手成绩较为稳定.八年级数学上册期中达标测试卷一、选择题(1~10小题各3分,11~16小题各2分,共42分)1.4的算术平方根是()A.±2 B. 2 C.±2 D.2 2.下列分式的值不可能为0的是()A.4x-2B.x-2x+1C.4x-9x-2D.2x+1x3.如图,若△ABC≌△CDA,则下列结论错误的是()A.∠2=∠1 B.∠3=∠4C.∠B=∠D D.BC=DC(第3题)(第5题)4.小亮用天平称得一个鸡蛋的质量为50.47 g,用四舍五入法将50.47精确到0.1为()A.50 B.50.0C.50.4 D.50.55.如图,已知∠1=∠2,AC=AE,添加下列一个条件后仍无法确定△ABC≌△ADE的是()A.∠C=∠E B.BC=DEC.AB=AD D.∠B=∠D6.如图,点A,D,C,E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE =10,AC=7,则AD的长为()A.5.5 B.4 C.4.5 D.3(第6题)(第8题)7.化简x2x-1+11-x的结果是()A .x +1 B.1x +1C .x -1D.x x -18.如图,数轴上有A ,B ,C ,D 四点,根据图中各点的位置,所表示的数与5-11最接近的点是( ) A .AB .BC .CD .D9.某工厂新引进一批电子产品,甲工人比乙工人每小时多搬运30件电子产品,已知甲工人搬运300件电子产品所用的时间与乙工人搬运200件电子产品所用的时间相同.若设乙工人每小时搬运x 件电子产品,则可列方程为( ) A.300x =200x +30B.300x -30=200x C.300x +30=200x D.300x =200x -3010.如图,这是一个数值转换器,当输入的x 为-512时,输出的y 是( )(第10题)A .-32B.32C .-2D .211.如图,从①BC =EC ;②AC =DC ;③AB =DE ;④∠ACD =∠BCE 中任取三个为条件,余下一个为结论,则可以构成的正确说法的个数是( ) A .1B .2C .3D .4(第11题) (第12题)12.如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ ,已知PQ =5,NQ =9,则MH 的长为( ) A .3B .4C .5D .613.若△÷a 2-1a =1a -1,则“△”是( )A.a+1a B.aa-1C.aa+1D.a-1a14.以下命题的逆命题为真命题的是() A.对顶角相等B.同位角相等,两直线平行C.若a=b,则a2=b2D.若a>0,b>0,则a2+b2>015.x2+xx2-1÷x2x2-2x+1的值可以是下列选项中的()A.2 B.1 C.0 D.-1 16.定义:对任意实数x,[x]表示不超过x的最大整数,如[3.14]=3,[1]=1,[-1.2]=-2.对65进行如下运算:①[65]=8;②[8]=2;③[2]=1,这样对65运算3次后的结果就为1.像这样,一个正整数总可以经过若干次运算后使结果为1.要使255经过运算后的结果为1,则需要运算的次数是() A.3 B.4 C.5 D.6二、填空题(17小题3分,18,19小题每空2分,共11分)17.如图,要测量河两岸相对的两点A,B间的距离,先在AB的垂线BF上取两点C,D,使BC=CD,再作出BF的垂线DE,使点A,C,E在同一条直线上,可以证明△ABC≌△EDC,从而得到AB=DE,因此测得DE的长就是AB的长,判定△ABC≌△EDC,最恰当的理由是____________.(第17题)18.已知:7.2≈2.683,则720≈______,0.000 72≈__________.19.一艘轮船在静水中的最大航速为30 km/h,它以最大航速沿江顺流航行120 km 所用的时间与以最大航速逆流航行60 km所用的时间相同,如果设江水的流速为x km/h,根据题意可列方程为________________,江水的流速为________km/h.三、解答题(20小题8分,21~23小题各9分,24,25小题各10分,26小题12分,共67分)20.解分式方程.(1)3x-2=2-xx-2;(2)21+2x-31-2x=64x2-1.21.已知(3x+2y-14)2+2x+3y-6=0.求:(1)x+y的平方根;(2)y-x的立方根.22.有这样一道题:“计算x2-2x+1x2-1÷x-1x2+x-x的值,其中x=2 020.”甲同学把“x=2 020”错抄成“x=2 021”,但他的计算结果也是正确的.你说说这是怎么回事?23.如图,AB∥CD,AB=CD,AD,BC相交于点O,BE∥CF,BE,CF分别交AD于点E,F.求证:(1)△ABO≌△DCO;(2)BE=CF.(第23题)24.观察下列算式:①2×4×6×8+16=(2×8)2+16=16+4=20;②4×6×8×10+16=(4×10)2+16=40+4=44;③6×8×10×12+16=(6×12)2+16=72+4=76;④8×10×12×14+16=(8×14)2+16=112+4=116;….(1)根据以上规律计算: 2 016×2 018×2 020×2 022+16;(2)请你猜想2n(2n+2)(2n+4)(2n+6)+16(n为正整数)的结果(用含n的式子表示).25.下面是学习分式方程的应用时,老师板书的问题和两名同学所列的方程.根据以上信息,解答下列问题:(1)冰冰同学所列方程中的x表示______________________________________,庆庆同学所列方程中的y表示_____________________________________;(2)从两个方程中任选一个,写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.26.如图①,AB=7 cm,AC⊥AB,BD⊥AB,垂足分别为A,B,AC=5 cm.点P 在线段AB上以2 cm/s的速度由点A向点B运动,同时,点Q在射线BD上运动.它们运动的时间为t s(当点P运动至点B时停止运动,同时点Q停止运动).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等?并判断此时线段PC和线段PQ的位置关系,请分别说明理由.(2)如图②,若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,点Q的运动速度为x cm/s,其他条件不变,当点P,Q运动到某处时,有△ACP与△BPQ 全等,求出相应的x,t的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.B 6.D ∵AB ∥EF ,∴∠A =∠E .又AB =EF ,∠B =∠F , ∴△ABC ≌△EFD (ASA). ∴AC =DE =7.∴AD =AE -DE =10-7=3. 7.A 8.D 9.C 10.A 11.B 12.B 13.A ∵△÷a 2-1a =1a -1,∴△=1a -1·a 2-1a =a +1a .14.B 15.D 16.A二、17.ASA 18.26.83;0.026 83 19.12030+x =6030-x;10 根据题意可得12030+x =6030-x,解得x =10, 经检验,x =10是原方程的解, 所以江水的流速为10 km/h.三、20.解:(1)去分母,得3=2(x -2)-x .去括号,得3=2x -4-x . 移项、合并同类项,得x =7. 经检验,x =7是原方程的解.(2)去分母,得2(1-2x )-3(1+2x )=-6. 去括号,得2-4x -3-6x =-6, 移项、合并同类项,得-10x =-5. 解得x =12.经检验,x =12是原方程的增根, ∴原分式方程无解.21.解:∵(3x +2y -14)2+2x +3y -6=0,(3x +2y -14)2≥0,2x +3y -6≥0,∴3x +2y -14=0,2x +3y -6=0. 解⎩⎨⎧3x +2y -14=0,2x +3y -6=0,得⎩⎨⎧x =6,y =-2. (1)x +y =6+(-2)=4, ∴x +y 的平方根为±4=±2.(2)y -x =-8,∴y -x 的立方根为3-8=-2.22.解:∵x 2-2x +1x 2-1÷x -1x 2+x -x =(x -1)2(x +1)(x -1)·x (x +1)x -1-x =x -x =0,∴该式的结果与x 的值无关,∴把x 的值抄错,计算的结果也是正确的. 23.证明:(1)∵AB ∥CD ,∴∠A =∠D ,∠ABO =∠DCO . 在△ABO 和△DCO 中,⎩⎨⎧∠A =∠D ,AB =CD ,∠ABO =∠DCO ,∴△ABO ≌△DCO (ASA). (2)∵△ABO ≌△DCO , ∴BO =CO . ∵BE ∥CF ,∴∠OBE =∠OCF ,∠OEB =∠OFC . 在△OBE 和△OCF 中,⎩⎨⎧∠OBE =∠OCF ,∠OEB =∠OFC ,OB =OC ,∴△OBE ≌△OCF (AAS),∴BE =CF .24.解:(1) 2 016×2 018×2 020×2 022+16=(2 016×2 022)2+16 =4 076 352+4=4 076 356.(2)2n (2n +2)(2n +4)(2n +6)+16 =2n (2n +6)+4 =4n 2+12n +4.25.解:(1)小红步行的速度;小红步行的时间(2)冰冰用的等量关系:小红乘公共汽车的时间+小红步行的时间=小红上学路上的时间.庆庆用的等量关系:公共汽车的速度=9×小红步行的速度. (上述等量关系,任选一个就可以) (3)选冰冰的方程:38-29x +2x =1, 去分母,得36+18=9x , 解得x =6,经检验,x =6是原分式方程的解. 答:小红步行的速度是6 km/h ; 选庆庆的方程:38-21-y=9×2y , 去分母,得36y =18(1-y ), 解得y =13,经检验,y =13是原分式方程的解,∴小红步行的速度是2÷13=6(km/h). 答:小红步行的速度是6 km/h. (对应(2)中所选方程解答问题即可) 26.解:(1)△ACP ≌△BPQ ,PC ⊥PQ .理由如下:∵AC ⊥AB ,BD ⊥AB ,∴∠A =∠B =90°.由题意知AP =BQ =2 cm ,∵AB =7 cm , ∴BP =5 cm , ∴BP =AC .在△ACP 和△BPQ 中,∵⎩⎨⎧AP =BQ ,∠A =∠B ,AC =BP ,∴△ACP ≌△BPQ . ∴∠C =∠BPQ .易知∠C +∠APC =90°, ∴∠APC +∠BPQ =90°, ∴∠CPQ =90°, ∴PC ⊥PQ .(2)由题意可知AP =2t cm ,BP =(7-2t )cm ,BQ =xt cm. ①若△ACP ≌△BPQ , 则AC =BP ,AP =BQ , ∴5=7-2t ,2t =xt , 解得x =2,t =1; ②若△ACP ≌△BQP , 则AC =BQ ,AP =BP , ∴5=xt ,2t =7-2t , 解得x =207,t =74.综上,当△ACP 与△BPQ 全等时,x =2,t =1或x =207,t =74.。
2022-2023学年鲁教版(五四制)八年级上册数学期中复习试卷
2022-2023学年鲁教五四新版八年级上册数学期中复习试卷一.选择题(共12小题,满分48分,每小题4分)1.下列等式从左到右的变形中,属于因式分解的是()A.x2﹣4x+3=(x﹣1)(x﹣3)B.x2﹣7x+3=x(x﹣7)+3C.(x+3)(x﹣3)=x2+9D.x2﹣1+3x=(x+1)(x﹣1)+3x2.若分式的值为0,则x的值为()A.0B.2C.﹣2D.0或23.下列各式从左到右的变形,一定正确的是()A.=﹣B.=C.=D.=4.某学校为了鼓励学生积极参加体育锻炼,规定体育科目学期成绩满分100分,其中平时表现(早操、课间操)、期中考试和期末考试成绩按比例3:2:5计入学期总成绩.甲乙两名同学的各项成绩如下,则()学生平时表现/分期中考试/分期末考试/分甲969186乙829790A.甲、乙二人的总成绩都是90分B.甲、乙二人的总成绩都是89分C.甲的总成绩是90分,乙的总成绩是89分D.甲的总成绩是89分,乙的总成绩是90分5.计算+的结果等于()A.B.3C.D.6.小明有一个旧USB随身碟,它的最新储存状态如下:音乐550MB照片338MB可用空间112MB 4月8日,小明的哥哥给小明买了一个新USB随身碟,此随身碟的容量为2GB(2048MB)且没有储存任何资料,于是小明把他旧USB随身碟的所有数据转存到这个新USB随身碟中,则下面能代表新USB随身碟的储存状态的是()A.B.C.D.7.某校举行电脑设计作品比赛,各班派学生代表参加,现将所有比赛成绩(得分取整数,满分为100分)进行处理后分成五组,并绘制了如图所示的频数分布直方图,则参加比赛的学生总人数为()A.42人B.46人C.52人D.56人8.下列各式可以用完全平方公式进行因式分解的是()A.a2+2a+B.a2+a+C.x2﹣2x+4D.x2﹣xy+y29.已知关于x的方程有增根,则a的值为()A.4B.5C.6D.﹣510.已知x﹣=1,则的值是()A.B.C.D.11.已知一列数a1,a2,a3,…,满足a m•a n=a m+n(m,n为正整数).例如:a1•a2=a1+2=a3,a2•a2=a2+2=a4.若a1<0,a2=4,则a2021的值是()A.4042B.﹣22020C.22021D.﹣2202112.若关于x的一元一次不等式组的解集为x≤﹣5,且关于x的分式方程+2=有非负整数解,则符合条件的所有整数a的和为()A.﹣6B.﹣4C.﹣2D.0二.填空题(共8小题,满分32分,每小题4分)13.若式子的值无意义,则a=.14.从甲、乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差的结果为:=12,=12,S甲2=7.5,S乙2=21,则小麦长势比较整齐的试验田是(填“甲”或“乙”).15.如果x2﹣mx+16=(x﹣4)2,那么m=.16.分解因式:2a﹣a2b=.17.“植树节”时,八年级(1)班6个小组的植树棵数分别是5,7,3,x,6,4.已知这组数据的众数是5,则该组数据的平均数是.18.甲、乙两个工程队共同完成一项工程,乙队先单独做5天,再由两队合作3天就完成全部工程,已知甲队与乙队单独完成这项工程所需时间之比是3:2,求甲乙两队单独完成此项工程各需多少天?若设甲、乙单独完成此项工程分别需3x天、2x天,则可列方程为.19.已知关于x的方程+=的解为负数,则a的取值范围是.20.当a=1时,式子÷(a+3)的值为.三.解答题(共7小题,满分70分)21.(16分)分解因式(1)(x2﹣3)2﹣2(x2﹣3)+1;(2)m2(a﹣2)+(2﹣a).22.(10分)计算:﹣23.(7分)先化简,再求值:(1+)÷,再从1,﹣1,2中选一个合适的数作为x的值代入求值.24.(10分)解方程:(1);(2)=1.25.(9分)为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2两幅尚不完整的统计图.(1)本次抽测的男生有人,抽测成绩的中位数是;(2)请你将图2的统计图补充完整,这部分男生的平均成绩约为多少?写出计算过程.(3)若规定引体向上5次以上(含5次)为体能达标,则该校350名九年级男生中估计有多少人体能达标?26.(8分)分解因式:(1)ab2﹣a;(2)(a2+1)2﹣4a2.(3)4xy2﹣4x2y﹣y3;(4)x2﹣y2﹣ax﹣ay.27.(10分)某玩具商店为了儿童节提前储备货物,用3000元购进一批儿童玩具,接着又用5400元购进第二批这种玩具,所购数量是第一批数量的1.5倍,但每套进价多了10元.(1)求第一批玩具每套的进价是多少元?(2)儿童节期间,为了促销全店商品打7折销售,该玩具全部售完并且总利润不低于25%,那么每套玩具打折前的标价至少是多少元?参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.解:A、x2﹣4x+3=(x﹣1)(x﹣3),属于因式分解,符合题意;B、x2﹣7x+3=x(x﹣7)+3,不符合因式分解的定义,故此选项错误;C、(x+3)(x﹣3)=x2﹣9,不符合因式分解的定义,故此选项错误;D、x2﹣1+3x=(x+1)(x﹣1)+3x,不符合因式分解的定义,故此选项错误;故选:A.2.解:根据题意得:3x2﹣6x=0且x﹣2≠0,解得:x=0.故选:A.3.解:A、,故A错误;B、分子、分母同时扩大10倍,结果不变,则,故B错误;C、a=1,b=2时,此时原式不成立,故C错误;D、分子、分母都除以a+3,值不变,故D正确.故选:D.4.解:甲的总成绩是:=90(分),乙的总成绩是:=89(分),故选:C.5.解:+=;故选:D.6.解:音乐占新碟的百分比为:550÷2048≈26.8%,对应的圆心角为:360°×26.8%≈97.2°,照片所占新碟的百分比为:338÷2048≈16.5%,对应的圆心角为:360°×16.5%≈61.2°,通过观察D比较符合,故选:D.7.解:参加比赛的学生总人数为4+12+20+10+6=52(人),故选:C.8.解:A、a2+2a+,无法运用公式法分解因式,不合题意;B、a2+a+=(a+)2,可以用完全平方公式进行因式分解,符合题意;C、x2﹣2x+4,无法运用公式法分解因式,不合题意;D、x2﹣xy+y2,无法运用公式法分解因式,不合题意;故选:B.9.解:∵方程有增根,∴x﹣5=0,∴x=5,,x=3(x﹣5)﹣a,x=3x﹣15﹣a,把x=5代入整式方程解得a=﹣5,故选:D.10.解:∵x﹣=1,∴(x﹣)2=1,∴x2+=3,原式的倒数为,∴原式=,故选:C.11.解:∵a2=4,∴a1•a2=a1+2=a3=4a1,a2•a2=a2+2=a4=16,∵a1•a3=a1+3=a4,∴4a12=16,∴a1=±2,∵a1<0,∴a1=﹣2,∴a3=﹣8,a4=16,…,∴a n=(﹣2)n,∴a2021=﹣22021,故选:D.12.解:关于x的一元一次不等式组.解得:.∵解集为x≤﹣5.∴2a+3>﹣5.∴a>﹣4.关于x的分式方程+2=.解得:x=.∵有非负整数数解,且x≠3.∴a﹣2=﹣12或﹣6或﹣3或﹣2或﹣1.∴a=﹣10或﹣4或﹣1或0或1综上:符合条件的所有整数a为:﹣1、0、1.∴符合条件的所有整数a的和为:﹣1+0+1=0.故选:D.二.填空题(共8小题,满分32分,每小题4分)13.解:∵式子的值无意义,∴a2﹣16=0,∴a2=16,∴a=±4.14.解:∵=12,=12,S甲2=7.5,S乙2=21,∴S甲2<S乙2,∴小麦长势比较整齐的试验田是甲,故答案为:甲.15.解:∵x2﹣mx+16=(x﹣4)2,∴x2﹣mx+16=x2﹣8x+16,故m=8.故答案为:8.故答案为:a(2﹣ab).17.解:∵这组数据的众数是5,∴x=5,则平均数为:=5.故答案为:5.18.解:设甲、乙单独完成此项工程分别需3x天、2x天,依题意,得:+=1.故答案为:+=1.19.解:去分母得:x+1+x=x+a,解得:x=a﹣1,∵分式方程的解为负数,∴a﹣1<0且a﹣1≠0且a﹣1≠﹣1,∴a<1且a≠0,∴a的取值范围是a<1且a≠0,故答案为:a<1且a≠0.20.解:÷(a+3)==,当a=1时,原式==﹣,故答案为:﹣.三.解答题(共7小题,满分70分)21.解:(1)(x2﹣3)2﹣2(x2﹣3)+1=(x2﹣3﹣1)2=(x+2)2(x﹣2)2;(2)m2(a﹣2)+(2﹣a)=m2(a﹣2)﹣(a﹣2)=(a﹣2)(m2﹣1)22.解:原式=•﹣=﹣=.23.解:(1+)÷==,∵x+1≠0,x2+2x+1≠0,2x﹣2≠0,解得:x≠﹣1,x≠1,∴当x=2时,原式==3.24.解:(1)方程两边同时乘以x(x+1)得:5x+2=3x,解得:x=﹣1,检验:当x=﹣1时,x+1=0,∴x=﹣1是增根,所以,原分式方程无解;(2)方程两边同时乘以(x+1)(x﹣1),得(x+1)2﹣6=(x+1)(x﹣1),解得:x=2,检验:当x=2 时,(x+1)(x﹣1)≠0,∴x=2是原方程的解.25.解:(1)从条形统计图和扇形统计图可知,达到4次的占总人数的20%,故总人数为:10÷20%=50人,引体向上5次的人数有:50﹣4﹣10﹣14﹣6=16(人),∵共有50人,处于中间的位置是第25、26个数的平均数,∴抽测成绩的中位数是5次;故答案为:50,5次;(2)根据(1)求出的5次的人数,补全统计图如下:这部分男生的平均成绩约是:=5.16(次);(3)根据题意得:350×=252(人),答:该校350名九年级男生中估计有252人体能达标.26.解:(1)ab2﹣a=a(b2﹣1)=a(b+1)(b﹣1);(2)(a2+1)2﹣4a2=(a2+1+2a)(a2+1﹣2a)=(a+1)2(a﹣1)2;(3)4xy2﹣4x2y﹣y3=﹣y(y2+4x2﹣4xy)=﹣y(2x﹣y)2;(4)x2﹣y2﹣ax﹣ay=(x+y)(x﹣y)﹣a(x+y)=(x+y)(x﹣y﹣a).27.解:(1)设第一批玩具每套的进价是x元,则第二批玩具每套的进价是(x+10)元,由题意得:×1.5=,解得:x=50,经检验,x=50是分式方程的解,符合题意,答:第一批玩具每套的进价是50元;(2)设每套玩具打折前的标价是y元,=60(套),60×1.5=90(套).(60y+90y)×0.7﹣3000﹣5400≥(3000+5400)×25%,解得:y≥100,答:每套玩具打折前的标价至少是100元.。
【鲁教版】八年级数学上期中试题带答案
