北京师范大学762数学分析98-07.12-13年真题
2012--2013考研数学三真题精选及答案解析
2012--2013考研数学三真题精选及答案解析2013年全国硕士研究生入学统一考试数学三试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)档0→x 时,用)(x o 表示比x 的高阶无穷小,则下列式子中错误的是( )A 、)()(32x o x o x =⋅ B 、)()()(32x o x o x o =⋅C 、)()()(222x o x o x o =+ D 、)()()(22x o x o x o =+(2)设函数xx x x x f xln )1(1)(+-=的可去间断点个数为( ) A.0 B.1 C.2 D.3(3)设kD 是圆域{}1),(22≤+=y xy x D 位于第K 象限的部分,记),4,3,2,1()(=-=⎰⎰k dxdy x y I KD k则( )A.01>I B.02>IC.03>ID.4>I(4)设{}na 为正项数列,下列选项正确的是( )A.若1+>n na a,则nn n a ∑∞=--11)1(收敛 B.若nn n a ∑∞=--11)1(收敛,则1+>n na aC.若∑∞=1n n a 收敛,则存在常数1>P ,使npn a n ∞→lim 存在 D.若存在常数1>P ,使npn a n ∞→lim 存在,则∑∞=1n n a 收敛(5)设矩阵A.B.C 均为n 阶矩阵,若AB=C,则B 可逆,则( )A.矩阵C 的行向量组与矩阵A 的行向量组等价B.矩阵C 的列向量组与矩阵A 的列向量组等价C.矩阵C 的行向量组与矩阵B 的行向量组等价D.矩阵C 的列向量组与矩阵B 的列向量组等价 (6)若矩阵⎪⎪⎪⎭⎫ ⎝⎛1111a a b a a 和⎪⎪⎪⎭⎫⎝⎛00000002b 相似的充分必要条件为( )A.2,0==b aB.b a ,0=为任意数C.0,2==b aD.2=a ,b 为任意数 (7)设321,,X XX 是随机变量,且列式,ijA 为ija 的代数余子势,若ijA +ija =0)3,2,1,(0==+j i a Aij ij,则A =_________.(14)设随机变量X 服从标准正态分布)1,0(~N X ,则____)(2=X Xe E 。
13年北师大自主命题的真题解析(经验之谈) (1)
北师大740真题解析(经验值)—From 13年勤思学员作为一个13年考过北师大自主命题的学生,其实我是不敢用真题解析这四个字的,因为我觉得我还只是个学生,并没有足够的权威来分析北师大的真题,但是我还是用了这四个字,但这并不是说明我自傲自大,而是因为,我13年的解题思路其实并不是我自己凭空想到的,而是勤思请的北师大的教授讲授的,所以我有这个底气,来用这四个字。
好了,废话不多说了,下面我就北师大的真题,来简单说一下勤思的老师教给我的解题思路。
虽然时隔近一年,但我还是能清楚的记得北师大的教授们上课讲课的样子和讲课的内容,这并不是说明我记忆力有多好,而是这些老师讲课的内容和风格真的是能让我牢牢地记住。
北师大的题型,你应该也看到了,8个名词解释,4个简答题,3个论述题,只看题型的话,你可能会觉得北师大的考的这么少啊?但是,当你真的去做的时候,你就会发现,3个小时根本写不完,而且也不好写。
当1月6号上午8点半拿到密封的卷子的那一刻,我心里还是有点担心的,因为那时候我连杜威、赫尔巴特的思想都没背,如果考他们的思想的话,我肯定就完蛋了,庆幸的是,北师大13年没考他们的思想,我不知道14年会不会考,毕竟我不是北师大的教授,不清楚他们的出题思路,但更庆幸的是,我知道答题思路,这就足够了。
拿到卷子,里面就只有一张普通笔记本大小的纸,上面写着题目,随后考官把答题卷发了下来,当时一看到答题卷就懵了,12页白纸,这么多????再看看题,那么少,瞬间觉得亚历山大。
在考试之前就听见师哥师姐们说,文科的答题技巧就是多写,我当时就写,就算我是拼了命的写也不可能写完12页白纸啊?还有每个题我该用多长时间我怎么算啊??但是,我依然想说的就是,我很庆幸,我选择了勤思,尽管北师大13年是自07年之后再一次自主命题,但是勤思的老师们还是猜到了北师大题型,也帮我们算好了每个题的答题时间,所以,1月6号的那天上午,当一个考场的同学们在紧张的一直写啊写的时候,我就已经有了时间安排,而且也早已有了答题思路,所以,那天,我也很淡定,安静地按之前勤思老师上课时候讲的答题思路和答题技巧把看似很少实际上题量很大的题目答完。
北京大学、北京师范大学、四川大学、西南大学四所大学的近年考研试题
目录第一卷北京大学 (1)1.1996年数学分析(1)2.1996年高等代数(1)3.1997年数学分析(2)4.1997年高等代数(2)5.1998年数学分析(3) 6.1998年高等代数(4)7.1999年数学分析(5)8.1999年高等代数(5)9.2000年数学分析(6)10.2000年高等代数(7)11.2001年数学分析(8)12.2001年高等代数(8)13.2002年数学分析(9)14.2002年高等代数(10)15.2005年数学分析(11)16.2005年高等代数(11)17.2006年数学分析(12)18.2006年高等代数(13)19.2007年数学分析(14)20.2007年高等代数(14)21.2008年数学分析(15)22.2008年高等代数(16)23.2009年数学分析(16)24.2010年数学分析(17)25.2010年高等代数(18)第二卷北京师范大学 (19)1.1998年数学分析(19)2.1998年高等代数(19)3.1999年数学分析(20)4.1999年高等代数(20)5.2000年数学分析(21) 6.2000年高等代数(22)7.2001年数学分析(22)8.2001年高等代数(23)9.2002年数学分析(23)10.2002年高等代数(23)11.2003年数学分析(24)12.2003年高等代数(25)13.2004年数学分析(25)14.2004年高等代数(26)15.2005年数学分析(26)16.2005年高等代数(27)17.2006年数学分析与高等代数(28)18.2007年数学分析与高等代数(29)第三卷四川大学 (30)1.1997年数学分析(30)2.1998年数学分析(30)3.1999年数学分析(31)4.1999年高等代数(31)5.2000年数学分析(32) 6.2000年高等代数(32)7.2001年数学分析(33)8.2001年高等代数(34)9.2002年数学分析(34)10.2002年高等代数(35)11.2003年数学分析与高等代数(35)12.2004年数学分析与高等代数(36)13.2005年数学分析与高等代数(37)14.2006年数学分析与高等代数(38)15.2007年数学分析(39)16.2007年高等代数(39)17.2008年数学分析(41)18.2008年高等代数(42)第四卷西南大学 (44)1.2002年数学分析(44)2.2002年高等代数(45)3.2003年数学分析(45)4.2003年高等代数(46)5.2004年数学分析(47) 6.2004年高等代数(47)7.2005年数学分析(48)8.2005年高等代数(49)9.2006年数学分析(50)10.2006年高等代数(51)11.2007年数学分析(52)12.2007年高等代数(53)13.2008年数学分析(54)14.2008年高等代数(55)北京大学1996年数学分析试题1.(25分)判断下列命题的真伪:(1)对数列{a n }作和S n =n ∑k =1a k ,若{S n }是有界数列,则{a n }是有界数列;(2)数列{a n }存在极限lim n →∞a n =a 的充要条件是:对任一正整数p ,都有lim n →∞ a n +p −a n =0;(3)设f (x )是[a,+∞)上的递增连续函数,若f (x )在[a,+∞)上有界,则f (x )在[a,+∞)上一致连续;(4)设f (x )在[a,b ]上连续,且在(a,b )上可微,若存在极限lim x →a +0f ′(x )=ℓ,则右导数f ′+(a )存在且等于ℓ;(5)若f (x )是[a,+∞)上的非负连续函数,且积分∫+∞a f (x )d x 收敛,则lim x →+∞f (x )=0.2.(13分)设f (x )在x =a 处可微,f (a )=0.求极限lim n →∞(f (a +1n )f (a ))x .3.(20分)(1)求幂级数+∞∑n =1nx n −1(|x |<1)的和;(2)求级数+∞∑n =12n 3n 的和.4.