2018人教版八年级数学下册 第十八章 单元测试题及答案
八年级数学下第18章平行四边形单元测试题2018人教版附答案
平行四边形第十八章)分分,共30一、选择题(每小题3) DAD=6,则△ABC的周长为(1.如图,在菱形ABCD中,AC=8,16 .BA.1420 .DC.18DAB.若∠2cm的菱形ABCD沿边AB所在的直线翻折得到四边形ABEF2.如图,将边长为)C30°,则四边形CDFE的面积为(=22 2cm3cm B.A.22 4cm6cmD.C.题图第3 2第题图S内,且满足3,动点P在矩形ABCD3.如图,在矩形ABCD中,AB=5,AD=ABP△1) 的最小值为(D P到A,B两点距离之和PA+PBS,则点ABCD矩形3D.412 C.529 B.34 A.4、矩形具有而菱形不具有的性质是( B )A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等5.已知在?ABCD中,BC-AB=2cm,BC=4cm,则?ABCD的周长是(B)A.6cm B.12cm C.8cm D.10cm6.如图,跷跷板AB的支柱OD经过它的中点O,且垂直于地面BC,垂足为D,OD=50cm,当它的一端B着地时,另一端A离地面的高度AC为(D)A.25cm B.50cmC.75cm D.100cm8题图第第7题图第6题图的延长BAEAD于,交,BC=8,∠BCD的平分线交.如图,在7?ABCD中,AB=6)(A线于F,则AF的长等于6 . D 4 C 3 2 A.B..) C CPQ的度数为(CDQABCD.如图,在正方形中,P、分别为BC、的中点,则∠8 .45°C .50°A.B60°.D70°9.小敏不慎将一块平行四边形玻璃打碎成如图所示的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,她带了两块碎玻璃,其编号应该是(D).①④B .①② A D.②③.③④C10、如图,下列四组条件中,能判定□ABCD是正方形的有( D )①AB=BC,∠A=90°;②AC⊥BD,AC=BD;③OA=OD,BC=CD;④∠BOC=90°,∠ABD=∠DCA.A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共24分)11.已知平行四边形ABCD中,∠B+∠D=270°,则∠C=________.12.在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD的面积为________.13.如图,?ABCD的对角线AC,BD交于点O,点E是AD的中点,△BCD的周长为18,则△DEO的周长是________.题图第15 第13题图.AOB,AB=1,∠=60°,则AD=________交于点.14在矩形ABCD中,对角线AC、BDOAD90°,点D,E分别是AB,AC的中点,点F是ACB15.如图,在Rt△ABC中,∠=的中点.若.EF=________AB=8,则2处.若∠1=∠落在点BD折叠,使点AA′16.如图,将平行四边形ABCD沿对角线________.50°=,则∠A′的度数为第18题图第17题图第16题图22,则菱形AECF的面积为ABCD17.如图,已知菱形的面积为120cm50cm,正方形________cm. 的边长为,BCG的边长分别为3和1,点F,分别在边EFCG18.如图,正方形ABCD和正方形PG,则PG的长为________.AECD上,P为的中点,连接)分(共66三、解答题,的延长线于BAF并延长交的中点,连接的边?E)(819.分如图,是ABCDADCE CD若=BF6,求的长.20.(8分)如图,四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD∥BC,AC=8,BD=6.(1)求证:四边形ABCD是平行四边形;(2)若AC⊥BD,求?ABCD的面积.21.(8分)如图,在?ABCD中,已知AD>AB.(1)实践与操作:作∠BAD的平分线交BC于点E,在AD上截取AF=AB,连接EF(要求:尺规作图,保留作图痕迹,不写作法);(2)猜想并证明:猜想四边形ABEF的形状,并给予证明.22.(8分)如图,在矩形ABCD中,对角线AC,BD相交于点O,E是CD的中点,连接OE.过点C作CF∥BD交线段OE的延长线于点F,连接DF.求证:(1)△ODE≌△FCE;(2)四边形ODFC是菱形.23.(10分)如图,E,F,G,H分别是边AB,BC,CD,DA的中点,连接EF,FG,GH,HE.(1)判断四边形EFGH的形状,并证明你的结论;(2)当BD,AC满足什么条件时,四边形EFGH是正方形?请说明理24.(10分)如图,在正方形ABCD中,点E是对角线AC上一点,且CE=CD,过点E作EF⊥AC交AD于点F,连接BE.(1)求证:DF=AE;2的值.2时,求BEAB(2)当=25.(14分)如图①,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD 上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形;(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动.①当点Q与点C重合时(如图②),求菱形BFEP的边长;②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.答案17.1316.105°15.212.3013.914.311.45°18.519.解:∵E是?ABCD的边AD的中点,∴AE=DE.(2分)∵四边形ABCD是平行四边形,∴AB=CD=6,AB∥CD,∴∠F=∠DCE.(4分)在△AEF和△DEC中,∠F=∠DCE,???∠AEF=∠DEC,∴△AEF≌△DEC(AAS),(6分)∴AF=CD=6,∴BF=AB +AF=??AE=DE,12.(8分)20.(1)证明:∵O是AC的中点,∴OA=OC.∵AD∥BC,∴∠ADO=∠CBO.(2分)在∠ADO =∠CBO,???中,COB和△△AOD∠AOD=∠COB,??OA=OC,∴△AOD≌△COB,∴OD=OB,∴四边形ABCD是平行四边形.(4分)(2)解:∵四边形ABCD是平行四边形,AC⊥BD,∴四边形ABCD是菱形,(6分)∴S?ABCD1AC·BD =24.(8分) 221.解:(1)如图所示.(3分)(2)四边形ABEF是菱形.(4分)证明如下:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE =∠AEB.∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB.(6分)由(1)得AF=AB,∴BE=AF.又∵BE∥AF,∴四边形ABEF是平行四边形.(7分)∵AF=AB,∴四边形ABEF是菱形.(8分)22.证明:(1)∵CF∥BD,∴∠DOE=∠CFE.∵E是CD的中点,∴CE=DE.(2分)在△ODE和△FCE中,∠DOE=∠CFE,???∠DEO=∠CEF,∴△ODE≌△FCE(AAS).(4分)??DE=CE,(2)∵△ODE≌△FCE,∴OD=FC.(5分)∵CF∥BD,∴四边形ODFC是平行四边形.(6分)在矩形ABCD中,∵OC=OD,∴四边形ODFC是菱形.(8分)23.解:(1)四边形EFGH为平行四边形.(1分)理由如下:在△ABC中,∵E,F分别11是边AB,BC的中点,∴EF∥AC,且EF=AC,同理有GH∥AC,且GH=AC,(3分)∴EF∥GH 22且EF=GH,故四边形EFGH是平行四边形.(5分)1,BDEFGH当AC=BD且AC⊥BD时,四边形是正方形.(6分)理由如下:∵EH=(2)21EFGH ∴四边形=AC,∴若AC=BD,则有EH=EF.又∵四边形EFGH是平行四边形,EF2))∵AC⊥BD,∴∠EHG=90°.∴四边形EFGH为正方形.(10分是菱形.(8分AEF,在正方形ABCD中,∠D=90°.CEF=∠EF⊥AC,∴∠∵24.(1)证明:连接CF,=CFCF??.(2EF,∴DF =RtRt△CDF≌△CEF(HL).=90°在Rt△CDF和Rt△CEF中,∴?,CECD=??=AE,∴△AEF 是等腰直角三角形,∴是正方形ABCD的对角线,∴∠EAF=45°)分∵AC)AE.(4分DFEF,∴=中,由勾股定△ABC=AB=2.在RtBC(2)解:在正方形ABCD中,∠ABC =90°,CD=22)22-2.(6AC-CD+BC=分=2AB=∴22.∵CE=CD,AE=AC-CE理得AC==AB是等腰直角三角形,AEH是正方形ABCD的角平分线,∴△于H.∵AC过点E作EH⊥AB22在=2.(8AH=2-分(2-)AE-=(222)=2)2-2,∴BH=AB∴EH=AH-=2222222)2.(108分+-(2BERt△BEH中,由勾股定理得-=BH2)+EH4==(2)关于与点EPQ,∴点B点落在边(1)证明:∵折叠纸片使BAD上的E处,折痕为25.,EFPBPFAB,∴∠=∠.(2分)又∵EF∥,PQ对称,∴PB=PEBF=EF,∠BPF=∠EPF)分BFEP为菱形.(4BF=EF=EP,∴四边形∴∠EPF=∠EFP,∴EP=EF,∴BP=∵.=90°,∠A=∠D=AD=5cm,CD=AB=3cmBC(2)解:①∵四边形ABCD是矩形,∴22=4cmCE,-在Rt△CDE中,CDDE=5cm.(5关于点B与点EPQ对称,∴CE=BC=分)2EP,∴-EPPB=3-=3AE(7.分)在Rt△APE中,=1,AP4DEAE∴=AD-=5-=1(cm)5522,∴EP=cm,∴菱形BFEP的边长为1EP+(3-)cm.(9分)=33②当点Q与点C重合时,如图②所示.点E离点A最近,由①知,此时AE=1cm.(11分)当点P与点A重合时,如图③所示.点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,(13分)∴点E在边AD上移动的最大距离为2cm.(14分)。