一、选择题1.在平面直角坐标系xOy 中,点A (﹣2,0),点B (0,3),点C 在坐标轴上,若三角形ABC 的面积为6,则符合题意的点C 有( )A .1个B .2个C .3个D .4个2.如图,在直角坐标系中,直线l 是经过点()1,0-,且平行于y 轴的直线,点(),1P a -与点()3,Q b 关于直线l 对称,则+a b 的值为( ).A .2B .6C .-2D .-63.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第一次从原点O 运动到点1(1,1)P ,第二次运动到点2(2,0)P ,第三次运动到3(3,2)P -,…,按这样的运动规律,第2021次运动后,动点2021P 的纵坐标是( )A .1B .2C .2-D .04.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做点P 的幸运点.已知点A 1的幸运点为A 2,点A 2的幸运点为A 3,点A 3的幸运点为A 4,……,这样依次得到点A 1,A 2,A 3,…,A n .若点A 1的坐标为(3,1),则点A 2020的坐标为( ) A .(-3,1)B .(0,-2)C .(3,1)D .(0,4) 5.实数316,027,40.10.3133133314π-⋯,,,(每两个1之间依次增加一个3),其中无理数共有( ) A .2个 B .3个C .4个D .5个6.下列二次根式中,不能..与3合并的是( ) A .12 B .8 C .48 D .1087.一个正方体的水晶砖,体积为380cm ,它的棱长大约在( )A .45cm cm -之间B .67cm cm -之间C .78cm cm -之间D .89cm cm -之间 8.下列对于二次根式的计算正确的是( )A .5510+=B .2552=-C .2552÷=D .25550⨯= 9.如图,动点P 从点A 出发,沿着圆柱的侧面移动到BC 的中点S ,若8BC =,点P 移动的最短距离为5,则圆柱的底面周长为( )A .6B .4πC .8D .1010.学习勾股定理后,老师布置的课后作业为“利用绳子(绳子足够长)和卷尺,测量学校教学楼的高度”,某数学兴趣小组的做法如下:①将绳子上端固定在教学楼顶部,绳子自由下垂,再垂直向外拉到离教学楼底部3m 远处,在绳子与地面的交点处将绳子打结;②将绳子继续往外拉,使打结处离教学楼的距离为6m ,此时测得绳结离地面的高度为 1m ,则学校教学楼的高度为( )A .11 mB .13 mC .14 mD .15 m11.如图,在Rt ABC △中,90,30,ACB ABC CD ︒∠︒=∠=平分ACB ∠.边AB 的垂直平分线DE 分别交,CD AB 于点,D E .以下说法错误的是( )A .60BAC ∠=︒B .2CD BE =C .DE AC =D 122CD BC AB =+ 12.若ABC 的三边长a 、b 、c 满足222681050a b c a b c ++=++-,那么ABC 是( )A .等腰三角形B .直角三角形C .锐角三角形D .钝角三角形二、填空题13.在平面直角坐标系中,与点A (5,﹣1)关于y 轴对称的点的坐标是_____. 14.如图所示的坐标系中,单位长度为1 ,点 B 的坐标为(1,3) ,四边形ABCD 的各个顶点都在格点上, 点P 也在格点上,ADP △ 的面积与四边形ABCD 的面积相等,写出所有点P 的坐标 _____________.(不超出格子的范围)15.要使二次根式22x x ---有意义,则x 的值是____.16.已知2(4)6y x x =--+,当x 分别取1,2,3,…,2021时,所对应y 值的总和是__.17.有一列数3,6,3,23,15,,则第100个数是_______.18.如图,已知圆柱的底面周长为10cm ,高AB 为12cm ,BC 是底面的直径,一只蚂蚁沿着圆柱侧面爬行觅食从点C 爬到点A ,则蚂蚁爬行的最短路线为________cm .19.在△ABC 中,AB=10,10,BC 边上的高AD=6,则另一边BC 等______. 20.若一个直角三角形的两条直角边长分别是4和6,则斜边长为__________.三、解答题21.如图,在平面直角坐标系中,△ABC 的顶点坐标分别为()3,2A -,()4,3B --,()2,2C --.(1)△ABC 的面积是 ;(2)画出△ABC 关于y 轴对称的△A 1B 1C 1,并写出点B 1的坐标.22.在如图所示的平面直角坐标系中,完成下列任务.(1)描出点(1,1)A ,(3,1)B ,(3,2)C -,(1,2)D -,并依次连接A ,B ,C ,D ; (2)画出四边形ABCD 关于y 轴对称的四边形1111D C B A ,并写出顶点1A ,1C 的坐标. 23.2320527(2)235+++-- 24.计算: (1)|﹣3|116238-(﹣2)2; (2)xy 2•(﹣2x 3x 2)3÷4x 5.25.(背景)在△ABC 中,分别以边AB 、AC 为底,向△ABC 外侧作等腰直角三角形ABD 和等腰直角三角形ACE ,∠ADB =∠AEC =90°.(研究)点M 为BC 的中点,连接DM ,EM ,研究线段DM 与EM 的位置关系与数量关系.(1)如图(1),当∠BAC =90°时,延长EM 到点F ,使得MF =ME ,连接BF .此时易证△EMC ≌△FMB ,D 、B 、F 三点在一条直线上.进一步分析可以得到△DEF 是等腰直角三角形,因此得到线段DM 与EM 的位置关系是 ,数量关系是 ;(2)如图(2),当∠BAC≠90°时,请继续探究线段DM 与EM 的位置关系与数量关系,并证明你的结论;(3)(应用)如图(3),当点C ,B ,D 在同一直线上时,连接DE ,若AB =2AC =4,求DE 的长.26.如图,在四边形ABCD 中, 45,ABC ADC ∠=∠=︒将BCD 绕点C 顺时针旋转一定角度后,点B 的对应点恰好与点A 重合,得到ACE △.(1)求证:AE BD ⊥;(2)若1,2AD CD ==,试求四边形ABCD 的对角线BD 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】分类讨论:当C 点在y 轴上,设C (0,t ),根据三角形面积公式得到12 |t ﹣3|•2=6,当C 点在x 轴上,设C (m ,0),根据三角形面积公式得到12|m +2|•3=6,然后分别解绝对值方程求出t 和m 即可得到C 点坐标.【详解】解:分两种情况:①当C 点在y 轴上,设C (0,t ),∵三角形ABC 的面积为6,∴12•|t ﹣3|•2=6, 解得t =9或﹣3.∴C 点坐标为(0,﹣3),(0,9),②当C 点在x 轴上,设C (m ,0),∵三角形ABC 的面积为6, ∴12•|m +2|•3=6, 解得m =2或﹣6.∴C 点坐标为(2,0),(﹣6,0),综上所述,C 点有4个,故选:D .【点睛】此题重点考查学生对平面直角坐标系上的点的应用,掌握平面直角坐标系的点的性质是解题的关键.2.D解析:D【分析】结合题意,根据坐标、轴对称的性质列方程并计算,即可得到答案.【详解】∵点(),1P a -与点()3,Q b 关于直线l 对称∴()()131a --=--,1b =-∴5a =-∴()516a b +=-+-=-故选:D .【点睛】本题考查了直角坐标系、坐标、轴对称、一元一次方程的知识;解题的关键是熟练掌握坐标、轴对称的性质,从而完成求解.3.B解析:B【分析】观察点的坐标变化发现每个点的横坐标与次数相等,纵坐标是1,0,-2,0,2,0,六个数一个循环,进而可得经过第2021次运动后,动点P 的坐标.【详解】观察点的坐标变化可知:第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,-2),第4次接着运动到点(4,0),第5次接着运动到点(5,2),第6次接着运动到点(6,0),第7次接着运动到点(7,1),…,按这样的运动规律,发现每个点的横坐标与次数相等,纵坐标是1,0,-2,0,2,0,六个数一个循环,所以2021÷6=336…5,所以经过第2021次运动后,动点P 的坐标是(2021,2).故选:B .【点睛】本题考查了规律型-点的坐标,解决本题的关键是观察点的坐标变化寻找规律. 4.B解析:B【分析】根据题目已知条件先表示出6个坐标,观察其中的规律即可得出结果.【详解】解:由题可得:A 1(3,1),A 2(0,4),A 3(-3,1),A 4(0,-2),A 5(3,1),A 6(0,4)…, 所以是四个坐标一次循环,2020÷4=505,所以是一个循环的最后一个坐标,故A 2020(0,-2),故选:B【点睛】本题主要考查的是找规律,根据题目给的已知条件找出规律是解题的关键.5.A解析:A【分析】无限不循环小数是无理数,根据定义解答.【详解】 符合无理数定义的有:0.3133133314π-⋯, ,故选:A .【点睛】此题考查无理数定义,熟记定义是解题的关键. 6.B解析:B【分析】并的二次根式.【详解】解:AB确;CD故选B.【点睛】本题主要考查二次根式的化简,同类二次根式的定义,关键在于熟练掌握同类二次根式的定义,正确的对每一选项中的二次根式进行化简.7.A解析:A【分析】【详解】80cm,解:∵正方体的水晶砖,体积为3∴3,∵∴<<,45故选:A.【点睛】本题考查了立方根的估算,找到两个连续整数的立方,一个大于80,一个小于80是解题关键.8.C解析:C【分析】利用二次根式的加减和乘除运算法则进行计算即可.【详解】解:=B.C.2=,故原题计算正确;D.10=,故原题计算错误.故选:C【点睛】此题主要考查了二次根式的混合运算,掌握二次根式的运算法则是解答此题的关键. 9.A解析:A【分析】根据圆柱的侧面展开图,利用勾股定理求出AB 即可求解.【详解】解:圆柱的侧面展开图如图,点P 移动的最短距离为AS=5,根据题意,BS=12BC=4,∠ABS=90°, ∴AB=22AS BS -=2254-=3,∴圆柱的底面周长为2AB=6,故选:A .【点睛】本题考查圆柱的侧面展开图、最短路径问题、勾股定理,熟练掌握圆柱的侧面展开图,得出点P 移动的最短距离是AS 是解答的关键.10.C解析:C【分析】根据题意画出示意图,设学校教学楼的高度为x ,可得AC AD x ==,()1AB x m =-,6BC m =,利用勾股定理可求出x .【详解】解:如图,设学校教学楼的高度为x ,则AD x =,()1AB x m =-,6BC m =,左图,根据勾股定理得,绳长的平方223x =+,右图,根据勾股定理得,绳长的平方()2216x =-+,∴()2222316x x +=-+, 解得:14x =.故选:C .【点睛】本题考查了勾股定理的应用,解答本题的关键是构造直角三角形,构造直角三角形的一般方法就是作垂线.11.B解析:B【分析】利用直角三角形的性质、三角形内角和定理、勾股定理、全等三角形的判定与性质等知识对各选项的说法分别进行论证,即可得出结论.【详解】解:如图,连接BD 、AD ,过点D 作DM ⊥BC 于M ,DN ⊥CA 的延长线于N ,A 、在Rt ABC △中,90ACB ∠=︒,30ABC ∠=︒,∴60BAC ∠=︒.故此选项说法正确;B 、∵DM ⊥BC ,DN ⊥CA∴∠DNC =∠DMC =90°,∵CD 平分∠ACB ,∴∠DCN =∠DCM =45°.∴∠DCN =∠CDN =45°.∴CN=DN .则△CDN 是等腰直角三角形.同理可证:△CDM 也是等腰直角三角形,∴222DN CN DN +.222DM CM DM +=,∴DM=DN= CM=CN ,∠MDN =90°.∵DE 垂直平分AB ,∴BD=AD ,AB=2BE .∴Rt △BDM ≌△ADN ,∴∠BDM=∠AND .∴∠BDM+∠ADM =∠AND+∠ADM =∠MDN .∴∠ADB=90°.∴222BD AD AD +=.即.∵在Rt △AND 中,AD 是斜边,DN 是直角边,∴AD >DN.∴2BE >CD .故此选项说法错误.C 、∵BD=AD ,∠ADB=90°,∴△ABD 是等腰直角三角形.∴DE=12AB . 在Rt ABC △中,90ACB ∠=︒,30ABC ∠=︒, ∴AC=12AB . ∴DE=AC .故此选项说法正确.D 、∵Rt △BDM ≌△ADN ,∴BM=AN .∴CN=AC+AN=AC+BM=CM .∴BC=BM+CM=AC+2BM .∵, ∴.∵AC=12AB , ∴12AB+BC .故此选项说法正确.故选:B .【点睛】本题属于三角形综合题,考查了直角三角形的性质,全等三角形的判定与性质,勾股定理等知识,难度较大,准确作出辅助线并灵活运用所学知识是解题的关键.12.B解析:B【分析】先用完全平方公式进行因式分解求出a 、b 、c 的值,再确定三角形的形状即可.【详解】解:222681050a b c a b c ++=++-,移项得,2226810500a b c a b c ++---+=,2226981610250a a b b c c +++++--=-,222(3)4)(0(5)a b c -+-+-=,30,40,50a b c -=-=-=,3,4,5a b c ===,2229,16,25a b c ===,222+=a b c , ABC 是直角三角形,故选:B .【点睛】本题考查了运用完全平方公式因式分解,勾股定理逆定理,非负数的性质,解题关键是通过等式的变形,恰当的拆数配成完全平方,再根据非负数的性质求边长.二、填空题13.(-5-1)【分析】考查平面直角坐标系点的对称性质【详解】解:点A (mn )关于y 轴对称点的坐标A′(-mn )∴点A (5-1)关于y 轴对称的点的坐标为(-5-1)故答案为:(-5-1)【点睛】此题考查解析:(-5,-1).【分析】考查平面直角坐标系点的对称性质.【详解】解:点A (m ,n )关于y 轴对称点的坐标A′(-m ,n )∴点A (5,-1)关于y 轴对称的点的坐标为(-5,-1).故答案为:(-5,-1).【点睛】此题考查平面直角坐标系点对称的应用.14.(04)(12)(20)(44)【分析】算出四边形ABCD 的面积等于△ABC 面积与△ACD 面积之和即为2同时矩形AEDC 面积也为2且E 为AP1的中点由中线平分所在三角形面积即为所求【详解】解:∵又∴解析:(0,4),(1,2),(2,0),(4,4)【分析】算出四边形ABCD 的面积等于△ABC 面积与△ACD 面积之和即为2,同时矩形AEDC 面积也为2,且E 为AP 1的中点,由中线平分所在三角形面积即为所求.【详解】解:∵11+2112222ABC ACD ABCDS S S 四边形, 又122ACDES 长方形, ∴=2ADP ACDE S S 长方形,又E 为AP 1的中点,∴DE 平分△ADP 1的面积,且△AED 面积为1,∴△ADP 1面积为2,故P 1点即为所求,且P 1(4,4),同理C 为DP 3的中点,AC 平分△ADP 3面积,且△ACD 面积为1,故△ADP 3面积为2,故P 3点即为所求,且P 3(1,2),由两平行线之间同底的三角形面积相等可知,过P 3作AD 的平行线与网格的交点P 2和P 4也为所求,故P 2(0,4),P 4(2,0),故答案为:P(0,4),(1,2),(2,0),(4,4).【点睛】考查了三角形的面积,坐标与图形性质,关键是熟练掌握中线平分所在三角形的面积,两平行线之间同底的三角形面积相等这些知识点.15.2【分析】根据二次根式有意义的条件:被开方数大于等于0即可得答案【详解】∵二次根式有意义∴x-2≥02-x≥0∴x=2故答案为:2【点睛】考查二次根式有意义的条件要使二次根式有意义则被开方数大于或等解析:2【分析】根据二次根式有意义的条件:被开方数大于等于0,即可得答案.【详解】∵22x x --∴x-2≥0,2-x≥0,∴x=2,故答案为:2【点睛】考查二次根式有意义的条件,要使二次根式有意义,则被开方数大于或等于0. 16.4054【分析】先化简二次根式求出y 的表达式再将x 的取值依次代入然后求和即可得【详解】解:当时当时则所求的总和为故答案为:【点睛】本题考查了二次根式的化简求值绝对值运算等知识点掌握二次根式的化简方法 解析:4054【分析】先化简二次根式求出y 的表达式,再将x 的取值依次代入,然后求和即可得.【详解】 解:2(4)646y x x x x =-+=--+当4x <时,46102y x x x =--+=-当4x ≥时,462y x x =--+=-⨯+-⨯+-⨯++++则所求的总和为(1021)(1022)(1023)222=+++⨯86422018=4054故答案为:4054.【点睛】本题考查了二次根式的化简求值、绝对值运算等知识点,掌握二次根式的化简方法是解题关键.17.【分析】原来的一列数即为于是可得第n个数是进而可得答案【详解】解:原来的一列数即为:∴第100个数是故答案为:【点睛】本题考查了数的规律探求属于常考题型熟练掌握二次根式的性质找到规律是解题的关键解析:103【分析】原来的一列数即为3,6,9,12,15,,于是可得第n个数是3n,进而可得答案.【详解】解:原来的一列数即为:3,6,9,12,15,,∴第100个数是300103=.故答案为:103.【点睛】本题考查了数的规律探求,属于常考题型,熟练掌握二次根式的性质、找到规律是解题的关键.18.13【分析】把圆柱沿母线AB剪开后展开点C展开后的对应点为C′利用两点之间线段最短可判断蚂蚁爬行的最短路径为AC′然后利用勾股定理计算出AC′即可【详解】把圆柱沿母线AB剪开后展开点C展开后的对应点解析:13【分析】把圆柱沿母线AB剪开后展开,点C展开后的对应点为C′,利用两点之间线段最短可判断蚂蚁爬行的最短路径为AC′,然后利用勾股定理计算出AC′即可.【详解】把圆柱沿母线AB剪开后展开,点C展开后的对应点为C′,则蚂蚁爬行的最短路径为AC′,如图,∵AB =12, BC′=5,在Rt △ABC′,AC′=2251213+=∴蚂蚁爬行的最短路程为13cm . 故答案是:13【点睛】本题考查了平面展开−最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.19.10或6【解析】试题解析:10或6【解析】试题根据题意画出图形,如图所示,如图1所示,AB =10,AC 10,AD =6,在Rt △ABD 和Rt △ACD 中,根据勾股定理得:BD 22AB AD -=8,22AC AD -,此时BC =BD +CD =8+2=10;如图2所示,AB =10,AC 10,AD =6,在Rt △ABD 和Rt △ACD 中,根据勾股定理得:BD 22AB AD -=8,CD 22AC AD -=2,此时BC =BD -CD =8-2=6,则BC 的长为6或10. 20.【分析】直接根据勾股定理求解可得【详解】解:∵直角三角形的两条直角边长分别是4和6∴斜边长为故答案为:【点睛】本题考查勾股定理在任何一个直角三角形中两条直角边长的平方之和一定等于斜边长的平方即如果直 解析:213【分析】直接根据勾股定理求解可得.【详解】解:∵直角三角形的两条直角边长分别是4和6,∴224+6=213故答案为:213. 【点睛】本题考查勾股定理,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.即如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.三、解答题21.(1)4.5;(2)见解析,()14,3B -【分析】(1)依据割补法进行计算,即可得到△ABC 的面积;(2)依据轴对称的性质进行作图,即可得到△A 1B 1C 1.【详解】解:(1)△ABC 的面积为:2×5−12×1×4−12×1×5−12×1×2=4.5; 故答案为:4.5;(2)如图,111A B C △为所求;()14,3B -;【点睛】本题考查了作图——轴对称变换,解决本题的关键是掌握轴对称的性质.22.(1)见解析;(2)见解析,1(1,1)A -,1(3,2)C --【分析】(1)直接利用已知点坐标在坐标系中描出各点得出答案;(2)画出四边形ABCD 关于y 轴对称的对称点,顺次连接对称点即可得到四边形1111D C B A ,再写出顶点1A ,1C 的坐标即可.【详解】解:(1)四边形ABCD 即为所求作的图形.(2)四边形1111D C B A 即为所求作的图形.此时1(1,1)A -,1(3,2)C --【点睛】本题考查了作图中的轴对称变换,熟练掌握对称的作图方法是解题的关键.233【分析】先把二次根式化简、分母有理化、求立方根和乘方,再合并即可.【详解】 解:原式2325532(23)(23)5++=---+ 23332=--3=【点睛】本题考查了二次根式的运算、分母有理化、立方根,解题关键是明确分母有理化的方法,熟练进行二次根式化简与计算,会求立方根.24.(1)2;(2)﹣2x 11y 2【分析】(1)先根据绝对值、算术平方根、立方根、乘方的意义化简,再根据实数运算法则计算即可;(2)先算乘方,再算乘除即可.【详解】解:(1)231|3|168(2)2---- =134(2)42-+⨯-+ =3﹣4﹣1+4=2;(2)xy 2•(﹣2x 3x 2)3÷4x 5=xy 2•(﹣2x 5)3÷4x 5=xy2•(﹣8x15)÷4x5=(﹣8÷4)x1+15﹣5y2=﹣2x11y2.【点睛】考查了整式的混合运算,有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.同时考查了实数的运算.25.(1)DM⊥EM,DM=EM;(2)DM⊥EM,DM=EM;见解析;(3)DE【分析】(1)由“SAS”可证△ECM≌△FBM,可得BF=CE,∠FBM=∠ECM,通过证明△DEF是等腰直角三角形,由等腰直角三角形的性质可得结论;(2)由“SAS”可证△EMC≌△FMB,△DAE≌△DBF,可得BF=CE,FM=ME,DF=DE,∠BDF=∠ADE,通过证明△DEF是等腰直角三角形,由等腰直角三角形的性质可得结论;(3)由等腰直角三角形的性质和勾股定理分别求出DN,NE的长,即可求解.【详解】解:(1)如图1,延长EM到点F,使得MF=ME,∵点M为BC的中点,∴BM=CM,又∵∠BMF=∠CME,∴△ECM≌△FBM(SAS),∴BF=CE,∠FBM=∠ECM,∵∠ADB=∠AEC=90°,∴DF∥EC,∴∠DBC+∠ECM=180°,∴∠DBC+∠FBM=180°,∴点D,点B,点F共线,∵AE=CE,∴BF=AE,∵AD=DB,∴DF=DE,∴△DEF是等腰直角三角形,又∵EM=FM,∴DM⊥EM,DM=EM;(2)如图2,延长EM到F,使FM=EM,连接BF,DF,∵点 M 为 BC 的中点,∴BM =CM ,在△EMC 和△FMB 中,MC BM EMC FMB EM FM =⎧⎪∠=∠⎨⎪=⎩,∴△EMC ≌△FMB (SAS ),∴BF =CE ,FM =ME ,∵△ABD 和△ACE 都是等腰直角三角形,∠ADB =∠AEC =90°,∴DA =DB ,EA =EC ,∠ABD =∠BAD =∠ACE =∠CAE =45°,∴FB =EA .∴∠DAE =∠BAD +∠CAE +∠BAC =90°+∠BAC ,又∠FBM =∠ECM ,∴∠DBF =360°﹣∠ABD ﹣∠ABC ﹣∠FBM =360°﹣∠ABD ﹣∠ABC ﹣(∠ACB +∠ACE )=90°+∠BAC ,∴∠DAE =∠DBF ,在△DAE 和△DBF 中,DA DB DAE DBF AE BF =⎧⎪∠=∠⎨⎪=⎩,∴△DAE ≌△DBF (SAS ),∴DF =DE ,∠BDF =∠ADE ,∵∠ADE +∠BDE =90°,∴∠BDF +∠BDE =90°,∴△DEF 是等腰直角三角形,又∵EM =FM ,∴DM ⊥EM ,DM =EM ;(3)如图3,取BC 中点M ,连EM ,BE ,设AB 与ED 交于点N ,∵△ABD 和△ACE 都是等腰直角三角形,AB =2AC =4,∴AB 2,AC 2,∴AB =2,AE =CE =2在(2)的结论可得,BM =CM ,EM ⊥BC ,∴BE =CE =AE =2∴DE 为AB 的垂直平分线,∴DN =12AB 2 ∴NE 22BE BN -82-6∴DE 26【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理等知识,添加恰当辅助线构造全等三角形是本题的关键.26.(1)见解析;(2)3BD =.【分析】()1证明:由BCD 绕点C 顺时针旋转到ACE △,利用旋转性质得BC=AC ,12∠=∠,由∠ABC =45º,可知∠ACB=90º,由1390∠+∠=︒,可证2490∠+∠=︒ 即可, ()2解:连DE ,由BCD ∆绕点C 顺时针旋转到ACE ∆,得BCD ACE ∠=∠,CD=CE=2,BD=AE ,利用等式性质得90DCE ACB ∠=∠=︒,∠CDE=45º,利用勾股定理2由∠ADC=45º可得∠ADE=90º,由勾股定理可求AE 即可.【详解】()1证明:BCD 绕点C 顺时针旋转一定角度后,点B 的对应点恰好与点A 重合,得到ACE △, ,12BC AC ∴=∠=∠,45,ABC BAC ∴∠=∠=︒18090,ACB ABC BAC ∴∠=︒∠∠=︒--1390,∴∠+∠=︒又34,∠=∠241390,∴∠+∠=∠+∠=︒1802490,ANM ∴∠=︒-∠-∠=︒即AE BD ⊥,()2解:连DE ,BCD 绕点C 顺时针旋转一定角度后,点B 的对应点恰好与点A 重合,得到,ACEBCD ACE ∴∠=∠,即,2,ACB ACD DCE ACD CD CE BD AE ∠+∠=∠+∠===,90,DCE ACB ∴∠=∠=︒2222228,DE CD CE ∴=+=+=又90,2,DCE CD CE ∠=︒==45,CDE ∴∠=︒90,ADE ADC CDE ∴∠=∠+∠=︒ ()2222183AE AD DE ∴=+=+=,3BD ∴=.【点睛】本题考查旋转的性质和勾股定理问题,关键是掌握三角形旋转的性质与勾股定理知识,会利用三角形旋转性质结合∠ABC=45º证∠ACB=90º,利用余角证AE ⊥BD ,利用等式性质证∠DCE=90º,利用勾股定理求DE ,结合∠ADC=45º证Rt △ADE,会用勾股定理求AE 使问题得以解决.。
【鲁教版】八年级数学上期中试题(附答案)