(12分)求积分I =∫∫∫D (x +y +z )d x d y d z 的值,其中D 是由平面x +y +z =1以及3个坐标平面围成的区域.5.(20分)设a n =0(n =1,2,...)且lim n →∞a n =0.若存在极限limn →∞a n +1a n =ℓ,证明|ℓ| 1.6.(10分)设在[a,b ]上,f n (x )一致收敛于f (x ),g n (x )一致收敛于g (x ).若存在正数列{M n },使得对任意x ∈[a,b ],n =1,2,···,有f n (x ) M n ,g n (x ) M n .证明,f n (x )g n (x )在[a,b ]上一致收敛于f (x )g (x ).北京大学1996年高等代数与解析几何试题1.(15分)在仿射坐标系中,求过点M 0(0,0,−2),与平面π1:3x −y +2z −1=0平行,且与直线ℓ1:x −14=y −3−2=z −1相交的直线ℓ的方程.2.(25分)作直角坐标变换,把下述二次曲面方程化成标准方程,并且指出它是什么曲面:x 2+4y 2+z 2−4xy −8xz −4yz +2x +y +2z −2516=0.3.(16分)设线性空间V 中的向量组α1,α2,α3,α4线性无关.(1)试问,向量组α1+α2,α2+α3,α3+α4,α4+α1是否线性无关?要求说明理由;·2·博士家园首发(2)求向量组α1+α2,α2+α3,α3+α4,α4+α1生成的线性子空间W 的一个基以及W 的维数.4.(16分)设V 是数域K 上的n 维线性空间,并且V =U ⊕W .任给α∈V ,设α=α1+α2,其中α1∈U ,α2∈W .令P (α)=α1.证明:(1)P 是V 上的线性变换,并且P 2=P ;(2)P 的核Ker P =W ,P 的象Im P =U ;(3)V 中存在一个基,使得P 在这个基下的矩阵是(I r O O O),其中I r 表示r 阶单位矩阵;请指出r 等于什么.5.(12分)n 阶矩阵A 称为周期矩阵,如果存在正整数m ,使得A m =I ,其中I 是单位矩阵.证明,复数域C 上的周期矩阵一定可以对角化.6.(16分)用R [x ]4表示实数域R 上次数小于4的一元多项式组成的集合,它是一个Euclid 空间,其上的内积为(f,g )=∫10f (x )g (x )d x .设W 是由零次多项式组成的子空间,求W ⊥以及它的一个基.北京大学1997年数学分析试题1.(10分)将函数f (x )=arctan 2x 1−x 2在x =0点展开为幂级数,并指出收敛区间.2.(10分)判别广义积分的敛散性:∫+∞0ln(1+x )x pd x .3.(15分)设f (x )在(−∞,+∞)上任意阶导数f (n )(x ),且对任意有限闭区间[a,b ],f (n )(x )在[a,b ]上一致收敛于φ(x )(n →∞).证明,φ(x )=c e x ,c 为常数.4.(15分)设x n >0(n =1,2,···)及lim n →+∞x n =a .用ε−N 语言证明lim n →+∞√n =√.5.(15分)计算第二型曲面积分S (x d y d z +cos y d z d x +d x d y ),其中S 为x 2+y 2+z 2=1的外侧.6.(20分)设x =f (u,v ),y =g (u,v ),ω=ω(x,y )有2阶连续偏导数,满足∂f ∂u =∂g ∂v ,∂f ∂v =−∂g ∂u ,∂2ω∂x 2+∂2ω∂y2=0.证明:(1)∂2(fg )∂u 2+∂2(fg )∂v 2=0;(2)∂2ω∂u 2+∂2ω∂v 2=0.7.(15分)计算三重积分:∫∫∫x 2+y 2+z 2 2z(x 2+y 2+z 2)5/2d x d y d z .北京大学1997年高等代数与解析几何试题1.(12分)判断下列二次曲线的类型:(1)x 2−3xy +y 2+10x −10y +21=0;(2)x 2+4xy +4y 2−20x +10y −50=0.2.(18分)过x 轴和y 轴分别做动平面,交角α是常数,求交线轨迹的方程,并且证明它是一个锥面.3.(20分)设A,B 是数域K 上的n 阶方阵,X 是未知量x 1,···,x n 所成的n ×1矩阵.已知齐次线性方程组AX =0和BX =0分别有ℓ,m 个线性无关解向量,这里ℓ 0,m 0.(1)证明(AB )X =0至少有max(ℓ,m )个线性无关的解向量;第一卷北京大学·3·(2)如果ℓ+m >n ,证明(A +B )X =0必有非零解;(3)如果AX =0和BX =0无公共非零解向量,且ℓ+m =n ;证明K n 中任一向量α可唯一表示成α=β+γ,这里β,γ分别是AX =0和BX =0的解向量.4.(20分)设A 是实数域R 上的3维线性空间V 上的一个线性变换,对V 的一组基ε1,ε2,ε3,有A (ε1)=3ε1+6ε2+6ε3,A (ε2)=4ε1+3ε2+4ε3,A (ε3)=−5ε1−4ε2−6ε3.(1)求A 的全部特征值和特征向量;(2)设B =A 3−5A ,求B 的一个非平凡的不变子空间.5.(10分)设f (x )是有理数域Q 上的一个m 次多项式(m 0),n 是大于m 的正整数.证明,n √2不是f (x )的实根.6.(20分)设A 是n 维Euclid 空间V 上的一个线性变换,对任意α,β∈V ,有(A (α),β)=−(α,A (β)).(1)若λ是A 的一个特征值,证明λ=0;(2)证明V 内存在一组标准正交基,使得A 2在此基下的矩阵为对角矩阵.(3)设A 在V 的某组标准正交基下的矩阵.证明,把A 看做复数域C 上的n 阶方阵,其特征值比零.北京大学1998年数学分析试题1.(26分)单项选择题:(1)设f (x )定义在区间[a,b ]上.若对任意的g ∈R ([a,b ]),有f ·g ∈R ([a,b ]),则().A.f ∈R ([a,b ]) B.f ∈C ([a,b ])C.f 可微 D.f 可微(2)f ∈C ((a,b )).若存在lim x →a +f (x )=1,lim b →b −f (x )=2,则().A.f (x )在[a,b ]一致连续B.f (x )在[a,b ]连续C.f (x )在(a,b )一致连续D.f (x )在(a,b )可微(3)若广义积分∫10f (x )d x 和∫10g (x )d x 都存在,则广义积分∫10f (x )g (x )d x ().A.收敛B.发散C.不一定收敛D.一定不收敛(4)若lim n →∞na n =1,则∞∑n =1a n().A.发散 B.收敛C.不一定收敛D.绝对收敛(5)设f (x,y )在区域{(x,y ) x 2+y 2<1}上有定义.若存在偏导数f ′x (0,0)=0=f ′y (0,0),则f (x,y )().A.在点(0,0)处连续B.在点(0,0)处可微C.在点(0,0)处不一定连续D.在点(0,0)处不可微2.(24分)计算下列极限:(1)lim n →∞n √1+a n (a >0);(2)lim x →0(1x 2−cot x x );(3)lim x →0+∞∑n =112n n x .3.(10分)计算下列积分:·4·博士家园首发(1)∫∫S x 3d y d z +x 2y d z d x +x 2z d x d y ,其中S 为z =0,z =b 和x 2+y 2=a 2围成的区域;(2)∫C 1yd x +1x d y ,其中C 为y =1,x =4和y =√x 所围区域的边界,逆时针旋转一周.4.(16分)解答下列问题:(1)求幂级数∞∑n =1(−1)n n !(n e )n x n 的收敛半径;(2)求级数∞∑n =02n (n +1)n !的和.5.(24分)试证明下列命题:(1)广义积分∫+∞0sin x 21+x p d x (p 0)是收敛的;(2)设f (x,y )在G ={(x,y ) x 2+y 2<1}上有定义.若f (x,0)在x =0处连续,且f ′y (x,y )在G 上有界,则f (x,y )在(0,0)处连续.北京大学1998年高等代数与解析几何试题1.(15分)设在直角坐标系中给出了两条互相异面的直线ℓ1和ℓ2的普通方程:{x +y +z −1=0x +y +2z +1=0,{3x +y +1=0y +3z +2=0.(1)过ℓ1作平面π,使得π与ℓ2平行;(2)求ℓ1和ℓ2的距离;(3)求ℓ1和ℓ2的公垂线的方程.2.(15分)在直角坐标系中,球面的方程为:(x −1)2+y 2+(z +1)2=4.