人教版八年级数学下册第十八章卷(附答案)
人教版八年级数学下册第十八章卷(附答案)一、选择题1.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形2.下列命题中正确的是()A.对角线互相平分的四边形是菱形B.对角线互相平分且相等的四边形是菱C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是菱形3.如图,某花木场有一块等腰梯形ABCD的空地,其各边的中点分别是E、F、G、H,测得对角线AC=10m,现想利用篱笆围成四边形EFGH场地,则需篱笆得总长度是()A.40 m B.30 m C.20 m D.10 m4.在梯形ABCD中,AD∥BC,对角线AC⊥BD,且AC=10,BD=6,则该梯形的面积是()A.30B.15C.D.605.如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP 的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不改变D.线段EF的长不能确定6.已知一个直角梯形,一腰长为6,这腰与一底所成的角为30°,那么另一腰的长是()A.1.5B.3C.6D.97.如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是()A.B.C.D.8.用两个全等的直角三角形拼下列图形:①矩形;②菱形;③正方形;④平行四边形;⑤等腰三角形;⑥等腰梯形.其中一定能拼成的图形是()A.①②③B.①④⑤C.①②⑤D.②⑤⑥二、填空题9.如图,在平行四边形ABCD中,DB=DC,∠C=70°,AE⊥BD于E,则∠DAE=度.10.如图,点E、F在▱ABCD的对角线BD上,要使四边形AECF是平行四边形,还需添加一个条件.(只需写出一个结论,不必考虑所有情况).11.如图所示,工人师傅做铝合金窗框分下面三个步骤进行:(1)先截出两对符合规格的铝合金窗料(如图①所示),使AB=CD,EF=GH.(2)摆放成如图②的四边形,则这时窗框的形状是,根据的数学道理是.(3)将直尺紧靠窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④,说明窗框合格,这时窗框是,根据的数学道理是.12.如图,菱形ABCD中,AC=2,BD=5,P是AC上一动点(P不与A、C重合),PE∥BC交AB于E,PF∥CD交AD于F,则图中阴影部分(即多边形BCPFEB)的面积为.13.如图所示,菱形ABCD中,对角线AC,BD相交于点O,若再补充一个条件能使菱形ABCD成为正方形,则这个条件是.(只填一个条件即可,答案不唯一)14.等腰梯形两底之差为12cm,高为6cm,则其锐角底角为度.15.若矩形的对角线长为8cm,两条对角线的一个交角为60°,则该矩形的面积为cm2.三、解答题16.已知:如图,在梯形ABCD中,AD∥BC,CD=10cm,∠B=45度,∠C=30度,AD=5cm.求:(1)AB的长;(2)梯形ABCD的面积.17.如图,在菱形ABCD中,∠A与∠B的度数比为1:2,周长是48cm.求:(1)两条对角线的长度;(2)菱形的面积.18.如图,在平行四边形ABCD中,E、F是AC上的两点,且AE=CF.求证:DE=BF.19.如图,在梯形ABCD中,AD∥BC,AB∥DE,AF∥DC,E、F两点在边BC上,且四边形AEFD是平行四边形.(1)AD与BC有何等量关系,请说明理由;(2)当AB=DC时,求证:平行四边形AEFD是矩形.20.如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE∥AB交MN于E,连接AE、CD.请判断四边形ADCE的形状,说明理由.答案1.D.2.D.3.C.4.A.5.C.6.B.7.D.8.B.9.20°.10.平行四边形.11.平行四边形;两组对边分别相等的四边形是平行四边形;矩形;由一个角是直角的平行四边形是矩形.12.2.5.13.∠BAD=90°或AC=BD.14.45°.15..16.解:(1)如图,过点D作DE⊥BC于E,∵∠C=30°,CD=10cm,∴DE=CD=×10=5cm,过A作AH⊥BC于H,则AH=DE=5cm,∵∠B=45°,∴△ABH是等腰直角三角形,∴AB=AH=5cm;(2)∵AH、DE都是梯形的高线,∴四边形AHED是矩形,∴HE=AD=5cm,又∵BH=AH=5cm,CE===5cm,∴BC=BH+HE+CE=5+5+5=(10+5)cm,∴梯形ABCD的面积=(5+10+5)×5=(+)cm.17.解:(1)连接BD,∵∠A与∠B互补,即∠A+∠B=180°,∠A与∠B的度数比为1:2,∴∠A=60°,∠B=120°.∴∠BDA=120°×=60°.∴△ABD是正三角形.∴BD=AB=48×=12cm.AC=2×=12cm.∴BD=12cm,AC=12cm.(2)S菱形ABCD=×两条对角线的乘积=×12×12=72cm218.证明:在平行四边形ABCD中,则AD=CB,∠DAE=∠BCF,又AE=CF,∴△ADE≌△CBF(SAS),∴DE=BF.19.(1)解:AD=BC.理由如下:∵AD∥BC,AB∥DE,AF∥DC,∴四边形ABED和四边形AFCD都是平行四边形.∴AD=BE,AD=FC,又∵四边形AEFD是平行四边形,∴AD=EF.∴AD=BE=EF=FC.∴AD=BC.(2)证明:∵四边形ABED和四边形AFCD都是平行四边形,∴DE=AB,AF=DC.∵AB=DC,∴DE=AF.又∵四边形AEFD是平行四边形,∴平行四边形AEFD是矩形.20.证明:∵MN是AC的垂直平分线,∴AE=CE,AD=CD,OA=OC,∠AOD=∠EOC=90°,∵CE∥AB,∴∠DAO=∠ECO,∴△ADO≌△CEO.(ASA)∴AD=CE,OD=OE,∵OD=OE,OA=OC,∴四边形ADCE是平行四边形又∵∠AOD=90°,∴▱ADCE是菱形.。
人教版八年级下册数学第十八章测试题(附答案)
人教版八年级下册数学第十八章测试题(附答案)一、单选题1.如图,阴影部分是一个长方形,则长方形的面积是()A. 3cm2B. 4cm2C. 5cm2D. 6cm22.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,则AC的值为()A. 2√2B. √6C. 2D. √23.下列不能判断是正方形的有()A. 对角线互相垂直的矩形B. 对角线相等的矩形C. 对角线互相垂直且相等的平行四边形D. 对角线相等的菱形4.菱形的周长等于其高的8倍,则这个菱形的较大内角是()A. 30°B. 120°C. 150°D. 135°二、填空题5.正方形的对角线长为2,则正方形的边长为________cm.面积为________cm2.6.如图,BD是正方形ABCD的对角线,点E在CD上,若CE=3,△ABE的面积为8,则△DBE的周长为________。
7.如图,在平行四边形ABCD中,DE平分∠ADC,AD=5,BE=2,则ABCD的周长是________.8.如图,正方形ABCD的边长为10cm,E是AB上一点,BE=4cm,P是对角线AC上一动点,则PB+PE的最小值是________cm.9.若一个正方形的面积为a2+a+ 14,则此正方形的周长为________.10.如图为等边△ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AB=3,DE=1,则△EFC的面积为________.11.如图,在平面直角坐标系中,O为坐标原点,A(1,3),B(2,1),直角坐标系中存在点C,使得O,A,B,C四点构成平行四边形,则C点的坐标为________.12.菱形的面积是16,一条对角线长为4,则另一条对角线的长为________.13.已知▱ABCD的对角线AC,BD相交于点O,△AOD是等边三角形,且AD=4,则AB的长为________.14.如图,边长为4的菱形ABCD中,∠ABC=30°,P为BC上方一点,且S△PBC=14S菱形ABCD,则PB+PC的最小值为________.三、解答题15.如图,点O是平行四边形ABCD的对角线交点,AD>AB,E,F是AB边上的点,且EF=1 2AB;G,H是BC边上的点,且GH=13BC,若S1,S2分别表示ΔEOF和ΔGOH的面积,求S1:S2的比。