一、选择题1.在平面直角坐标系中,点()3,4A 关于原点O 的对称点是点A ',则OA '=( ) A .3 B .4 C .5 D .52.在平面直角坐标系中,若干个半径为1个单位长度、圆心角为60︒的扇形组成一条连续的曲线,点P 从原点O 出发,向右沿这条曲线做上下起伏运动(如图),点P 在直线上运动的速度为每秒1个单位长度,点P 在弧线上运动的速度为每秒π3个单位长度,则2021秒时,点P 的坐标是( )A .(3B .(2021,3C .20213,22⎛ ⎝⎭D .20213,22⎛⎫- ⎪ ⎪⎝⎭ 3.已知点P(a+5,a-1)在第四象限,且到x 轴的距离为2,则点P 的坐标为( ) A .(4,-2) B .(-4,2)C .(-2,4)D .(2,-4) 4.在平面直角坐标系中,点()25,1N a -+一定在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 5.下列二次根式中,最简二次根式是( ) A 7B 9C 12 D 236.下列各式计算正确的是( )A 31-B 38C 4D .9 7.下列说法中正确的是( ) A 25±5B .两个无理数的和仍是无理数C .-3没有立方根.D 22-a b . 8.估计(122+432 ) A .4和5之间B .5和6之间C .6和7之间D .7和8之间 9.如图,在4×4的正方形网格中,所有线段的端点都在格点处,则这些线段的长度是无理数的有( )A .1 条B .2条C .3条D .4条 10.如图,在Rt △ABC 中,∠BCA =90°,点D 是BC 上一点,AD =BD ,若AB =8,BD =5,则CD =( )A .2.1B .1.4C .3.2D .2.411.如图,圆柱形玻璃杯高为11cm ,底面周长为30cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的爬行最短路线长为(杯壁厚度不计( )A .12cmB .17cmC .20cmD .25cm 12.如图,在Rt ABC △中,6AB =,8BC =,AD 为BAC ∠的平分线,将ADC 沿直线AD 翻折得ADE ,则DE 的长为( )A .4B .5C .6D .7二、填空题13.已知点P (a ,a +1)在平面直角坐标系的第二象限内,则a 的取值范围___.14.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.则点2019A 的坐标是_________.15.对于实数a 、b 作新定义:@a b ab =,b a b a =※,在此定义下,计算:43@1232⎛⎫-- ⎪ ⎪⎝⎭(7543)2-=※________. 16.已知23x =-,23y =+.则代数式x 2+y 2﹣2xy 的值为_____.17.有一个正方体的集装箱,原体积为364m ,现准备将其扩容以盛放更多的货物,若要使其体积达到3125m ,则它的棱长需要增加__________m .18.“东方之门”座落于美丽的金鸡湖畔,高度约为301.8米,是苏州的地标建筑,被评为“中国最高的空中苏式园林”.现以现代大道所在的直线为x 轴,星海街所在的直线为y 轴,建立如图所示的平面直角坐标系(1个单位长度表示的实际距离为100米),东方之门的坐标为4(6,)A -,小明所在位置的坐标为(2,2)B -,则小明与东方之门的实际距离为___________米.19.如图,将两个大小、形状完全相同的ABC 和A B C '''拼在一起,其中点A '与点A 重合,点C '落在边AB 上,连接B C ',若90ACB AC B ''∠=∠=︒,2AC BC ==,则B C '=________.20.如图,矩形ABCD 中,AB=8,AD=5,点E 为DC 边上一个动点,把△ADE 沿AE 折叠,点D 的对应点D ’落在矩形ABCD 的对称轴上时,DE 的长为____________.三、解答题21.如图,在平面直角坐标系中,每个小方格的边长为1,ABC 的三个顶点分别为()()4,3,3,()3,1,1A B C -.请在坐标系中标出,,A B C 三点,画出ABC ∆,并画出ABC ∆关于y 轴对称的图形111A B C ∆,写出点111,,AB C 的坐标.22.如图①,∠BAD=90°,AB=AD ,过点B 作BC ⊥AC 于点C ,过点D 作DE ⊥CA 的延长线点E ,由∠1+∠2=∠D+∠2=90°,得∠1=∠D ,又∠ACB=∠AED=90°,AB=AD ,得△ABC ≌△DAE 进而得到AC=DE ,BC=AE , 我们把这个数学模型称为“K 字”模型或“一线三等角”模型.请应用上述“一线三等角”模型,解决下列问题:(1)如图②,∠BAD=∠CAE=90°,AB=AD ,AC=AE ,连接BC 、DE ,且BC ⊥AH 于点H ,DE 与直线AH 交于点G ,求证:点G 是DE 的中点.(2)如图③,在平面直角坐标系中,点A 为平面内任意一点,点B 的坐标为(4,1),若△AOB 是以OB 为斜边的等腰直角三角形,请直接写出点A 的坐标.23.求下列各式中x 的值.(1)2x 2=72;(2)(x+1)3+3=﹣61.24.已知2x+3的算术平方根是5,5x+y+2的立方根是3,求x﹣2y+10的平方根.25.如图,在两面墙之间有一个底端在A点的梯子,当它靠在一侧墙上时,梯子的顶端在B点;当它靠在另一侧墙上时,梯子的顶端在D点.已知∠BAC=60°,∠DAE=45°,点D到地面的垂直距离DE=32米.求点B到地面的垂直距离BC.26.如图,在△ABC中,∠ACB=90°,BC=AC=6,D是AB边上任意一点,连接CD,以CD为直角边向右作等腰直角△CDE,其中∠DCE=90°,CD=CE,连接BE.(1)求证:AD=BE;(2)当△CDE的周长最小时,求CD的值;(3)求证:222+=.AD DB CE2【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据对称性知道,OA=OA',计算OA的长度即可.【详解】A,∵()3,4∴22+,34A关于原点O的对称点是点A',∵点()3,4∴OA=OA'=5,故选:C .【点睛】本题考查了关于原点对称,点到原点的距离计算,熟练掌握原点对称的性质,点到原点的距离计算是解题的关键.2.C解析:C【分析】设第n 秒运动到Pn (n 为自然数)点,根据点P 的运动规律找出部分Pn 点的坐标,根据坐标的变化找出变化规律,依此规律即可得出结论.【详解】解:设第n 秒运动到Pn (n 为自然数)点,观察,发现规律:112P ⎛ ⎝⎭,()210P , ,332P ⎛ ⎝⎭ ,()42,0P ,552P ⎛ ⎝⎭ ,…,∴412n n P +⎛ ⎝⎭,42,02n n P +⎛⎫ ⎪⎝⎭ ,432n n P +⎛ ⎝⎭,44,02n n P +⎛⎫ ⎪⎝⎭,∵2021=4×505+1,∴2021P 为20212⎛ ⎝⎭. 故选:C .【点睛】本题主要考查了规律型中的点的坐标,解题的关键是找出变化规律.3.A解析:A【详解】解:由点P 在第四象限,且到x 轴的距离为2,则点P 的纵坐标为-2,即12a -=-解得1a =-54a ∴+=则点P 的坐标为(4,-2).故选A .【点睛】本题考查点的坐标.4.B解析:B【分析】根据点的坐标特征求解即可.【详解】横坐标是50-<,纵坐标是210a +>,∴点N (5-,21a +)一定在第二象限,故选:B .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).5.A解析:A【分析】根据最简二次根式的概念判断即可.【详解】解:AB 3,故不是最简二次根式;C =D 3,故不是最简二次根式; 故选:A .【点睛】本题考查了最简二次根式的定义,熟记定义,并能灵活进行化简,判断是解题的关键. 6.A解析:A【分析】根据平方根和立方根分别对四个选项进行计算即可.【详解】解:∵-1,,故只有A 计算正确;故选:A .【点睛】本题考查的是平方根、算术平方根和立方根,计算的时候需要注意审题是求平方根还是算术平方根.7.D解析:D【分析】根据算术平方根和平方根的概念,无理数的概念立方根的概念,和二次根式的概念逐一判断即可.【详解】5=,故A 选项错误;0ππ-+=,故B 选项错误;-3=C 选项错误;D 选项正确;故选D.【点睛】本题考查了算术平方根和平方根的区别,无理数、二次根式和立方根的概念,题目较为综合,熟练掌握相关概念是本题的关键.8.C解析:C【分析】原式利用二次根式乘法运算法则计算得到结果,估算即可.【详解】解:(2+∵16<24<25,即42<2<52,∴4<5,∴6<2+7,∴(6和7之间.故选:C.【点睛】此题考查了估算无理数的大小,以及二次根式的混合运算,熟练掌握运算法则是解本题的关键.9.B解析:B【分析】由勾股定理求出a、b、c、d,即可得出结果.【详解】∵=,d=2,5∴长度是无理数的线段有2条,故选B.【点睛】本题考查了勾股定理、无理数,熟练掌握勾股定理是解决问题的关键.10.B解析:B【分析】设CD=x,在Rt△ACD和Rt△ABC中,利用勾股定理列式表示出AC2,然后解方程即可.【详解】解:设CD=x,则BC=5+x,在Rt△ACD中,AC2=AD2-CD2=25-x2,在Rt△ABC中,AC2=AB2-BC2=64-(5+x)2,所以,25-x2=64-(5+x)2,解得x=1.4,即CD=1.4.故答案为:B.【点睛】本题考查了勾股定理,熟记定理并在两个三角形列出等式表示出AC2,然后列出方程是解题的关键.11.B解析:B【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【详解】解:如图:将杯子侧面展开,作A关于EF的对称点A′,由题意可得:A′D的长度等于圆柱底面周长的一半,即A′D=15cm由对称的性质可得A′M=AM=DE=2,BE=11-5=6∴BD=DE+BE=8连接A′B,则A′B即为最短距离,2222++=(cm).A D BD'15817故选:B.【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.12.B解析:B【分析】由勾股定理求出AC=10,求出BE=4,设DE=x,则BD=8−x,得出(8−x)2+42=x2,解方程求出x即可得解.【详解】∵AB=6,BC=8,∠ABC=90°,∴10=,∵将△ADC 沿直线AD 翻折得△ADE ,∴AC =AE =10,DC =DE ,∴BE =AE−AB =10−6=4,在Rt △BDE 中,设DE =x ,则BD =8−x ,∵BD 2+BE 2=DE 2,∴(8−x )2+42=x 2,解得:x =5,∴DE =5.故选B .【点睛】本题考主要查了勾股定理,直角三角形的性质,折叠的性质等知识,熟练掌握勾股定理是解题的关键.二、填空题13.﹣1<a <0【分析】直接利用第二象限内点的坐标特点得出a 的取值范围【详解】解:∵点P (aa+1)在平面直角坐标系的第二象限内∴解得:﹣1<a <0则a 的取值范围是:﹣1<a <0故答案为:﹣1<a <0【解析:﹣1<a <0【分析】直接利用第二象限内点的坐标特点得出a 的取值范围.【详解】解:∵点P (a ,a +1)在平面直角坐标系的第二象限内,∴010a a <⎧⎨+>⎩, 解得:﹣1<a <0.则a 的取值范围是:﹣1<a <0.故答案为:﹣1<a <0.【点睛】本题考查了点的坐标,正确掌握各象限内点的坐标特点是解题的关键.14.【分析】根据图象可得移动4次图形完成一个循环从而可得出点的坐标【详解】解:由图象可得移动4次图形完成一个循环即所以:故答案为:【点睛】本题考查的是点的坐标规律的探究掌握规律探究的方法是解题的关键 解析:()20191009,0A .【分析】根据图象可得移动4次图形完成一个循环,从而可得出点2019A 的坐标.【详解】解:由图象可得移动4次图形完成一个循环,201945043,20204505,∴÷=÷=()()()48122,0,4,0,6,0,,A A A()20205052,0,A ∴⨯即()20201010,0,A所以:()20191009,0.A故答案为:()20191009,0.A【点睛】本题考查的是点的坐标规律的探究,掌握规律探究的方法是解题的关键.15.【分析】先将新定义的运算化为一般运算再计算二次根式的混合运算即可【详解】解:=====故答案为:【点睛】本题考查新定义的实数运算二次根式的混合运算能根据题意将新定义运算化为一般运算是解题关键解析:1-【分析】先将新定义的运算化为一般运算,再计算二次根式的混合运算即可.【详解】解:2※=2=2-=2=43-=1-故答案为:1-【点睛】本题考查新定义的实数运算,二次根式的混合运算.能根据题意将新定义运算化为一般运算是解题关键.16.【分析】根据二次根式的减法法则求出利用完全平方公式把原式化简代入计算即可【详解】解:则故答案为:12【点睛】本题考查的是二次根式的化简求值掌握完全平方公式二次根式的加减法法则是解题的关键解析:【分析】根据二次根式的减法法则求出x y -,利用完全平方公式把原式化简,代入计算即可.【详解】y=解:2x=-223x y,则2222x y xy x y,2()(23)12故答案为:12.【点睛】本题考查的是二次根式的化简求值,掌握完全平方公式、二次根式的加减法法则是解题的关键.17.1【分析】先根据正方体的体积得出其棱长再求出体积达到125m3时的棱长进而可得出结论【详解】解:设正方体集装箱的棱长为a∵体积为64m3∴a==4m;设体积达到125m3的棱长为b则b==5m∴b-解析:1【分析】先根据正方体的体积得出其棱长,再求出体积达到125m3时的棱长,进而可得出结论.【详解】解:设正方体集装箱的棱长为a,∵体积为64m3,∴=4m;设体积达到125m3的棱长为b,则,∴b-a=5-4=1(m).故答案为:1.【点睛】本题考查的是立方根,熟知正方体的体积公式是解题的关键.18.【分析】运用勾股定理可求出平面直角坐标系中AB的长度再根据个单位长度表示的实际距离为米求出结果即可【详解】解:如图AC=6-(-2)=8BC=2-(-4)=6∴∴小明与东方之门的实际距离为10×10解析:1000【分析】运用勾股定理可求出平面直角坐标系中AB的长度,再根据1个单位长度表示的实际距离为100米求出结果即可.【详解】解:如图,AC=6-(-2)=8,BC=2-(-4)=6 ∴2222=6+8=10AB BC AC +∴小明与东方之门的实际距离为10×100=1000(米)故答案为:1000.【点睛】此题主要考查了勾股定理的应用,构造直角三角形运用勾股定理是解答此题的关键. 19.【分析】先运用勾股定理求出的长根据等腰直角三角形的性质证得∠=90°最后再利用勾股定理解答即可【详解】解:∵和大小形状完全相同∴≌∵∴和为等腰直角三角形∴∴∴和为等腰直角三角形∴∠CAB=∠C`AB 解析:23【分析】先运用勾股定理求出AB '的长,根据等腰直角三角形的性质证得∠CAB '=90°,最后再利用勾股定理解答即可.【详解】解:∵ABC 和A B C '''大小、形状完全相同 ∴ABC ≌A B C ''' ∵90ACB AC B ''∠=∠=︒,2AC BC == ∴ABC 和A B C '''为等腰直角三角形∴'''2AC B C ==,∴()()22'''222222AB AC AC '=+=+=∴ABC 和A B C '''为等腰直角三角形∴∠CAB=∠C`AB`=45°,即∠CAB '=90°∴()()()222'222223CB AC AB '=+=+=故答案为23.【点睛】本题考查了全等三角形的判定和性质、勾股定理等知识,掌握大小、形状完全相同的三角形是全等三角形是解答本题的关键.20.或【详解】分析:过点D′作MN⊥AB于点NMN交CD于点M由矩形有两条对称轴可知要分两种情况考虑根据对称轴的性质以及折叠的特性可找出各边的关系在直角△EMD′与△AND′中利用勾股定理可得出关于DM解析:52或533【详解】分析:过点D′作MN⊥AB于点N,MN交CD于点M,由矩形有两条对称轴可知要分两种情况考虑,根据对称轴的性质以及折叠的特性可找出各边的关系,在直角△EMD′与△AND′中,利用勾股定理可得出关于DM长度的一元二次方程,解方程即可得出结论.详解:过点D′作MN⊥AB于点N,MN交CD于点M,如图1、所示.设DE=a,则D′E=a.∵矩形ABCD有两条对称轴,∴分两种情况考虑:①当DM=CM时,AN=DM=12CD=12AB=4,AD=AD′=5,由勾股定理可知:22=3AD AN'-,∴MD′=MN-ND′=AD-ND′=2,EM=DM-DE=4-a,∵ED′2=EM2+MD′2,即a2=(4-a)2+4,解得:a=52;②当MD′=ND′时,MD′=ND′=12MN=12AD=52,由勾股定理可知:2253 =AD ND'-'∴EM=DM-DE=AN-DE=532-a , ∵ED′2=EM 2+MD′2,即a 2=(532−a )2+(52)2, 解得:a=533. 综上知:DE=52或533. 故答案为52或533.. 点睛:本题考查了翻转变换、轴对称的性质、矩形的性质以及勾股定理,解题的关键是找出关于DM 长度的一元二次方程.本题属于中档题,难度不大,但在做题过程中容易丢失一种情况,解决该题型题目时,结合勾股定理列出方程是关键.三、解答题21.图见解析;点111,,A B C 的坐标分别为()()–4,3,3,3--,()1,1-【分析】先在平面直角坐标系中画出,,A B C 三点,顺次连接即可;再按照轴对称的性质,画出它们的对称点即可.【详解】解:如图所示,111,ABC A B C ∆∆,即为所求;点111,,A B C 的坐标分别为()()–4,3,3,3--,()1,1-【点睛】本题考查了在平面直角坐标系中描点和画轴对称图形,关于y 轴对称点的坐标变化规律,解题关键是正确描点和画对称点.22.(1)见解析;(2)A(32,52)或(52,-32). 【分析】 (1)过点D 作DM ⊥AM 交AG 于点M ,过点E 作EN ⊥AG 于点N .根据“K 字模型”即可证明AH=DM 和AH=EN ,即EN=DM ,再根据全等三角形的判定和性质即可证明DG=EG ,即点G 是DE 的中点.(2)分情况讨论①当A 点在OB 的上方时,作AC 垂直于y 轴,BE 垂直于x 轴,CA 和EB 的延长线交于点D .根据“K 字模型”即可证明AC BD OC AD DE ===,,再利用B 点坐标即可求出A 点坐标.②当A 点在OB 的下方时,作AP 垂直于y 轴,BM 垂直于x 轴,PA 和BM 的延长线交于点Q .同理即能求出A 点坐标.【详解】(1)如图,过点D 作DM ⊥AM 交AG 于点M ,过点E 作EN ⊥AG 于点N ,则∠DMA=90°,∠ENG=90°.∵∠BHA=90 ,∴∠2+∠B=90°.∵∠BAD=90°,∴∠1+∠2=90°.∴∠B=∠1 .在△ABH 和△DAM 中1BHA AMD B AB DA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABH ≅△DAM (AAS ),∴AH=DM .同理 △ACH ≅△EAN (AAS ),∴ AH=EN .∴EN=DM .在△DMG 和△ENG 中MGD NGE DMG ENG DM EN ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△DMG ≅△ENG (AAS ).∴DG=EG .∴点G 是DE 的中点.(2)根据题意可知有两种情况,A 点分别在OB 的上方和下方.①当A 点在OB 的上方时,如图,作AC 垂直于y 轴,BE 垂直于x 轴,CA 和EB 的延长线交于点D .利用“K 字模型”可知ACO BDA ≅,∴AC BD OC AD DE ===,,设AC x =,则BD x =,∵1DE BD BE x =+=+,∴1OC AD DE x ===+,又∵4CD AD AC =+=,即14x x ++=, 解得32x =, ∴32AC =,35122DE =+=. 即点A 坐标为(32,52).②当A 点在OB 的下方时,如图,作AP 垂直于y 轴,BM 垂直于x 轴,PA 和BM 的延长线交于点Q .根据①同理可得:52AP =,32MQ =. 即点A 坐标为(52,32-).【点睛】本题考查了三角形全等的判定和性质.熟练利用三角形的判定方法是解答本题的关键.23.(1)x =6或x =﹣6;(2)x =﹣5【分析】(1)直接利用平方根的定义计算得出答案;(2)直接利用立方根的定义计算得出答案.【详解】解:(1)2x2=72x 2=36,故x=±6,则x=6或x=﹣6;(2)(x+1)3+3=﹣61(x+1)3=﹣64,x+1=﹣4∴x=﹣5.【点睛】此题主要考查了立方根和平方根,正确掌握相关定义是解题关键.24.±9【分析】根据立方根与算术平方根的定义得到5x+y+2=27,2x+3=25,则可计算出x=11,y=﹣30,然后计算x﹣2y+10后利用平方根的定义求解.【详解】解:因为2x+3的算术平方根是5,5x+y+2的立方根是3,∴2325 5227xx y+=⎧⎨++=⎩解得:1130 xy=⎧⎨=-⎩,∴x﹣2y+10=81,∴x﹣2y+10的平方根为:9=±.【点睛】本题主要考查了算术平方根,平方根与立方根,熟记相关定义是解答本题的关键.25.【分析】在Rt△ADE中,运用勾股定理可求出梯子的总长度,在Rt△ABC中,根据已知条件再次运用勾股定理可求出BC的长.【详解】解:在Rt△DAE中,∵∠DAE=45°,∴∠ADE=∠DAE=45°,∴AD2=AE2+DE2=(2+(2=36,∴AD=6,即梯子的总长为6米.∴AB=AD=6.在Rt△ABC中,∵∠BAC=60°,∴∠ABC=30°,∴AC=12AB=3, ∴BC 2=AB 2-AC 2=62-32=27,∴BC=27=33m ,∴点B 到地面的垂直距离BC=33m .【点睛】本题考查了勾股定理的应用,如何从实际问题中整理出直角三角形并正确运用勾股定理是解决此类题目的关键.26.(1)见解析;(2)32;(3)见解析【分析】(1)先判断出∠ACD=∠BCE ,得出△ADC ≌△CBE (SAS ),即可得出结论;(2)先判断出DE=2CD ,进而得出△CDE 的周长为(2+2)CD ,进而判断出当CD ⊥AB 时,CD 最短,即可得出结论;(3)先判断出∠A=∠ABC=45°,进而判断出∠DBE=90°,再用勾股定理得出BE 2+DB 2=DE 2,即可得出结论.【详解】证明:(1)∵∠ACB =∠DCE =90°,∴∠1+∠3=90°,∠2+∠3=90°,∴∠1=∠2.∵BC =AC ,CD =CE ,∴△CAD ≌△CBE ,∴AD =BE .(2)∵∠DCE =90°,CD =CE .∴由勾股定理可得CE 2DC .∴△CDE 周长等于CD +CE +DE =22CD CD =(22)CD .∴当CD 最小时△CDE 周长最小.由垂线段最短得,当CD ⊥AB 时,△CDE 的周长最小.∵BC =AC =6,∠ACB =90°,∴AB =2此时AD =CD =11623222BD AB ==⨯=∴当CD=△CDE 的周长最小.(3)由(1)易知AD =BE ,∠A =∠CBA =∠CBE =45°,∴∠DBE =∠CBE +∠CBA =90°.在Rt △DBE 中:222BE BD DE +=.222AD BD DE ∴+=在Rt △CDE 中:222CD CE DE +=.222CE CE DE ∴+=∴2222AD BD CE +=.【点睛】此题是三角形综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理,判断出CD ⊥AB 时,CD 最短是解本题的关键.。
鲁教版八年级上学期数学期中测试卷及参考答案
鲁教版八年级上学期数学期中测试卷一、单选题1. 若分式 中的a 、b 的值同时扩大到原来的3倍,则分式的值( )A . 不变B . 是原来的3倍C . 是原来的6倍D . 是原来的9倍2. 关于x 的分式方程 +5= 有增根,则m 的值为( )A . 1 B . 3 C . 4 D . 53. 已知 = - ,其中A,B 为常数,则4A-B 的值为( )A . 13B . 9C . 7D . 54. 若x ﹣y+3=0,则x (x ﹣4y )+y (2x+y )的值为( )A . 9B . ﹣9C . 3D . ﹣35. 如果分式中的x 、y 都缩小到原来的倍,那么分式的值( )A . 扩大到原来的3倍B . 扩大到原来的6倍C . 不变D . 缩小到原来的倍6. 将下列多项式分解因式,结果中不含因式x-1的是( )A . x -1 B . x(x-2)+(2-x) C . x -2x+1 D . x +2x+17. 边长为a 、b 的长方形周长为12,面积为10,则的值为( )A . 120B . 60C . 80D . 408. 若关于x 的分式方程的解为非负数,则a 的取值范围是( )A . a≥1 B . a >1 C . a≥1且a≠4 D . a >1且a≠49. 已知 = ,则x + 的值为( )A .B .C . 7D . 410. 若n 为任意正整数,(n+11)-n 的值总可以被k 整除,则k 等于( )A . 11B . 22C . 11或22D . 11的倍数11. 若5x ﹣3y=0,且xy≠0,则的值等于( )A .B . ﹣C . 1D . ﹣112. 某工程队铺设一条480米的景观路,开工后,由于引进先进设备,工作效率比原计划提高50%,结果提前4天完成任务.若设原计划每天铺设x 米,根据题意可列方程为( )A .B .C .D .二、填空题13. 已知,则分式 = ________.14. 已知x ﹣4x ﹣5=0,则分式的值是________.15. 已知a=2005x+2006,b=2005x+2007,c=2005x+2008,则a +b +c ﹣ab ﹣ac ﹣bc=________.16. 化简求值:(a ﹣2)•=________ ,当a=﹣2时,该代数式的值为________17. 若x ﹣y ﹣x+y=(x﹣y )•A ,则A=________.18. 2﹣1能被60~70之间的两个整数整除,这两个整数是________19. 若关于x 的分式方程无解,则m 的值为________.三、计算题2222222222224820. 解方程: + = + .21.先化简,再求值.,其中x =- .22. 若1+x+x +x =0,求x+x +x +…+x 的值.23. 设y=ax ,若代数式(x+y )(x ﹣2y )+3y (x+y)化简的结果为x , 请你求出满足条件的a 值.24. 先化简,再求值:,其中 , .25. 若 ,求 的值.四、综合题26. 已知关于x 的分式方程 + = .(1) 若方程的增根为x=2,求m 的值;(2) 若方程有增根,求m 的值;(3) 若方程无解,求m 的值.五、解答题27. 从称许到南京可乘列车A 与列车B ,已知徐州至南京里程约为350km ,A 与B 车的平均速度之比为10∶7,A 车的行驶时间比B 车的少1h ,那么两车的平均速度分别为多少?28. 某市为进一步缓解交通拥堵现象,决定修建一条从市中心到飞机场的轻轨铁路。