求所有与向量u (1,1,1)平行的球面的切线构成的曲面的方程.3.(16分)讨论a,b 满足什么条件时,数域K 上的方程组 ax 1+3x 2+3x 3=3x 1+4x 2+x 3=12x 1+2x 2+bx 3=2有唯一解,有无穷多个解,无解?当有解时,求出该方程组的全部解.4.(12分)设V 是定义域为实数集R 的所有实值函数组成的集合,对于f,g ∈V ,α∈R ,分别用下列式子定义f +g 与αf :对任意x ∈V ,(f +g )(x )=f (x )+g (x ),(αf )(x )=α(f (x )).则V 成为R 上的一个线性空间.设f 0(x )=1,f 1(x )=cos x ,f 2(x )=cos 2x ,f 3(x )=cos 3x .(1)判断f 0,f 1,f 2,f 3的线性相关性,写出理由;(2)用⟨f,g ⟩表示f,g 生成的线性子空间,判断⟨f 0,f 1⟩+⟨f 2,f 3⟩是否为直和,写出理由.5.(20分)用J 表示元素全为1的n 阶方阵,n 2.设f (x )=a +bx 是有理数域Q 上的一元多项式,令A =f (J ).(1)求J 的全部特征值、全部特征向量、所有特征子空间;(2)A 是否可以对角化?如果可以对角化,求出有理数域Q 上的一个可逆矩阵,使得P −1AP 为对角矩阵,并且写出这个对角矩阵.6.(22分)用M 2(C )表示复数域C 上所有2阶矩阵组成的集合.令V ={A ∈M 2(C ) Tr(A )=0且A ∗=A }.其中Tr(A )表示A 的迹,A ∗表示A 的转置共轭矩阵.(1)证明V 对于矩阵的加法以及实数与矩阵的数量乘法作成实数域R 上的线性空间,并且说明V 中的元素形如:(a 1a 2+i a 3a 2−i a 3−a 1),其中a 1,a 2,a 3∈R ,i =√−1.第一卷北京大学·5·(2)设A =(a 1a 2+i a 3a 2−i a 3−a 1),B =(b 1b 2+i b 3b 2−i b 3−b 1),考虑V 上的一个二元函数:(A,B )=a 1b 1+a 2b 2+a 3b 3.证明,这个二元函数是V 上的一个内积,从而V 成为Euclid 空间;并且求出V 的一个标准正交基,要求写出理由.(3)设T 是一个酉矩阵(即,T 满足T ∗T =I ,其中I 是单位矩阵),对任意A ∈V ,规定ΨT (A )=T AT −1,证明ΨT 是V 上的正交变换.(4)ΨT 的意义通第(3)小题,求集合:S ={T det T =1且ΨT =1V }.其中det T 表示T 的行列式,1V 表示V 上的恒等变换.北京大学1999年数学分析试题1.(15分)判断下列命题的真伪:(1)设{a n }是一个数列.若存在一个子列{a n k }中存在收敛子列{a n k i },则{a n }比为收敛列;(2)设f ∈C ((a,b )).若存在lim x →a +f (x )=A <0,lim x →b −f (x )=B >0,则必存在ξ∈(a,b ),使得f (ξ)=0;(3)设f (x )在[a,b ]上有界.若对任意δ>0,f (x )在[a +δ,b ]上可积,则f (x )在[a,b ]上可积;(4)设f (x ),g (x )在[0,1]上的暇积分均存在,则乘积f (x )·g (x )在[0,1]上的暇积分必存在;(5)设级数∞∑n =1b n 收敛.若有a n b n (n =1,2,···),则级数∞∑n =1a n 收敛.2.(40分)求下列极限值:(1)lim x →0a tan x +b (1−cos x )αlog(1−x )+β(1−e −x 2)(a 2+α2=0);(2)lim n →∞∫10(1−x 2)n d x ;(3)lim n →∞(sin πn n +1+sin 2πn n +12+···+sin πn +1n);(4)lim n →∞n √1+a n (a >0).3.(45分)求解下列命题:(1)求级数∞∑n =0n 3n 2n 之和;(2)证明,级数∞∑n =1(−1)n arctan n √n 收敛;(3)设f ∈C ([0,1]),且在(0,1)上可微.若有8∫17/8f (x )d x =f (0),证明,存在ξ∈(0,1),使得f ′(ξ)=0;(4)证明,积分∫+∞0x e −xy d y 在(0,+∞)上不已知收敛;(5)设u =f (x,y,z ),g (x 2,e y ,z )=0,y =sin x ,且已知f 与g 都有一阶连续偏导数,∂g ∂z =0.求d u d x ;(6)设f (x )在[−1,1]上二次连续可微,且有lim x →0f (x )x =0.证明,级数∞∑n =1f (1n )绝对收敛.北京大学1999年高等代数与解析几何试题1.(20分)在仿射坐标系中,已知直线ℓ1,ℓ2的方程分别是:x +132=y −53=z 1,x −105=y +74=z 1.(1)判断ℓ1与ℓ2的位置关系,要求说出理由;(2)设直线ℓ的一个方向向量⃗v (8,7,1),并且ℓ与ℓ1和ℓ2都相交,求直线ℓ的方程.·6·博士家园首发2.(10分)在直角坐标系O −xyz 中,设顶点在原点的二次锥面S 的方程为:a 11x 2+a 22y 2+a 33z 2+2a 12xy +2z 13xz +2a 23yz =0.(1)如果三条坐标轴都是S 的母线,求a 11,a 22,a 33;(2)证明,如果S 有三条互相垂直的直母线,则a 11+a 22+a 33=0.3.(16分)设实数域R 上的矩阵A = 110−101−300.(1)求A 的特征多项式f (λ);(2)f (λ)是否为R 上的不可约多项式;(3)求A 的最小多项式;(4)A 在R 上是否可对角化,说明理由.4.(16分)设实数域R 上的矩阵A = 10106−21−22.(1)判断A 是否为正定矩阵,说明理由;(2)设V 是实数域R 上的3维线性空间,V 上的一个双线性函数f (α,β)在V 的一个基α1,α2,α3下的度量矩阵为A .证明,f (α,β)是V 的一个内积;并且求出V 对于这个内积所成的Euclid空间的一个标准正交基.5.(16分)设V 是数域K 上的一个n 维线性空间,α1,α2,···,αn 是V 的一个基.用V 1表示由α1+α2+···+αn 生成的线性空间,令V 2={n ∑i =1k i αi n ∑i =1k i =0,k i ∈K }.(1)证明,V 2是V 的子空间,并且V =V 1⊕V 2;(2)设V 上的一个线性变换A 在基α1,α2,···,αn 下的矩阵A 是置换矩阵(即:A 的每一行与每一列都只有一个元素是1,其余元素全为0),证明V 1与V 2都是A 的不变子空间.6.(12分)设V 和U 分别是数域K 上的n 维、m 维线性空间,A 是V 到U 的一个线性映射,即A是V 到U 的映射,且满足对任意α,β∈V ,有A (α+β)=A (α)+A (β);对任意α∈V ,k ∈K ,有A (kα)=k A (α).令Ker A :={α∈V A (α)=0},称Ker A 是A 的核,它是V 的一个子空间,用Im A 表示A 的象(值域).(1)证明:dim(Ker A )+dim(Im A )=dim V ;(2)证明:如果dim V =dim U ,则A 是单射当且仅当A 是满射.7.(10分)设V 是实数域R 上的n 维线性空间.V 上的复值函数组成集合,对于函数的加法以及复数与函数的数量乘法,形成复数域C 上的一个线性空间,记为C V .证明,如果f 1,f 2,···,f n +1是C V 中n +1个不同的函数,并且它们满足:对任意α,β∈V ,有f i (α+β)=f i (α)+f i (β);对任意k ∈R ,α∈V ,有f i (kα)=kf i (α),则f 1,f 2,···,f n +1是C V 中线性相关的向量组.北京大学2000年数学分析试题1.(40分)计算题.(1)求极限lim x →0(a +x )x −a x x 2,a >0;(2)求e 2x −x 2到含x 5项的Taylor 展开式;(3)求积分∫10x b −x a ln x d x ,其中a >b >0;(4)求积分∫∫∫V(x 2+y 2+z 2)αd x d y d z ,V 是实心球x 2+y 2+z 2 R 2,α>0;(5)求积分∫∫S x 2d y d z +y 3d x d z +z 3d x d y ,S 是x 2+y 2+z 2=a 2的外表面.第一卷北京大学·7·2.(10分)叙述定义.(1)lim x →−∞f (x )=+∞;(2)当x →a −0时,f (x )不以A 为极限.3.