时间序列计量经济学

合集下载

《计量经济学》3.3时间序列分析

《计量经济学》3.3时间序列分析

3.3时间序列分析3.3.1时间序列概述1.基本概念(1)一般概念:系统中某一变量的观测值按时间顺序(时间间隔相同)排列成一个数值序列,展示研究对象在一定时期内的变动过程,从中寻找和分析事物的变化特征、发展趋势和规律。

它是系统中某一变量受其它各种因素影响的总结果。

(2)研究实质:通过处理预测目标本身的时间序列数据,获得事物随时间过程的演变特性与规律,进而预测事物的未来发展。

它不研究事物之间相互依存的因果关系。

(3)假设基础:惯性原则。

即在一定条件下,被预测事物的过去变化趋势会延续到未来。

暗示着历史数据存在着某些信息,利用它们可以解释与预测时间序列的现在和未来。

近大远小原理(时间越近的数据影响力越大)和无季节性、无趋势性、线性、常数方差等。

(4)研究意义:许多经济、金融、商业等方面的数据都是时间序列数据。

时间序列的预测和评估技术相对完善,其预测情景相对明确。

尤其关注预测目标可用数据的数量和质量,即时间序列的长度和预测的频率。

2.变动特点(1)趋势性:某个变量随着时间进展或自变量变化,呈现一种比较缓慢而长期的持续上升、下降、停留的同性质变动趋向,但变动幅度可能不等。

(2)周期性:某因素由于外部影响随着自然季节的交替出现高峰与低谷的规律。

(3)随机性:个别为随机变动,整体呈统计规律。

(4)综合性:实际变化情况一般是几种变动的叠加或组合。

预测时一般设法过滤除去不规则变动,突出反映趋势性和周期性变动。

3.特征识别认识时间序列所具有的变动特征,以便在系统预测时选择采用不同的方法。

(1)随机性:均匀分布、无规则分布,可能符合某统计分布。

(用因变量的散点图和直方图及其包含的正态分布检验随机性,大多数服从正态分布。

)(2)平稳性:样本序列的自相关函数在某一固定水平线附近摆动,即方差和数学期望稳定为常数。

样本序列的自相关函数只是时间间隔的函数,与时间起点无关。

其具有对称性,能反映平稳序列的周期性变化。

特征识别利用自相关函数ACF:ρk =γk/γ其中γk是y t的k阶自协方差,且ρ0=1、-1<ρk<1。

计量经济学:时间序列模型习题与解析

计量经济学:时间序列模型习题与解析

计量经济学:时间序列模型习题与解析第九章时间序列计量经济学模型的理论与⽅法练习题1、请描述平稳时间序列的条件。

2、单整变量的单位根检验为什么从DF检验发展到ADF检验?23、设X t cost si n t,0 t 1,其中,是相互独⽴的正态分布N(0, )随机变量,是实数。

试证:{x t,0 t 1}为平稳过程。

LB5、利⽤4中数据,⽤ADF法对居民消费总额时间序列进⾏平稳性检验。

6、利⽤4中数据,对居民消费总额时间序列进⾏单整性分析。

7、根据6中的结论,对居民消费总额的差分平稳时间序列进⾏模型识别。

8、⽤Yule Walker法和最⼩⼆乘法对7中的居民消费总额的差分平稳时间序列进⾏时间序列模型估计,并⽐较估计结果。

9、有如下AR(2)随机过程:X t 0.1X t1 0.06X t 2 t该过程是否是平稳过程?10、求MA(3)模型y t 1 u t 0.8u t 1 0.5u t 2 0.3u t 3的⾃协⽅差和⾃相关函数。

11、设动态数据x10.8,x20.7, x3 0.9, x4 0.74, x5 0.82,x6 0.92, x7 0.78,X8 0.86, X9 0.72, X10 0.84,求样本均值x,样本⽅差?。

,样本⾃协⽅差?、?2和样本⾃相关函数?1、?2。

12、判断如下ARMA过程是否是平稳过程:x t 0.7x t 1 0.1x t 2 t 0.14 t 113、以Q t表⽰粮⾷产量,A t表⽰播种⾯积,C t表⽰化肥施⽤量,经检验,他们取对数后都是I (1)变量且相互之间存在CI( 1,1)关系。