八年级数学上册 期中考试卷(鲁教版)
八年级数学上册期中考试卷(鲁教版)满分:120分时间:120分钟一、选择题(每题3分,共36分)1.下列各式中,是分式的为()A.x3B.3x2+2yC.-12πD.2-x242.若多项式x2+mx-8因式分解的结果为(x+4)(x-2),则常数m的值为()A.-2 B.2C.-6 D.63.【母题:教材P56习题T1】【2022·河南】如图所示的扇形统计图描述了某校学生对课后延时服务的打分情况(满分5分),则所打分数的众数为()A.5分B.4分C.3分D.45%4.【2023·泰安泰山区月考】多项式m2-m与多项式2m2-4m+2的公因式是()A.m-1 B.m+1C.m2-1 D.(m-1)25.下列各式可以用完全平方公式进行因式分解的是()A.a2+2a+14B.a2-a+14C.x2-2x+4 D.x2-xy+y26.【2023·济宁任城区期中】能使分式|x|-1x2-2x+1的值为零的所有x的值是()A.x=1 B.x=-1C.x=1或x=-1 D.x=2或x=1 7.下列运算正确的是()A.3b4a·2a9b2=b6B.13ab÷2b23a=b32C.12a+1a=23a D.1a-1-1a+1=2a2-18.甲、乙两人在相同的条件下,各射击10次,经计算:甲射击成绩的平均数是8环,方差是1.1;乙射击成绩的平均数是8环,方差是1.5.下列说法中不一定正确的是()A.甲、乙的总环数相同B.甲、乙成绩的平均数相同C.乙的成绩比甲的成绩波动大D.甲、乙成绩的众数相同9.【2022·朝阳】八年级一班学生周末乘车去红色教育基地参观学习,基地距学校60 km,一部分学生乘慢车先行,出发30 min后,另一部分学生乘快车前往,结果同时到达.已知快车的速度是慢车速度的 1.5倍,求慢车的速度.设慢车每小时行驶x km,根据题意,所列方程正确的是()A.60x-601.5x=3060B.601.5x-60x=3060C.60x-601.5x=30 D.601.5x-60x=3010.一组数据:2,4,4,4,6,若去掉一个数据4,则下列统计量中发生变化的是()A.众数B.中位数C.平均数D.方差11.【2022·菏泽】射击比赛中,某队员的10次射击成绩如图所示,则下列结论错误的是()A.平均数是9环B.中位数是9环C.众数是9环D.方差是0.812.若关于x的方程mx+1-2x=0的解为负数,则m的取值范围是()A.m<2 B.m<2且m≠0C.m>2 D.m>2且m≠4二、填空题(每题3分,共18分)13.已知mn=4,n-m=3,则mn2-m2n=________.14.【2022·广州】分式方程32x=2x+1的解是________.15.【2023·泰安泰山区月考】化简:a2a+2·⎝⎛⎭⎪⎫a-4a=__________________________________________________________________ ______.16.【2022·包头】某校欲招聘一名教师,对甲、乙两名候选人进行了三项素质测试,各项测试成绩满分均为100分,根据最终成绩择优录用,他们的各项测试成绩如下表所示:根据实际需要,学校将通识知识、专业知识和实践能力三项测试得分按2∶5∶3的比例确定每人的最终成绩,此时被录用的是________.(填“甲”或“乙”)17.已知一组数据1,2,4,3,x的众数是2,则这组数据的中位数是______.18.【2023·淄博张店区月考】若关于x的方程2mx+1-m+1x2+x=1x有增根,则实数m的值为________.三、解答题(19题9分,20题7分,21题8分,25题12分,其余每题10分,共66分)19.【母题:教材P16复习题T1】因式分解:(1)35a3+10a2;(2)8a(a-b)2-12(b-a)3;(3)(x2-6x)2+18(x2-6x)+81.20.【2022·铁岭】先化简,再求值:⎝ ⎛⎭⎪⎫x 2-2x +1x 2-1-1x +1÷2x -4x 2+x ,其中x =6.21.若数a 使关于x 的不等式组⎩⎨⎧3x -12<4(x -2),5x -a ≤3有且仅有三个整数解,且使关于y 的分式方程3y y -2+a +122-y =1的解是整数,求满足条件的所有a 的值之和.22. 对于二次三项式a 2+6a +9,可以用公式法将它因式分解成(a +3)2的形式,但对于二次三项式a 2+6a +8,就不能直接应用公式法因式分解了,我们可以在二次三项式中先加上一项9,使其成为完全平方式,再减去9这项,使整个式子的值保持不变,于是有:a 2+6a +8=a 2+6a +9-9+8=(a +3)2-1=[(a +3)+1][(a +3)-1]=(a +4)(a +2).请仿照上面的做法,将下列各式因式分解: (1)x 2-6x -16; (2)x 2+2ax -3a 2.23.某学校为了了解八年级学生对“八礼四仪”的掌握情况,对该年级的500名学生进行了问卷测试,并随机抽取了10名学生的问卷,成绩统计如下:(1)计算这10名学生这次测试的平均成绩.(2)如果成绩不少于9分的定义为“优秀”,估计这500名学生对“八礼四仪”掌握情况优秀的人数.(3)小明所在班级共有40名学生,他们全部参加了这次测试,平均成绩为7.8分.小明的测试成绩是8分,小明说,我的测试成绩在班级中等偏上,你同意他的观点吗?为什么?24.【2022·达州】某商场进货员预测一种应季T恤衫能畅销市场,就用4 000元购进一批这种T恤衫,面市后果然供不应求.商场又用8 800元购进了第二批这种T恤衫,所购数量是第一批购进量的2倍,但每件的进价贵了4元.(1)该商场购进第一批、第二批T恤衫每件的进价分别是多少元?(2)如果两批T恤衫按相同的标价销售,最后缺码的40件T恤衫按七折优惠售出,要使两批T恤衫全部售完后利润率不低于80%(不考虑其他因素),那么每件T恤衫的标价至少是多少元?25.【2023·济南月考】为了从甲、乙两名同学中选拔一人参加知识竞赛,举行了6次选拔赛,根据两名同学6次选拔赛的成绩,分别绘制了如图所示的统计图.(1)填写下表:(2)分别求出甲、乙两名同学6次成绩的方差.(3)你认为选择哪名同学参加知识竞赛比较好?请说明理由.答案一、1.B 2.B3.B4.A5.B6.B【点拨】∵|x |-1x 2-2x +1=0,即|x |-1(x -1)2=0,∴|x |-1=0且(x -1)2≠0,∴x =-1.分式的值为0的条件是:分子为0,分母不为0,两个条件需同时具备,缺一不可.7.D 【点拨】3b 4a ·2a 9b 2=16b ;13ab ÷2b 23a =13ab ·3a 2b 2=12b 3;12a +1a =12a +22a =32a;1a -1-1a +1=a +1-(a -1)(a +1)(a -1)=a +1-a +1(a +1)(a -1)=2a 2-1.8.D【点拨】∵各射击10次,甲射击成绩的平均数是8环,乙射击成绩的平均数是8环,∴甲、乙的总环数相同,甲、乙成绩的平均数相同,故A ,B 正确;∵甲射击成绩的方差是1.1;乙射击成绩的方差是1.5,∴乙的成绩比甲的成绩波动大,故C 正确;由已知不能得到甲、乙成绩的众数相同,故D 不一定正确.9.A10.D 【点拨】原数据为2,4,4,4,6,平均数为2+4+4+4+65=4,众数为4,中位数为4,方差为15×[(2-4)2+(4-4)2×3+(6-4)2]=1.6,新数据为2,4,4,6,平均数为4,众数为4,中位数为4,方差为14×[(2-4)2+(4-4)2×2+(6-4)2]=2,故变化的是方差.11.D【点拨】根据题意得10次射击成绩(单位:环)从小到大排列为8.4,8.6,8.8,9,9,9,9.2,9.2,9.4,9.4,平均数是110×(9.4+8.4+9.2+9.2+8.8+9+8.6+9+9+9.4)=9(环),中位数是9+92=9(环),9环出现的次数最多,则众数是9环,方差是110×[(8.4-9)2+(8.6-9)2+…+(9.4-9)2]=0.096.12.B【点拨】m x +1-2x =0,方程两边同乘x (x +1),得mx -2(x +1)=0,去括号,得mx -2x -2=0,解得x =2m -2.∵方程的解为负数,∴2m -2<0,∴m <2.由题意知x ≠0且x ≠-1,即2m -2≠0且2m -2≠-1,∴m ≠0.∴m 的取值范围是m <2且m ≠0.二、13.1214.x =315.a 2-2a16.甲【点拨】甲的测试成绩为(80×2+90×5+85×3)÷(2+5+3)=86.5(分),乙的测试成绩为(80×2+85×5+90×3)÷(2+5+3)=85.5(分),∵86.5>85.5,∴甲将被录用.17.218.-13或-2【点拨】去分母,得2mx -(m +1)=x +1,∵关于x 的方程2m x +1-m +1x 2+x =1x有增根,∴增根为x =-1或0.将x =-1代入2mx -(m +1)=x +1,得-2m -(m +1)=0,解得m =-13;将x =0代入2mx -(m +1)=x +1,得-(m +1)=1,解得m =-2,∴m 的值为-13或-2.三、19.解:(1)原式=5a 2(7a +2).(2)原式=8a (a -b )2+12(a -b )3=4(a -b )2[2a +3(a -b )]=4(a -b )2(2a +3a -3b )=4(a -b )2(5a -3b ).(3)原式=(x 2-6x +9)2=[(x -3)2]2=(x -3)4.20÷2(x -2)x (x +1)=x -2x +1·x (x +1)2(x -2)=x 2,当x =6时,原式=62=3.21.解:解关于x x -12<4(x -2),x -a ≤3,得-4<x ≤a +35.∵关于x x -12<4(x -2),x -a ≤3有且仅有三个整数解,∴-1≤a +35<0,解得-8≤a <-3.解关于y 的分式方程3y y -2+a +122-y =1,得y =a +102.∵关于y 的分式方程的解是整数,∴a +102为整数,∵-8≤a <-3,∴a =-8或a =-6或a =-4.当a =-6时,y =2,原分式方程无解,故将a =-6舍去.∴满足条件的所有a 的值之和是-8-4=-12.22.解:(1)原式=x 2-6x +9-9-16=(x -3)2-25=(x -3+5)(x -3-5)=(x +2)(x -8).(2)原式=x 2+2ax +a 2-a 2-3a 2=(x +a )2-(2a )2=(x +a +2a )(x +a -2a )=(x +3a )(x -a ).23.解:(1)10×3+9×3+8×2+7×1+6×13+3+2+1+1=8.6(分).答:这10名学生这次测试的平均成绩是8.6分.(2)500×3+33+3+2+1+1=300(名).答:估计这500名学生对“八礼四仪”掌握情况优秀的人数为300名.(3)不同意.因为成绩中等偏上,指小明的成绩超过了班级一半以上学生的成绩,也就是说他的成绩应超过班级成绩的中位数.虽然小明的成绩超过了平均成绩,但未必能超过成绩的中位数.24.解:(1)设该商场购进第一批、第二批T 恤衫每件的进价分别是x 元和(x +4)元,根据题意,得2×4000x =8800x +4,解得x =40,11 经检验x =40是方程的根,x +4=40+4=44.答:该商场购进第一批、第二批T 恤衫每件的进价分别是40元和44元.(2)400040+880044=300(件),设每件T 恤衫的标价是y 元,根据题意,得(300-40)y +40×0.7y ≥(4000+8800)×(1+80%),解得y ≥80.答:每件T 恤衫的标价至少是80元.25.解:(1)①91②90③85(2)甲同学的方差是16×[(85-90)2+(82-90)2+(89-90)2+(98-90)2+(93-90)2+(93-90)2]=863(分2),乙同学的方差是16×[(95-90)2+(85-90)2+(90-90)2+(85-90)2+(100-90)2+(85-90)2]=1003(分2),(3)选择甲同学.因为两人的平均数相同,说明两人实力相当,但甲的方差小于乙的方差,说明甲同学发挥更稳定,因此甲同学成绩更优秀,可以选择甲同学参加竞赛.。
【鲁教版】八年级数学上期中模拟试题及答案(2)
一、选择题1.如图所示,已知ABC 和DCE 均是等边三角形,点B 、C 、E 在同一条直线上,连接AE 、BD 、FG ,AE 与BD 交于点O ,AE 与CD 交于点G ,AC 与BD 交于点F ,则下列结论中:①AE BD =; ②AG BF =; ③FG//BE ; ④CF CG =,以上结论正确的有( )A .1个B .2个C .3个D .4个2.如图,在Rt ABC ∆中, 90,30,ACB A CD ︒︒∠=∠=是斜边AB 上的高,2BD =,那么AD 的长为( )A .2B .4C .6D .83.如图,在ABC 中,87,A ABC ∠=︒∠的平分线BD 交AC 于点,D E 是BC 中点,且DE BC ⊥,那么C ∠的度数为( )A .16︒B .28︒C .31︒D .62︒4.已知一个等腰三角形ABC 的两边长为5,7,另一个等腰三角形ABC 的两边为23x -,35x -,若两个三角形全等,则x 的值为( )A .5B .4C .4或5D .1035.如图,若DEF ABC ≅,点B 、E 、C 、F 在同一条直线上,9BF =,5EC =,则CF 的长为( )A .1B .2C .2.5D .36.如图,AB ⊥CD ,且AB =CD .E 、F 是AD 上两点,CE ⊥AD ,BF ⊥AD .若CE =a ,BF =b ,EF =c ,则AD 的长为( )A .a +cB .b +cC .a +b -cD .a -b +c7.如图,AB BC ⊥,CD BC ⊥,AC BD =,则能证明ABC DCB ≅的判定法是( )A .SASB .AASC .SSSD .HL8.如图,点C ,D 在线段AB 上,AC DB =,AE //BF ,添加以下哪一个条件仍不能判定△AED ≌△BFC ( )A .ED CF =B .AE BF =C .E F ∠=∠D .ED //CF9.一个多边形的外角和是360°,这个多边形是( )A .四边形B .五边形C .六边形D .不确定 10.将一副三角板和一张对边平行的纸条按图中方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则1∠的度数是( )A .10°B .15°C .20°D .25° 11.已知三角形的两边长分别为1和4,则第三边长可能是( ) A .3B .4C .5D .6 12.某多边形的内角和是其外角和的3倍,则此多边形的边数是( )A .5B .6C .7D .8 二、填空题13.如图,在ABC ∆中,CD 平分,ACB ∠点,E F 分别是,CD AC 上的动点.若6,12,ABC BC S ∆==则AE EF +的最小值是______________.14.如图,等边△ABC 的边长为4,点D 在边AC 上,AD =1.(1)△ABC 的周长等于_____;(2)线段PQ 在边BA 上运动,PQ =1,BQ >BP ,连接QD ,PC ,当四边形PCDQ 的周长取得最小值时,请在如图所示的矩形区域内,用无刻度的直尺和圆规,画出线段PC ,QD ,并简要说明点P 和点Q 的位置是如何找到的(保留作图痕迹,不要求证明)_____.15.如图,在ABC 中,C 90∠=,A ∠、B ∠的平分线交于O ,OD AB ⊥于D .若AC 3=,BC 4=,AB 5=,则AD =________.16.如图,AB ,CD 交于点O ,AD ∥BC .请你添加一个条件_____,使得△AOD ≌△BOC .17.如图,ABC ∆的两条高AD 、CE 交于点H ,已知6EH EB ==,8AE =,则ACH ∆的面积为______.18.过n 边形的一个顶点有9条对角线,则n 边形的内角和为______.19.一个三角形的三个内角度数之比为2:3:5,那这个三角形一定是三角形__________. 20.如图,在ABC 中,E 、D 、F 分别是AD 、BF 、CE 的中点,若DEF 的面积是1,则ABC S =______.三、解答题21.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC 和△DEF 的顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)画出△ABC 向上平移4个单位长度所得到的△A 1B 1C 1,并写出点A 1,B 1的坐标; (2)画出△DEF 关于x 轴对称后所得到的△D 1E 1F 1,并写出点E 1,F 1的坐标; (3)△A 1B 1C 1和△D 1E 1F 1组成的图形是轴对称图形,请画出它的对称轴.22.在等边ABC 中,D E 、分别为AB AC 、边上的动点,以DE 为一边作等边DEF .(1)如图1,若等边DEF 的顶点F 恰好在BC 上,求证:ADE CEF ≌;(2)如图2,若2BD AE =,当点D 从点A 向点B 运动(不运动到点B )时,连接CF ,请判断ECF ∠的大小是否变化并说明理由.23.已知矩形ABCD 中,点E 是AD 中点,连接CE ,经过点A ,B ,E 三点作O ,交BC 于点F ,过点F 作FH CE ⊥于H .(1)求证:直线FH 是O 的切线;(2)若42AD =H 恰好为CE 中点时,判断此时CE 与O 的位置关系?说明理由,并求出弧EF ,线段EH ,FH 围成的图形的面积.24.如图,在平面直角坐标系中,已知点()1,A a a b -+,(),0B a ,且()2320a b a b +-+-=,C 为x 轴上点B 右侧的动点,以AC 为腰作等腰三角形ACD ,使AD AC =,CAD OAB ∠=∠,直线DB 交y 轴于点P .(1)求证:AO AB =;(2)求证:AOC ABD ∆∆≌;(3)当点C 运动时,点P 在y 轴上的位置是否发生改变,为什么?25.已知AB∥CD,CF平分∠ECD.(1)如图1,若∠DCF=25°,∠E=20°,求∠ABE的度数.(2)如图2,若∠EBF=2∠ABF,∠CFB的2倍与∠CEB的补角的和为190°,求∠ABE的度数.26.如果一个n边形的内角都相等,且它的每一个外角与内角的比为2:5,求这个多边形的边数n.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】首先根据等边三角形性质得出BC=AC,CD=CE,∠ACB=∠ECD=60°,即可证明△BCD与△ACE全等、△BCF与△ACG全等以及△DFC与△EGC全等,最后利用全等三角形性质以及等边三角形性质证明即可.【详解】∵△ABC与△CDE为等边三角形,∴BC=AC,CD=CE,∠ACB=∠ECD=60°,∴∠ACB+∠ACD=∠ACD+∠ECD,∠ACD=60°,即:∠ACE=∠BCD,在△BCD与△ACE中,∵BC=AC,∠ACE=∠BCD,CD=CE,∴△BCD≌△ACE(SAS),∴AE=BD,即①正确;在△BCF与△ACG中,由①可知∠CBF=∠CAG,又∵AC=BC,∠BCF=∠ACG=60°,∴△BCF≌△ACG(ASA),∴AG=BF,即②正确;在△DFC与△EGC中,∵△BCF≌△ACG,∴CF=CG.即④正确;∵∠GCF =60°,∴△CFG为等边三角形,∴∠CFG=∠FCB=60°,∴FG∥BE,即③正确;综上,①②③④都正确.故选:D.【点睛】本题考查了等边三角形的性质,全等三角形的判定和性质以及平行线的判定,解题的关键是正确寻找全等三角形来解决问题,.2.C解析:C【分析】根据∠ACB=90°,∠A=30°,CD是斜边AB上的高,利用互余关系求∠BCD=30°,DB=2,可求BC,在Rt△ABC中,再利用含30°的直角三角形的性质求AB,再用线段的差求AD.【详解】解:Rt△ABC中,∵∠ACB=90°,∠A=30°,∴∠B=90°-∠A=90°-30°=60°,CD 是斜边AB 上的高,∴∠CDB=90°,∴∠BCD=90°-∠B=30°,∴BC=2BD =4,同理,AB=2BC=8,AD=AB-BD=8-2=6,故选:C .【点睛】本题考查了含30°的直角三角形的性质,准确运用在直角三角形中,30°角所对直角边等于斜边的一半是解题关键.3.C解析:C【分析】根据角平分线的定义得到ABD CBD ∠=∠,根据线段垂直平分线的性质得到DB=DC ,进而得到DBC C ∠=∠,根据三角形内角和定理列式计算即可.【详解】∵BD 平分ABC ∠,∴ABD CBD ∠=∠,∵DE BC ⊥,E 是BC 中点,∴DB=DC ,∴DBC C ∠=∠,∴ABD CBD C ∠=∠=∠,∴18087ABD CBD C ∠+∠+∠=︒-︒,解得:31C ∠=︒,故选:C .【点睛】本题考查的是线段的垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.4.B解析:B【分析】根据等腰ABC 的两边长为5,7,得到ABC 的三边长为5,7,7;或5,5,7;之后根据全等分2x-3=5,2x-3=7,3x-5=5,3x-5=7四种情况分类讨论,舍去不合题意的即可求解.【详解】解:∵等腰ABC 的两边长为5,7,∴ABC 的三边长为5,7,7;或5,5,7;由题意得另一个等腰三角形的两边为23x -,35x -,且与等腰ABC 全等(1)当2x-3=5时,解得x=4,则3x-5=7,符合题意;(2)当2x-3=7时,解得x=5,则3x-5=10,不合题意;(3)当3x-5=5时,解得103x ,则2x-3=113,不合题意;(4)当3x-5=7时,解得x=4,则2x-3=5,符合题意;综上所述:x的值为4.故答案为:B【点睛】本题考查了等腰三角形的定义,全等三角形的性质,根据题意分类讨论是解题关键.5.B解析:B【分析】根据全等三角形的对应边相等得到BE=CF,计算即可.【详解】解:∵△DEF≌△ABC,∴BC=EF,∴BE+EC=CF+EC,∴BE=CF,又∵BF=BE+EC+CF=9,EC=5∵CF=12(BF-EC)=12(9-5)=2.故选:B.【点睛】本题考查了全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.6.C解析:C【分析】由“AAS”可证△ABF≌△CDE,根据全等三角形的性质可得AF=CE=a,BF=DE=b,则可推出AD=AF+DF=a+(b−c)=a+b−c.【详解】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=a,BF=DE=b,∵EF=c,∴AD=AF+DF=a+(b−c)=a+b−c.故选:C.【点睛】本题考查了全等三角形的判定和性质,解题的关键是掌握全等三角形的判定方法并准确寻找全等三角形解决问题.7.D解析:D【分析】直接证明全等三角形,即可确定判断方法.【详解】解:∵AB BC ⊥,CD BC ⊥,∴ABC 与△DCB 均为直角三角形,又AC DB =,BC CB =, ∴()ABC DCB HL ≅,故选:D.