(13分)函数f (x )在[a,b ]上一致连续,又在[b,c ]上一致连续,a <b <c .用定义证明f (x )在[a,c ]上一致连续.4.(10分)构造一个二元函数f (x,y ),使得它在原点(0,0)两个偏导数都存在,但在原点不可微.5.(12分)函数f (x )在[a,b ]连续.证明不等式:(∫b a f (x )d x )2(b −a )∫b af 2(x )d x .6.(15分)(1)在区间(0,2π)内展开f (x )的Fourier 级数,其中f (x )=π−x 2.(2)证明它的Fourier 级数在(0,2π)内每一点上收敛与f (x ).北京大学2000年高等代数与解析几何试题1.(20分)(1)在直角坐标系中,一个柱面的准线方程为{xy =4z =0,母线方向为(1,−1,1),求这个柱面的方程;(2)在平面直角坐标系O −xy 中,二次曲线的方程为:x 2−3xy +y 2+10x −10y +21=0,求I 1,I 2,I 3;指出这是什么二次曲线,并且确定其形状.2.(22分)(1)设实数域R 上的矩阵A =204060402,求正交矩阵T ,使得T −1AT 为对角矩阵,并且写出这个对角矩阵;(2)在直角坐标系O −xyz 中,二次曲面S 的方程为:2x 2+6y 2+2z 2+8xz =1,作直角坐标变换,把S 的方程化成标准方程,并且指出它是什么二次曲面.3.(12分)设实数域R 上的s ×n 矩阵A 的元素只有0和1,并且A 的每一行的元素之和是常数r ,A 的每两个行向量的内积为常数m ,其中m <r .(1)求det(AA T );(2)证明s n ;(3)证明AA T 的特征值全为正实数.4.(8分)设V 是数域K 上的n 维线性空间,A 是V 上的线性变换,且满足A 3−7A =−6I ,其中I 表示V 上的恒等变换.判断A 是否可以对角化,说明理由.5.(12分)设V 和V ′都是数域K 上的有限维线性空间,A 是V 到V ′的一个线性映射.证明,存在直和分解V =U ⊕W ,V ′=M ⊕N ,使得Ker A =U ,并且W ∼=M .6.(10分)设f (x )和p (x )都是首项系数为1的整系数多项式,且p (x )在有理数域Q 上不可约.如果p (x )与f (x )有公共复根α,证明:(1)在Q [x ]中,p (x )整除f (x );(2)存在首项系数为1的整系数多项式g (x ),使得f (x )=p (x )g (x ).7.(16分)(1)设V 是实数域R 上的线性空间,f 是V 上的正定的对称双线性函数,U 是V 的有限维子空间.证明,V =U ⊕U ⊥,其中U ⊥={α∈V f (α,β)=0,对任意β∈U }.·8·博士家园首发(2)设V 是数域K 上的n 维线性空间,g 是V 上的非退化的对称双线性函数,W 是V 的子空间.令W ⊥={α∈V g (α,β)=0,对任意β∈W }.证明:x dim V =dim W +dim W ⊥;y (W ⊥)⊥=W .北京大学2001年数学分析试题1.(10分)求极限lim n →∞a 2n1+a 2n.2.(10分)设f (x )在点a 可导,f (a )=0.求极限lim n →∞(f (a +1n )f (a ))n .3.(10分)证明函数f (x )=√x ln x 在[1,+∞)上一致连续.4.(10分)设D 是包含原点的平面凸区域,f (x,y )在D 上可微,且x∂f ∂x +y ∂f ∂y=0.证明,f (x,y )在D 上恒为常数.5.(10分)计算第一型曲面积分∫∫Σx d S ,其中Σ是锥面z =√x 2+y 2被柱面x 2+y 2=ax (a >0)割下的部分.6.(10分)求极限lim t →0+01t4∫∫∫x 2+y 2+z 2 t 2f (√x 2+y 2+z 2)d x d y d z ,其中f 在[0,1]上连续,f (0)=0,f ′(0)=1.7.(10分)求常数λ,使得曲线积分∫L x yr λd x −x 2y 2r λd y =0(r =√x 2+y 2)对上半平面的任何光滑闭曲线L 成立.8.(10分)证明函数f (x )=∞∑n =11n x 在(1,+∞)上无穷次可微.9.(10分)求广义积分∫+∞0arctan(bx 2)−arctan(ax 2)xd x ,b >a >0.10.(10分)设f (x )是以2π为周期的周期函数,且f (x )=x ,−π x <π.求f (x )与|f (x )|的Fourier 级数.它们的Fourier 级数是否一致收敛?说明理由.北京大学2001年高等代数与解析几何试题1.(15分)在空间直角坐标系中,点A,B,C 的坐标依次为:(−2,1,4),(−2,−3,−4),(−1,3,3).(1)求四面体OABC 的体积;(2)求三角形ABC 的面积.2.(15分)在空间直角坐标系中,ℓ1:x −a 1=y −2=z 3与ℓ2:x 2=y −11=z −2是一对相交直线.(1)求a ;(2)求ℓ2绕ℓ1旋转出的曲面的方程.3.(12分)设ω是复数域C 上的本原n 次单位根(即,ωn =1,而当0<ℓ<n 时,ωℓ=1),s,b 都是正整数,而且s <n .令A = 1ωb ω2b ···ω(n −1)b 1ωb +1ω2(b +1)···ω(n −1)(b −1)...............1ωb +s −1ω2(b +s −1)···ω(n −1)(b +s −1)任取β∈C s ,判断线性方程组AX =β无解?有多少解?说明理由.4.(18分)(1)设矩阵A = 010001−23−1.x 若把A 看成有理数域Q 上的矩阵,判断A 是否可对角化,说明理由;y 若把A 看成复数域C 上的矩阵,判断A 是否可对角化,说明理由.(2)设A 是有理数域Q 上的n 阶对称矩阵,并且在Q 上A 合同于单位矩阵I .用δ表示元素全为1的列向量,b ∈Q .证明,在Q 上(A bδbδT b )∼=(I 00b −b 2δT A −1δ).5.(14分)在实数域R 上的n 维列向量空间R n 中,定义内积(α,β)=αT β,从而R n 成为Euclid 空间.(1)设R 上的矩阵A = 1−35−2−21−31−1−79−4.求齐次线性方程组AX =0的解空间的一个正交基;(2)设A 是R 上的s ×n 矩阵,用W 表示齐次线性方程组AX =0的解空间,用U 表示A T 的列向量(即,A T 的列向量生成的子空间).证明:U =W ⊥.6.设A 是数域K 上n 维线性空间V 上的一个线性变换.在K [x ]中,f (x )=f 1(x )f 2(x ),且f 1(x )与f 2(x )互素.用Ker A 表示线性变化A 的核.证明:Ker f (A )=Ker f 1(A )⊕Ker f 2(A ).7.设A 是数域K 上n 维线性空间V 上的一个线性变换,I 是恒等变换.证明,A 2=A 的充分必要条件是rank(A )+rank(A −I )=n .北京大学2002年数学分析试题1.(10分)求极限lim x →0(sin x x)11−cos x.2.(10分)设a 0,x 1=√2+a,···,x n +1=√2+x n ,n =1,2,···,证明极限lim n →∞x n 存在并求其极限值.3.(10分)设f (x )在[a,a +2α]上连续,证明存在x ∈[a,a +α],使得f (x +α)−f (x )=f (x +2α)−f (a )2.4.(10分)设f (x )=x √1−x 2+arctan x ,求f ′(x ).5.(10分)设u (x,y )有二阶连续偏导数.证明u 满足偏微分方程∂2u ∂x 2−2∂2u ∂x ∂y +∂2u ∂y 2=0当且仅当存在二阶连续可微函数φ(t ),ψ(t ),使得u (x,y )=xφ(x +y )+yψ(x +y ).6.(10分)计算三重积分∫∫∫Ωx 2√x 2+y 2d x d y d z ,其中Ω是曲面z =√x 2+y 2与z =x 2+y 2围成的有界区域.7.(10分)计算第二型曲面积分I =∫∫Σx 2d y d z +y 2d z d x +z 2d x d y ,其中Σ是球面x 2+y 2+z 2=az (a >0)的外侧.8.(10分)判断级数∞∑n =1ln cos 1n的敛散性,并给出证明.9.(10分)证明:(1)函数项级数∞∑n=1nx e−nx在区间(0,+∞)上不一致收敛;(2)函数项级数∞∑n=1nx e−nx在区间(0,+∞)上可逐项求导.10.