同时经过检验并剔除了不显著的变量(包括滞后变量),得到如下粮⾷⽣产模型:In Q o In Q [ 21n A t 31n C t 4In C t 1 t推导误差修正模型的表达式,并指出误差修正模型中每个待估参数的经济意义。

14、固定资产存量模型K t 0 1K t 1 2I t 3I t 1 t中,经检验,K t ~ I (2), 11 ~ I (1),试写出由该ADL模型导出的误差修正模型的表达式。

经济学计量方法回归分析与时间序列

经济学计量方法回归分析与时间序列

经济学计量方法回归分析与时间序列计量经济学是运用数理统计学方法研究经济现象的一门学科。

在计量经济学中,回归分析和时间序列分析是两种常用的方法。

回归分析用于研究变量之间的关系,而时间序列分析则主要用于分析时间上的变动和趋势。

本文将介绍经济学计量方法中的回归分析与时间序列分析,并说明它们的应用和意义。

一、回归分析回归分析是研究因变量与自变量之间函数关系的一种方法。

在经济学中,回归分析常常用于分析经济变量之间的关系。

回归分析的基本模型可以表示为:Y = β0 + β1X1 + β2X2 + ... + βkXk + ε其中,Y表示因变量,X1、X2、...、Xk表示自变量,ε表示误差项。

β0、β1、β2、...、βk分别表示回归方程的截距和斜率系数。

回归分析中的关键问题是如何确定回归方程的系数。

常用的方法包括最小二乘估计法和最大似然估计法。

最小二乘估计法是指通过最小化残差平方和来确定回归方程的系数。

最大似然估计法则是通过找到最大化似然函数的方法来确定回归方程的系数。

回归分析的应用非常广泛。

它可以用于预测变量的取值,评估政策的效果,解释变量之间的关系等。

例如,在经济学中,回归分析常用于研究收入与教育程度之间的关系、通胀与利率之间的关系等。

二、时间序列分析时间序列分析是研究时间上的变动和趋势的一种方法。

在经济学中,时间序列分析常用于分析经济变量随时间变化的规律。

时间序列数据是按照时间顺序排列的一组数据,例如某个经济变量在不同时间点的取值。

时间序列分析的基本模型可以表示为:Yt = μ + αt + β1Yt-1 + β2Yt-2 + ... + βkYt-k + εt其中,Yt表示时间t的观测值,μ表示整体的平均水平,αt表示时间t的随机波动,Yt-1、Yt-2、...、Yt-k表示时间t之前的观测值,β1、β2、...、βk表示滞后系数,εt表示误差项。