【点睛】本题考查全等三角形的判定定理,属于基础题.8.A解析:A【分析】欲使△AED ≌△BFC ,已知AC=DB ,AE ∥BF ,可证明全等三角形判定定理AAS 、SAS 、ASA 添加条件,逐一证明即可;【详解】∵ AC=BD ,∴ AD=CE ,∵ AE ∥BF ,∴ ∠A=∠E ,A 、如添加ED=CF ,不能证明△AED ≌△BFC ,故该选项符合题意;B 、如添加AE=BF ,根据SAS ,能证明△AED ≌△BFC ,故该选项不符合题意;C 、如添加∠E=∠F ,利用AAS 即可证明△AED ≌△BFC ,故该选项不符合题意; D 、如添加ED ∥CF ,得出∠EDC=∠FCE ,利用ASA 即可证明△AED ≌△BFC ,故该选项不符合题意;故选:A .【点睛】本题考查了全等三角形的判定定理的理解和掌握,此类添加条件题,要求学生应熟练掌握全等三角形的判定定理;9.D解析:D【分析】根据多边形的外角和等于360°判定即可.∵多边形的外角和等于360°,∴这个多边形的边数不能确定.故选:D.【点睛】本题考查了多边形的外角和定理,注意利用多边形的外角和与边数无关,任何多边形的外角和都是360°是解题的关键.10.B解析:B【分析】延长两三角板重合的边与直尺相交,根据两直线平行,内错角相等求出∠2,再利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,由平行线的性质可得∠2=30°,∠1=∠3-∠2=45°-30°=15°.故选:B.【点睛】本题考查了平行线的性质及三角形外角的性质,三角板的知识,熟记平行线的性质,三角板的度数是解题的关键.11.B解析:B【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围.【详解】解:根据三角形的三边关系,设第三边的长为x,∵三角形两边的长分别是1和4,∴4-1<x<4+1,即3<x<5.故选:B.【点睛】此题考查了三角形的三边关系,关键是正确确定第三边的取值范围.12.D解析:D【分析】利用多边形内角和公式和外角和定理,列出方程即可解决问题.解:根据题意,得:(n-2)×180=360×3,解得n=8.故选:D.【点睛】本题考查了多边形的内角和与外角和,解答本题的关键是根据多边形内角和公式和外角和定理,利用方程法求边数.二、填空题13.【分析】作A关于CD的对称点H由CD是△ABC的角平分线得到点H一定在BC上过H作HF⊥AC于F交CD于E连接AE则此时AE+EF的值最小AE+EF 的最小值=HF过A作AG⊥BC于G根据垂直平分线的解析:4【分析】作A关于CD的对称点H,由CD是△ABC的角平分线,得到点H一定在BC上,过H作HF⊥AC于F,交CD于E,连接AE,则此时,AE+EF的值最小,AE+EF的最小值=HF,过A作AG⊥BC于G,根据垂直平分线的性质和三角形的面积即可得到结论.【详解】作A关于CD的对称点H,∵CD是△ABC的角平分线,∴点H一定在BC上,过H作HF⊥AC于F,交CD于E,连接AE,则此时,AE+EF的值最小,AE+EF的最小值=HF,过A作AG⊥BC于G,∵△ABC的面积为12,BC长为6,∴AG=4,∵CD垂直平分AH,∴AC=CH,∴S△ACH=12AC•HF=12CH•AG,∴HF=AG=4,∴AE+EF的最小值是4,故答案是:4.【点睛】本题考查了轴对称−最短路线问题,解题的关键是正确的作出对称点和利用垂直平分线的性质证明AE +EF 的最小值为三角形某一边上的高线.14.见解析过点C 作CE ∥AB 且CE=1作点D 关于AB 的对称点F 连接EF 交AB 于一点为Q 在AB 上BQ 之间截取PQ=1连接CPDQ 则四边形PCDQ 为所求的周长最小的四边形【分析】(1)根据三角形周长公式计算解析:见解析,过点C 作CE ∥AB ,且CE=1,作点D 关于AB 的对称点F ,连接EF 交AB 于一点为Q ,在AB 上BQ 之间截取PQ=1,连接CP 、DQ ,则四边形PCDQ 为所求的周长最小的四边形【分析】(1)根据三角形周长公式计算;(2)过点C 作CE ∥AB ,且CE=1,作点D 关于AB 的对称点F ,连接EF 交AB 于一点为Q ,在AB 上BQ 之间截取PQ=1,连接CP 、DQ ,则四边形PCDQ 为所求的周长最小的四边形.【详解】(1)△ABC 的周长等于4312⨯=,故答案为:12;(2)如图:故答案为:过点C 作CE ∥AB ,且CE=1,作点D 关于AB 的对称点F ,连接EF 交AB 于一点为Q ,在AB 上BQ 之间截取PQ=1,连接CP 、DQ ,则四边形PCDQ 为所求的周长最小的四边形..【点睛】此题考查等边三角形的性质,三角形周长计算公式,轴对称的性质,综合掌握各知识点是解题的关键.15.【分析】根据三角形角平分线的交点到边的距离相等再利用三角形面积公式解答即可【详解】解:过作于于∵的平分线交于于∴∵∴四边形是正方形∴∵的面积即解得:∴∴在与中∴∴故答案为:【点睛】本题考查了角平分线 解析:2【分析】根据三角形角平分线的交点到边的距离相等,再利用三角形面积公式解答即可.【详解】解:过O 作OE AC ⊥于E ,OF BC ⊥于F ,∵A ∠、B ∠的平分线交于O ,OD AB ⊥于D ,∴OD OE OF ==.∵C 90∠=,∴四边形ECFO 是正方形,∴OE OF CE CF ===.∵ABC 的面积1111AC BC AB OD AC OE BC OF 2222=⋅=⋅+⋅+⋅, 即()1134OE 34522⨯⨯=⨯++, 解得:1OE =,∴CE OE 1==,∴AE AC CE 2=-=.在Rt AEO 与Rt ADO 中,AO AO OE OD =⎧⎨=⎩, ∴Rt AEO Rt ADO ≅,∴AD AE 2==.故答案为:2.【点睛】本题考查了角平分线的性质,全等三角形的判定和性质,正确作出辅助线是解题的关键. 16.OA =OB (答案不唯一)【分析】由AD ∥BC 可得∠A =∠B ∠C =∠D 然后根据全等三角形的判定方法添加条件即可【详解】解:添加的条件是OA =OB 理由如下:∵AD ∥BC ∴∠A =∠B ∠C =∠D 在△AOD 和解析:OA =OB (答案不唯一)【分析】由AD ∥BC 可得∠A =∠B ,∠C =∠D ,然后根据全等三角形的判定方法添加条件即可.【详解】解:添加的条件是OA =OB ,理由如下:∵AD ∥BC ,∴∠A =∠B ,∠C =∠D在△AOD 和△BOC 中A B AO BO AOD BOC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AOD ≌△BOC (ASA ).故答案为:OA =OB (答案不唯一).【点睛】本题主要考查了全等三角形的判定定理和平行线的性质,掌握全等三角形的判定定理的内容是解答本题的关键.17.8【分析】由题意可得进而证明结合已知条件证明故根据分别求出与的面积即可【详解】在和中故答案为:【点睛】本题主要考查全等三角形的判定与性质熟记全等三角形的判定定理是解题关键解析:8【分析】由题意可得90ADC CEA ∠=∠=︒,进而证明EAH HCD ∠=∠,结合已知条件证明BEC HEA ∆≅∆,故8EC EA == ,根据AHC AEC AEH S S S ∆∆∆=-分别求出AEH S ∆与AEC S ∆的面积即可.【详解】AD BC ⊥,CE AB ⊥,90ADC CEA ∴∠=∠=︒,AHE CHD ∠=∠,EAH CEH HCD ADC ∴∠+∠=∠+∠,EAH HCD ∴∠=∠,在BEC △和HEA △中,90BEC HEA HCD EAHEB EH ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ()BEC HEA AAS ∴≅,EC EA ∴=,8EA =,8EC ∴=,6EH =,11862422AEH S AE EH ∆∴=⨯⋅=⨯⨯=, 11883222AEC S AE EC ∆=⋅=⨯⨯=, 32248AHC AEC AEH S S S ∆∆∆∴=-=-=.故答案为:8.【点睛】本题主要考查全等三角形的判定与性质,熟记全等三角形的判定定理是解题关键.18.1800°【分析】根据n边形从一个顶点出发可引出(n-3)条对角线可得n-3=9求出n的值最后根据多边形内角和公式可得结论【详解】解:由题意得:n-3=9解得n=12则该n边形的内角和是:(12-2解析:1800°【分析】根据n边形从一个顶点出发可引出(n-3)条对角线,可得n-3=9,求出n的值,最后根据多边形内角和公式可得结论.【详解】解:由题意得:n-3=9,解得n=12,则该n边形的内角和是:(12-2)×180°=1800°,故答案为:1800°.【点睛】本题考查了多边形的对角线和多边形的内角和公式,掌握n边形从一个顶点出发可引出(n-3)条对角线是解题的关键.19.直角【分析】若三角形三个内角的度数之比为2:3:5利用三角形的内角和定理:三角形的内角和为180°可求出三个内角分别是36°54°90°则这个三角形一定是直角三角形【详解】解:设三角分别为2x3x5解析:直角【分析】若三角形三个内角的度数之比为2:3:5,利用三角形的内角和定理:三角形的内角和为180°,可求出三个内角分别是36°,54°,90°.则这个三角形一定是直角三角形.【详解】解:设三角分别为2x,3x,5x,依题意得2x+3x+5x=180°,解得x=18°.故三个角的度数分别为36°,54°,90°.故答案为:直角.【点睛】此题主要考查了三角形的内角和定理:三角形的内角和为180°,熟练掌握三角形内角和定理是解决本题的关键.20.7【分析】连接CDBEAF由三角形中线等分三角形的面积求得S△AEC=2S△DEFS△ABD=2S△DEFS△BFC=2S△DEF由S△ABC=S△AEC+S△ABD+S△BFC+S△DEF即可得出解析:7【分析】连接CD,BE,AF,由三角形中线等分三角形的面积,求得S△AEC=2S△DEF,S△ABD=2S△DEF,S△BFC=2S△DEF,由S△ABC=S△AEC+S△ABD+S△BFC+S△DEF即可得出结果.【详解】解:连接CD,BE,AF,如图所示:∵AE=ED,由三角形中线等分三角形的面积,可得S△AEF=S△DEF,同理S△AEF=S△AFC,∴S△AEC=2S△DEF;同理可得:S△ABD=2S△DEF,S△BFC=2S△DEF,∴△ABC=S△AEC+S△ABD+S△BFC+S△DEF=2S△DEF+2S△DEF+2S△DEF+S△DEF=7S△DEF=7cm2,故答案为:7.【点睛】本题是面积及等积变换综合题目,考查了三角形的面积及等积变换,解答关键是通过作辅助线,运用三角形中线等分三角形的面积得出结果.三、解答题21.(1)图见解析,A1(3,2),B1(4,1);(2)图见解析,E1(﹣2,﹣3),F1(0,﹣2);(3)见解析【分析】(1)利用点平移的坐标变换规律写出点A1,B1,C1的坐标,然后描点即可;(2)利用关于x轴对称的点的坐标特征写出点D1,E1,F1的坐标,然后描点即可;(3)直线C1F1和C1F1的垂直平分线都是△A1B1C1和△D1E1F1组成的图形的对称轴.【详解】解:(1)如图,△A1B1C1为所作,A1(3,2),B1(4,1);(2)如图,△D1E1F1为所作,E1(﹣2,﹣3),F1(0,﹣2);(3)如图,直线l和直线l′为所作.【点睛】本题考查了作图-轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了平移变换.22.(1)见解析;(2)不变,理由见解析.【分析】(1)根据AAS 证明ADE CEF ≌即可;(2)在AC 上截取CH AE =,连接FH ,根据等边△ABC 和等边△DEF 的性质证明△ADE HEF ≅∆可得FH CH =,得∠FCH HFC =∠,进一步可得∠30ECF =︒.【详解】解:(1)证明:∵△ABC 和△DEF 是等边三角形∴∠A=∠C=60°,∠DEF=60°,DE=EF∵∠DEF=60°,∴∠DEF+∠FEC=180°-60°=120°∵∠C=60°∴∠CFE+∠FEC=180°-60°=120°∴∠DEA EFC =∠在△ADE 和△CEF 中,A C DEA EFC DE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ADE CEF ≌;(2)在AC 上截取CH AE =,连接FH ,设,AE CH x ==等边△ABC 的边长为a∵22BD AE x ==∴2AD EH a x ==-∵△ABC 是等边三角形∴∠60A =︒∴∠120ADE DEA +∠=︒∵△DEF 是等边三角形∴∠60,DEF DE EF =︒=∴∠120AED FEC +∠=︒∴∠ADE FEC =∠∴△()ADE HEF SAS ≅∆∴∠60,FHE A FH AE x =∠=︒==∴FH CH =∴∠FCH HFC =∠∵∠60FCH HFC FHE +∠=∠=︒∴260FCH ∠=︒∴∠30FCH =︒即∠30ECF =︒【点睛】本题考查的是全等三角形的判定和性质,等边三角形的性质,掌握全等三角形的判定定理和性质定理、等边三角形的性质是解题的关键.23.(1)见解析;(2)EC 与O 相切,理由见解析,4π-【分析】(1)连接BE ,OF ,易得出BE 是圆的直径,根据全等三角形的判定证得△EAB ≌△EDC ,继而根据平行线的性质和切线的判定即可求证结论;(2)连接EF ,易求得四边形OFHE 的边长,再利用面积的和差即可求解.【详解】(1)连接BE ,OF∵四边形ABCD 是矩形, ∴90A D ∠=∠=︒,AB CD =, ∵90A ∠=︒, ∴BE 是O 的直径, ∵点E 是AD 中点, ∴EA EC =, ∴△EAB ≌△EDC , ∴EB EC =, ∴EBC ECB ∠=∠, ∵OB OF =, ∴ECB OFB ∠=∠, ∴ECB OFB ∠=∠, ∴//OF EC , ∴OFH FHC ∠=∠, ∵FH CE ⊥, ∴90FHC OFH ∠=∠=︒, 又∵OF 是O 的半径,∴直线FH 是O 的切线. (2)EC 与O 相切. 理由如下:连接EF ,由(1)知,BE 是O 直径, ∴90EFB EFC ∠=∠=︒, ∵点H 是CE 中点, ∴FH EH HC ==, ∵FH CE ⊥, ∴90FHC ∠=︒, ∴45ECF HFC ∠=∠=︒,∴90BEC ∠=︒,又∵OE 是O 的半径,∴直线EC 与圆O 相切.由上可知四边形ABFE 和四边形OFHE 都是正方形,∴1122AE AB AD ===⨯=∴4BE ==,∴2OE OF ==, ∴2290π224π360OFHE OEFS S S ⨯=-=-=-正方形扇形. 【点睛】本题考查直线与圆的位置关系,矩形的性质,全等三角形的判定和性质、切线的判定、勾股定理,解题的关键是综合运用所学知识.24.(1)证明见解析;(2)证明见解析;(3)不变,理由见解析.【分析】(1)先根据非负数的性质求出a 、b 的值,作AE ⊥OB 于点E ,由SAS 定理得出△AEO ≌△AEB ,根据全等三角形的性质即可得出结论;(2)先根据∠CAD=∠OAB ,得出∠OAC=∠BAD ,再由SAS 定理即可得出结论; (3)设∠AOB=∠ABO=α,由全等三角形的性质可得出∠ABD=∠AOB=α,故∠OBP=180°-∠ABO-∠ABD=180°-2α为定值,再由OB=2,∠POB=90°可知OP 的长度不变,故可得出结论.【详解】(1)证明:∵()2320a b a b +-+-=,∴30,20,a b a b +-=⎧⎨-=⎩解得2,1.a b =⎧⎨=⎩∴()1,3A ,()2,0B .作AE OB ⊥于点E ,∵()1,3A ,()2,0B ,∴1OE =,211BE =-=,在AEO ∆与AEB ∆中,∵,90,,AE AE AEO AEB OE BE =⎧⎪∠=∠=︒⎨⎪=⎩∴AEO AEB ∆∆≌,∴OA AB =.(2)证明:∵CAD OAB ∠=∠,∴CAD BAC OAB BAC ∠+=∠+∠∠,即OAC BAD ∠=∠.在AOC ∆与ABD ∆中,∵,,,OA AB OAC BAD AC AD =⎧⎪∠=∠⎨⎪=⎩∴AOC ABD ∆∆≌.(3)解:点P 在y 轴上的位置不发生改变.理由:设AOB α∠=.∵OA AB =,∴AOB ABO α∠=∠=.由(2)知,AOC ABD ∆∆≌,∴ABD AOB α∠=∠=.∵2OB =,1801802OBP ABO ABD α∠=︒-∠-∠=︒-为定值,90POB ∠=︒,易知POB ∆形状、大小确定,∴OP 长度不变,∴点P 在y 轴上的位置不发生改变.【点睛】本题考查了全等三角形的判定与性质,熟知全等三角形的判定定理是解题的关键. 25.(1)∠ABE=30°;(2)∠ABE=30°【分析】(1)假设CE 与AB 相交于点G ,由题意易得∠DCE=50°,则有∠CGA=∠BGE=130°,然后根据三角形内角和可求解;(2)假设CE 与AB 、BF 相交于点M 、N ,设∠ABF=x ,∠DCF=∠FCE=y ,则有∠EBF=2x ,∠ABE=3x ,∠DCE=2y ,根据题意可得∠AMC=180°-2y ,∠E=2y-3x ,2∠CFB-∠CEB=10°,进而根据三角形内角和及角的和差关系可求解.【详解】解:(1)假设CE 与AB 相交于点G ,如图所示:∵CF 平分∠DCE ,∠DCF=25°,∴∠DCE=50°,∵AB ∥DC ,∴∠DCE+∠AGC=180°,∴∠AGC=130°,∴∠EGB=∠AGC=130°,∵∠E=20°,∴∠ABE=30°;(2)假设CE 与AB 、BF 相交于点M 、N ,如图所示:设∠ABF=x ,∠DCF=y ,∵∠EBF=2∠ABF ,CF 平分∠DCE ,∴∠EBF=2x ,∠ABE=3x ,∠FCE=y ,∠DCE=2y ,∵AB ∥DC ,∴∠DCE+∠AMC=180°,∴∠EMB=∠AMC=180°-2y ,∵∠E+∠EMB+∠ABE=180°,∴∠E=2y-3x ,∵∠E+∠ENB+∠FBE=180°,∴∠ENB=180°+x-2y ,∵∠CFB+∠CNF+∠FCE=180°,∴∠CFB=y-x ,∵∠CFB 的2倍与∠CEB 的补角的和为190°,∴2∠CFB-∠CEB=10°,∴()()22310y x y x ---=︒,解得:10x =︒,∴∠ABE=30°.【点睛】本题主要考查平行线的性质及三角形内角和,熟练掌握平行线的性质及三角形内角和是解题的关键.26.7【分析】先根据外角与内角的比为2:5,求出每个外角度数,再依据外角和360°求边数n.【详解】解:因为多边形的每一个外角与内角之和为180°,所以每个外角度数为180°2 7⨯=(3607)°.又n边形每个内角度数相等,则每个外角度数也相等,根据多边形外角和360°,可得n=3603607÷=7.答:这个多边形的边数n是7.【点睛】本题主要考查多边形的内角和外角关系以及多边形外角和,运用外角计算边数是这一类题的通用方法.。
【鲁教版】八年级数学上期中模拟试题(含答案)
一、选择题1.下列命题中,假命题是( )A .两条直角边对应相等的两个直角三角形全等B .等腰三角形顶角平分线把它分成两个全等的三角形C .相等的两个角是对顶角D .有一个角是60的等腰三角形是等边三角形2.如图,ABC 中,45ABC ︒∠=,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F ,DH BC ⊥于H ,交BE 于G ,下列结论:①BD CD =;②AE BG =;③2CE BF =;④AD CF BD +=.其中正确的有( )A .4个B .3个C .2个D .1个3.等腰三角形的两边a ,b 满足7260a b -+-=,则它的周长是( )A .17B .13或17C .13D .19 4.如果等腰三角形两边长分别是8cm 和4cm ,那么它的周长( ) A .8cm B .20cm C .16cm 或20cm D .16cm5.如图,已知16AB AC +=,点O 为ABC ∠与ACB ∠的平分线的交点,且ODBC 于D .若4OD =,则四边形ABOC 的面积是( )A .36B .32C .30D .646.如图,AB 是线段CD 的垂直平分线,则图中全等三角形的对数有( )A .2对B .3对C .4对D .5对7.如图,BD 是四边形ABCD 的对角线, AD//BC ,AB AD <,分别过点A ,C 作AE BD ⊥,CF BD ⊥,垂足分别为点E ,F ,若BE DF =,则图中全等的三角形有( )A .1对B .2对C .3对D .4对8.下列说法正确的是 ( )A .一直角边对应相等的两个直角三角形全等B .斜边相等的两个直角三角形全等C .斜边相等的两个等腰直角三角形全等D .一边长相等的两个等腰直角三角形全等 9.如图,//AB CD ,40C ∠=︒,60A ∠=︒,则F ∠的度数为( )A .10°B .20°C .30°D .40° 10.以下列长度的各组线段为边,能组成三角形的是( )A .2cm ,3cm ,6cmB .3cm ,4cm ,8cmC .5cm ,6cm ,10cmD .5cm ,6cm ,11cm 11.如图,在ABC ∆中,80,BAC ∠=︒点D 在BC 边上,将ABD △沿AD 折叠,点B 恰好落在AC 边上的点'B 处,若'20B DC ∠=.则C ∠的度数为( )A.20B.25C.35D.4012.如图,王师傅用六根木条钉成一个六边形木框,要使它不变形,至少还要再钉上________根木条()A.2 B.3 C.4 D.5二、填空题13.如图,在等腰三角形ABC中,AB=AC,∠B=50°,D为BC的中点,点E在AB上,∠AED=70°,若点P是等腰三角形ABC的腰上的一点,则当DEP是以∠EDP为顶角的等腰三角形时,∠EDP的度数是_____.14.在△ABC中,按以下步骤作图:①分别以A,C为圆心,以大于12AC的同样长为半径画弧,两弧相交于两点M,N;②作直线MN交AB于点D,连结CD.请回答:若BC=DC,∠B=100°,则∠ACB的度数为____.15.如图,ABC的面积为215cm,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线AP,过点C作CD AP于点D,连接DB,则DAB的面积是______2cm.16.如图,在Rt△ABC中,∠C=90°,D、E分别为边BC、AB上的点,且AE=AC,DE⊥AB.若∠ADC=61°,则∠B的度数为_____.17.如图,△ABC 的外角∠MBC 和∠NCB 的平分线BP 、CP 相交于点P ,PE ⊥BC 于E 且PE =3cm ,若△ABC 的周长为14cm ,S △BPC =7.5,则△ABC 的面积为______cm 2.18.对于一个四边形的四个内角,下面四个结论中,①可以四个角都是锐角;②至少有两个角是锐角;③至少有一个角是钝角;④最多有三个角是钝角;所有正确结论的序号是______.19.如图,在△ABC 中,点O 是△ABC 内一点,且点O 到△ABC 三边的距离相等,若∠A =70°,则∠BOC =________.20.如图,AD 、AE 分别是ABC 的高和角平分线,且76B ∠=︒,36C ∠=︒,则DAE ∠的度数为_________.三、解答题21.如图,在ABC ∆中,AB AC =.(1)尺规作图:作边AB 的垂直平分线,交AB 于点D ,交AC 于点E ,连结BE ;(保留作图痕迹,不写作法)(2)若6AB =,4BC =,求BEC ∆的周长.22.如图,在ABC 中,90C ∠=︒.(1)用尺规作出BAC ∠的平分线,并标出它与边BC 的交点D (保留作图痕迹,不写作法);(2)若30B ∠=︒,1CD =,求BD 的长.23.如图,在ABC 中,按以下步骤作图:①以点B 为圆心,任意长为半径作弧,分别交BA ,BC 于点M ,N ;再以点N 为圆心,MN 长为半径作弧交前面的弧于点F ,作射线BF 交AC 的延长线于点E .②以点B 为圆心,BA 长为半径作弧交BE 于点D ,连接CD .请你观察图形,解答下列问题.(1)由尺规作图可证得BMN BFN ≌△△,依据是____________;(2)求证:ABC DBC △≌△;(3)若100BAC ∠=︒,50E ∠=︒,求∠ACB 的度数.24.如图,在Rt ABC △和Rt DEF △中,90C F ∠=∠=︒,点A 、E 、B 、D 在同一直线上,BC 、EF 交于点M ,AC DF =,AB DE =.