人教版八年级数学下册第十八章测试卷及答案
人教版八年级数学下册第十八章测试卷及答案一.选择题(共10小题,每小题3分,共30分)1.下面的性质中,平行四边形不一定具有的是( )A.对角互补 B.邻角互补C.对角相等 D.对边相等2.如图,D,E分别是△ABC的边AB,AC上的点,且AD=DB,AE=EC.若DE=4,则BC的长为( )A.2 B.4 C.6 D.83. 如图,在菱形ABCD中,下列结论错误的是( )A.AC=BD B.AC⊥BD C.AB=AD D.∠1=∠24. 如图,在平行四边形ABCD中,已知∠ODA=90°,AC=10 cm,BD=6 cm,则AD的长为( )A.4 cm B.5 cm C.D.8 cm5.四边形ABCD的对角线AC与BD相交于点O,下列四组条件中,一定能判定四边形ABCD为平行四边形的是( )A.AD∥BC B.OA=OC,OB=ODC.AD∥BC,AB=DC D.AC⊥BD6.如图,在矩形ABCD中,AD=6,对角线AC与BD相交于点O,AE⊥BD,垂足为E,且DE=3BE,则AE的长为( )A.2 B..3 D.7.如图,四边形ABCD 的两条对角线相交于点O,且互相平分.添加下列条件后,不能判定四边形ABCD为菱形的是( )A.AC⊥BD B.AB=ADC.AC=BD D.∠ABD=∠CBD8.如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,则∠BCE的度数是( )A.67.5° B.22.5° C.30° D.45°9.如图,矩形ABCD的对角线AC与BD相交于点O,CE∥BD,DE∥AC,AD==2,则四边形OCED的面积为( )A..4 C..810. 如图,在四边形ABCD中,∠A=∠B=90°,AD=10 cm,BC=8 cm,点P从点D出发,以1 cm/s的速度向点A运动,点M从点B同时出发,以相同的速度向点C运动,当其中一个动点到达端点时,两个动点同时停止运动.设点P的运动时间为t(单位:s),下列结论正确的是( )A.当t=4时,四边形ABMP为矩形B.当t=5时,四边形CDPM为平行四边形C.当CD=PM时,t=4D.当CD= PM时,t=4或6二.填空题(共8小题,每小题3分,共24分)11.在四边形ABCD中,AB=DC,请添加一个条件,使四边形ABCD成为平行四边形,你所添加的条件为__________.12. .如图,在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD的面积为________.13.若以A(-0.5,0),B(2,0),C(0,1)三点为顶点画平行四边形,则第四个顶点不可能在第________象限.14.如图,E,F是正方形ABCD的对角线AC上的两点,若AC=8,AE=CF=2,则四边形BEDF的周长是________.15.如图,BD为正方形ABCD的对角线,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连接DF.若CE =1 cm,则BF=__________cm.16.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加______________条件,才能保证四边形EFGH是矩形.17.如果一个平行四边形的一个内角的平分线分它的一边为1:2两部分,那么称这样的平行四边形为"协调平行四边形",称该边为"协调边".当协调边为6时,这个平行四边形的周长为________.18.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,…,以此类推,第n个正方形的面积为________.三.解答题(共7小题, 66分)19.(8分) 如图,在▱ABCD中,E为AD延长线上的一点,F为CB延长线上的一点,且DE=BF,连接AF,CE.求证:四边形AFCE是平行四边形.20.(8分) 如图,在▱ABCD中,点E,F分别在边CB,AD的延长线上,且BE=DF,EF分别与AB,CD交于点G,H.求证AG=CH.21.(8分) 如图,在▱ABCD中,点E和点F是对角线BD上的两点,且BF=DE.(1)求证:BE=DF;(2)求证:△ABE≌△CDF.22.(8分) 在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.23.(10分)如图,正方形ABCD的边长为4,E,F分别为DC,BC的中点.(1)求证△ADE≌△ABF;(2)求△AEF的面积.24.(10分)如图,在正方形ABCD中,点E,F分别在BC和CD上,且BE=DF,连接EF.(1)求证:AE=AF;(2)过点E作EM∥AF,过点F作FM∥AE,求证:四边形AEMF是菱形.25.(14分)如图,在矩形ABCD中,AB=3,BC=4.点M,N在对角线AC上,且AM=CN,E,F分别是AD,BC的中点.(1)求证:△ABM≌△CDN;(2)点G是对角线AC上的点,∠EGF=90°,求AG的长.参考答案1-5ADAAB 6-10CCBAD11. AB ∥DC(答案不唯一)_12. 3013. 三15.(216.AC ⊥BD(答案不唯一) 17. 16或2018. 2n -1 19.证明:∵四边形ABCD 是平行四边形,∴AD ∥BC,AD =BC,∴AE ∥CF. 又∵DE =BF,∴AD +DE =BC +BF,即AE =CF,∴四边形AFCE 是平行四边形20.证明:∵四边形ABCD 是平行四边形,∴AD =BC,AD ∥BC,∠A =∠C.∴∠F =∠E.∵BE =DF,∴AD +DF =CB+BE,即AF =CE.在△AGF 和△CHE 中, {∠A =∠CAF =CE ∠F =∠E ∴△AGF ≌△CHE(ASA).∴AG =CH.21. 证明:(1)∵BF =DE,∴BF -EF =DE -EF,即BE =DF.(2)∵四边形ABCD 为平行四边形,∴AB =CD,且AB ∥CD.∴∠ABE =∠CDF.在△ABE 和△CDF 中, {AB =CD∠ABE =∠CDF BE =DF∴△ABE ≌△CDF(SAS).22. 证明:(1)∵四边形ABCD 是正方形,∴AB =AD,∠B =∠D =90°.又∵BE =DF,∴Rt△ABE≌Rt△ADF(SAS),∴AE =AF(2)∵EM ∥AF,FM ∥AE,∴四边形AEMF 是平行四边形.又由(1)知AE =AF,∴▱AEMF 是菱形23. (1)证明:∵四边形ABCD 为正方形,∴AB =AD =DC =CB,∠D =∠B =90°.∵E,F 分别为DC,BC 的中点,∴DE =12DC,BF =12BC.∴DE =BF.在△ADE 和△ABF 中, {AD =AB∠D =∠B DE =BF ∴△ADE ≌△ABF(SAS).(2)解:由题易知△ABF,△ADE,△CEF 均为直角三角形,且AB =AD =4,DE =BF =CE =CF =12×4=2,∴S △AEF =S 正方形ABCD -S △ADE -S △ABF -S △CEF =4×4-12×4×2-12×4×2-12×2×2=6.24. (1)证明:∵AF ∥BC,∴∠AFE =∠DBE.∵E 是AD 的中点,∴AE =DE.在△AFE 和△DBE 中, {∠AFE =∠DBE∠FEA =∠BED AE =DE ∴△AFE ≌△DBE(AAS).∴AF =BD.∵AD 是BC 边上的中线,∴DC =BD.∴AF =DC.(2)解:四边形ADCF 是菱形.证明:由(1)得AF =DC,又∵AF ∥BC,∴四边形ADCF 是平行四边形.∵AC ⊥AB,AD是斜边BC 上的中线,∴AD =12BC =DC.∴四边形ADCF 是菱形.25.解:(1)∵四边形ABCD 是矩形,∴AB ∥CD,AB =CD,∴∠MAB =∠NCD.在△ABM 和△CDN 中,{AB =CD∠MAB =∠NCDAM =CN ∴△ABM ≌△CDN(SAS)(2)如图,连接EF,交AC 于点O.∵四边形ABCD 是矩形,∴AD =BC,∠ABC =90°,∵AB =3,BC =4,∴AC =5,∵E,F 分别是AD,BC 的中点,∴AE =BF =CF,∴四边形ABFE 是矩形,∴EF =AB =3.在△AEO 和△CFO 中,{∠EOA =∠FOC∠EAO =∠FCO AE =CF ∴△AEO ≌△CFO(AAS),∴EO =FO,AO =CO,∴O 为EF,AC 中点.∵∠EGF =90°,OG =12EF =32,∴AG =AO -OG =1或AG =AO +OG =4,∴AG 的长为1或4。
2018年人教版初二数学下册第十八章 单元测试题及答案
2018年人教版初二数学下册第十八章单元测试题及答案2017-2018学年八年级数学下册第十八章单元测试卷一、选择题(每小题3分,共30分)1.若平行四边形中两个内角的度数比为1:3,则其中较小的内角是()。
A。
30° B。
45° C。
60° D。
75°2.如图,已知四边形ABCD是平行四边形,对角线AC,BD相交于点O,E是BC的中点,以下说法错误的是()。
A。