(10分)设f(x)连续,g(x)=∫0xyf(x−y)d y.求g′′(x).北京大学2002年高等代数与解析几何试题1.(18分)在空间直角坐标系中,直线ℓ1和ℓ2分别有方程{x+y+z−1=0 x+y+2z+1=0,{3x+y+1=0=0x+3z+2=0.(1)求过ℓ1且平行于ℓ2的平面的方程;(2)求ℓ1和ℓ2的距离;(3)求ℓ1和ℓ2的公垂线的方程.2.(12分)在空间直角坐标系中,求直线{z=3x+2z=2y−1绕z轴旋转所得旋转曲面的方程.3.(15分)设用正交变换化下面二次型为标准型:f(x1,x2,x3)=x21+x22+x23−4x1x2−4x1x3−4x2x3.(要求写出正交变换的矩阵的相应的标准型)4.(12分)对于任意非负整数n,令f n(x)=x n+2−(x+1)2n+1,证明:(x2+x+1,f n(x))=1.5.(18分)设正整数n 2,用M n(K)表示数域K上全体n×n阶矩阵关于矩阵加法和数乘构成的K上的线性空间.在M n(K)中定义变换A如下:对任意的(a ij)n×n∈M n(K),令A((a ij)n×n)=(a′ij)n×n.其中a′ij ={a ij,当i=j时;i·Tr((a ij)n×n),当i=j时.(1)证明A是M n(K)上的线性变换;(2)求出Ker(A)的维数与一组基;(3)求出A的全部特征子空间.6.(12分)用R表示实数域,定义R n到R的映射f如下:f(x)=|x1|+···+|x r|−|x r+1|−···−|x r+s|,∀x=(x1,x2,···,x n)T∈R n,其中r s 0.证明:(1)存在R n的一个n−r维子空间W,使得f(x)=0,对任意x∈W;(2)若W1,W2是R n的两个n−r维子空间,且满足对任意x∈W1∪W2,均有f(x)=0,那么一定有dim(W1∩W2) n−(r+s).7.(13分)设V是数域K上n维线性空间,V1,V2,···,V s是V的s个真子空间,证明:(1)存在α∈V,使得α/∈V1∪V1∪V2∪···∪V s;(2)存在V中的一组基ε1,ε2,···,εn,使得{ε1,ε2,···,εn}∩(V1∪V1∪V2∪···∪V s)=∅.北京大学2005年数学分析试题1.设f(x)=x2sin x−1x2−sin xsin x,试求lim supx→+∞f(x)和lim infx→+∞f(x).2.(1)设f(x)在开区间(a,b)上可微,且f′(x)在(a,b)上有界,证明f(x)在(a,b)上一致连续;(2)设f(x)在开区间(a,b)(−∞<a<b<+∞)上可微且一致连续,试问f′(x)在(a,b)是否一定有界.(若肯定回答,请证明;若否定回答,举例说明)3.设f(x)=sin2(x2+1),(1)求f(x)的麦克劳林展开式;(2)求f(n)(0),n=1,2,3,···.4.试作出定义在R2中的一个函数f(x,y),使得它在原点处同时满足一下三个条件:(1)f(x,y)两个偏导数都存在;(2)任何方向极限都存在;(3)在原点不连续.5.计算∫Lx2d s,其中L是球面x2+y2+z2=1与平面x+y+z=0的交线.6.设函数列{f n(x)}满足下列条件:(1)对∀n,f n(x)在区间[a,b]上连续且有f n(x) f n+1(x),x∈[a,b];(2){f n(x)}点点收敛于[a,b]上的连续函数s(x);证明{f n(x)}在[a,b]上一致收敛于s(x).北京大学2005年高等代数与解析几何试题1.在直角坐标系中,求直线ℓ:{2x+y−z=0x+y+2z=0到平面π:3x+By+z=0的正交投影轨迹的方程,其中B是常数.2.在直角坐标系中对于参数λ的不同取值,判断平面二次曲线x2+y2+2λxy+λ=0的形状:(1)对于中心型曲线,写出对称中心的坐标;(2)对于线心型曲线,写出对称直线的方程.3.设数域K上的n级矩阵A的(i,j)元为a i−b j.(1)求det(A);(2)当n 2时,a1=a2,b1 b2.求齐次线性方程组AX=0的解空间的维数和一个基.4.(1)设数域K上的n级矩阵,对任意正整数m,求C m;(2)用M n(K)表示数域K上所有n级矩阵组成的集合,它对于矩阵的加法和数量乘法成为K上的线性空间.数域K上n级矩阵A=a1a2a3···a na n a1a2···a n−1...............a2a3a4···a1称为循环矩阵.用U表示上所有n级循环矩阵组成的集合.证明U是M n(K)的一个子空间,并求U的一个基和维数.5.(1)设实数域R上n级矩阵的(i,j)元为1i+j−1(n>1).在实数域上n维线性空间R n中,对于α,β∈R n,令f(α,β)=α′Hβ.试问f是不是R n上的一个内积,写出理由.(2)设A 是n 级正定矩阵(n >1),α∈R n ,且α是非零列向量.令B =Aαα′,求B 的最大特征值以及B 的属于这个特征值的特征子空间的维数和一个基.6.设A 是数域R 上n 维线性空间V 上的一个线性变换,用E 表示V 上的恒等变换,证明:A 3=E ⇐⇒rank(E −A )+rank(E +A +A 2)=n .北京大学2006年数学分析试题1.确界原理是关于实数域完备性的一种描述.试给出一个描述实数域完备性的其它定理并证明其与确界原理等价.2.设f (x,y )=x 3+3xy −y 2−6x +2y +1,求f (x,y )在(−2,2)处的二阶带Peano 余项的Taylor展式.问f (x,y )在R 2上有哪些关于极值的判别点,这些判断点是否为极值点?3.设F (x,y )=y 3x 2+|x |y +y −5.(1)证明方程F (x,y )=0在(−∞,+∞)上确定惟一的隐函数y =f (x );(2)求f (x )的极值点.4.计算第二型曲面积分I =∫∫Σx 3d y d z +y 3d z d x +z 3d x d y ,其中曲面Σ为椭球面x 2a 2+y 2b 2+z 2c 2=1,方向取外侧.5.证明,广义积分∫+∞0sin x xd x 收敛,并计算此积分.6.设f (x,y )定义在D =(a,b )×[c,d ]上,x 固定时对y 连续.设x 0∈(a,b )取定,对于任意y ∈[c,d ],极限lim x →x 0f (x,y )=g (y )收敛.证明,重极限lim x →x 0y →y 0f (x,y )=g (y 0)对任意y 0∈[c,d ]成立的充分必要条件是,极限lim x →x 0f (x,y )=g (y )在[c,d ]上一致收敛.7.设f (x )是定义在[a,b ]上的有界函数,给出并证明f (x )在[a,b ]上的Riemann 和的极限lim λ(∆)→0n ∑i =1f (ξi )(x i −x i −1)收敛的Cauchy 准则.8.设{f n (x )}是(−∞,+∞)上的一致连续函数列,并且一致有界(即,存在常数M ,使得对于任意f n (x )和x ∈(−∞,+∞)恒有 f n (x ) M ).假定对(−∞,+∞)中的任意区间[a,b ]都有lim n →∞∫ba f n (x )d x =0.证明,对于任意区间[c,d ]⊆(−∞,+∞)以及[c,d ]上绝对可积函数h (x ),恒有lim n →∞∫ba f n (x )h (x )d x =0.9.设存在一区间[a,b ],使得以下两个Fourier 级数:a 02+∞∑n =1a n cos nx +b n sin nx ,α02+∞∑n =1αn cos nx +βn sin nx .都在[a,b ]上收敛,并且其和函数[a,b ]上连续且相等.试问,对于任意自然数,a n =αn ,b n =βn 是否成立?如成立,请证明.如不成立,补充什么条件后能保证成立?说明理由.10.设f (x )在[0,+∞)上内闭Riemann 可积.证明,广义积分∫+∞0f (x )d x 绝对可积的充分必要条件是:对于任意满足x 0=0,x n →+∞的单调递增序列{x n },级数∞∑n =0∫x n +1x nf (x )d x 绝对收敛.北京大学2006年高等代数与解析几何试题1.回答下列问题:(1)设A,B 分别是数域K 上的s ×n 和s ×m 矩阵,叙述矩阵方程AX =B 有解的充要条件,并且给予证明;(2)设A 是数域K 上s ×n 阶列满秩矩阵.试问,方程XA =E n 是否有解?有解,写出它的解集;无解,说明理由;(3)设A 是数域K 上s ×n 阶列满秩矩阵.试问,对于K 上任意s ×m 矩阵B ,矩阵方程AX =B是否一定有界?当有解时,它有多少要解?求出它的解集.说明理由.2.