时间序列分析中的关键问题是如何确定滞后阶数和滞后系数。

初计量经济学之时间序列分析

初计量经济学之时间序列分析

初计量经济学之时间序列分析1. 引言时间序列分析是计量经济学中的一个重要领域,研究的是时间序列数据的性质、模式和预测方法。

时间序列数据是按照时间顺序排列的一系列观测值,包括经济指标、股票价格、气象数据等。

时间序列分析可以帮助我们理解和预测经济现象的发展趋势,为政府和企业决策提供科学依据。

本文将介绍时间序列分析的基本概念、方法和应用。

首先,我们将介绍时间序列分析的基本步骤和基本假设。

然后,我们将介绍时间序列模型的常用类型,包括自回归模型(AR)、滑动平均模型(MA)和自回归滑动平均模型(ARMA)。

最后,我们将介绍时间序列的应用领域,包括经济预测、金融风险管理和气象预测。

2. 时间序列分析的基本步骤时间序列分析的基本步骤包括数据的收集和准备、数据的探索性分析、模型的选择和估计、模型的诊断和预测。

下面将对每个步骤进行详细介绍。

2.1 数据的收集和准备数据的收集和准备是时间序列分析的第一步。

我们需要收集时间序列数据,并进行数据清洗和预处理。

数据清洗包括删除缺失值、处理异常值和去除趋势。

数据预处理包括对数据进行平滑处理、差分和变换。

2.2 数据的探索性分析数据的探索性分析是时间序列分析的第二步。

我们需要对时间序列数据进行可视化和统计分析,以了解数据的基本性质和模式。

可视化方法包括绘制时间序列图、自相关图和偏自相关图。

统计分析方法包括计算统计指标、分析趋势、季节性和周期性。

2.3 模型的选择和估计模型的选择和估计是时间序列分析的第三步。

我们需要选择合适的时间序列模型,并进行参数估计。

常用的时间序列模型包括自回归模型(AR)、滑动平均模型(MA)、自回归滑动平均模型(ARMA)和季节性模型。

2.4 模型的诊断和预测模型的诊断和预测是时间序列分析的最后一步。

我们需要对模型进行诊断,检验模型的拟合程度和残差的平稳性、独立性和正态性。

然后,我们可以使用模型进行未来值的预测。

3. 时间序列模型时间序列模型是描述和预测时间序列数据的数学模型。

计量经济学试题时间序列模型与ARIMA模型

计量经济学试题时间序列模型与ARIMA模型

计量经济学试题时间序列模型与ARIMA模型时间序列是指按照时间顺序排列的一组数据。

在计量经济学中,时间序列分析是一种重要的研究方法,它可以帮助我们理解和预测经济现象的发展趋势。

本文将介绍时间序列模型以及其中的一种常用模型——自回归滑动平均移动平均自回归(ARIMA)模型。

一、时间序列模型的基本概念时间序列模型是根据时间序列数据的特点建立的数学模型。

它假设时间序列的变动是由多个因素引起的,这些因素可以是趋势、季节性、周期性等。

时间序列模型可以帮助我们从数据中分离出这些因素,以便更好地理解和预测未来的变动。

二、自回归滑动平均移动平均自回归(ARIMA)模型ARIMA模型是一种广泛应用于时间序列分析的模型,它结合了自回归(AR)模型、滑动平均(MA)模型和差分运算的方法。

ARIMA模型可以描述时间序列的自相关性、滞后差分的影响以及移动平均误差的影响。

ARIMA模型可以从以下三个方面描述一个时间序列:1. 自回归(AR)部分:用于描述过去时间点的观测值对当前值的影响,通过延迟观测值来预测当前值。

2. 差分(I)部分:通过对时间序列进行差分运算,可以消除其非平稳性,提高模型的拟合度和预测准确性。

3. 滑动平均(MA)部分:用于描述序列中随机波动的影响,通过滞后误差预测当前值。

ARIMA模型的表示方式为ARIMA(p, d, q),其中p表示自回归阶数,d表示差分阶数,q表示滑动平均阶数。

通过对历史数据的拟合,我们可以得到模型的参数估计,从而进行未来值的预测。

三、ARIMA模型的应用ARIMA模型在经济领域有广泛的应用,其中包括销售预测、股票价格预测、宏观经济指标预测等。

它通过分析历史数据中的规律性和趋势性,将其应用于未来的预测中。

ARIMA模型的建立和应用过程可以分为以下几个步骤:1. 数据收集和准备:收集相关的时间序列数据,并对其进行清洗和格式化,以便于后续的分析和建模。

2. 模型选择和拟合:通过计算模型选择准则(AIC、BIC等)来确定模型的阶数,并使用最小二乘法或极大似然法对模型进行参数估计。

中级计量经济学-时间序列

中级计量经济学-时间序列
谈何容易?但至少需要了解分布的一些特征
考虑T期的N种资产 rit :i 1,, N;t 1,,T 1、联合分布函数 F r11,, rN1;;r1T ,, rNT ;Y;
Y为state vector Theta为分布函数的变量 给定数据rt,可以估计theta,哪怕是一部分在
既定假设模型下的theta 特例:CAPM模型,单变量时间序列分析
又叫log return
优势:多期收益率为单期收益率之和,一些统 计学的特征更容易驾驭
资产组合收益率
简单净收益率 对数收益率
考虑股息的支付
N
RP,t wi Rit i 1
N
rP,t wirit i 1
ERxt c ePtPsts1Dt
1
return
rt ln Pt Dt ln Pt1
其他非正态的stable distribution没有有限的 方差,与大部分的金融理论冲突
有些stable distribution比正态分布更能 capture厚尾现象,如Cauchy分布
Cauchy分布举例 X ~ Cauchy ,
f
x
1
2
X
2
,
X
特例:f
x
1
1 1 X
2
,
2、条件分布函数
F ri1, , riT ; F ri1 F ri2 ri1 F ri3 ri2 , ri1 F riT ri,T 1, ri,T 2 ,, ri,1
T
F ri1 F rit ri,t1, ri,T 2 ,, ri,1 t2
Temporal dependency
3、Marginal distribution
不可忽略,更容易估计,且当数据的序列相关 性较弱时,marginal与conditional很接近