OE=DCB B。
OA=OC C。
∠BOE=∠OBA D。
∠XXX∠OCE3.如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为()。
A。
3cm B。
2cm C。
23cm D。
4cm4.已知四边形ABCD是平行四边形,下列结论中不正确的是()。
A。
当AB=BC时,它是菱形 B。
当AC⊥BD时,它是菱形C。
当∠ABC=90°时,它是矩形 D。
当AC=BD时,它是正方形5.若顺次连接四边形各边中点所得的四边形是菱形,则该四边形一定是()。
A。
矩形 B。
一组对边相等,另一组对边平行的四边形C。
对角线相等的四边形 D。
对角线互相垂直的四边形6.如图,已知点E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠XXX的度数为()。
A。
20° B。
25° C。
30° D。
35°7.在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下结论正确的有()。
① AC=5;②∠A+∠C=180°;③ AC⊥BD;④ AC=BD.A。
①②③ B。
①②④ C。
②③④ D。
①③④8.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B'处,若AE=2,DE=6,∠EFB'=60°,则矩形ABCD的面积是()。
A。
12 B。
24 C。
123 D。
1639.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()。
人教版初中八年级下册数学第十八章单元检测卷3附答案解析
第十八章卷(3)一、选择题1.在平行四边形ABCD中,∠A:∠B:∠C=2:3:2,则∠D=()A.36°B.108°C.72°D.60°2.如果等边三角形的边长为3,那么连接各边中点所成的三角形的周长为().DC.3 A.9B.6)3.菱形具有而矩形不一定具有的性质是(.对角互补D.对角线互相平分.对角线互相垂直A B.对角线相等C是平行四边形,还需满足条ABCDBC.要判别四边形.四边形ABCD中,AD∥4)件(D=180°+∠D.∠AD=180°C.∠B+∠A=180°BA.∠A+∠C=180°.∠B+∠一定则四边形ABCD若顺次连接四边形ABCD各边的中点所得四边形是菱形,5.)是(.对角线相等的四边形DC.矩形A.菱形B.对角线互相垂直的四边形,则这个菱形的面积34:.已知一个菱形的周长是620cm,两条对角线的比是)是(222296cm.D B.24cm48cm C.A.12cm)(则矩形的周长为.矩形一个内角的平分线把矩形的一边分成3cm和5cm,7.以上都不对D.26cm C26cm 22cm16cmA.B.或上的两点,则图形中与AB边ABCDAD,分别为平行四边形,.如图,已知8EF)BEC △的面积相等的三角形有(个5 D.C.4个2A.个B.3个二、填空题是,请再添加一个条件,使四边形ABCD中,AB=DC,AD=BC9.在四边形ABCD(写出一种即可).矩形.你添加的条件是2.cm,则图中阴影部分的面积为10.如图,正方形ABCD的边长为4cm.AEF=对折后使两部分重合,若∠1=50°,则∠沿11.如图,把矩形ABCDEF的BABCD两条对角线的交点坐标是坐标系的原点,点A,.已知平行四边形12.,则C,D的坐标分别是,2,1坐标分别为(﹣,﹣5)(﹣1,)的取AC=8,则BD,交于点中,13.已知平行四边形ABCDAC,BDO,若AB=6.值范围是三、解答题分成面,用图①,②的两种方法可以将ABCDABCD14.如图,已知平行四边形,积相等的四部分.你还能用其他不同的方法(不包括如图①,②的两种方法)分成面积相等的四部分吗?请画出对应的示意图.将平行四边形ABCD,∥BD在中,点EAB的延长线上,且EC15.如图,在平行四边形ABCD.求证:BE=AB.BC于点F,连接的边DC延长到点E,使CE=DCAE,交?16.如图,将ABCD;≌△ECF(1)求证:△ABF是矩形.,求证:四边形AC、BEABEC,连接若∠(2)AFC=2∠D分ADABCD.已知:如图,平行四边形的对角线AC的垂直平分线与边、BC17.、EF别相交于点是菱形.求证:四边形AFCE18.已知:如图,正方形ABCD中,E为CD边上一点,F为BC边延长线上一点,CE=CF.(1)观察猜想BE和DF的大小关系,并证明你的猜想;(2)若∠BEC=60°,求∠EFD的度数.答案1.在平行四边形ABCD中,∠A:∠B:∠C=2:3:2,则∠D=()A.36°B.108°C.72°D.60°【考点】平行四边形的性质.【专题】选择题.【分析】利用平行四边形的内角和是360度,平行四边形对角相等,则平行四边形的四个角之比为,∠A:∠B:∠C:∠D=2:3:2:3,则∠D的值可求出.【解答】解:在?ABCD中,∠A:∠B:∠C:∠D=2:3:2:3,设每份比为x,则得到2x+3x+2x+3x=360°,解得x=36°则∠D=108°.故选B.【点评】题考查四边形的内角和定理及平行四边形的性质,平行四边形的对角相等,邻角互补.2.如果等边三角形的边长为3,那么连接各边中点所成的三角形的周长为().DC.36A.9B.三角形中位线定理;等边三角形的性质.【考点】选择题.【专题】,根据三角形的中位线定理可求出中点三角形的3【分析】等边三角形的边长为边长,所以中点三角形的周长可求解.每条中位线的长解:连接各边中点所成的线段是等边三角形的中位线,【解答】.3=,故新成的三角形的周长为是×.故选D三角形的三条中位线把本题利用了等边三角形的性质和中位线的性质,【点评】因而每个小三角形的周长为原三角形周长个小三角形,原三角形分成可重合的4.的3.菱形具有而矩形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补【考点】矩形的性质;菱形的性质.【专题】选择题.【分析】根据菱形对角线垂直平分的性质及矩形对交线相等平分的性质对各个选项进行分析,从而得到最后的答案.【解答】解:A、菱形对角线相互垂直,而矩形的对角线则不垂直;故本选项符合要求;B、矩形的对角线相等,而菱形的不具备这一性质;故本选项不符合要求;C、菱形和矩形的对角线都互相平分;故本选项不符合要求;D、菱形对角相等;但菱形不具备对角互补,故本选项不符合要求;故选A.【点评】此题主要考查了学生对菱形及矩形的性质的理解及运用.菱形和矩形都具有平行四边形的性质,但是菱形的特性是:对角线互相垂直、平分,四条边都相等.4.四边形ABCD中,AD∥BC.要判别四边形ABCD是平行四边形,还需满足条件()A.∠A+∠C=180°B.∠B+∠D=180°C.∠B+∠A=180°D.∠A+∠D=180°平行四边形的判定.【考点】选择题.【专题】AB【分析】四边形ABCD中,已经具备AD∥BC,再根据选项,选择条件,推出选项符合.即可,只有D∥CD,AD∥CB1【解答】解:A、如图,∵,B=180°A∴∠+∠,如果∠A∠C=180°+,B=则可得:∠∠C这样的四边形是等腰梯形,不是平行四边形,故此选项错误;,BAD,∵、如图1∥CB∴∠A+∠B=180°,如果∠B+∠D=180°,则可得:∠A=∠D,这样的四边形是等腰梯形,不是平行四边形,故此选项错误;,∥CB、如图1,∵ADC,∠B=180°∴∠A+,∠B=180°再加上条件∠A+是平行四边形,故此选项错误;也证不出是四边形ABCD,2D、如图,D=180°A+∠∵∠,CD∴AB∥,CBAD∥∵是平行四边形,故此选项正确;ABCD∴四边形.D故选、四边形的此题主要考查了平行四边形的判定,判定方法共有五种:1【点评】、对角、两组对边分别相等;4两组对边分别平行;2、一组对边平行且相等;3、两组对角分别相等;则四边形是平行四边形.线互相平分,5一定ABCDABCD各边的中点所得四边形是菱形,则四边形5.若顺次连接四边形)是(.对角线相等的四边形DB.对角线互相垂直的四边形C.矩形.菱形A三角形中位线定理;菱形的判定.【考点】选择题.【专题】,要是四边形BDEF=EF=FGFGEH【分析】根据三角形的中位线定理得到∥,,,即可得到答案.为菱形,得出EF=EH【解答】解:如图,的中点,ABCB,分别是边AD,DC,G∵E,F,,H,AC,EF=BDEH∥AC,FG=AC,FG∥,∴EH=AC,EF=FGFG,∴EH∥是平行四边形,EFGH∴四边形,AC=BD假设,∵EH=AC,EF=BD,则EF=EH是菱形,∴平行四边形EFGH即可推出四边形是菱形,即只有具备AC=BD.故选D平行四边形的判定三角形的中位线定理,【点评】本题主要考查对菱形的判定,等知识点的理解和掌握,灵活运用性质进行推理是解此题的关键.,则这个菱形的面积4:3.已知一个菱形的周长是620cm,两条对角线的比是)是(222296cmD48cmC..A.12cm B.24cm菱形的性质.【考点】选择题.【专题】,首先求出菱形的边长,然后根据勾股8x设菱形的对角线分别为和6x【分析】的值,最后根据菱形的面积公式求出面积的值.