求证:(1)CBA FED ∠=∠;(2)AM DM =.25.图①、图②、图③都是5×5的网格,每个小正方形的顶点称为格点,△ABC的顶点均在格点上,在图①、图②、图③给定网格中,仅用无刻度的直尺,按下列要求完成画图,并保留作图痕迹.(1)在图①中边AB上找到格点D,并连接CD,使CD将△ABC面积两等分;(2)在图②中△ABC的内部找到格点E,并连接BE、CE,使△BCE是△ABC面积的14.(3)在图③中△外部画一条直线l,使直线l上任意一点与B、C构成的三角形的面积是△ABC的18.26.观察探究及应用.(1)如图,观察图形并填空:一个四边形有_______条对角线;一个五边形有_______条对角线;一个六边形有_______条对角线;(2)分析探究:由凸n边形的一个顶点出发,可作_______条对角线,多边形有n个顶点,若允许重复计数,共可作_______条对角线;(3)结论:一个凸n边形有_______条对角线;(4)应用:一个凸十二边形有多少条对角线?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】利用全等三角形的判定和等腰三角形的性质判断A、B,根据对顶角的定义判断C,根据等边三角形的判定判断D.【详解】解:A.两条直角边对应相等的两个直角三角形,符合两三角形的判定定理“SAS”;故本选项是真命题;B.已知等腰三角形的两腰相等,且顶角的平分线即为底边上的高,则可根据为HL可以得出两个三角形全等,故本选项是真命题;C、相等的角不一定是对顶角,故错误,是假命题;D、有一个角为60°的等腰三角形是等边三角形,正确,是真命题;故选C.【点睛】本题考查了命题和定理,解题的关键是明确题意,可以判断题目中的命题的真假,对于假命题能举出反例或者说明理由.2.B解析:B【分析】根据∠ABC=45°,CD⊥AB可得出BD=CD,利用ASA判定Rt△DFB≌Rt△DAC,从而得出DF=AD,BF=AC.则CD=CF+AD,即AD+CF=BD;再利用ASA判定Rt△BEA≌Rt△BEC,得出CE=AE=12AC,又因为BF=AC所以CE=12AC=12BF,连接CG.因为△BCD是等腰直角三角形,即BD=CD.又因为DH⊥BC,那么DH垂直平分BC.即BG=CG.在Rt△CEG中,CG是斜边,CE是直角边,所以CE<CG.即AE<BG.【详解】解:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.故①正确;连接CG.∵△BCD是等腰直角三角形,∴BD=CD又DH⊥BC,∴DH垂直平分BC.∴BG=CG在Rt△CEG中,∵CG是斜边,CE是直角边,∴CE<CG.∵CE=AE,∴AE<BG.故②错误.在Rt△BEA和Rt△BEC中∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC.∴CE=AE=12AC.在Rt△DFB和Rt△DAC中,∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC.∴BF=AC,∴CE=12AC=12BF,∴2CE=BF;故③正确;由③可得△DFB≌△DAC.∴BF=AC;DF=AD.∵CD=CF+DF,∴AD+CF=BD;故④正确;故选:B.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA、HL.在复杂的图形中有45°的角,有垂直,往往要用到等腰直角三角形,要注意掌握并应用此点.3.A解析:A【分析】根据绝对值和二次根式的性质求出a ,b ,再根据等腰三角形的性质判断即可;【详解】∵70a -=,∴70260a b -=⎧⎨-=⎩, 解得73a b =⎧⎨=⎩, ∵a ,b 是等腰三角形的两边,∴当7a =为腰时,三边分别为7,7,3,符合三角形三边关系,此时三角形的周长77317++=;当3b =为腰时,三边为3,3,7,由于33+<7,故不符合三角形的三边关系; ∴三角形的周长为17.故答案选A .【点睛】本题主要考查了等腰三角形的性质、绝对值性质和二次根式的性质,准确计算是解题的关键.4.B解析:B【分析】解决本题要注意分为两种情况4cm 为底或8cm 为底,还要考虑到各种情况是否满足三角形的三边关系来进行解答.【详解】解:∵等腰三角形有两边分别分别是4cm 和8cm ,∴此题有两种情况:①4cm 为底边,那么8cm 就是腰,则等腰三角形的周长为4+8+8=20,②8底边,那么4cm 是腰,4+4=8,所以不能围成三角形应舍去.∴该等腰三角形的周长为20cm .故选:B .【点睛】本题考查了等腰三角形性质;解题时涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.5.B解析:B【分析】过O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA ,根据角平分线的性质求出OE =OD =OF =4,根据三角形的面积公式求出即可.【详解】解:过O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA ,∵点O 为∠ABC 与∠ACB 的平分线的交点,OD ⊥BC 于D ,OD =4,∴OE =OD =4,OF =OD =4,∵AB +AC =16,∴四边形ABOC 的面积S =S △ABO +S △ACO =1122AB OE AC OF ⨯+⨯ =114422AB AC ⨯+⨯ =42×(AB +AC ) =42×16 =32,故选:B .【点睛】本题考查了角平分线的性质和三角形的面积,能根据角平分线的性质得出OD =OE =OF =3是解此题的关键.6.B解析:B【分析】根据线段垂直平分线的性质得到,AC=AD ,BC=BD ,OC=OD ,然后根据”HL”可判断Rt △AOC ≌Rt △AOD ,Rt △BOC ≌Rt △BOD ;根据“SSS”可判断△ABC ≌△ABD .【详解】解:∵AB 是线段CD 的垂直平分线,∴AC=AD ,BC=BD ,OC=OD ,∴Rt △AOC ≌Rt △AOD (HL ),Rt △BOC ≌Rt △BOD (HL ),△ABC ≌△ABD (SSS ). 故选:B .【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”“HL”;全等三角形的对应边相等.也考查了线段垂直平分线的性质.7.C解析:C【分析】根据AD //BC 证得ADB CBD ∠=∠,由BE DF =得到BF=DE ,由此证明△ADE ≌△CBF ,得到AE=CF ,AD=CB ,由此证得△ABE ≌△CDF ,得到AB=CD ,由此利用SSS 证明△ABD ≌△CDB.【详解】解:∵AD //BC ,∴ADB CBD ∠=∠,BE DF =,BF DE ∴=,AE BD ⊥,CF BD ⊥,AED CFB ∠∠∴=90=,()ADE CBF ASA ∴≅,AE CF ∴=,AD CB =,∵∠AEB=∠CFD 90=,BE=DF ,()ABE CDF SAS ∴≅,AB CD ∴=,BD DB =,AB=CD ,AD CB =,()ABD CDB SSS ∴≅,则图中全等的三角形有:3对,故选:C .【点睛】此题考查三角形全等的判定定理:SSS 、SAS 、ASA 、AAS 、HL ,根据已知条件找到对应的边或角是解题的关键.8.C解析:C【分析】根据全等三角形的判定定理:SSS 、SAS 、ASA 、AAS 、HL 定理针对四个选项分别进行判断即可.【详解】A. 一直角边对应相等的两个直角三角形不一定全等,还要知道它的边或角才能证明,故此选项错误;B. 斜边相等的两个直角三角形不一定全等,还要知道它的边或角才能证明,故此选项错误;C. 斜边相等的两个等腰直角三角形全等,对应角相等,根据AAS 即可证明全等,故此选项正确;D. 一边长相等的两个等腰直角三角形不一定全等,必须说明是对应边相等,故此选项错误.故选:C .【点睛】本题考查了全等三角形的判定,掌握证明三角形全等的条件尤其是必须含有边这个条件是解题的关键.9.B解析:B【分析】利用平行线和三角形外角的性质即可求解.【详解】∵//AB CD ,∴60DEF A ∠=∠=︒.∵DEF C F ∠=∠+∠,∴604020F DEF C ∠=∠-∠=︒-︒=︒.故选:B .【点睛】本题考查平行线和三角形外角的性质,熟练利用其性质找到角的等量关系是解答本题的关键.10.C解析:C【分析】根据三角形三边关系解答.【详解】A 、∵2+3<6,∴以此三条线段不能组成三角形;B 、3+4<8,∴以此三条线段不能组成三角形;C 、∵5+6>10,∴以此三条线段能组成三角形;D 、∵5+6=11,∴以此三条线段不能组成三角形;故选:C .【点睛】此题考查三角形的三边关系:三角形两边的和大于第三边.11.D解析:D【分析】由折叠的性质可求得'B AB D ∠=∠,利用三角形内角和及外角的性质列方程求解.【详解】解:由题意可得'B AB D ∠=∠∵80,BAC ∠=︒∴∠B+∠C=100°又∵'='=20B AB D C B DC C ∠=∠+∠+∠∠,∴∠C+20°+∠C=100°解得:∠C=40°故选:D .【点睛】本题考查三角形内角和及外角的性质,找准角之间的等量关系列出方程正确计算是解题关键.12.B解析:B【分析】根据三角形的稳定性,要使它不变形,只需每一条边都分别在一个三角形之中即可【详解】解:要使六边形木框不变形,则需每一条边都分别在一个三角形之中,观察图形可得,至少还需要再钉上3根木条故选:B【点睛】本题考查了三角形的稳定性,观察图形如何使每一条边都分别在一个三角形之中是解决本题的关键二、填空题13.40°或100°或140°【分析】根据△DEP 是以∠EDP 为顶角的等腰三角形可知DP =DE 所以可以分两种情况考虑:①点P 在AB 上;②点P 在AC 上分别画出符合条件的图形根据等腰三角形的性质和全等三角形解析:40°或100°或140°【分析】根据△DEP 是以∠EDP 为顶角的等腰三角形,可知DP = DE ,所以可以分两种情况考虑: ①点P 在AB 上;②点P 在AC 上.分别画出符合条件的图形,根据等腰三角形的性质和全等三角形的判定和性质定理解答即可.【详解】解:∵AB =AC ,∠B =50°,∠AED =70°,∴∠EDB =20°,∵当△DEP 是以∠EDP 为顶角的等腰三角形,∴DP = DE ,①如图,当点P 在AB 上时,记为P 1,∵DE =DP 1,∴∠DP 1E =∠AED =70°,∴∠EDP 1=180°﹣70°﹣70°=40°,②如图,当点P 在AC 上时,有两个点P 2、 P 3符合条件,∵AB =AC ,D 为BC 的中点,∴∠BAD =∠CAD ,过D 作DG ⊥AB 于G ,DH ⊥AC 于H ,∴DG =DH ,在Rt △DEG 与Rt △DP 2H 中,2DE DP DG DH =⎧⎨=⎩, ∴Rt △DEG ≌Rt △DP 2H (HL ),∴∠AP 2D =∠AED =70°,∵∠BAC =180°﹣50°﹣50°=80°,∴∠EDP 2=140°,同理证得Rt △DEG ≌Rt △D P 3H (HL ),∴∠EDG =∠P 3DH ,∴∠EDP 3=∠GDH =100°,故答案为:40°或100°或140°.【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,分类讨论画出符合条件的图形是解题的关键.14.30°【分析】依据等腰三角形的性质即可得到∠BDC 的度数再根据线段垂直平分线的性质即可得出∠A 的度数进而得到∠ACB 的度数【详解】解:根据题意如图:∵BC=DC ∠ABC=100°∴∠BDC=∠CBD解析:30°【分析】依据等腰三角形的性质,即可得到∠BDC 的度数,再根据线段垂直平分线的性质,即可得出∠A 的度数,进而得到∠ACB 的度数.【详解】解:根据题意,如图:∵BC=DC ,∠ABC=100°,∴∠BDC=∠CBD=180°-100°=80°,根据题意得:MN 是AC 的垂直平分线,∴CD=AD ,∴∠ACD=∠A ,∴∠A=1(18080)502⨯︒-︒=︒, ∴∠ACB=∠CBD -∠A=80°-50°=30°.故答案为:30°.【点睛】此题主要考查了线段垂直平分线的性质以及等腰三角形的性质.解题时注意线段垂直平分线上任意一点,到线段两端点的距离相等.15.【分析】如图延长CD 交AB 于E 由题意得AP 平分∠CAB 证明△ADC ≌△ADE 得到CD=DE 由此得到推出即可得到答案【详解】如图延长CD 交AB 于E 由题意得AP 平分∠CAB ∴∠CAD=∠EAD ∵CD ⊥A 解析:152【分析】如图,延长CD 交AB 于E ,由题意得AP 平分∠CAB ,证明△ADC ≌△ADE ,得到CD=DE ,由此得到,ACD ADE BCD BED SS S S ==,推出ACD BCD ADE BED S S S S +=+,即可得到答案.【详解】如图,延长CD 交AB 于E ,由题意得AP 平分∠CAB ,∴∠CAD=∠EAD,∵CD ⊥AD ,∴∠ADC=∠ADE ,∵AD=AD ,∴△ADC ≌△ADE ,∴CD=DE ,∴,ACD ADE BCD BED S S S S ==,∴ACD BCD ADE BED SS S S +=+, ∴12ABD ADE BED ABC S S S S =+==152, 故答案为:152. .【点睛】此题考查三角形角平分线的作图方法,全等三角形的判定及性质,证出CD=DE 得到,ACD ADE BCD BED S S S S ==是解此题的关键.16.32°【分析】由HL 可证明△ADE ≌△ADC 得出∠ADE =∠ADC =61°再根据直角三角形两个锐角互余即可得出结论【详解】解:∵DE ⊥AB ∴∠AED =90°=∠DEB 在Rt △ADE 和Rt △ADC 中∴解析:32°【分析】由HL 可证明△ADE ≌△ADC ,得出∠ADE =∠ADC =61°,再根据直角三角形两个锐角互余即可得出结论.【详解】解:∵DE ⊥AB ,∴∠AED =90°=∠DEB ,在Rt △ADE 和Rt △ADC 中,AD AD AE AC =⎧⎨=⎩, ∴Rt △ADE ≌Rt △ADC (HL ),∴∠ADE =∠ADC =61°,∴∠BDE =180°﹣61°×2=58°,∴∠B =90°﹣58°=32°.故答案为:32°.【点睛】本题考查了全等三角形的判定及性质问题,解题的关键是能够熟练掌握全等三角形的判定及性质.17.6【分析】过点P 作PH ⊥AMPQ ⊥AN 连接AP 根据角平分线上的点到角两边的距离相等可得PH=PE=PQ 再根据三角形的面积求出BC 然后求出AC+AB 再根据S △ABC=S △ACP+S △ABP-S △BPC解析:6【分析】过点P作PH⊥AM,PQ⊥AN,连接AP,根据角平分线上的点到角两边的距离相等可得PH=PE=PQ,再根据三角形的面积求出BC,然后求出AC+AB,再根据S△ABC= S△ACP+ S△ABP-S△BPC即可得解.【详解】解:如图,过点P作PH⊥AM,PQ⊥AN,连接AP∵BP和CP为∠MBC和∠NCB角平分线∴PH=PE,PE=PQ∴PH=PE=PQ=3∵S△BPC=12×BC×PE=7.5∴BC=5∵S△ABC= S△ACP+ S△ABP-S△BPC=12×AC×PQ+12×AB×PH-7.5=12×3(AC+AB)-7.5∵AC+AB+BC=14,BC=5∴AC+AB=9∴S△ABC=12×3×9-7.5=6 cm2【点睛】本题考查了角平分线上点到角的两边距离相等的性质,三角形的面积,熟记性质是解题的关键,难点在于S△ABC的面积的表示.18.④【分析】四边形的内角和是根据四边形内角的性质选出正确选项【详解】解:①错误如果四个角都是锐角那么内角和就会小于;②错误可以是四个直角;③错误可以是四个直角;④正确故选:④【点睛】本题考查四边形内角解析:④【分析】四边形的内角和是360︒,根据四边形内角的性质选出正确选项.【详解】解:①错误,如果四个角都是锐角,那么内角和就会小于360︒;②错误,可以是四个直角;③错误,可以是四个直角;④正确.故选:④.【点睛】本题考查四边形内角的性质,解题的关键是掌握四边形内角的性质.19.125°【分析】求出O为△ABC的三条角平分线的交点求出∠OBC=∠ABC∠OCB=∠ACB根据三角形内角和定理求出∠ABC+∠ACB求出∠OBC+∠OCB再根据三角形内角和定理求出∠BOC的度数即解析:125°【分析】求出O为△ABC的三条角平分线的交点,求出∠OBC=12∠ABC,∠OCB=12∠ACB,根据三角形内角和定理求出∠ABC+∠ACB,求出∠OBC+∠OCB,再根据三角形内角和定理求出∠BOC的度数即可;【详解】∵在△ ABC中,点O是△ABC内的一点,且点O到△ ABC三边距离相等,∴ O为△ABC的三条角平分线的交点,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∵∠A=70°,∴∠ABC+∠ACB=180°-∠A=110°,∴∠OBC+∠OCB=55°,∴∠BOC=180°-∠OBC-∠OCB=125°,故答案为:125°.【点睛】本题考查了角平分线的有关计算,三角形内角和定理的应用,能正确掌握与角平分线有关的三角形内角和问题是解题的关键;20.20°【分析】根据高线的定义以及角平分线的定义分别得出∠BAD=14°∠CAD=54°进而得出∠DAE的度数进而得出答案【详解】∵ADAE分别是△ABC的高和角平分线且∠B=76°∠C=36°∴∠B解析:20°【分析】根据高线的定义以及角平分线的定义分别得出∠BAD=14°,∠CAD=54°,进而得出∠DAE的度数,进而得出答案.【详解】∵AD ,AE 分别是△ABC 的高和角平分线,且∠B=76°,∠C=36°,∴∠BAC=180763668︒-︒-︒=︒,∠BAD=9076︒-︒=14°,∠CAD=9036︒-︒=54°,∴∠BAE=12∠BAC=12×68°=34°, ∴∠DAE=34°-14°=20°.故答案为:20°.【点睛】 本题主要考查了高线以及角平分线的性质,得出∠BAD 和∠CAD 的度数是解题关键.三、解答题21.(1)见详解;(2)10.【分析】(1)分别以A 、B 两点为圆心,以大于12AB 长度为半径画弧,在AB 两边分别相交于两点,然后过这两点作直线即为AB 的垂直平分线;(2)由中垂线的性质得AE =BE ,根据△EBC 的周长=BE +CE +BC =AE +CE +BC =AC +BC ,进而可得答案.【详解】(1)如图所示:(2)∵6AB =,∴6AC AB ==,∵DE 是AB 的垂直平分线,∴AE=BE ,∴BEC ∆的周长=BC+CE+BE=BC+CE+AE=BC+AC=4+6=10.【点睛】本题考查了线段的垂直平分线的性质及等腰三角形的性质及基本作图,解题的关键是掌握垂直平分线上的点到线段两端点的距离相等.22.(1)见解析;(2)2【分析】(1)根据尺规作图的基本步骤进行画图,即可得到答案;(2)过点D 作DE AB ⊥,垂足为E ,由角平分线的性质定理,得到1DE CD ==,再由含30度直角三角形的性质,即可求出答案.【详解】(1)解:如图所示:(2)过点D 作DE AB ⊥,垂足为E . AD 为BAC ∠的平分线,90C AED ∠=∠=︒.1DE CD ∴==.在Rt BED △中,30B ∠=︒,22BD DE ∴==.【点睛】本题考查了尺规作图——作角平分线,角平分线的性质,以及含30度的直角三角形的性质,解题的关键是掌握所学的知识,正确的作出图形.23.(1)SSS ;(2)见解析;(3)65°.【分析】(1)根据同圆的半径相等,BM=BN=BF ,MN=FN ,符合了SSS ;(2)根据(1)知,∠ABC=∠DBC ,BC 是公共边,BA=BD ,符合SAS 原理;(3)△ABE 中,求出∠ABD=30°,从而求得∠ABC=15°,利用三角形外角和定理即可得到答案.【详解】(1)根据基本作图,得BM=BF ,BN=BN ,MN=NF ,符合SSS 原理,故应该填SSS ;(2)由(1)得ABC DBC ∠=∠.∵AB =DB ,BC =BC ,∴△ABC ≌△DBC (SAS );(3)∵∠BAC =100°,∠E =50°,∴∠ABE =30°,∵△MBN ≌△FBN ,∴∠ABC=∠DBC ,∴1152DBC ABE ∠=∠=︒, ∴∠ACB =∠DBC +∠E =15°+50°=65°.【点睛】本题主要考查了基本作图,解答时,清楚同圆半径相等,熟记三角形全等判定的基本原理是解题的关键.24.(1)见解析;(2)见解析【分析】(1)根据HL 定理可得Rt △ABC ≌ Rt △DEF ,从而得到∠CBA=∠FED ;(2)由(1)所得结论和已知条件可以证得△AEM ≌△DBM ,从而可得AM=DM .【详解】证明:(1)在Rt ABC △和Rt DEF △中,90C F ∠=∠=︒AC DF AB DE =⎧⎨=⎩∴()Rt Rt HL ABC DEF ≌△△∴CBA FED ∠=∠.(2)∵CBA FED ∠=∠∴ME MB =,且AEMDBM ∠=∠ 又∵AB DE =∴AB EB DE EB -=-即AE DB =在AEM △和DBM △中AE DB AEM DBM ME MB =⎧⎪∠=∠⎨⎪=⎩∴()AEM DBM SAS △≌△∴AM DM =.【点睛】本题考查三角形全等的判定和性质,熟练掌握三角形全等的判定定理HL 、SAS 及三角形全等的性质是解题关键.25.(1)见解析图;(2)见解析图;(3)见解析图【分析】(1)根据三角形中线的性质可知,当CD 为△ABC 在AB 边上的中线时,可将其面积平分,即找到AB 的中点,连接AE 即可;(2)可按照△BCE 与△ABC 都以BC 为底边进行分析,当都以BC 为底边时,△ABC 的高为4,从而使得△BCE 的高为1即可;(3)延续(2)的解题思路,都以BC 为底边,要使得构成的三角形的面积是△ABC 的1 8,则让构成的三角形的高为12即可,则在BC下方12个单位处作平行于BC的直线即为所求.【详解】如图所示:(1)D在格点上,也为AB的中点,故CD即为所求;(2)当点E在直线m上,且三角形内部时,均满足题意,如图△BCE,此时答案不唯一,符合要求即可;(3)如图,直线l即为所求.【点睛】本题主要考查作图-应用与设计作图,充分理解三角形中线的性质,以及灵活运用底相等时,面积之比等于高之比进行图形构造是解题关键.26.(1)2;5;9;(2)(n-3);n(n-3);(3)(3)2n n-;(4)54【分析】(1)根据图形数出对角线条数即可;(2)根据所画图形可推导出凸n边形从一个顶点出发可引出(n-3)条对角线,进而可得共可作n(n-3)条对角线;(3)由(2)可知,任意凸n边形的对角线有条(3)2n n-,即可解答;(4)把n=12代入(3)计算即可.【详解】解:(1)根据图形数出对角线条数,一个四边形有2条对角线,一个五边形有5条对角线,一个六边形有9对角线;故答案为:2;5;9;(2)∵从凸4边形的一个顶点出发,可作1条对角线,从凸5边形的一个顶点出发,可作2条对角线,从凸6边形的一个顶点出发,可作3条对角线,从凸7边形的一个顶点出发,可作4条对角线,…∴从凸n边形从一个顶点出发可引出(n-3)条对角线,若允许重复计数,共可作n(n-3)条对角线;故答案为:(n-3);n(n-3).(3)由(2)可知,任意凸n边形的对角线有条(3)2n n-,故答案为:(3)2n n-.(4)把n=12代入(3)2n n-计算得:1292⨯=54.故一个凸十二边形有54条对角线.【点睛】本题考查了多边形的对角线,解题关键是n边形从一个顶点出发的对角线有(n-3)条.。
【鲁教版】八年级数学上期中模拟试卷(附答案)