(1)证明,rank(A −ABA )=rank(A )+rank(E n −BA )−n ,其中A 与B 分别是数域K 上的s ×n 与n ×s 矩阵;(2)证明,实数域R 上的n 阶方阵A 与矩阵B 的相似关系不随数域扩大而改变.3.(1)设A 是数域K 上的n 阶方阵.证明,如果A 的各阶顺序主子式都不为0,那么A 可以惟一地分解成A =BC ,其中B 是主对角元都为1的下三角矩阵,C 是上三角矩阵;(2)设A 是数域K 上的n 阶可逆矩阵.试问:A 是否可以分解成A =BC ,其中B 是主对角元都为1的下三角矩阵,C 是上三角矩阵?说明理由.4.(1)设A 是实数域R 上的n 阶对称矩阵,它的特征多项式f (λ)的所有不同复根为实数:λ1,λ2,···,λs .把A 的最小多项式分解成为R 上不可约多项式的乘积;(2)设A 是实数域R 上的n 阶对称矩阵,A 是R n 上的一个线性变换,满足对任意α∈R n ,有A (α)=Aα.利用(1)中m (λ)的分解,把R n 分解成线性变换A 的不变子空间的直和.5.设X ={1,2,···,n },用C X 表示定义域为X 的所有复值函数组成的集合,它对于函数的加法和数量乘法称为复数域C 上的一个线性空间.对于任意f (x ),g (x )∈C X ,规定⟨f (x ),g (x )⟩=n ∑j =1f (j )g (j ).这个二元函数是复线性空间C X 上的一个内积,从而C X 成为一个酉空间.设p 1(x ),p 2(x ),···,p n (x )∈C X ,且对任意j ∈X ,满足p k (j )=1√n ωkj ,其中ω=e 2πn i .(1)求复线性空间C X 的维数;(2)证明p 1(x ),p 2(x ),···,p n (x )是酉空间C X 上的一个标准正交基;(3)对任意f (x )∈C X ,令A (f (x ))=ˆf(x ),其中ˆf (x )在x =k 处的函数值ˆf (k )是f (x )在标准正交基p 1(x ),p 2(x ),···,p n (x )下的坐标的第k 个分量.证明,A 是酉空间C X 上的一个线性变换,并且求出A 在标准正交基p 1(x ),p 2(x ),···,p n (x )下的矩阵;(4)证明第(3)题中的A 是酉空间C X 上的一个酉变换.6.设V 是数域F 上的n 维线性空间,A 1,A 2,···,A s 均为V 上的线性变换,令A =A 1+A 2+···+A s .证明,A 为幂等变换且rank(A )=rank(A 1)+rank(A 2)+···+rank(A s )的充分必要条件是各A i 均为幂等变换,且A i A j =0,i =j .7.求一个过x 轴的平面π,使得其与单叶双曲面x 24+y 2−z 2=1的交线为一个圆.8.证明四面体的每个顶点到对面重心的连线都相交于一点,而且该点分线段比为3:1.9.一条直线与坐标平面Y OZ 面,XOZ 面,XOY 面的交点分别是A,B,C .当直线变动时,直线上的三个定点A,B,C 也分别在坐标平面上变动.此外,直线上有第四点P ,点P 到三点的距离分别是a,b,c .求该直线按照保持点A,B,C 分别在坐标平面上的规则移动时,点P 的轨迹.10.在一个仿射坐标系中,已知直线ℓ1的方程为{x −y +z +7=02x +y −6=0,直线ℓ2过点M (−1,1,2),并且平行于向量⃗u (1,2,3).判别这两条直线的位置关系,并说明理由.北京大学2007年数学分析试题1.用有限覆盖定理证明连续函数的介值性定理.2.f (x )和g (x )在有界区间上一致连续,证明在此区间上f (x )g (x )也一致连续.3.已知f (x )在[a,b ]上有4阶导数,且有f (4)(β)=0,f ′′(β)=0,β∈(a,b );证明:存在x 1,x 2∈(a,b ),使成立f (x 1)−f (x 2)=f ′(β)(x 1−x 2).4.构造一函数在R 上无穷次可微,且f (2n +1)(0)=n,f (2n )(0)=0,并说明满足条件的函数有任意多个.5.设D =[0,1]×[0,1],f (x,y )是D 上的连续函数;证明∫∫D f (x,y )d x d y =f (ξ,η),并且这样的ξ,η有无穷多个.6.求∫∫S sin 4x d y d z +e −|y |d z d x +z 2d x d y ,其中S 是x 2+y 2+z 2=1,z >0,方向向上.7.f (x )是R 2上连续函数,试作一无界区域D ,使f (x )在D 上广义积分收敛.8.已知f (x )=ln (1+sin x xp ),讨论不同p 对f (x )在(1,+∞)积分的敛散性.9.已知F (x,y )=+∞∑n =1ny e −n (x −y ),是否存在a 以及函数h (x )在(1−a,1+a )可导,且h (1)=0,使F (x,h (x ))=0.10.设f (x )和g (x )在[a,b ]上Riemann 可积,证明f (x )和g (x )的Fourier 展开式有相同系数的充要条件是∫b af (x )−g (x ) d x =0.北京大学2007年高等代数与解析几何试题1.回答下列问题:(1)是否存在n 阶方阵A,B ,满足AB −BA =E (单位矩阵)?又,是否存在n 维线性空间上的线性变换A ,B ,满足A B −BA =E (恒等变换)?若是,给出证明;若否,举出例子.(2)n 阶行列式A 各行元素之和为常数c ,则A 3的各行元素之和是否为常数?若是,是多少?说明理由.(3)m ×n 矩阵秩为r .取r 个线性无关的行向量,再取r 个线性无关的列向量,组成的r 阶子式是否一定为0?若是,给出证明;若否,举出反例.(4)A,B 都是m ×n 矩阵.线性方程组AX =0与BX =0同解,则A 与B 的列向量是否等价?行向量是否等价?若是,给出证明;否,举出反例.(5)把实数域R 看成有理数域Q 上的线性空间,b =p 3q 2r ,这里的p,q,r 是互不相同的素数.判断向量组1,n √b,n √b 2,···,n √b n −1是否线性相关?说明理由.2.矩阵A,B 可交换.证明rank(A +B ) rank(A )+rank(B )−rank(AB ).3.f 为双线性函数,且对任意的α,β,γ都有f (α,β)f (γ,α)=f (β,α)f (α,γ).试证明f 为对称的或反对称的.4.V 是Euclid 空间,U 是V 的子空间,α∈V .试证明β是α在U 上的正交投影的充要条件是:对任意γ∈U ,都有|α−β| |α−γ|.5.复矩阵A 满足:对任意k ,有Tr(A k )=0.试求A 的特征值.6.n 维线性空间V 上的线性变换A 的最小多项式与特征多项式相同.试证明存在α∈V ,使得{α,A α,···,A n −1α}为V 的一个基.7.P 是球内一定点,A,B,C 是球面上三动点,∠AP B =∠BP C =∠CP A =π/2.以P A,P B,P C为棱作平行六面体,记与P 相对的顶点为Q ,求Q 点的轨迹.8.直线ℓ的方程为{A 1x +B 1y +C 1z +D 1=0A 2x +B 2y +C 2z +D 2=0.问系数要满足什么条件,才能使得直线满足下列条件:(1)过原点;(2)平行于x 轴,但不与x 轴重合;(3)与y 轴相交;(4)与z 轴重合.9.证明双曲抛物面x 2a 2−y 2b2=2z 的相互垂直的直母线的交点在双曲线上.10.求椭球面x 225+y 216+z 29=2z 被点(2,−1,1)平分的弦.北京大学2008年数学分析试题1.证明有界闭区间上的连续函数一致有界.2.是否存在(−∞,+∞)上的连续函数f (x ),满足f (f (x ))=e −x ?证明你的结论.3.数列{x n }(n >1),满足对任意n <m ,有|x n −x m |>1n ,求证x n 无界.4.f (x )是(−1,+1)上的无穷次可微函数,f (0)=1,f ′(0) 2,令g (x )=f ′(x )f (x ).若 g (n )(0) 2n ! ,证明对所有的正整数n ,均成立|f n (0)| (n −1)!.5.计算第二类曲面积分∫∫Σ(y −z )d y d z +(z −x )d z d x +(x −y )d x d y ,其中曲面Σ是球面x 2+y 2+z 2=2Rx 被圆柱面x 2+y 2=2rx (z >0,0<r <R )所截部分,定向取外侧.6.已知函数F (x,y )=2−sin x +y 3e −y 定义在全平面上,证明F (x,y )=0唯一确定了全平面上连续可微的隐函数y =y (x ).7.设函数f (x )是[0,+∞)上内闭Riemann 可积,且广义积分∫+∞0f (x )d x 收敛,证明lim a →0+∫+∞0e −ax f (x )d x =∫+∞0f (x )d x .8.已知函数f (x )是(−∞,+∞)上2阶连续可微函数,满足lim |x |→+∞(f (x )−|x |)=0,且存在一点x 0,使得f (x 0) 0.证明f ′′(x )在(−∞,+∞)上变号.9.设函数f (x )在区间[0,1]上有一阶连续导数且f (0)=f (1),g (x )是周期为1的连续函数,并且满足∫10g (x )d x =0.记a n =∫10f (x )g (nx )d x ,证明lim n →∞na n =0.10.若函数f (x )在区间[0,1]上Riemann 可积,并且对[0,1]中任意有限个两不相交的闭区间序列[a i ,b i ]都有 ∑i ∫b i a i f (x )d x 1.证明∫10|f (x )|d x 2.。