定理求出x,6x【解答】解:设菱形的对角线分别为8x和,已知菱形的周长为,故菱形的边长为5cm20cm根据菱形的性质可知,菱形的对角线互相垂直平分,22,即可知(3x()4x+)=25解得x=1,故菱形的对角线分别为8cm和6cm,2,×6=24cm所以菱形的面积=×8.B故选解答本题的关键是掌握菱形的对角本题主要考查菱形的性质的知识点,【点评】线互相垂直平分,此题比较简单.)5cm,则矩形的周长为(7.矩形一个内角的平分线把矩形的一边分成3cm 和.以上都不对26cmD26cmC.A.16cmB.22cm或矩形的性质.【考点】选择题.【专题】.那CBE,矩形对边平行得到∠AEB=∠【分析】利用角平分线得到∠ABE=∠CBE 的不同情况得到矩形各边AEAB=AE.那么根据么可得到∠ABE=∠AEB,可得到长,进而求得周长.解:如图【解答】是角平分线.BEABCD∵矩形中.EBC∴∠ABE=∠.BC∵AD∥.AEB=∠EBC∴∠.∠ABEAEB=∴∠.∴AB=AE.5cm平分线把矩形的一边分成3cm和;则矩形的周长是:22cmAD=CB=8cmAE=3cm当时:则AB=CD=3cm,.,则周长是:26cmAD=CB=8cmAB=CD=5cmAE=5cm当时:,.故选B【点评】本题主要运用了矩形性质和等角对等边知识,正确地进行分情况讨论是解题的关键.8.如图,已知E,F分别为平行四边形ABCD边AD,AB上的两点,则图形中与△BEC的面积相等的三角形有()个.D5 C.4个A.2个B.3个【考点】平行四边形的性质;三角形的面积.选择题.【专题】等底同高的三角形,根据平的面积相等的三角形就是与△BEC【分析】与△BECSADB,又等底同高的三角形有:△BCD,△行四边形的性质,图中与与△BEC△的面积相等的三BEC=S,可以得到S,由此可以得到图形中与△=S BECDFCDCBDFC△△△角形的个数.等底同高,BD,∴△BEC与△【解答】解:如图,∵AD∥CB∴它们面积相等,,BADBCD≌△又根据平行四边形的性质得△,,△BCDADB∴图中与与△BEC等底同高的三角形有:△,∥CD又∵AB,S=S∴DFCDCB△△,=S∴S BECDFC△△个.3BEC的面积相等的三角形有则图形中与△.故选B根据平行四边形的性质确定面积相等的【点评】本题考查了平行四边形的性质,三角形的底和高是解决本题的关键.是,请再添加一个条件,使四边形ABCDAB=DC.在四边形ABCD中,,AD=BC9(写出一种即可).矩形.你添加的条件是矩形的判定.【考点】【专题】填空题.【分析】已知两组对边相等,如果其对角线相等可得到△ABD≌△ABC≌△ADC ≌△BCD,进而得到,∠A=∠B=∠C=∠D=90°,使四边形ABCD是矩形.【解答】解:若四边形ABCD的对角线相等,则由AB=DC,AD=BC可得.△ABD≌△ABC≌△ADC≌△BCD,所以四边形ABCD的四个内角相等分别等于90°即直角,所以四边形ABCD是矩形,故答案为:对角线相等.【点评】此题属开放型题,考查的是矩形的判定,根据矩形的判定,关键是要得到四个内角相等即直角.2.cm,则图中阴影部分的面积为ABCD的边长为4cm10.如图,正方形【考点】正方形的性质.填空题.【专题】由图形条件可以看出阴一条对称轴为其对角线;正方形为轴对称图形,【分析】影部分的面积为正方形面积的一半.2.4=8cm=解:依题意有S×4×【解答】阴影.8故答案为:对应点的连线与对称轴的位置关系是互相垂直,本题考查轴对称的性质.【点评】对称轴上的任何一点到两个对应点之间的对应点所连的线段被对称轴垂直平分,距离相等,对应的角、线段都相等.则∠1=50°对折后使两部分重合,沿把矩形.11如图,ABCDEF若∠,AEF.矩形的性质;翻折变换(折叠问题)【考点】填空题.【专题】的度数,再由平行线的性质即可2根据折叠的性质及∠1=50°可求出∠【分析】解答.折叠而成,EFBA解:∵四边形EFGH是四边形【解答】,32=∠∴∠,1=50°1=180°,∠+∠3+∠∵∠2,×)=130°=65°∴∠2=∠3=(180°﹣50°,又∵AD∥BC,AEF+∠EFB=180°∴∠.﹣65°=115°∴∠AEF=180°据此找出图中解答此题的关键是明白折叠不变性:折叠前后图形全等.【点评】相等的角便可轻松解答.的B12.已知平行四边形ABCD两条对角线的交点坐标是坐标系的原点,点A,.,的坐标分别是1,(﹣,2),则C,D5坐标分别为(﹣1,﹣)坐标与图形性质;平行四边形的性质.【考点】填空题.【专题】两条对角线的交点坐标是坐标系的原点,平行四已知平行四边形ABCD【分析】关于原点对称,D与点两条对角线相互平分,所以点AC、点B与点边形ABCD的坐标.B的坐标,故可求得C,DA由于已知点,关于原点对称,D与点与点【解答】解:由题意知:点AC、点B,(﹣),﹣的坐标分别为(﹣,∵点AB15,12,)∴C,D的坐标分别是(1,5)(1,﹣2).故本题答案为:(1,5)(1,﹣2)【点评】本题考查平行四边形的性质与点的坐标的表示、关于原点对称的点的特征,已知点(a,b),则其关于原点对称的点的坐标为(﹣a,﹣b).13.已知平行四边形ABCD中,AC,BD交于点O,若AB=6,AC=8,则BD的取值范围是.【考点】平行四边形的性质;三角形三边关系.【专题】填空题.【分析】首先要作辅助线,利用平行四边形的性质得CE=BD,BE=CD=AB=6,再利用三角形,两边之和大于第三边,两边之差小于第三边即可求得.【解答】解:如图,过点C作CE∥BD,交AB的延长线于点E,是平行四边形,ABCD∵四边形,CD∴AB∥是平行四边形,BECD∴四边形,BE=CD=AB=6CE=BD,∴,AC=8AE=2AB=12,∴在△ACE中,,+AC<CE<AEAE﹣AC,8<12+8即12﹣<BD.20BD<∴4<.<20故答案为:4<BD转化到同一个三角形中,利用平行BDAB,,【点评】本题通过作辅助线,把AC 四边形的性质和三角形中三边关系求解.分成面ABCD.如图,已知平行四边形ABCD,用图①,②的两种方法可以将14,积相等的四部分.你还能用其他不同的方法(不包括如图①,②的两种方法)分成面积相等的四部分吗?请画出对应的示意图.将平行四边形ABCD【考点】平行四边形的性质.解答题.【专题】将两条对角线任意旋转利用其中心,【分析】因为平行四边形是中心对称图形,一定的角度即可解决问题.解:【解答】本题需利用平行四边形的中心对称性解决问题.【点评】,BDEC中,点E在AB的延长线上,且∥15.如图,在平行四边形ABCD.BE=AB求证:平行四边形的判定与性质.【考点】解答题.【专题】是平行BECD【分析】可根据两组对边分别平行的四边形是平行四边形证四边形四边形.是平行四边形,【解答】证明:∵ABCD,CDAB∴∥,即∥BECD又∵EC∥BD,∴四边形BECD是平行四边形.∴BE=CD.∴BE=AB.【点评】此题主要考查平行四边形的判定:两组对边分别平行的四边形是平行四边形.16.如图,将?ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.(1)求证:△ABF≌△ECF;(2)若∠AFC=2∠D,连接AC、BE,求证:四边形ABEC是矩形.平行四边形的判定与性质;全等三角形的判定与性质;矩形的判定.【考点】解答题.【专题】,ECF∠ABF=∠∥DC,AB=DC,?AB【分析】(1)先由已知平行四边形ABCD得出;ECF从而证得△ABF≌△是平行四边形,通过角的关系得出ABEC(1)得的结论先证得四边形(2)由,得证.AE=BCFA=FE=FB=FC,是平行四边形,∵四边形(1)ABCD【解答】证明:,,AB=DC∴AB∥DC,∠ECF∴∠ABF=,AB=EC∵EC=DC,∴中,ECFABF和△在△,,AB=EC,∠AFB=∠EFC∠∵∠ABF=ECF.)(AAS≌△∴△ABFECF,∥ABEC,∵(2)AB=EC是平行四边形,∴四边形ABEC∴FA=FE,FB=FC,∵四边形ABCD是平行四边形,∴∠ABC=∠D,又∵∠AFC=2∠D,∴∠AFC=2∠ABC,∵∠AFC=∠ABC+∠BAF,∴∠ABC=∠BAF,∴FA=FB,∴FA=FE=FB=FC,∴AE=BC,∴四边形ABEC是矩形.【点评】此题考查的知识点是平行四边形的判定与性质,全等三角形的判定和性质及矩形的判定,关键是先由平行四边形的性质证三角形全等,然后推出平行四边形通过角的关系证矩形.17.已知:如图,平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别相交于点E、F.求证:四边形AFCE是菱形.菱形的判定.【考点】解答题.【专题】菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:【分析】①定义;②四边相等;③对角线互相垂直平分.具体选择哪种方法需要根据已知条件来确定..FC证明:方法一:∵【解答】AE∥.∠∴∠EAC=FCA,COF中,∵在△AOE与△.(ASA)AOE∴△≌△COF,∴EO=FO为平行四边形,∴四边形AFCE,⊥AC又∵EF为菱形;∴四边形AFCE.COF方法二:同方法一,证得△AOE≌△.AE=CF∴是平行四边形.AFCE∴四边形的垂直平分线,ACEF是又∵,∴EA=EC是菱形;∴四边形AFCE有一组邻边相等全等三角形的判定和性质,【点评】本题利用了中垂线的性质,的平行四边形是菱形.边延长线上一点,为BC为中,ECD边上一点,F正方形18.已知:如图,ABCD.CE=CF 的大小关系,并证明你的猜想;DF(1)观察猜想BE和的度数.BEC=60°,求∠EFD(2)若∠正方形的性质;全等三角形的判定与性质.【考点】解答题.【专题】所在的两个直角三角形全等,进而证明这DF、BE可利用边角边证明(1)【分析】.两条线段相等;(2)由(1)中的全等可得∠DFC=∠BEC=60°,易得∠CFE=45°,相减即可得到所求角的度数.【解答】解:(1)BE=DF.理由如下:如图,∵四边形ABCD是正方形,∴BC=CD,∠BCD=∠DCF=90°,又∵CE=CF,∴△BCE≌△DCF,∴BE=DF;(2)∵△BCE≌△DCF,∠BEC=60°,∴∠DFC=∠BEC=60°,∵∠DCF=90°,CE=CF,∴∠CFE=45°,∴∠EFD=∠DFC﹣∠CFE=15°.【点评】综合考查了正方形的性质及全等三角形的判定与性质.用到的知识点为:考查两条线段的大小关系,一般考虑相等,证明这两条线段所在的三角形的全等是常用的方法.。