时间序列计量经济学模型概述

时间序列计量经济学模型概述

时间序列计量经济学模型概述时间序列计量经济学模型是在经济学研究中广泛使用的一种方法,用于分析经济变量随时间的变化。

该模型基于时间序列数据,即经济变量在一段时间内的观测值。

时间序列计量经济学模型的核心是建立经济变量之间的关系,以解释和预测经济现象的变化。

其中最常用的模型是自回归移动平均模型(ARMA)、自回归条件异方差模型(ARCH)和季节性时间序列模型。

自回归移动平均模型(ARMA)是一个包含自回归项和移动平均项的线性模型。

该模型以过去的观测值和随机项为输入,预测当前观测值。

ARMA模型基于假设,即经济变量的行为受到历史观测值的影响。

自回归条件异方差模型(ARCH)是一种考虑了随时间变化方差的模型。

该模型通过引入一个条件异方差项,模拟经济变量中的波动性。

ARCH模型的应用范围广泛,特别是在金融市场波动性分析中。

季节性时间序列模型用于分析具有明显季节性特征的经济变量,如销售额、就业人数等。

这些模型通常基于季节、趋势和随机成分的组合,以预测未来观测值。

在建立时间序列计量经济学模型时,常常需要进行模型识别、参数估计和模型诊断等步骤。

识别模型的目标是确定适当的模型结构,参数估计则是利用历史数据估计模型的参数值。

模型诊断用于检验模型的拟合程度和误差分布是否符合模型假设。

时间序列计量经济学模型在经济研究中有广泛的应用,例如预测未来经济指标、分析经济周期和波动性、评估政策效果等。

它提供了一种量化的方法,使经济学家可以更好地理解和解释经济变量的演变。

时间序列计量经济学模型是经济学研究中一种重要的统计工具,广泛应用于宏观经济、金融市场和企业经营等领域。

它可以帮助我们理解和解释经济变量随时间的变化规律,进行预测和政策分析。

本文将进一步探讨时间序列计量经济学模型的相关概念和应用。

在构建时间序列计量经济学模型之前,首先需要了解时间序列数据的特点。

时间序列数据是按照时间顺序排列的一系列观测值,通常具有趋势性、季节性、周期性和随机性等特征。

时间序列计量经济学协整

时间序列计量经济学协整
提供有关经济周期波动的重要信息。
货币政策效果评估
总结词
时间序列协整分析在货币政策效果评估中,有助于评估货币政策对经济的影响,以及政 策效果在不同经济变量之间的传递。
详细描述
货币政策是中央银行通过调节货币供应量和利率来影响经济活动的政策。时间序列协整 分析可以用于评估货币政策对经济增长、通货膨胀等经济指标的影响,以及政策效果在 不同经济变量之间的传递。通过协整分析,可以揭示货币政策对经济变量的长期均衡关
时间序列计量经济学 协整
目录
• 协整理论概述 • 时间序列协整模型 • 协整分析方法 • 时间序列协整的应用 • 时间序列协整的局限与未来发展
01
协整理论概述
协整的定义
协整是指两个或多个非平稳时间序列 之间存在长期均衡关系。这种长期均 衡关系可以是线性的,也可以是非线 性的。
协整关系表明这些时间序列之间存在 一种共同的长期趋势,即使它们各自 的短期波动不同。
误差修正模型
误差修正模型是一种用来描述时间序列之间长期均衡关系和 短期调整机制的模型。它通过引入误差修正项,来反映长期 均衡关系对短期调整的影响。
误差修正项的系数表示了短期调整机制的强度和方向,如果 系数为负,则说明当短期波动偏离长期均衡时,系统会自动 调整回到均衡状态。
04
时间序列协整的应用
经济周期分析
05
时间序列协整的局限与未 来发展
模型假设的局限性
线性协整关系的假设
01
线性协整关系假设限制了模型对非线性时间序列关系的解释能
力。
长期均衡关系的假设
02
长期均衡关系的假设可能不适用于所有时间序列数据,特别是
对于短期波动较大的数据。
误差修正机制的假设