考研数学历年真题(1998-2007)年数学一
(D) P( A B) P(B)
(14)设随机变量
X
服从正态分布
N (1, 12 )
,Y
服从正态分布
N
(2
,
2 2
)
,
且 P{| X 1 | 1} P{| Y 2 | 1}, 则必有( )
(A)1 2
(B)1 2
(C) 1 2
(D) 1 2
三、解答题(本题共 9 小题,满分 94 分.解答应写出文字说明、证明过程或演算步骤) (15)(本题满分 10 分)
一、填空题(本题共 6 小题,每小题 4 分,满分 24 分.把答案填在题中横线上)
(1) lim x ln(1 x)
.
x0 1 cos x
(2)微分方程 y y(1 x) 的通解是
.
x
(3)设 是锥面 z x2 y2 ( 0 z 1)的下侧,则 xdydz 2ydzdx 3(z 1)dxdy
(14)设曲面 :| x | | y | | z | 1,则 (x | y |)ds =_____________.
0 1 0 0
(15)设矩阵
A
0 0
0 0
1 0
0 1
,则
A3
的秩为________.
0 0 0 0
(16)在区间 (0,1) 中随机地取两个数,则这两个数之差的绝对值小于 1 的概率为________. 2
(2)曲线 y 1 ln(1 ex ) ,渐近线的条数为( ) x
(A)0
(B)1
(C)2
(D)3
(3)如图,连续函数 y f (x) 在区间 [3, 2],[2, 3] 上的图形分别是直径为 1
的上、下半圆周,在区间[2, 0],[0, 2]的图形分别是直径为 2 的上、下半圆周,
北京师范大学考研历年真题及内部资料
北京师范大学>> 哲学与社会学学院考研历年真题/WebSpecF/ExamDetail.aspx?ItemId=C07A1366-290E-48E1-BDD B-A8CCC9267B47北京师范大学>> 哲学与社会学学院考研内部资料/WebSpecF/ExamDetail.aspx?ItemId=C07A1366-290E-48E1-BDD B-A8CCC9267B47北京师范大学>> 经济与工商管理学院考研历年真题及课件/WebSpecF/ExamDetail.aspx?ItemId=85DE38D0-218A-4A0D-A9 CD-8489B832FC3B北京师范大学>> 经济与工商管理学院考研内部资料/WebSpecF/ExamDetail.aspx?ItemId=85DE38D0-218A-4A0D-A9 CD-8489B832FC3B北京师范大学>> 马克思主义学院考研历年真题及课件考研内部资料/WebSpecF/ExamDetail.aspx?ItemId=A3EE1288-3D1E-4A8D-AC 23-C4E68E86283E北京师范大学>> 教育学部考研历年真题及课件/WebSpecF/ExamDetail.aspx?ItemId=9A3D0FCF-9385-4ADC-B9 EF-F9D4D424EF4F北京师范大学>> 法学院考研历年真题及课件/WebSpecF/ExamDetail.aspx?ItemId=72AA151C-3452-41E8-B24 7-4AA5BE57CEB3北京师范大学>> 心理学院考研历年真题及课件考研内部资料/WebSpecF/ExamDetail.aspx?ItemId=2ED3AA75-8638-4CF7-93D 3-C56208D8C394北京师范大学>> 脑与认知科学研究院考研历年真题及课件考研内部资料/WebSpecF/ExamDetail.aspx?ItemId=45D19736-6289-426D-8454 -24F07D20156A北京师范大学>> 体育与运动学院考研历年真题及课件考研内部资料/WebSpecF/ExamDetail.aspx?ItemId=009B6494-277F-467A-9F6D -FD3934DE4CCE北京师范大学>> 文学院考研历年真题及课件考研内部资料/WebSpecF/ExamDetail.aspx?ItemId=0A2D9957-AFB2-4253-A6 AF-A3BDB146B9FE北京师范大学>> 外国语言文学学院考研历年真题及课件考研内部资料/WebSpecF/ExamDetail.aspx?ItemId=0E5E550D-BE69-45A2-B93 F-6A57458FB84E北京师范大学>> 历史学院考研历年真题及课件考研内部资料/WebSpecF/ExamDetail.aspx?ItemId=B7F4836F-05C5-4B0B-B8E 7-079E2ECEB9BE北京师范大学>> 古籍与传统文化研究院考研历年真题及课件考研内部资料/WebSpecF/ExamDetail.aspx?ItemId=6B4D5AD1-7127-494A-9D D9-C5456D273579北京师范大学>> 经济与资源管理研究院考研历年真题及课件考研内部资料/WebSpecF/ExamDetail.aspx?ItemId=A2BB1294-598F-42A4-839 8-95742872971E北京师范大学>> 数学科学学院考研历年真题及课件考研内部资料/WebSpecF/ExamDetail.aspx?ItemId=3D167D52-EA7F-4171-A0F 6-AC1148AD8066北京师范大学>> 物理学系考研历年真题及课件考研内部资料/WebSpecF/ExamDetail.aspx?ItemId=3457C5C1-280D-48CA-B10 A-1A3CA125D69A北京师范大学>> 核科学与技术学院考研历年真题及课件考研内部资料/WebSpecF/ExamDetail.aspx?ItemId=7F1C5B2C-5766-43BF-AEF 2-20148BD75E69北京师范大学>> 信息科学与技术学院考研历年真题及课件考研内部资料/WebSpecF/ExamDetail.aspx?ItemId=7EBAD2B4-E5AB-4623-B1 21-6C6649D5D705北京师范大学>> 化学学院考研历年真题及课件考研内部资料/WebSpecF/ExamDetail.aspx?ItemId=1EA69333-189A-4A9D-8C3 2-9E80BE0153C1北京师范大学>> 地理学与遥感科学学院考研历年真题及课件考研内部资料/WebSpecF/ExamDetail.aspx?ItemId=55AFEBAD-47D0-466D-A3 55-1FCEBB0B3826北京师范大学>> 环境学院考研历年真题及课件考研内部资料/WebSpecF/ExamDetail.aspx?ItemId=97593953-C47C-4AAB-B6 CA-9E9524067D98北京师范大学>> 生命科学学院考研历年真题及课件考研内部资料/WebSpecF/ExamDetail.aspx?ItemId=C81B175D-AC35-4434-A1 EA-1453C776F0E4北京师范大学>> 社会发展与公共政策学院|中国社会管理研究院/WebSpecF/ExamDetail.aspx?ItemId=0BF6842B-55FA-4428-A73 B-C70133B1A85B北京师范大学>> 管理学院考研历年真题及课件考研内部资料/WebSpecF/ExamDetail.aspx?ItemId=D308C320-5898-4752-B58 A-5AB34BD4542E。
2013年考研数学真题及参考答案(数学二)
π
2
, 则当 x → 0 时, α ( x ) 是
【 】 .