人教版八年级数学下册第十八章测试题(附答案)
人教版八年级数学下册第十八章测试题(附答案)一、单选题1.如图,四边形为菱形,A,B两点的坐标分别是,,点C,D在坐标轴上,则菱形的面积等于()A. 4B. 6C.D.2.如图所示,在平行四边形中,EF过对角线的交点,若AB=4,BC=7,OE=3,则四边形的周长是()A. 14B. 11C. 17D. 103.如图,□ABCD的对角线AC、BD相交于点O,且AC+BD=24.若△OAB的周长是20,则AB的长为()A. 8B. 9C. 10D. 124.已知长方形的长为,宽比长少,则这个长方形的周长为()A. B. C. D.5.如图,在中,是边的中点,交对角线于点,若,则等于()A. B. C. D. .6. 下列命题中,假命题是()A. 菱形的面积等于两条对角线乘积的一半B. 矩形的对角线相等C. 有两个角相等的梯形是等腰梯形D. 对角线相等的菱形是正方形7.关于□ABCD的叙述,正确的是()A. 若AB⊥BC,则□ABCD 是菱形;B. 若AC⊥BD,则□ABCD 是正方形;C. 若AC=BD,则□ABCD 是矩形;D. 若AB=AD,则□ABCD 是正方形;8.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A. B. C. 5 D. 49.如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是A. AB=CDB. AD=BCC. AB=BCD. AC=BD10.如图,某同学作线段AB的垂直平分线:分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点C,D,则直线CD为线段AB的垂直平分线.根据这个同学的作图方法可知四边形ADBC一定是()A. 菱形B. 平行四边形C. 矩形D. 一般的四边形11.如图,点E、G分别是正方形ABCD的边CD、BC上的点,连接AE、AG分别交对角线BD于点P、Q.若∠EAG=45°,BQ=4,PD=3,则正方形ABCD的边长为()A. 6B. 7C. 7D. 512.如图,平行四边形AOBC中,∠AOB=60°,AO=8,AC=15,反比例函数y=(x>0)图象经过点A,与BC交于点D,则的值为()A. B. C. D.二、填空题13.如图所示,在□ABCD中,两条对角线交于点O,有△AOB≌△________,△AOD≌△________.14.已知平行四边形ABCD中,∠B=5∠A,则∠D=________ °.15.一组正方形按如图所示的方式放置,其中顶点B1在y轴上,顶点C1,E1,E2,C2,E3,E4,C3……在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3……则正方形A2017B2017C2017D2017的边长是________;16.如图,在平行四边形ABCD中,过对角线BD上一点P作EF∥AB,GH∥AD,与各边交点分别为E、F、G、H,则图中面积相等的平行四边形的对数有________对;17.如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数y=(x<0)的图象经过点C,则k的值为________.18.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E,F分别在边BC和CD上,下列结论:①CE=CF= ;②∠BAE=15°;③BE+DF=EF;④S正方形ABCD=2+ .其中正确的序号是________(把你认为正确的都填上)19.平行四边形的周长等于56cm,两邻边长的比为3:1,那么这个平行四边形较长的边长为________ cm.20.如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(8,4),则第4个正方形的边长为________,第n 正方形的边长为________.三、综合题21.如图,矩形中,,.,分别在,上,点与点关于所在的直线对称,是边上的一动点.(1)连接,,求证四边形是菱形;(2)当的周长最小时,求的值;(3)连接交于点,当时,求的长.22.如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在P处,折痕为EC,连接AP并延长AP交CD于F点.(1)求证:四边形AECF为平行四边形;(2)若矩形ABCD的边AB=6,BC=4,求△CPF的面积.23.如图,在四边形ABCD中,E、F分别为对角线BD上的两点,且BE=DF.(1)若四边形AECF是平行四边形,求证:四边形ABCD是平行四边形;(2)若四边形AECF是菱形,则四边形ABCD是菱形吗?请说明理由?(3)若四边形AECF是矩形,则四边形ABCD是矩形吗?不必写出理由.24.如图,长方形AOBC,以O为坐标原点,OB、OA分别在x轴、y轴上,点A的坐标为(0,8),点B 的坐标为(10,0),点E是BC边上一点,把长方形AOBC沿AE翻折后,C点恰好落在x轴上点F处.(1)求点E、F的坐标;(2)求AF所在直线的函数关系式;(3)在x轴上求一点P,使△PAF成为以AF为腰的等腰三角形,请直接写出所有符合条件的点P的坐标.答案一、单选题1. A2. C3. A4. A5. B6. C7. C8. A9. D 10. A 11.A 12. C二、填空题13. △COD;△COB 14.150 15.16. 3 17. -6 18.①②④ 19.21 20. 8;三、综合题21. (1)证明:如图:连接,,交于点四边形是矩形,,,,,点与点关于所在的直线对称,,,,且四边形是平行四边形,且四边形是菱形;(2)解:如图,作点关于的对称点,连接,交于点,此时的周长最小,四边形是菱形,,,点,点关于对称(3)解:如图,延长,延长交于点,过点作于,交于点,过点作于点,由(2)可知,,,四边形是矩形,,,,,,,22. (1)解:由折叠得到BE=PE,EC⊥PB,∵E为AB的中点,∴AE=EB=PE,∴AP⊥BP,∴AF∥EC,∵四边形ABCD是矩形,∴AE∥FC,∴四边形AECF为平行四边形;(2)解:过P作PM⊥DC,交DC于点M,在Rt△EBC中,EB=3,BC=4,根据勾股定理得:EC= =5,∵S△EBC= EB•BC= EC•BQ,∴BQ= = ,由折叠得:BP=2BQ= ,在Rt△ABP中,AB=6,BP= ,根据勾股定理得:AP= = ,∵四边形AECF为平行四边形,∴AF=EC=5,FC=AE=3,∴PF=5﹣= ,∵PM∥AD,∴= ,即= ,解得:PM= ,则S△PFC= FC•PM= ×3× =23. (1)证明:连接AC交BD于点O,如图所示:∵四边形AECF是平行四边形,∴OA=OC,OE=OF,∵BE=DF,∴OB=OD,∴四边形ABCD是平行四边形(2)解:理由如下:∵四边形AECF是菱形,∴AC⊥BD,由(1)知,四边形ABCD是平行四边形;∴四边形ABCD是菱形(3)解:四边形ABCD不是矩形;理由如下:∵四边形AECF是矩形,∴OA=OC,OE=OF,AC=EF,∴OA=OC=OE=OF,∵BE=DF,∴OB=OD,∴AC<BD,∴四边形ABCD是平行四边形,不是矩形24. (1)解:∵长方形AOBC,以O为坐标原点,OB、OA分别在x轴、y轴上,点A的坐标为(0,8),点B的坐标为(10,0),∴AC=OB=10,BC=OA=8,∵长方形AOBC沿AE翻折后,C点恰好落在x轴上点F处,∴∆ACE≅∆AFE,∴AF=AC=10,∵在Rt∆AOF中,,∴,∴点F坐标是:(6,0),BF=10-6=4,设BE=x,则FE=CE=8-x,∵在Rt∆BEF中,,∴,解得:x=3,∴点E的坐标是:(10,3)(2)解:设AF所在直线的函数解析式为:y=kx+b,把A(0,8),F(6,0),代入y=kx+b,得:,解得:∴AF所在直线的函数解析式为:(3)解:①当AF=AP时,如图1,则OP=OF=6,图1∴点P坐标是:(-6,0),②当AF=PF时,如图2,则PF=10,OP=PF-OF=10-6=4,∴点P坐标是:(-4,0),图2③当AF=PF时,如图3,则PF=10,OP=PF+OF=10+6=16,∴点P坐标是:(16,0),图3。