计量经济学数据类型

计量经济学数据类型

计量经济学数据类型
“计量经济学”是指利用经济学理论和数学统计方法来研究实际的经济问题。

数据是计量经济学研究的重要基础,计量经济学中常见的数据类型如下:
1. 时间序列数据:时间序列数据是按时间顺序排列的数据,例如经济指标、股票价格、汇率等。

应用:基于时间序列数据进行趋势预测和时间序列分析,例如预测未来的经济增长率、通货膨胀率、利率等。

2. 横截面数据:横截面数据是在相同时间点上针对不同个体所收集的数据,例如收入、教育程度、职业等。

应用:基于横截面数据进行个体变量的比较分析,例如探讨收入水平与教育程度的关系、职业类型与收入的关系等。

3. 面板数据:面板数据是同时包含时间序列和横截面数据的数据,例如企业的经济数据、家庭调查数据等。

应用:基于面板数据进行个体和时间变量的研究,例如探讨企业投资和利润的关系、家庭收支变化的影响因素等。

4. 实验数据:实验数据是通过对特定因素进行控制来获取的数据,例如经济政策的实验数据、招聘决策的实验数据等。

应用:基于实验数据进行因果关系的分析,例如探讨各种政策对实体经济的影响、探讨招聘流程中不同因素对应聘者选择和工作表现的影响等。

以上数据类型及其应用是计量经济学研究中常见的基础。

在实际应用中,根据实际问题和数据可用性,研究者可以将不同类型的数据进行组合分析,以获取更深入的结论。

时间序列计量经济学建模简介

时间序列计量经济学建模简介

第八章 时间序列计量经济学建模简介第一节 时间序列计量经济学模型的基本概念 一、时间序列计量经济学的发展趋势1、上个世纪70年代中期世界复杂的经济格局对计量经济学方法的挑战。

计量经济学模型的主要应用之一就是经济预测,而且早年计量经济学就是通过利用模型的短期预测发展起来的。

在上个世纪50——60年代西方国家经济预测中不乏成功的实例。

但是,进入20世纪70年代以后,人们对计量经济学模型提出了质疑,表现在1973年和1979年,各种计量经济学模型都无法预测到“石油危机”对经济会造成什么影响(尽管当时能够对石油危机提出预报)。

2、传统计量经济学方法存在的主要问题。

传统计量经济学模型是以模拟历史、从已经发生的经济活动中找出变化规律的主要技术手段。

而对于非稳定发展的经济过程和缺乏规范行为理论的经济活动,传统计量经济学模型就显得无能为力。

同时,现实经济活动愈来愈复杂多变,对于社会经济的发展、体制的变迁、技术的创新,要用具有一定的计量经济学或动态多元非线性方程组对其加以描述并非易事。

因此,人们认为传统计量经济学的弱点是过分依赖先验理论,这种弱点一方面表现为缺乏动态的信息反馈;另一方面是所获得的理论与样本数据间满意的吻合结果往往要凭借建模者的艺术。

3、80年代初提出了与传统计量经济学完全不同的建模方法。

最初由萨甘(Sargan ,1964)提出,后经亨德里-安德森(Hendry-Anderson ,1977)和戴维森(Davidson ,1977)进一步完善的误差修正模型,以及由格兰杰(C.W.J.Granger ,1981)提出的协整理论,最终产生了Hendry 的“由一般到特殊”的建模方法。