(A) 比 x 高阶的无穷小 (C) 与 x 同阶但不等价的无穷小 【答案】 答案】C.
(B) 比 x 低阶的无穷小 (D) 与 x 等价的无穷小
【考点】 考点】计算极限的方法:常用的等价无穷小.
【解析】 解析】 x sin α ( x) = cos x − 1 ~ −
(D) I 4 > 0
【解析】 解析】在第 II 象限除原点外被积函数 y − x > 0 ,因此 I 2 > 0 . 【评注】 评注】在第 IV 象限除原点外被积函数 y − x < 0 ,因此 I 4 < 0 ; 在第 I 象限和第 III 象限,根据轮换对称性得
I1 = I 3 = 0 .
(7)设 A, B, C 均为 n 阶矩阵,若 AB = C ,且 B 可逆,则 (A) 矩阵 C 的行向量组与矩阵 A 的行向量组等价 (C) 矩阵 C 的行向量组与矩阵 B 的行向量组等价 【答案】 答案】B. 【考点】 考点】向量组的线性表示方法. 【解析】 解析】将矩阵 A 和 C 按列分块,设 A = (α1 , α 2 ,⋯ , α n ) , B = (bij ) , C = (γ 1 , γ 2 ,⋯ , γ n ) . ①由 AB = C 组线性表示; 【 】 . (B) 矩阵 C 的列向量组与矩阵 A 的列向量组等价 (D) 矩阵 C 的列向量组与矩阵 B 的列向量组等价
π
6
≤θ ≤
π
6
),则 L 所围平面图形的面积为
.
【答案】 答案】
π
12
.
【考点】 考点】计算极坐标曲线所围图形的面积.
北京师范大学762数学分析历年考研真题
2013年北京师范大学601专业基础(数学分析85分,高等代数65分)考研真题(回忆版)2013年北京师范大学数学科学学院硕士生入学考试真题(回忆版)601专业基础(数学分析85分,高等代数65分)1.叙述并证明克拉默法则.2.证明时,,其中.3.阶矩阵,证明可以分解为的形式,其中为可逆矩阵,有成立.4.为欧式空间的子空间,证明:5.求二元函数的极值点.6.求三元函数的积分.7.求的泰勒级数,并且求出(貌似是这个级数).8.已知是上的函数(忘了是否连续了),的导函数在上黎曼可积,是的一个分割 求证:.9.在上连续,且,求证:(1)在上一致连续;(2)为上一固定数,,证明等度连续;(3)一致收敛.2012年北京师范大学601专业基础(数学分析85分,高等代数65分)考研真题(回忆版)2012年北京师范大学数学科学学院硕士生入学考试真题(回忆版)601专业基础(数学分析85分,高等代数65分)数学分析部分1.曲线是由和围成的封闭曲线(1)求曲线的外法向量(2)已知(不记得了),求,其中,为弧长微元,为外法向量2.求3.求,其中,由围成4.已知单调不减,连续,,连续,利用这些条件证明一个不等式5.判断(大概是这样的)的定义域,连续性,可微性高等代数部分1.给出了一个含参数a的线性方程组(1)当方程组有非零解时,求参数a的值(2)求线性方程组的秩2.计算行列式3.存在非零向量,使得,证明:(1)线性无关(2)秩=秩4.给出了一个阶实数矩阵(1)求矩阵的特征值和特征向量(2)求正交矩阵和对角矩阵,使得2007年北京师范大学数学分析与高等代数考研真题2006年北京师范大学数学分析与高等代数考研真题2005年北京师范大学数学分析考研真题2004年北京师范大学数学分析考研真题2003年北京师范大学数学分析考研真题2002年北京师范大学数学分析考研真题2001年北京师范大学数学分析考研真题2000年北京师范大学数学分析考研真题1999年北京师范大学数学分析考研真题1998年北京师范大学数学分析考研真题。
北京大学1996-2011、2013年数学分析考研真题(缺2012年)
∫
1
0
则反常积分 ∫ f ( x) g ( x) d x( ) f ( x) d x ,∫ g ( x) d x 都存在,
0 0
1
1
A.收敛, B.发散, C.不一定收敛, D.一定不收敛。 4.若 lim nan = 1 ,则
n →∞
∑a
n =1
∞
n
( )
A.发散, B.收敛, C.不一定收敛, D.绝对收敛。 5.设 f ( x, y ) 在区域 {( x, y ) : x 2 + y 2 < 1} 上有定义,若存在偏导数
五、 (15 分)求第二型曲面积分
∫∫ ( x d y d z + cos y d z d x + d x d y) ,其中 S 为
S
x2 + y 2 + z 2 = 1 的外侧。
六、 (20 分)设 x = f (u , v) , y = g (u , v) ,w = w( x, y ) 有二阶连续偏导数,满足
− x2
)
, (a 2 + α 2 ≠ 0)
2π n+ n + ⋅⋅⋅ + sin π ) 2. lim( n →∞ n + 1 1 1 n+ n+ n 2 sin
3. lim
n →∞ 0
π
∫ (1 − x )
n n
1
2 n
dx
4. lim 1 + a , (a > 0)
n →∞
三、 (45 分)求解下列命题: 1.求级数
北京大学 2002 年研究生入学考试试题
考试科目:数学分析 一、 (10 分)求极限: lim(
2007年北京师范大学数学分析高等代数试题参考解答
2
dx
a+b
∫
2 | f ′(t)|dt +
b
∫ dx
x
| f ′(t)|dt
a
x
a+b
a+b
2
2
∫ =
a+b
∫
2 | f ′(t)|dt
t
∫
dx +
b
∫ | f ′(t)|dt
b
dx
a
a
a+b 2
t
3
∫ ≤ b−a
a+b 2
| f ′(t)|dt
+
b
−
a
∫
b
∫ | f ′(t)|dt = b − a
∂2 u ∂x2
+
∂2 u ∂y2
=
0化为平面极坐标下的
方程.
解,x = r cos θ, y = r sin θ.
∂u ∂r
=
∂u ∂x
∂x ∂r
+
∂u ∂y
∂y ∂r
=
∂u ∂x
cos θ +
∂u ∂y
sin θ
∂u ∂θ
=
∂u ∂x ∂x ∂θ
+
∂u ∂y ∂y ∂θ
=−r
∂u ∂x
sin
θ
+
∫ | f ( a + b ) ≤ | f (x)| + |
x
| f ′(x)|dx|
2
a+b
2
两边在[a,
b]上积分.∫ab
|
f
(
a+b 2
)|dx