人教版八年级数学(下册)第十八章测试卷(及答案)
人教版八年级数学(下册)第十八章测试卷1.下列命题:①平行四边形的对边相等;②对角线相等的四边形是矩形;③正方形既是轴对称图形,又是中心对称图形;④一条对角线平分一组对角的平行四边形是菱形.其中真命题的个数是( )A.1B.2C.3D.42.如图1所示,在△ABC中,已知AB=8,BC=6,CA=4,DE是中位线,则DE=( )A.4B.3C.2D.1图13.如图2所示,在矩形ABCD中,对角线AC,BD交于点O,以下说法错误的是( )图2A.∠ABC=90°B.AC=BDC.OA=OBD.OA=AD4.如图3所示,在▱ABCD中,已知AD=12 cm,AB=8 cm,AE平分∠BAD交BC于点E,则CE的长等于( )图3A.8 cmB.6 cmC.4 cmD.2 cm5.如图4所示,在▱ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC交BC于点E,交AD于点F,连接AE,CF.则四边形AECF是( )图4A.梯形B.矩形C.菱形D.正方形6.如图5所示,在菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为( )图5A.14B.15C.16D.177.如图6所示,在矩形ABCD中,AB=,BC=3,AE⊥BD于点E,则AE=( )图6A.B.C.D.8.如图7所示,图①、图②、图③分别表示甲、乙、丙三人由A地到B地的路线图(箭头表示行进的方向).其中E为AB的中点,AH>HB,判断三人行进路线长度的大小关系为( )①②③图7A.甲<乙<丙B.乙<丙<甲C.丙<乙<甲D.甲=乙=丙9.菱形的两条对角线长分别是6和8,则此菱形的边长是.10.如图8所示,Rt△ABC中,∠ACB=90°,D为斜边AB的中点,AB=10 cm,则CD的长为cm.图811.如图9所示,已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD=度.图912.如图10所示,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为.如图1013.如图11所示,已知面积为1的正方形ABCD的对角线相交于点O,过点O任意作一条直线分别交AD,BC于点E,F,则阴影部分的面积是.图1114.如图12所示,四边形ABCD与四边形AECF都是菱形,点E,F在线段BD上,已知∠BAD=120°,∠EAF=30°,则=.图1215.如图13所示,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.求证:四边形BFCE是平行四边形.图1316.如图14所示,四边形ABCD是正方形,点G是BC上的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F.图1417.如图15所示,四边形ABCD的对角线AC,BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD=AC,则四边形ABCD是什么特殊四边形?请证明你的结论.图1518.如图16所示,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.图16参考答案1.C2.B3.D4.C5.C6.C7.D8.D9.510.511.22.512.2013.14.15. 证明:∵AB=DC,∴AC=DB.在△AEC和△DFB中,∴△AEC≌△DFB(SAS),∴BF=EC,∠ACE=∠DBF,∴EC∥BF,∴四边形BFCE是平行四边形.16. 求证:AF=BF+EF.证明:∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°.∵DE⊥AG,∴∠DEG=∠AED=90°,∴∠ADE+∠DAE=90°.又∵∠BAF+∠DAE=∠BAD=90°,∴∠ADE=∠BAF.∵BF∥DE,∴∠AFB=∠DEG=∠AED.在△ABF与△DAE中,∴△ABF≌△DAE(AAS),∴BF=AE.∵AF=AE+EF,∴AF=BF+EF.17. 解:(1)证明:∵DF∥BE,∴∠FDO=∠EBO,∠DFO=∠BEO.∵O为AC的中点,∴OA=OC,∵AE=CF,∴OA-AE=OC-CF,即OE=OF.在△BOE和△DOF中,∴△BOE≌△DOF(AAS).(2) 若OD=AC,则四边形ABCD是矩形,理由为:证明:∵△BOE≌△DOF,∴OB=OD,∴OA=OB=OC=OD,即BD=AC,∴四边形ABCD为矩形.18. 解: (1)证明:如图.∵CE平分∠BCA,∴∠1=∠2.又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO.同理,FO=CO.∴EO=FO.(2) 当点O运动到AC的中点时,四边形AECF是矩形. 证明:∵EO=FO,点O是AC的中点,∴四边形AECF是平行四边形.又∵∠1=∠2,∠4=∠5,∴∠2+∠4=×180°=90°,即∠ECF=90°.∴四边形AECF是矩形.。
人教版八年级数学第十八章 单元测试卷附答案
人教版八年级数学第十八章测试卷一、单选题(共10题;共18分)1.如图,在学习“四边形”一章时,小明的书上有一图因不小心被滴上墨水,看不清所印的字,请问被墨迹遮盖了的文字应是()A. 四边形B. 梯形C. 矩形D. 菱形2.如图,Rt△ABC中,∠C=90°,AC=8,AB=10,D、E分别为AC、AB中点,连接DE,则DE长为()A. 4B. 3C. 8D. 53.已知四边形ABCD是平行四边形,下列结论中错误的是()A. 当时,它是菱形B. 当时,它是菱形C. 当时,它是矩形D. 当时,它是正方形4.如图,平行四边形ABCD的对角线交于点E,已知AB=5cm,△ABE的周长比△BEC的周长小3cm,则AD 的长度为( )A. 8cmB. 5cmC. 3cmD. 2cm5.如图,在四边形中,是边的中点,连接并延长,交的延长线于点,.添加一个条件使四边形是平行四边形,你认为下面四个条件中可选择的是()A. B. C. D.6.如图,正方形ABCD的面积为8,菱形AECF的面积为4,则EF的长是()A. 4B.C. 2D. 17.以下四个条件中可以判定四边形是平行四边形的有( )①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线相等.A. 1个B. 2个C. 3个D. 4个8.如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论①AE=BF;②AE⊥BF;③ AO=OE;④ 中,错误的有()A. 1个B. 2个C. 3个D. 4个9.如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD,若测得A,C之间的距离为12cm,点B,D之间的距离为16m,则线段AB的长为()A. 9.6cmB. 10cmC. 20cmD. 12cm10.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1,BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②当x=1时,四边形ABC1D1是菱形;③当x=2时,△BDD1为等边三角形;④s=(x﹣2)2(0<x<2)。
人教版八年级数学下册第18章平行四边形单元测试题含答案
图 18- Z- 9 9.如图 18- Z- 9,在菱形 ABCD中, AB= 4,线段 AD的垂直平分线交 AC于点 N,△ CND 的周长是 10,则 AC的长为 ________. 10.如图 18- Z- 10,矩形 ABCD中, E是 BC的中点,矩形 ABCD的周长是 20 cm, AE=5 cm,则 AB的长为 ________ cm.
(1) 求证: AF= DC; (2) 若 AB⊥AC,试判断四边形 ADCF的形状,并证明你的结论.
3
图 18- Z-16 17. (12 分 ) 如图 18-Z- 17,在四边形 ABCD中, AB= AD, CB= CD, E 是 CD上一点, BE 交 AC于点 F,连接 DF. (1) 求证:∠ BAC=∠ DAC,∠ AFD=∠ CFE; (2) 若 AB∥CD,试证明四边形 ABCD是菱形; (3) 在 (2) 的条件下,试确定 E点的位置,使∠ EFD=∠ BCD,并说明理由.
图 18- Z-14
15. (12 分) 如图 18- Z- 15,四边形 ABCD是矩形,把矩形沿对角线 点 E 处, CE与 AD相交于点 O.
(1) 求证: AO= CO; (2) 若∠ OCD= 30°, AB= 3,求△ AOC的面积.
AC折叠,点 B 落在
图 18- Z-15
16.(12 分 ) 如图 18- Z-16,在△ ABC中, AD是 BC边上的中线, E是 AD的中点,过点 A 作 BC的平行线交 BE的延长线于点 F,连接 CF.
1 点,∴ CD= 2AB,∴ CD= EF.