时间序列的类型: (1)按时间是否连续分为一是离散型的随机过程或时间序列;二是连续型的随机过程或时间序列。

本章主要研究离散时间序列,并用t Y 或t X 表示。

对于连续时间序列,可通过等间隔采样使之转化为离散时间序列后加以研究。

古扎拉蒂《计量经济学基础》第21章

古扎拉蒂《计量经济学基础》第21章

将k 对k描点,得到的图形称为总体相关图
(population correlogram)。一般地,只有随机
过程的一个实现(样本),所以只能计算出样
本自相关函数(Sample autocorrelation
function) ˆk 。
样本自协方差
ˆk
(Yt Y )(Ytk
n
Y )
(21.8.1)
随机过程的例子:水中游动的花粉,是一个 Ito过程。
平稳随机过程(stationary stochastic process):如果一个随机过程的均值和方差在时 间过程上都是常数,并且在任何时候两时期之间 的协方差值仅依赖于该两时期间的距离或滞后, 而不依赖于计算这个斜方差的实际时间,就称之 为平稳随机过程。
第四,诸如股票价格之类的某些金融时间 序列表现出所谓的随机游走现象(random walk phenomenon)。这就意味着,对一支股票(比 如 IBM)明天价格的最佳预测,就等于今天的 价格加上一个纯粹随机的冲击(或误差项)。 若果真如此,预测资产价格将是一件徒劳无益 的事情。
第五,涉及时间序列数据的回归模型常常 被用于预测。鉴于以上讨论,会想知道,如果 所依据的时间序列不是平稳的,这种预测是否 仍然有效。
t= (2.7368) (2.5243) (-2.5751) 这里,关注的是 PCEt1 和 PDIt1 的 t 值。 在1%、5%或10%的水平下, Mackinnon计算的 DF临界值分别为-4.0673、-3.4620、-3.1570。
可见,PCE和PDI都有单位根,它们是非平稳的
因此,(*)式做的是非平稳时间序列对另 一个非平稳时间序列的回归。在这种情况下,标 准的t检验和F检验是无效的。

计量经济学--时间序列部分

计量经济学--时间序列部分

1. 已知MA(2)模型:120.70.4t t t t X εεε--=-+,2.(1)计算自相关系数(1)k k ρ≥;(2)计算偏相关系数(1,2,3)kk k ϕ=;解:(1)1212[0.70.4)(0.70.4)]t t k t t t t k t k t k EX X E εεεεεε--------=-+-+(所以:2220120,(1)k εγθθσ==++,211121,(),k εγθθθσ==-+2122,k εγθσ==-,3,0k k γ≥=,所以:112122120.591θθθρθθ-+==-++2222120.241θρθθ-==++0,3k k ρ=≥(2)1110ρϕρ=即111ϕρ=,所以110.59ϕ≈-当2k =时,产生偏相关系数的相关序列为2122{,}ϕϕ,相应Yule-Wolker 方程为:0121110222ρρϕρρρϕρ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 所以220.166ϕ≈-当3k =时,产生偏相关系数的相关序列为313233{,,}ϕϕϕ,相应Yule-Wolker 方程为:123111132221333111ρρϕρρρϕρρρϕρ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦所以330.047ϕ≈2.题:考虑MA (2)模型yt=εt –θ1εt-1 –θ2εt-2(1) 求出yt 序列的均值与方差(2) 推导出以下理论自相关函数 ρ1=(1+θ12++θ22)−1(θ1θ2-θ1)ρ2=-θ2(1+θ12++θ22)−1ρj = 0 , j > 2(3) 在什么条件下该模型为平稳时间序列模型?该模型可逆的条件是什么?答案:(1)μ=E (yt )=E (εt –θ1εt-1 –θ2εt-2)= 0 σy 2= E (yt−μ)2= E(εt –θ1εt-1 –θ2εt-2)(εt –θ1εt-1 –θ2εt-2) =(1+θ12+θ22) E (εt 2) =(1+θ12+θ22)σε2(2)γ0=E(ytyt )= E(εt –θ1εt-1 –θ2εt-2)(εt –θ1εt-1 –θ2εt-2) =(1+θ12+θ22)σε2γ1=E(ytyt −1) = E(εt –θ1εt-1 –θ2εt-2)(εt-1–θ1εt-2 –θ2εt-3) =(θ1θ2-θ1)σε2γ2=E(ytyt −2) = E(εt –θ1εt-1 –θ2εt-2)(εt-1–θ1εt-23–θ2εt-4) =-θ2σε2所以,ρ1=γ1/γ0=(1+θ12++θ22)−1(θ1θ2-θ1) ρ2=γ2/γ0=-θ2(1+θ12++θ22)−1(3)该模型在任何情况下都是平稳的,因为其右边是一系列的白噪音过程的叠加。