一、选择题1.如图,点O 是ABC 的ABC ∠,ACB ∠的平分线的交点,//OD AB 交BC 于点D ,//OE AC 交BC 于点E ,若ODE 的周长为9cm ,那么BC 的长为( )A .8cmB .9cmC .10cmD .11cm 2.在等腰ABC ∆中,80A ∠=︒,则B 的度数不可能是( )A .80︒B .60︒C .50︒D .20︒ 3.如图,已知点D 为ABC 内一点,CD 平分ACB ∠,BD CD ⊥,A ABD ∠=∠,若6AC =,4BC =,则BD 的长为( )A .2B .1.5C .1D .2.54.下列图案是轴对称图形的是有( )A .①②B .①③C .①④D .②③ 5.如图,点O 是△ABC 中∠BCA ,∠ABC 的平分线的交点,已知△ABC 的面积是12,周长是8,则点O 到边BC 的距离是( )A .1B .2C .3D .46.如图,已知AC ⊥BC ,DE ⊥AB ,AD 平分∠BAC ,下面结论错误的是( )A .BD +ED =BCB .∠B =2∠DAC C .AD 平分∠EDCD .ED +AC >AD 7.下列长度的三条线段可以组成三角形的是( ) A .1,2,4 B .5,6,11 C .3,3,3 D .4,8,12 8.如图,OB 平分∠MON ,A 为OB 的中点,AE ⊥ON ,EA=3,D 为OM 上的一个动点,C 是DA 延长线与BC 的交点,BC //OM ,则CD 的最小值是( )A .6B .8C .10D .129.下列说法正确的是 ( )A .一直角边对应相等的两个直角三角形全等B .斜边相等的两个直角三角形全等C .斜边相等的两个等腰直角三角形全等D .一边长相等的两个等腰直角三角形全等 10.已知三角形的两边长分别为1和4,则第三边长可能是( )A .3B .4C .5D .6 11.如图,在ABC ∆中,AD 是ABC ∆的角平分线,DE AC ⊥,若40,60B C ︒︒∠=∠=,则ADE ∠的度数为( )A .30︒B .40︒C .50︒D .60︒12.如图,,AD CE 分别是ABC 的中线与角平分线,若,40B ACB BAC ∠=∠∠=︒,则ACE ∠的度数是( )A .20︒B .35︒C .40︒D .70︒二、填空题13.如图,已知60AOB ︒∠=,点P 在边OA 上, 10OP =,点,M N 在边OB 上, PM PN =,若3,MN =则OM 的长是__________.14.如图,在等边三角形ABC 中,CM 平分ACB ∠交AB 于点M .(1)ACM ∠的大小=__________(度);(2)AMC ∠的大小=__________(度);(3)已知4AB =,点D 为射线CM 上一点,作∠DCE=60︒,()CE CD CD AB =≠,连接DE 交射线CB 于点F ,连接BD ,BE 当以B ,D ,M 为顶点的三角形与BEF 全等时,线段CF 的长为__________.15.如图,∠1=∠2,要使△ABC ≌△ADC ,还需添加条件:_____.(填写一个你认为正确的即可)16.如图,12∠=∠,要用“SAS ”判定ADC BDC ≌△△,则可加上条件__________.17.如图,ABC ∆中,90,6,8ACB AC cm BC cm ∠=︒==,点P 从点A 出发沿A C -路径向终点C 运动.点Q 从B 点出发沿B C A --路径向终点A 运动.点P 和Q 分别以每秒1cm 和3cm 的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,在某时刻,分别过P 和Q 作PE l ⊥于,E QF l ⊥于F .则点P 运动时间为_______________时,PEC ∆与QFC ∆全等.18.已知ABC 的三边长分别为a ,b ,c ,则a b c b c a c a b --+--+-+=______.19.如图,把ABC 折叠,点B 落在P 点位置,若12120∠+∠=︒,则B ∠=______.20.如图,已知∠A =47°,∠B =38°,∠C =25°,则∠BDC 的度数是______.三、解答题21.如图,在ABC ∆中,点D 是边BC 上一点,点E 在边AC 上,且,,BD CE BAD CDE =∠=∠ADE C ∠=∠.(1)如图1,求证:ADE ∆是等腰三角形,(2)如图2,若DE 平分ADC ∠,在不添加辅助线的情况下,请直接写出图中所有与CDE ∠相等的角(CDE ∠除外).22.在平面直角坐标系中,△ABC 的位置如图所示,已知点A 、B 的坐标为(-4,3)(3,0).(1)点C 关于x 对称的点的坐标( , );(2)在图中作出△ABC 关于y 轴的对称图形△A′B′C′;(3)△ABC 的面积为 .23.如图,在五边形ABCDE 中,AB DE =,AC AD =.(1)请你添加一个与角有关的条件,使得ABC DEA ≌,并说明理由;(2)在(1)的条件下,若65CAD ∠=︒,110B ∠=︒,求BAE ∠的度数. 24.已知在ABC 中,90ACB ∠=︒,AC BC =,直线l 绕点C 旋转,过点A 作AD l ⊥于D ,过点B 作BE l ⊥于E ,若6AD =,3BE =,画图并直接写出DE 的长.25.如图,∠ACD 是△ABC 的外角,BE 平分∠ABC ,CE 平分∠ACD ,且BE 、CE 交于点E ,∠ABC =∠ACE .(1)求证:AB//CE ;(2)猜想:若∠A =50°,求∠E 的度数.26.如图1,已知ACD ∠是ABC 的一个外角,我们容易证明ACD A B ∠=∠+∠,即三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?尝试探究:(1)如图2,DBC ∠与ECB ∠分别为ABC 的两个外角,则DBC ECB ∠+∠_______180A ∠+︒(横线上填“>”、“<”或“=”).初步应用:(2)如图3,在ABC 纸片中剪去CED ,得到四边形ABDE ,1135∠=︒,则2C ∠-∠=_______.(3)解决问题:如图4,在ABC 中,BP 、CP 分别平分外角DBC ∠、ECB ∠,P ∠与A ∠有何数量关系?请尝试证明.(4)如图5,在四边形ABCD 中,BP 、CP 分别平分外角EBC ∠、FCB ∠,请利用上面的结论直接写出P ∠与A ∠、D ∠的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由OB ,OC 分别是△ABC 的∠ABC 和∠ACB 的平分线和OD ∥AB 、OE ∥AC 可推出BD=OD ,OE=EC ,从而得出BC 的长等于△ODE 的周长即可.【详解】解:∵OD ∥AB ,OE ∥AC ,∴∠ABO=∠BOD ,∠ACO=∠EOC ,∵点O 是ABC 的ABC ∠,ACB ∠的平分线的交点,∴∠ABO=∠OBD ,∠ACO=∠OCE ;∴∠OBD =∠BOD ,∠EOC=∠OCE ;∴BD=OD ,CE=OE ;∴△ODE 的周长=OD+DE+OE=BD+DE+EC= BC∵ODE 的周长为9cm ,∴BC=9cm .故选:B .【点睛】 此题考查了平行线性质,角平分线定义以及等腰三角形的判定定理,熟练掌握相关知识是解题的关键,难度中等.2.B解析:B【分析】分∠A 是顶角和底角两种情况分类讨论求得∠B 的度数,即可得到答案.【详解】当∠A 是顶角时,则∠B=(180°-∠A)÷2=(180°-80°)÷2=50°,当∠B 是顶角时,则∠A 是底角,∴∠B=180°-80°-80°=20°,当∠C 是顶角时,则∠A 和∠B 都是底角,∴∠B=∠A=80°,综上所述:∠B 的度数为:50°或20°或80°.观察各选项可知∠B 不可能是60°.故选B .【点睛】本题主要考查等腰三角形的性质,掌握分类讨论思想方法,是解题的关键.3.C解析:C【分析】延长BD 与AC 交于点E ,由题意可推出BE=AE ,依据等角的余角相等,即可得等腰三角形BCE ,可推出BC=CE ,AE=BE=2BD ,根据AC=6,BC=4,即可推出BD 的长度.【详解】解:延长BD 与AC 交于点E ,∵∠A=∠ABD ,∴BE=AE ,∵BD ⊥CD ,∴BE ⊥CD ,∵CD平分∠ACB,∴∠BCD=∠ECD,∴∠EBC=∠BEC,∴△BEC为等腰三角形,∴BC=CE,∵BE⊥CD,∴2BD=BE,∵AC=6,BC=4,∴CE=4,∴AE=AC-EC=6-4=2,∴BE=2,∴BD=1.故选:C.【点睛】本题主要考查等腰三角形的判定与性质,比较简单,关键在于正确地作出辅助线,构建等腰三角形,通过等量代换,即可推出结论.4.C解析:C【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:①是轴对称图形,②不是轴对称图形,③不是轴对称图形,④是轴对称图形.故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.C解析:C【分析】过点O作OE⊥AB于E,OF⊥AC于F,连接OA,根据角平分线的性质得:OE=OF=OD然后根据△ABC的面积是12,周长是8,即可得出点O到边BC的距离.【详解】如图,过点O作OE⊥AB于E,OF⊥AC于F,连接OA.∵点O是∠ABC,∠ACB平分线的交点,∴OE=OD,OF=OD,即OE=OF=OD∴S△ABC=S△ABO+S△BCO+S△ACO=12AB·OE+12BC·OD+12AC·OF=12×OD×(AB+BC+AC)=12×OD×8=12OD=3故选:C【点睛】此题主要考查了角平分线的性质以及三角形面积求法,角的平分线上的点到角的两边的距离相等,正确表示出三角形面积是解题关键.6.B解析:B【分析】利用角平分线的性质定理判断A;利用直角三角形两锐角互余判断B;证明△AED≌△ACD,由此判断C;利用三角形三边关系得到AC+CD>AD,由此判断D.【详解】∵AC⊥BC,DE⊥AB,AD平分∠BAC,∴DE=DC,∠BAD=∠DAC,∵BD+DC=BC,∴BD+ED=BC,故A正确;∵∠C=90︒,∴∠B+∠BAC=90︒,∴∠B+2∠DAC=90︒,故B错误;∵DE⊥AB,∴∠AED=∠C=90︒,又∵∠BAD=∠DAC,DE=CD,∴△AED≌△ACD,∴∠ADE=∠ADC,∴AD平分∠EDC,故C正确;在△ACD中,AC+CD>AD,∴ED+AC>AD,故D正确;故选:B.【点睛】此题考查三角形的三边关系,角平分线的性质定理,全等三角形的判定及性质,直角三角形两锐角互余的性质,熟记各知识点并应用解决问题是解题的关键.7.C解析:C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:A 、1+2<4,不能构成三角形;B 、5+6=11,不能构成三角形;C 、3+3>3,能构成三角形;D 、8+4=12,不能构成三角形.故选:C .【点睛】本题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于最大的数.8.A解析:A【分析】根据两条平行线之间的距离可知当CD ⊥OM 时,CD 取最小值,先利用角平分线的性质得出AD =AE =3,利用全等三角形的判定和性质得出AC =AD =AE =3,进而解答即可.【详解】解:由题意得,当CD ⊥OM 时,CD 取最小值,∵OB 平分∠MON ,AE ⊥ON 于点E ,CD ⊥OM ,∴AD =AE =3,∵BC ∥OM ,∴∠DOA =∠B ,∵A 为OB 中点,∴AB =AO ,在△ADO 与△ABC 中B DOA AB AO BAC DAO ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADO ≌△ABC (SAS ),∴AC =AD =3,∴336CD AC AD =+=+=,故选A .【点睛】此题考查角平分线的性质、全等三角形的判定和性质、平行线之间的距离,关键是利用全等三角形的判定和性质得出AC=AD=AE=3.9.C解析:C【分析】根据全等三角形的判定定理:SSS、SAS、ASA、AAS、HL定理针对四个选项分别进行判断即可.【详解】A. 一直角边对应相等的两个直角三角形不一定全等,还要知道它的边或角才能证明,故此选项错误;B. 斜边相等的两个直角三角形不一定全等,还要知道它的边或角才能证明,故此选项错误;C. 斜边相等的两个等腰直角三角形全等,对应角相等,根据AAS即可证明全等,故此选项正确;D. 一边长相等的两个等腰直角三角形不一定全等,必须说明是对应边相等,故此选项错误.故选:C.【点睛】本题考查了全等三角形的判定,掌握证明三角形全等的条件尤其是必须含有边这个条件是解题的关键.10.B解析:B【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围.【详解】解:根据三角形的三边关系,设第三边的长为x,∵三角形两边的长分别是1和4,∴4-1<x<4+1,即3<x<5.故选:B.【点睛】此题考查了三角形的三边关系,关键是正确确定第三边的取值范围.11.C解析:C【分析】∆的角平分线求得∠DAC,最后利用根据三角形内角和180︒求出∠BAC,再由AD是ABC直角三角形的两个锐角互余求出∠ADE,问题得到解决.【详解】解:∵40,60B C ︒︒∠=∠=,∴BAC=180B-C=80∠︒-∠∠︒,∵AD 是ABC ∆的角平分线, ∴1DAC=BAC=402∠∠︒, ∵DE AC ⊥,∴90DAC=50ADE ∠=︒-∠︒,故选:C .【点睛】本题考查了三角形的内角和定理,三角形的角平分线定义,直角三角形的两个锐角互余,正确理解三角形中角之间的关系是解本题的关键.12.B解析:B【分析】由,40B ACB BAC ∠=∠∠=︒,再利用三角形的内角和定理求解ACB ∠,结合三角形的角平分线的定义,从而可得答案.【详解】解: ,B ACB ∠=∠40BAC ∠=︒,18040702B ACB ︒-︒∴∠=∠==︒, CE 是ABC 角平分线,1352ACE ACB ∴∠=∠=︒, 故选:.B【点睛】本题考查的是三角形的角平分线的定义,三角形的内角和定理,掌握以上知识是解题的关键.二、填空题13.5【分析】作PH ⊥MN 于H 如图根据等腰三角形的性质得MH=NH=MN=15在Rt △POH 中由∠POH=60°得到∠OPH=30°则根据在直角三角形中30°角所对的直角边等于斜边的一半可得OH=OP=解析:5【分析】作PH ⊥MN 于H ,如图,根据等腰三角形的性质得MH=NH=12MN=1.5,在Rt △POH 中由∠POH=60°得到∠OPH=30°,则根据在直角三角形中,30°角所对的直角边等于斜边的一半可得OH=12OP=5,然后计算OH-MH即可.【详解】作PH⊥MN于H,如图,∵PM=PN,∴MH=NH=12MN=1.5,在Rt△POH中,∵∠POH=60°,∴∠OPH=30°,∴OH=12OP=12×10=5,∴OM=OH-MH=5-1.5=3.5.故答案为:3.5.【点睛】本题考查了含30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.也考查了等腰三角形的性质.14.2或6或【分析】(1)根据等边三角形的性质及角平分线的性质求解;(2)根据等边三角形的三线合一的性质解答;(3)根据题意分两种情况:当点D在线段CM上时当点D在线段CM的延长线上时分别画出图形利用全解析:3090︒ 2或6或23【分析】(1)根据等边三角形的性质及角平分线的性质求解;(2)根据等边三角形的三线合一的性质解答;(3)根据题意分两种情况:当点D在线段CM上时,当点D在线段CM的延长线上时,分别画出图形,利用全等三角形的性质解答.【详解】(1)∵△ABC是等边三角形,∴∠ACB=60︒,∵CM平分ACB∠,∴∠ACM=12∠ACB=30,故答案为:30;∠,(2)∵△ABC是等边三角形,CM平分ACB∴CM⊥AB,∴∠AMC=90︒,故答案为:90︒;(3)∵∠DCE=60︒,CD=CE,∴△CDE是等边三角形,∴DE=CE=CD,∵∠BCM=∠ACM=30,∴∠BCE=30,∴CF平分∠DCE,∵CD=CE,∴CB垂直平分DE,①当点D在线段CM上时,当△BDM≌△BEF时,如图1,∴BF=BM=2,∴CF=CB-BF=4-2=2;当△BDM≌△EBF时,如图1,则EF=BM=2,∴CD=DE=4,,∵AB=4,CD<CM<4,∴此种情况不成立,舍去;②当点D在线段CM的延长线上时,当△BDM≌△BEF时,如图2,∴BF=BM=2,∴CF=BC+BF=4+2=6,;当△BDM≌△EBF时,如图3,则EF=BM=2,∴CE=2EF=4,∴2223CF CE EF=-=,故答案为: 2或6或23..此题考查等边三角形的性质,利用三线合一的性质进行证明,全等三角形的性质,熟记等边三角形的性质是解题的关键.15.AB=AD(答案不唯一)【分析】根据题目中条件和图形可以得到∠1=∠2AC=AC然后即可得到使得△ABC≌△ADC需要添加的条件本题得以解决【详解】由已知可得∠1=∠2AC=AC∴若添加条件AB=A解析:AB=AD(答案不唯一)【分析】根据题目中条件和图形,可以得到∠1=∠2,AC=AC,然后即可得到使得△ABC≌△ADC 需要添加的条件,本题得以解决.【详解】由已知可得,∠1=∠2,AC=AC,∴若添加条件AB=AD,则△ABC≌△ADC(SAS);若添加条件∠ACB=∠ACD,则△ABC≌△ADC(ASA);若添加条件∠ABC=∠ADC,则△ABC≌△ADC(AAS);故答案为:AB=AD(答案不唯一).【点睛】本题考查全等三角形的判定,解答本题的关键是明确题意,利用数形结合的思想解答.16.AD=BD【分析】要判定△BCD≌△ACD已知∠1=∠2CD是公共边具备了一边一角对应相等注意SAS的条件;两边及夹角对相等只能选AD=BD【详解】解:由图可知只能是AD=BD才能组成SAS故答案为解析:AD=BD【分析】要判定△BCD≌△ACD,已知∠1=∠2,CD是公共边,具备了一边一角对应相等,注意“SAS”的条件;两边及夹角对相等,只能选AD=BD.【详解】解:由图可知,只能是AD=BD,才能组成“SAS”,故答案为:AD=BD.【点睛】本题考查了全等的判定,掌握“SAS”的条件是两边及夹角对相等是解题的关键.17.或【分析】对点P和点Q是否重合进行分类讨论通过证明全等即可得到结果;【详解】如图1所示:与全等解得:;如图2所示:点与点重合与全等解得:;故答案为:或【点睛】本题主要考查了全等三角形的判定与性质准确解析:1或7 2【分析】对点P和点Q是否重合进行分类讨论,通过证明全等即可得到结果;如图1所示:PEC∆与QFC∆全等,PC QC,683∴-=-t t,解得:1t=;如图2所示:点P与点Q重合,PEC与QFC∆全等,638∴-=-t t,解得:72t=;故答案为:1或72.【点睛】本题主要考查了全等三角形的判定与性质,准确分析计算是解题的关键.18.【分析】三角形三边满足的条件是:两边和大于第三边两边的差小于第三边根据此条件来确定绝对值内的式子的正负从而化简计算即可【详解】解:∵△ABC的三边长分别是abc∴必须满足两边之和大于第三边两边的差小解析:3c b a+-【分析】三角形三边满足的条件是:两边和大于第三边,两边的差小于第三边,根据此条件来确定绝对值内的式子的正负,从而化简计算即可.【详解】解:∵△ABC的三边长分别是a、b、c,∴必须满足两边之和大于第三边,两边的差小于第三边,∴0,0,0a b c b c a c a b --<--<-+>, ∴a b c b c a c a b --+--+-+=()()()a b c b c a c a b ------+-+=++++a b c b c a c a b --+-+=3c b a +-故答案为:3c b a +-.【点睛】此题考查了三角形三边关系,此题的关键是先根据三角形三边的关系来判定绝对值内式子的正负.19.60°【分析】先根据折叠的性质得∠3=∠4∠5=∠6再利用平角的定义得∠3+∠4+∠1=180°∠5+∠6+∠2=180°根据等式的性质得到2∠4+∠1+2∠6=360°把∠1+∠2=120°代入得解析:60°【分析】先根据折叠的性质得∠3=∠4,∠5=∠6,再利用平角的定义得∠3+∠4+∠1=180°,∠5+∠6+∠2=180°,根据等式的性质得到2∠4+∠1+2∠6=360°,把∠1+∠2=120°代入得到∠4+∠6=120°,然后根据三角形内角和定理可计算出∠B 的度数.【详解】∵把△ABC 的∠B 折叠,点B 落在P 的位置,∴∠3=∠4,∠5=∠6,∵∠3+∠4+∠1=180°,∠5+∠6+∠2=180°,∴2∠4+∠1+∠2+2∠6=360°,而∠1+∠2=120°,∴∠4+∠6=120°,∵∠4+∠6+∠B =180°,∴∠B =180°−120°=60°.故答案为60°.【点睛】本题考查了三角形内角和定理,也考查了折叠的性质,“数形结合”是关键.20.110°【分析】连接AD 并延长根据三角殂的外角性质分别表示出∠3和∠4因为∠BDC 是∠3和∠4的和从而不难求得∠BDC 的度数【详解】解:连接AD并延长∵∠3=∠1+∠B ∠4=∠2+∠C ∴∠BDC=∠解析:110°【分析】连接AD ,并延长,根据三角殂的外角性质分别表示出∠3和∠4,因为∠BDC 是∠3和∠4的和,从而不难求得∠BDC 的度数.【详解】解:连接AD ,并延长.∵∠3=∠1+∠B ,∠4=∠2+∠C .∴∠BDC=∠3+∠4=(∠1+∠B )+(∠2+∠C )=∠B+∠BAC+∠C .∵∠A =47°,∠B =38°,∠C =25°.∴∠BDC=47°+38°+25°=110°,故答案为 :110°.【点睛】本题考查了三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.三、解答题21.(1)详见解析;(2)与CDE ∠相等的角有:∠B ,∠BAD ,∠ADE ,∠C【分析】(1)证明△ABD ≌△DCE ,推出AD=DE ,即可得到结论;(2)根据DE 平分∠ADC ,推出∠ADE=∠CDE=12∠ADC ,利用BAD CDE ∠=∠,∠ADC=∠B+∠BAD ,得到∠B=∠BAD=∠ADE=∠CDE ,再由ADE C ∠=∠,得到∠C=CDE ∠.【详解】(1)∵∠ADC=∠B+∠BAD ,∠BAD=∠CDE ,∴∠B=∠ADE ,∵∠ADE=∠C ,∴∠B=∠C ,在△ABD 和△DCE 中,BAD CDE B CBD CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABD ≌△DCE ,∴AD=DE ,∴ADE ∆是等腰三角形;(2)∵DE 平分∠ADC ,∴∠ADE=∠CDE=12∠ADC , ∵BAD CDE ∠=∠,∠ADC=∠B+∠BAD ,∴∠B=∠BAD=∠ADE=∠CDE ,∵ADE C ∠=∠,∴∠C=CDE ∠,∴与CDE ∠相等的角有:∠B ,∠BAD ,∠ADE ,∠C .【点睛】此题考查全等三角形的判定及性质,等腰三角形的判定定理,角平分线的性质,三角形外角性质,熟记三角形全等的判定定理是解题的关键.22.(1)-2,-5;(2)见解析;(3)10【分析】(1)根据轴对称的性质解答;(2)根据轴对称的性质作图;(3)利用割补法求解.【详解】(1)根据坐标系知点C 坐标为(-2,5),∴点C 关于x 对称的点的坐标(-2,-5),故答案为:-2,-5;(2)如图,△A′B′C′即为所求;(3)1117537225510222ABC S=⨯-⨯⨯-⨯⨯-⨯⨯=, 故答案为:10.【点睛】 此题考查关于坐标轴对称的性质:关于x 轴对称的点的横坐标相等,纵坐标互为相反数;关于y 轴对称的点的横坐标互为相反数,纵坐标相等.23.(1)添加一个角有关的条件为BAC EDA ∠=∠,使得ABC DEA ≌,理由见解析;(2)BAE ∠的度数为135︒.【分析】(1)根据已知条件,选择SAS 原理,可确定添加的角;(2)利用三角形全等,∠B 的度数,可求∠BAC+∠DAE ,问题可解.【详解】(1)添加一个角方面的条件为BAC EDA ∠=∠,使得ABC DEA ≌.在ABC 和DEA △中∵AB DE =,BAC EDA ∠=∠,AC DA =,∴()SAS ABC DEA ≌△△; (2)在(1)的条件下∵ABC DEA ≌,∴ACB DAE ∠=∠,若65CAD ∠=︒,110B ∠=︒,则18070ACB BAC B ∠+∠=︒-∠=︒,∴70DAE BAC ACB BAC ∠+∠=∠+∠=︒,∴7065135BAE DAE BAC CAD ∠=∠+∠+∠=︒+︒=︒,即BAE ∠的度数为135︒.【点睛】本题考查了三角形全等,熟练掌握全等三角形判定原理和性质是解题的关键.24.图见解析,9DE =或3DE =【分析】分直线l 不经过线段AB 和直线l 经过线段AB 两种情况画图,证明△ACD ≌△CBE 即可求出DE 的长.【详解】解:如图1∵AD l ⊥于D , BE l ⊥于E ,∴∠ADC=∠CEB=90°,∴∠DAC+∠DCA=90°,∵90ACB ∠=︒,∴∠BCE+∠DCA=90°,∴∠DAC=∠ECB在△ACD 和△CBE 中, ===ADC CEB DAC ECB AC CB ∠∠⎧⎪∠∠⎨⎪⎩,∴ △ACD ≌△CBE∴AD=CE=6,DC=EB=3,∴DE=DC+CE=9;如图2,∵AD l ⊥于D , BE l ⊥于E ,∴∠ADC=∠CEB=90°,∴∠DAC+∠DCA=90°,∵90ACB ∠=︒,∴∠BCE+∠DCA=90°,∴∠DAC=∠ECB在△ACD 和△CBE 中,===ADC CEB DAC ECB AC CB ∠∠⎧⎪∠∠⎨⎪⎩,∴ △ACD ≌△CBE∴AD=CE=6,DC=EB=3,∴DE=CE-CD=3;∴9DE =或3DE =.