计量经济学实例时间序列

计量经济学实例时间序列
预测结果展示
将预测结果与实际股票价格进行对比 分析,评估模型的预测效果。
06
总结与展望
研究成果总结
通过对时间序列数据的深入分析和建模,本研究成功揭示了经济变量之间的动态关系和长期趋势,为 政策制定和市场预测提供了有力支持。
在模型选择和参数估计方面,本研究采用了先进的计量经济学方法和技术,有效提高了模型的拟合优度 和预测精度。
预测误差评估指标
均方误差(MSE)
衡量预测值与实际值之间误差的平方的平均值,值越小表示预测 精度越高。
均方根误差(RMSE)
MSE的平方根,能更直观地反映预测误差的大小。
平均绝对误差(MAE)
预测值与实际值之间绝对误差的平均值,能反映预测误差的实际情 况。
实例分析:股票价格预测
数据收集
收集历史股票价格数据,包括开盘价、 收盘价、最高价、最低价等。
02
ARMA模型结合了自回归(AR)和移动平均(MA)两种模型的特点,能够更全 面地刻画时间序列的动态特征。
03
ARMA模型的表达式为:Xt=c+∑i=1pφiXt−i+εt+∑j=1qθjεt−j,其中φi和θj分别 为自回归系数和移动平均系数,p和q分别为自回归阶数和移动平均阶数。
模型定阶与参数估计方法
具有平稳性。
03
对数变换与幂变换
对数变换和幂变换是两种常用的非线性变换方法,可以消除时间序列中
的异方差性和非线性趋势,使得变换后的序列具有平稳性。这些方法在
处理金融和经济数据时尤为有效。
04
模型建立与参数估计
ARMA模型介绍
01
自回归移动平均模型(ARMA模型)是时间序列分析中的一种重要模型,用于 描述平稳时间序列的随机过程。

计量经济学-第6章⑴时间序列的平稳性及其检验精品文档

计量经济学-第6章⑴时间序列的平稳性及其检验精品文档

0.059 3.679 4.216 6.300 7.297 11.332 12.058 15.646 17.153 18.010 22.414 22.481 24.288 25.162 26.036 26.240 26.381
-0.031 0.157 0.264 -0.191 -0.616 -0.229 -0.385 -0.181 -0.521 -0.364 -0.136 -0.451 -0.828 -0.884 -0.406 -0.162 -0.377 -0.236 0.000
(b)
图形表示出:该序列具有相同的均值, 但从样本自相关图看,虽然自相关系数迅速 下降到0,但随着时间的推移,则在0附近波 动且呈发散趋势。
样本自相关系数显示:r1=0.48,落在 了区间[-0.4497, 0.4497]之外,因此在5% 的显著性水平上拒绝1的真值为0的假设。
该随机游走序列是非平稳的。
• 注意:
确定样本自相关函数rk某一数值是否足够接近 于0是非常有用的,因为它可检验对应的自相关 函数k的真值是否为0的假设。
Bartlett曾证明:如果时间序列由白噪声过程生成, 则对所有的k>0,样本自相关系数近似地服从以0 为均值,1/n 为方差的正态分布,其中n为样本数。
也可检验对所有k>0,自相关系数都为0的联合 假设,这可通过如下QLB统计量进行:
例如:如果有两列时间序列数据表现出一致的变 化趋势(非平稳的),即使它们没有任何有意义的 关系,但进行回归也可表现出较高的可决系数。
在现实经济生活中:
情况往往是实际的时间序列数据是非平稳的,而 且主要的经济变量如消费、收入、价格往往表现为 一致的上升或下降。这样,仍然通过经典的因果关 系模型进行分析,一般不会得到有意义的结果。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

时间序列计量经济学
时间序列计量经济学是一种研究时间序列数据的计量经济学方法,是计量经济学的一个重要分支。

时间序列数据是指在时间上按照一定的频率(如日、月、季度、年等)收集的经济变量观测值。

时间序列计量经济学通过建立数学模型和利用统计学方法,探索时间序列数据的规律和特征,用来预测未来的经济变量。

时间序列计量经济学的研究内容包括:趋势分析、周期分析、季节性分析、自回归模型、移动平均模型、ARIMA模型、ARCH/GARCH模型、协整分析等。

通过这些方法把握时间序列数据变化的规律,从而对未来的经济变量走势进行预测和分析。

时间序列计量经济学在宏观经济、金融领域、价格预测等方面都有广泛的应用,为经济决策提供了科学的参考依据。

同时,在时间序列计量经济学的研究和应用过程中,还涌现出了大量的重要经济学理论和模型,极大地促进了经济学和统计学的发展。

相关文档
最新文档