【点睛】本题考查了全等三角形的判定与性质,根据题意分类画图证明全等三角形是解题关键. 25.(1)见解析;(2)25°【分析】(1)根据角平分线的定义得到∠ECD=∠ACE ,得到∠ABC=∠ECD ,根据平行线的判定定理证明结论;(2)根据三角形的外角性质、角平分线的定义计算,得到答案.【详解】(1)证明:∵CE 平分∠ACD ,∴∠ECD =∠ACE ,∵∠ABC =∠ACE ,∴∠ABC =∠ECD ,∴AB ∥CE ;(2)∵∠ACD 是△ABC 的一个外角,∴∠ACD =∠ABC+∠A ,∵BE 平分∠ABC ,∴∠ABE =∠EBC ,∴∠E =∠ECD ﹣∠EBC =12∠ACD ﹣12∠ABC =12∠A =25°. 【点睛】本题考查的是三角形的外角性质及平行线的判定、角平分线的定义,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.26.(1)= (2) 45° (3)1902P A ∠=︒-∠;证明见解析 (4)1118022P A D ∠=︒-∠-∠ 【分析】(1)根据三角形外角的性质得:∠DBC =∠A +∠ACB ,∠ECB =∠A +∠ABC ,两式相加可得结论;(2)利用(1)的结论:∵∠2+∠1−∠C =180°,将∠1=135°代入可得结论; (3)根据角平分线的定义得:∠CBP =12∠DBC ,∠BCP =12∠ECB ,根据三角形内角和可得:∠P 的式子,代入(1)中得的结论:∠DBC +∠ECB =180°+∠A ,可得:∠P =90°−12∠A ; (4)根据平角的定义得:∠EBC =180°−∠1,∠FCB =180°−∠2,由角平分线得:∠3=12∠EBC =90°−12∠1,∠4=12∠FCB =90°−12∠2,相加可得:∠3+∠4=180°−12(∠1+∠2),再由四边形的内角和与三角形的内角和可得结论.【详解】(1)∠DBC +∠ECB−∠A =180°,理由是:∵∠DBC =∠A +∠ACB ,∠ECB =∠A +∠ABC ,∴∠DBC +∠ECB =2∠A +∠ACB +∠ABC =180°+∠A ,∴∠DBC +∠ECB =∠A +180°,故答案为:=;(2)∠2−∠C =45°.理由是:∵∠2+∠1−∠C =180°,∠1=135°,∴∠2−∠C +135°=180°,∴∠2−∠C =45°.故答案为:45°;(3)∠P=90°−12∠A,理由是:∵BP平分∠DBC,CP平分∠ECB,∴∠CBP=12∠DBC,∠BCP=12∠ECB,∵△BPC中,∠P=180°−∠CBP−∠BCP=180°−12(∠DBC+∠ECB),∵∠DBC+∠ECB=180°+∠A,∴∠P=180°−12(180°+∠A)=90°−12∠A;(4)∠P=180°−12(∠A+∠D).理由是:如图:∵∠EBC=180°−∠1,∠FCB=180°−∠2,∵BP平分∠EBC,CP平分∠FCB,∴∠3=∠EBC=90°−12∠1,∠4=12∠FCB=90°−12∠2,∴∠3+∠4=180°−12(∠1+∠2),∵四边形ABCD中,∠1+∠2=360°−(∠A+∠D),又∵△PBC中,∠P=180°−(∠3+∠4)=12(∠1+∠2),∴∠P=12×[360°−(∠A+∠D)]=180°−12(∠A+∠D).【点睛】本题是四边形和三角形的综合问题,考查了三角形和四边形的内角和定理、三角形外角的性质、角平分线的定义等知识,难度适中,熟练掌握三角形外角的性质是关键.。
鲁教版八年级数学上学期期中试卷及答案
鲁教版八年级数学上学期期中试卷及答案(时间:120分钟;满分:120分)一、选择题(每小题3分;共36分)1. 若;都是实数;且则的值为( )A.0B.C.2D.不能确定 2. 当=2时;下列分式有意义的是( )A .B .C .D .3. 小明骑自行车沿公路以km/h 的速度行走全程的一半;又以b km/h 的速度行走余下的一半路程;小刚骑自行车以km/h 的速度行走全程时间的一半;又以b km/h 的速度行走另一半时间(≠b );则谁走完全程所用的时间较少?( ) A .小明B .小刚C .时间相同D .无法确定4. 某商店销售一种玩具;每件售价92元;可获利15%;求这种玩具的成本价.设这种玩具的成本价为元;依题意列方程正确的是( ) A .=15%B .=15%C .92-=15%D .=92×15%5. 下列各组数中;成比例的是( ) A .-7;-5;14;5B .-6;-8;3;4 C .3;5;9;12D .2;3;6;126.“标准对数视力表”对我们来说并不陌生;如图是视力表的一部分;其中最上面较大的“E”与下面四个较小“E”中的哪一个是位似图形( )A.左上B.左下C.右上D.右下7. 如图;设M 、N 分别是直角梯形ABCD 两腰AD 、CB 的中点;DE ⊥AB 于点E ;将△ADE 沿DE 翻折;M 与N 恰好重合;则AE ∶BE 等于( )A .2∶1B .1∶2C .3∶2D .2∶38. 如果三角形的每条边都扩大为原来的5倍;那么三角形的每个角( )A .都扩大为原来的5倍B .都扩大为原来的10倍C .都扩大为原来的25倍D .都与原来的相等 9. 如图;等边三角形ABC 的边长为3;点P 为BC 边上一点;且BP =1;点D 为AC 边上一点;若∠APD =60°;则CD 的长为( )A. B. C. D.110. 如图;在平行四边形ABCD 中;E 为AB 的中点;F 为AD 上一点;EF 交AC 于G ;AF =2cm ;DF =4cm ;AG =3cm ;则AC 的长为( )第6题图第7题图第9题图A .9cmB .14cmC .15cmD .18cm11. 如图;在平行四边形ABCD 中(AB ≠BC );直线EF 经过其对角线的交点O ;且分别交AD 、BC 于点M 、N ;交BA 、DC 的延长线于点E 、F ;下列结论:①AO =BO ;②OE =OF ; ③△EAM ∽△EBN ;④△EAO ≌△CNO ;其中正确的是( ) A .①② B .②③ C .②④ D .③④12. 如图所示是小孔成像原理的示意图;根据图中所标注的尺寸;这支蜡烛在暗盒中所成的像CD 的长是( )A .16cm B .13cm C .12cm D .1cm 二、填空题(每小题3分;共24分)13. 已知=1;则分式的值为.14. 某市今年起调整居民用水价格;每立方米水费上涨20%;小方家去年12月份的水费是26元;而今年5月份的水费是50元.已知小方家今年5月份的用水量比去年12月份多8立方米;设去年居民用水价格为元/立方米;则所列方程为. 15.张明与李强共同清点一批图书;已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同;且李强平均每分钟比张明多清点10本;则张明平均每分钟清点图书本.16. 现有含盐20%的盐水50千克;在此盐水中再加入千克水后;盐水的浓度(用表示)是.17. 现有四个代数式;分别为2+1、35、、2π;从中取出两个代数式;则可以组成的分式是.(写出一种即可)18. 某车间加工120个零件后;采用了新工艺;工效是原来的1.5倍;这样加工120个零件就少用1小时;采用新工艺前每小时加工多少个零件?若设采用新工艺前每小时加工个零件;则根据题意可列方程为.19. 为了测量校园内一棵不可攀的树的高度;学校数学应用实践小组做了如下的探索:根据光的反射定律;利用一面镜子和皮尺;设计如图所示的测量方案:把镜子放在离树(AB )8.7m 的点E 处;然后观测者沿着直线BE 后退到点D ;这时恰好在镜子里看到树梢顶点A ;再用皮尺量得DE =2.7m ;观测者目高CD =1.6m ;则树高AB约是.(精确到0.1m ) 20. 如图(1);将一个正六边形各边延长;构成一个正六角星形AFBDCE ;它的面积为1;取△ABC 和△DEF 各边中点;连接成正六角星形A 1F 1B 1D 1C 1E 1;如图(2)中阴影部分;取△A 1B 1C 1和△D 1E 1F 1各边中点;连接成正六角星形A 2F 2B 2D 2C 2E 2;如图(3)中阴影部分;如此下去;则第11题图 第12题图第19题图正六角星形A n F n B n D n C n E n 的面积为.三、解答题(共60分)21.(6分)先化简;再求值:;其中满足2--1=0.22.(6分)已知a 、b 、c 为实数;且满足;求的值.23.(8分)已知:如图;是上一点;∥;;分别交于点;∠1=∠2;探索线段之间的关系;并说明理由.24.(8分)小明的数学作业中有一道题为:“如图;E 为平行四边形ABCD 的边BA 延长线上一点;连接EC ;交AD 于点F .若AE =2;EF =1.4;CF =3.5;DF =5;求平行四边形ABCD 的周长.”小明已经探索出△AEF ∽△DCF ;请你继续帮他完成本题.25.(8分)如图;方格纸中的每个小方格都是边长为1个单位长度的正方形;△ABC 的顶点都在格点上;建立平面直角坐标系. (1)点A 的坐标为;点C 的坐标为.(2)将△ABC 向左平移7个单位;请画出平移后的△A 1B 1C 1.若M 为△ABC 内的一点;其坐标为(;b );则平移后点M 的对应点M 1的坐标为.(3)以原点O 为位似中心;将△ABC 缩小;使变换后得到的△A 2B 2C 2与△ABC 对应边的比为1∶2.请在网格内画出△A 2B 2C 2;并写出点A 2的坐标:.26.(8分)甲、乙两辆汽车同时分别从A 、B 两城沿同一条高速公路匀速驶向C 城.已知A 、C 两城的距离为360km ;B 、C 两城的距离为320km ;甲车比乙车的速度快10km/h ;结果两辆第20题图第24题图第25题图第23题图车同时到达C 城.设乙车的速度为km/h.(1)根据题意填写下表:行驶的路程(km)(2)求甲、乙两车的速度.27.(8分)如图是小红设计的钻石形商标;△ABC是边长为2的等边三角形;四边形ACDE 是等腰梯形;AC∥ED;∠EAC=60°;AE=1.(1)证明:△ABE≌△CBD;(2)图中存在多对相似三角形;请你找出一对进行证明;并求出其相似比(不添加辅助线;不找全等的相似三角形);(3)小红发现AM=MN=NC;请证明此结论;(4)求线段BD的长.28.(8分)如图;D是△ABC的边BC的中点;过AD延长线上的点E作AD的垂线EF;E为垂足;EF与AB的延长线相交于点F;点O在AD上;AO=CO;BC∥EF.(1)证明:AB=AC;(2)证明:AO=BO=CO;(3)当AB=5;BC=6时;连接BE;若∠ABE=90°;求AE的长.第27题图第28题图期中检测题参考答案1.C 解析:要使原式有意义则;则;所以,所以,所以故选C.2.D 解析:A 、当=2时;-2=0;无意义; B 、当=2时;||-2=0;无意义;C 、当=2时;2-3+2=4-6+2=0;无意义;D 、当=2时;2-+2=4-2+2=(-1)2+3>0;有意义.故选D . 3.B 解析:设全程为1;小明所用时间是.设小刚走完全程所用时间是小时.根据题意;得+b =1;=.则小刚所用时间是.小明所用时间减去小刚所用时间得>0;即小明所用时间较多.故选B .4.A解析:设这种玩具的成本价为元;则=15%.故选A .5.B 解析:因为只有B 中;故选B .6.B 解析:根据位似变换的特点可知:最上面较大的“E”与左下角较小的“E”是位似图形.故选B .7.A 解析:连接MN ;设DE 与MN 交于点F ; ∵ M 、N 分别是AD 、CB 上的中点;∴ MN ∥AB . 又∵ M 是AD 的中点;∴ MF =AE .又∵ 翻折后M 、N 重合;∴ MF =NF .又∵ 梯形ABCD 是直角梯形;DE ⊥AB ;∴ FN =EB ;∴ AE ∶BE =2MF ∶NF =2∶1;故选A .8.D 解析:三角形的每条边都扩大为原来的5倍;则扩大后的三角形与原三角形相似;两个相似的三角形;对应角相等;所以三角形的每个角都与原来的相等;故选D.9.B 解析:∵ ∠APC =∠ABP +∠BAP =60°+∠BAP =∠APD +∠CPD =60°+∠CPD ;∴ ∠BAP =∠CPD .又∵ ∠ABP =∠PCD =60°;∴ △ABP ∽△PCD .∴;即.∴ CD =.故选B .10.C 解析:如图;延长CB 交FE 的延长线于点H .∵ 四边形ABCD 是平行四边形; ∴ BC =AD =AF +FD =6(cm);BC ∥AD . ∴ ∠EAF =∠EBH ;∠AFE =∠BHE .又AE =BE ;∴ △AFE ≌△BHE ;∴ BH =AF =2cm .第7题答图∵BC∥AD;∴;即;则CG=12 cm;则AC=AG+CG=15(cm).故选C.11.B 解析:①平行四边形中邻边垂直;则该平行四边形为矩形;则对角线相等;本题没体现此四边形为矩形;故本题中AC≠BD;即AO≠BO;故①错误;②∵AB∥CD;∴∠E=∠F.又∵∠EOA=∠FOC;AO=CO,∴△AOE≌△COF;∴OE=OF;故②正确;③∵AD∥BC;∴△EAM∽△EBN;故③正确;④∵△AOE≌△COF;且△FCO和△CNO不相似;故△EAO和△CNO不相似;故④错误.即②③正确.故选B.12.D 解析:过O作直线OE⊥AB;交CD于F;依题意AB∥CD,∴OF⊥CD,∴OE=12;OF=2.而AB∥CD可以得△AOB∽△COD.∵OE;OF分别是它们的高,∴;∴∴CD=1(cm).故选D.13.解析:当=1时;分子2-2-9=-10;分母22-4-13=-15;∴原分式=.14.=815.20 解析:设张明平均每分钟清点图书本;则李强平均每分钟清点图书(本;由题意列方程得;解得=20.经检验=20是方程的解.16.解析:因为含的盐有20%×50=10千克.加入千克水后;盐水有(50+)千克.浓度.17.解析:可以组成的分式是:;等;答案不唯一,应注意为常数.18.19.5.2 m解析:由题意知∠CED=∠AEB;∠CDE=∠ABE=90°;∴△CED∽△AEB;∴;∴;∴AB≈5.2 m.20.解析:∵A1、F1、B1、D1、C1、E1分别是△ABC和△DEF各边中点;∴正六角星形AFBDCE∽正六角星形A1F1B1D1C1E1;且相似比为2∶1.∵正六角星形AFBDCE的面积为1;∴正六角星形A1F1B1D1C1E1的面积为.同理可得;正六角星形A2F2B2D2C2E2的面积为;正六角星形A3F3B3D3C3E3的面积为;…;正六角星形A n F n B n D n C n E n 的面积为. 21.解:原式=×=×=.∵2--1=0;∴2=+1; 将2=+1代入化简后的式子得:==1.22.解:由题设有()()()⎪⎩⎪⎨⎧=-+-+-≠--,0432,023222c b a c b 可解得a =2;3-=b ;c = -2.∴c b b a -+-11=321321-++=3232++-=4. 23.解:. 理由:∵∥∴ ∠∠;又∴.又∵∴ △∽△;∴即.24.分析:根据相似三角形的对应边的比相等求得CD 、AF 的长;即可求得平行四边形的一组邻边;从而求其周长. 解:∵ △AEF ∽△DCF ; ∴;即.∴ DC =5;AF =2. ∴ AD =AF +DF =2+5=7.∴ 平行四边形的周长=2(AD +DC )=2×(5+7)=24. 25.分析:(1)直接根据图形即可写出点A 和C 的坐标;(2)找出三角形平移后各顶点的对应点;然后顺次连接即可;根据平移的规律即可写出点M 平移后的坐标;(3)根据位似变换的要求;找出变换后的对应点;然后顺次连接各点即可;注意有两种情况. 解:(1)A 点的坐标为(2;8);C 点的坐标为(6;6);(2)所画图形如图所示;其中△A 1B 1C 1即为所求;根据平移规律:向左平移7个单位;可知M 1的坐标为(-7;b );(3)所画图形如图所示;其中△A 2B 2C 2即为所求;点A 2的坐标为(1;4)或(-1;-4).第25题答图26.分析:(1)设乙车的速度是km/h;那么甲车的速度是(+10)km/h;根据时间=可求甲、乙两辆汽车所需时间;(2)路程知道;且同时到达;可以以时间作为等量关系列方程求解.解:(1)由题意可求出甲的速度是(+10)km/h;甲车所需时间是;乙车所需时间是.(2)依题意得:=;解得=80.经检验:=80是原方程的解;+10=90.答:甲车的速度是90千米/时;乙车的速度是80千米/时.27.(1)证明:∵△ABC是等边三角形;∴AB=BC;∠BAC=∠BCA=60°.∵四边形ACDE是等腰梯形;∠EAC=60°;∴AE=CD;∠ACD=∠CAE=60°;∴∠BAC+∠CAE=120°=∠BCA+∠ACD;即∠BAE=∠BCD.在△ABE和△CBD中;AB=BC;∠BAE=∠BCD;AE=CD;∴△ABE≌△CBD.(2)解:如△ABN∽△CDN.(答案不唯一)证明如下:∵∠BAN=60°=∠DCN;∠ANB=∠DNC;∴△ANB∽△CND.∵AB=2;DC=AE=1;∴AB∶DC= 2∶1=2.∴△ANB与△CND的相似比为2.(3)证明:由(2)得AN∶CN= AB∶CD=2;∴CN= AN= AC;同理AM= AC;∴AM=MN=NC.(4)解:作DF⊥BC交BC的延长线于F;∵∠BCD=120°;∴∠DCF=60°.在Rt△CDF中;∵∠DCF=60°;∴∠CDF=30°;∴CF= CD= ;∴DF= ==.在Rt△BDF中;∵BF=BC+CF=2+ = ;DF=;∴BD= =.28.分析:(1)由BC∥EF;AD⊥EF;可证得AD⊥BC;又由D是△ABC的边BC的中点;即可得AD是线段BC的垂直平分线;则可证得AB=AC;(2)由AD是线段BC的垂直平分线;可证得OB=OC;又由AO=CO;则可得AO=BO=CO;(3)首先求得AD的长;又由△ABE∽△ADB;根据相似三角形的对应边成比例;即可求得AE的长.(1)证明:∵D是△ABC的边BC的中点;∴BD=CD.∵BC∥EF;AD⊥EF;∴AD⊥BC;∴AB=AC.(2)证明:∵BD=CD;AD⊥BC;∴BO=CO.∵AO=CO;∴AO=BO=CO.(3)解:∵AB=5;BC=6;AD⊥BC;BD=CD;∴BD=BC=3.∴在Rt△ABD中;AD=4.∵∠ABE=∠ADB=90°;∠BAE=∠DAB;∴△ABE∽△ADB;∴;即;∴AE=.。
鲁教版初三(八年级)上册数学期中考试题
初三数学试题一.选择题(本大题共12小题,每题3分,共36分,把正确答案的字母代号写在 答题栏的对应位置)y1•对于X + 11 > a1x 6 x y 其中分式有 2a 162xA.1个B. 2 个C.3个D.4个2x 2.使分式1 有意义的 x 的范围是2x -11111A. xB. x -------C. xD. X —22221 2x 13.解分式方程—3,去分母后所得的方程是3x xA 、1 3(2x1) 3B 、1 3(2x1) 3xC 、 1 3(2x 1) 9xD 、1 6x 39x4•“十一”黄金周,几名同学乘坐一辆客车前去“方特欢乐世界”游玩,客车的租价为6.无论m 取何值时,分式都有意义的是(D.27.若分式中,a 和b 都扩大n 倍,则分式的值是()a bA.扩大n 倍B.扩大2n 倍 C 扩大n 2倍D.不变8.在实数范围内规定 A. 1B. -11 1 2a 探b -―,若x 探x 2 ―,则x 为( a b x 初三数学试题第2页(共8页) D. 31803元车费,若设参加游览的A . 180 1803B . 180 180x x 2x 2 xC . 180 1803D .180 180x x 2x 2 x5. 下列各式是分式的是( )A. 2x 1B. x yC . 3x1D.B.x 人,则所列方程为 33 32元,出发时,又增加了两名同学,结果每个同学比原来少分摊了 学生共有 x y9.若分式 2~~2 ~~2y 3y 丄,则分式24y 2A.-4 C. £ D. 4(本大题共6小题,每题3分,共18分, 二.填空题 后结果填在题中横线上.) 不需写出解答过程,请把最a b b LZ ,则 x y z 5 z10. 若-3,则 b 5 11. 已知x y 2 4512 .把-的分子和分母都加上同一个数,使分数变为 9 1 -,则加上的这个数是 3 O13.对于分式 —^,当x 2时,无意义,当x x a三.解答题(本大题共8小题,满分66分) 4时,值为0,则a b 19.计算下列各题 5 ⑴6ab 2 3ac 3 4abc(2) 3x x 2 X 2 420.解分式方程 1 (1) x 2 21.先化简再求值 (1) 1x 32x— ,其中x 4 x 9m 2 9 m 3 匚2 x11:x 33 x1 2x2 1X 1X 2 11224.(共12 分)现有甲、乙两块小麦试验田,甲的面积是边长为 a 米的正方形减去一个边长为 1 米的正方形蓄水池后余下的部分;乙的面积是边长为a 1 米的正方形,两块试验田的小麦都收获了m 千克。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学试题
一.选择题(本大题共12小题,每题3分,共36分,把正确答案的字母代号写在答题栏的对应位置)
1.对于x +2y ,112+a ,6a ,26+x , x
y x +其中分式有 A.1个 B. 2个 C.3个 D.4个
2.使分式
1
-x 21x 2+ 有意义的x 的范围是 A. 21 x ≠ B. 21-x ≠ C. 21x = D. 21-x = 3.解分式方程3x
1x 2-x 31=+,去分母后所得的方程是 A 、13(21)3x -+= B 、 13(21)3x x -+=
C 、 13(21)9x x -+=
D 、1639x x -+=
4.“十一”黄金周,几名同学乘坐一辆客车前去“方特欢乐世界”游玩,客车的租价为180元,出发时,又增加了两名同学,结果每个同学比原来少分摊了3元车费,若设参加游览的学生共有x 人,则所列方程为
A .
18018032x x -=+ B .18018032x x
-=+ C .18018032x x -=- D .18018032x x -=- 5.下列各式是分式的是( ) A.213x - B. x y x y -+ C. 312x - D. x y π
- 6.无论m 取何值时,分式都有意义的是( )
A. ()21
1m + B. 11m - C. 22m m + D. 24
m m - 7.若分式2
a a b
+中,a b n 和都扩大倍,则分式的值是( ) A.扩大n 倍 B.扩大2n 倍 C.扩大2n 倍 D.不变
8.在实数范围内规定a ※11,b x a b =
-若※()22,x x x
+=则为( ) A. 1 B. -1 C. 2 D. 3 初三数学试题第1页(共8页)
9.若分式
22211,23724614y y y y =++++则分式的值为( ) A. 14 B. 18 C. 116
D. 4 二.填空题(本大题共6小题,每题3分,共18分,不需写出解答过程,请把最后结果填在题中横线上.) 10.=+=b
b a 53b a ,则若 . 11.已知=++==z
z y x 5z 4y 2x ,则 . 12.把59的分子和分母都加上同一个数,使分数变为13
,则加上的这个数是___________________。
13.对于分式,2x b x x a
-=-+当时,无意义,当4x =时,值为0,则________a b +=。
三.解答题(本大题共8小题,满分66分)
19.计算下列各题
(1)abc
43ac 32ab 65+- (2)3m 29m 122++- 322x x x x ⎛⎫- ⎪-+⎝⎭•24x x - 解方程:21133x x x -+=-- 20.解分式方程
(1)2x 1x 32x 1--=+- (2)1
x x 21x 12-=- 21.先化简再求值 (1) 4x 9x x 23x 3x 12=-÷⎪⎭⎫ ⎝⎛
+-+
,其中 24.(共12分)
现有甲、乙两块小麦试验田,甲的面积是边长为a 米的正方形减去一个边长为1米的正方形蓄水池后余下的部分;乙的面积是边长为()1a -米的正方形,两块试验田的小麦都收获了m 千克。
(1)哪种小麦的单位面积产量高?
(2)高的单位面积产量是低的单位面积产量的多少倍?
25.
某工厂准备加工800个零件,在加工了100个零件后,采取了新技术,使每天的工作效率是原来的2倍,结果共用9天完成了任务,求该厂原来每天加工多少个零件?。