4. B 5.C 6.C [ 解析 ] 作点 F 关于 BD的对称点 F′, 连接 EF′交 BD于点 P,则 PF= PF′, 此时 EP+ FP= EP+ F′ P. 由两点之间线段最短可知:当 E, P, F′
人教版初二数学8年级下册 第18章(平行四边形)单元测试题2(含答案)
人教版八年级数学下册 第十八章平行四边形单元测试题一、选择题(30分)1.下列条件中,不能判定四边形是平行四边形的是( )A .两组对边分别相等B .一组对边平行,另一组对边相等C .两组对角分别相等D .一组对边平行且相等2.如图,四边形是平行四边形,将延长至点,若,则等于( )A .B .C .D .3.如图,AB CD ,AD BE ,点B 、C 、E 在一直线上,连结AC 、AE ,则图中与△AED 面积相等的三角形有( )A .0个B .1个C .2个D .3个4.如图,剪两张对边平行的纸片随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是( )A .∠ABC +∠BCD =180°B .∠ABC =∠ADC C .AB =CD D .AB =BC5.如图,平行四边形ABCD 的周长为36,对角线AC ,BD 相交于点O ,点E 是CD 的中点,BD =12,则△DOE 的周长是( )A .12B .15C .18D .246.如图,在矩形ABCD 中,AB =8,,将矩形沿AC 折叠,点D 落在点D '处,则重叠部分的面积为( )ABCD BC E 100A ∠=︒1∠100︒50︒80︒60︒////4BC =AFC △A .6B .8C .10D .127.如图,Rt ABC 中,,,D 、E 分别为AB ,AC 的中点,P 为DE 上一点,且满足∠EAP =∠ABP ,则PE =( )A .1B.C .D.28.如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中中间一张正方形纸片的面积为c,另两张直角三角形纸片的面积都为a ,则这个平行四边形的面积一定可以表示为( )A .4bB .4aC .4a +cD .3a +4c9.如图,四边形为菱形,,两点的坐标分别是,,,点,在坐标轴上,则菱形的周长等于( )A .8B .4C .6D .58,6AB AC ==90BAC ∠=︒6532ABCD A B 0)(0,1)C D ABCD10.如图,在矩形中,、、、分别是、、、 的中点,,则四边形的周长为( )A .24B .18C .12D .6二、填空题(15分)11.点D 、E 分别是△ABC 边AB 、AC 的中点,已知BC =12,则DE =_____12.如图在矩形ABCD 中,对角线AC ,BD 相交于点O ,E ,F 分别是AO ,AD 的中点,若cm ,cm ,则________cm .13.如图,点E ,F 在正方形ABCD 的对角线AC 上,AC =10,AE =CF =3,则四边形BFDE 的面积为 _____.14.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于点E 、F ,连接PB 、PD ,若AE =2,PF =9,则图中阴影面积为______;15.如图,菱形的对角线,相交于点,是中点,且,则菱形的周长为_______.ABCD E F G H AB BC CD DA 6BD =EFGH 12AB =16BC =EF=ABCD AC BD O E AB 3EO =ABCD三、解答题(75分)16.如图,四边形是正方形,是等边三角形,求的度数.17.如图,若四边形的对角线与相交于点O ,且,则四边形是正方形吗?18.如图,△ABC 中,BE ⊥AC ,CF ⊥AB ,垂足分别为E 、F ,M 为BC 的中点.(1) 求证:ME =MF ;(2) 若∠A =40°,求∠FME 的度数.19.如图,已知中,,CE 是的中线,连接CE ,分别过点A ,C 作CE 和AB 的平行线相交于点D .(1)求证:四边形ADCE 是菱形;(2)若,,求菱形AECD的面积.ABCD CBE △AEB∠ABCD ACBD OA OB OC OD AB ====ABCD ACB △90ACB ∠=︒ACB △5CE =6BC =20.已知:如图,AB ⊥BD ,CD ⊥BD ,AD =BC .(1)求证:AB =DC .(2)连接AC 交BD 于点O ,求证:AO =CO .21.如图,把长方形纸片ABCD 沿EF 折叠后.点D 与点B 重合,点C 落在点的位置上.若,.(1)求、的度数;(2)求长方形纸片ABCD 的面积S .22.如图,矩形ABCD 中,AB=2,BC=5,E 、P 分别在AD .BC 上,且DE=BP=1.连接BE,EC,AP,DP,PD 与CE 交于点F,AP 与BE 交于点H .(1)判断△BEC 的形状,并说明理由;(2)判断四边形EFPH 是什么特殊四边形,并证明你的判断;(3)求四边形EFPH 的面积.23.如图,在长方形中,厘米,厘米.延长到点,使厘'C 160∠=︒2AE =2∠3∠ABCD 7AB =10AD =BC E 3CE =米,动点从点出发,以2厘米/秒的速度向终点匀速运动,连接.设运动时间为秒,解答下列问题:(1)当为何值时,为等腰直角三角形?(2)设四边形的面积为(平方厘米),试确定与的关系式;(3)当为何值时,的面积为长方形面积的?(4)若动点从点出发,以2厘米/秒的速度沿向终点运动,是否存在使和全等?若存在,请求出的值;若不存在,请说明理由P B C DP t t PCD APCD S S t t PCD ABCD 13P B BC CD DA →→A ABP △DCE t【参考答案】1.B 2.C 3.C 4.D 5.B 6.C 7.A 8.A 9.A 10.C 11.612.513.2014.15.2416.解:∵四边形ABCD 是正方形,△CBE 是等边三角形,∴AB =BC ,∠BAD =90°,BE =BC ,∠CBE =60°,∴AB =BE ,∠ABE =90°−60°=30°,∴∠AEB =∠EAB =(180°−30°)=75°.17.解:四边形ABCD 是正方形,理由是:∵OA =OB =OC =OD ,∴AC =BD ,四边形ABCD 是平行四边形,∴平行四边形ABCD 是矩形,∵,∴OA 2+OB 2=AB 2,∴∠AOB =90°,即AC ⊥BD ,∴四边形ABCD 是正方形.18.(1)证明:∵BE ⊥AC ,CF ⊥AB ,M 为BC 的中点,∴ME =BC ,MF =BC ,∴ME =MF ;(2)解:∵∠A =40°,∴∠ABC +∠ACB =180°-40°=140°,∵MF =MB ,ME =MC ,∴∠MFB =∠ABC ,∠MEC =∠ACB ,∴∠BMF +∠CME =360°-140°×2=80°,∴∠FME =180°-80°=100°.19.(1),四边形是平行四边形,,CE 是的中线,1812OA OB OC OD AB ====1212 //,//AD CE CD AE ∴ADCE 90ACB ∠=︒ACB △,四边形是菱形;(2)如图,连接,,,,在中,,四边形是菱形,,,,四边形是平行四边形,,菱形的面积.20.(1)在Rt △ABD 和Rt △CBD 中∴Rt △ABD ≌Rt △CBD (HL )∴AB =DC(2)∵AD =BC ,AB =DC∴四边形ABCD 为平行四边形∴平行四边形对角线相互平分∴AO =CO21.(1)证明:在长方形ABCD 中,AD =BC ,∠A =90,AD //BC∴∠1=∠2=60,由折叠可知,BE =DE∵12CE AB AE ∴==∴ADCE DE 5CE =6BC =210AB CE ==Rt ABC AC 8== ADCE ∴CD CE =//CD AE CE EB =∴CDEB 6DE BC ∴==∴ADCE 11862422AC DE ⋅=⨯⨯=BD BD AD BC=⎧⎨=⎩︒︒260BEF ∠=∠=︒32180BEF ∠+∠+∠=︒=60(2)在△ABE 中,∠A =90,∴∠ABE =30∴BE=2AE=4,∴AD=AE+DE=AE+BE=6,∵∴∴∴长方形ABCD 的面积22.解:(1)△BEC 为直角三角形,理由如下∵四边形ABCD 为矩形∴∠BAE=∠CDE=90°,AB=CD=2,AD=BC=5∵DE=1∴AE=AD -DE=4在Rt △ABE 中,在Rt △CDE 中∴BE 2+CE 2=25= BC 2∴△BEC 为直角三角形(2)四边形EFPH是矩形,理由如下∵四边形ABCD 为矩形∴AD ∥BC , AD=BC=5∵DE=BP=1,∴AD -DE=BC -BP=4即AE=CP=4∴四边形EBPD 和四边形APCE 均为平行四边形∴EB ∥DP ,AP ∥EC∴四边形EFPH 是平行四边形∵△BEC 为直角三角形,∠BEC=90°∴四边形EFPH 是矩形(3)∵四边形APCE 为平行四边形,四边形EFPH 是矩形∴∠EHP=90°∴∠BHP=180°-∠EHP=90°31802BEF ∠=︒-∠-∠ 1806060=︒-︒-︒︒︒360∠=︒︒90A ∠=︒AB =AB ===·S AB AD ====∵S △ABP =∴解得:∴HE=BE -在Rt △BHP 中,∴S 矩形EFPH= HP·HE=23.解:(1) 在长方形ABCD 中,AB =7厘米,AD =10厘米,∴BC =AD =10cm ,CD =AB =7cm ,,∵动点从点出发,以2厘米/秒的速度向终点匀速运动,∴BP =2t ,∴PC =BC -BP =10-2t ,∵是等腰直角三角形,∴CP =CD =7,∴10-2t =7,∴秒,∴当秒时,为等腰直角三角形;(2)∵ABCD 为长方形,∴ ,∴四边形APCD 为梯形,由(1)知,PC =10-2t ,∴(),∴();(3)∵AB =7,AD =10,∴,由(1)知:CP =10-2t ,是直角三角形,∴,1122BP AB AP BH ∙=∙111222BH ⨯⨯=BH ==8590D C B D C E ∠=∠=︒P B C PCD 32t =32t =PCD //AD BC ()()梯形1110210770722A P C D S C P A D C D t t =+⋅=⨯-+⨯=-05t ≤≤四边形707A P C D S t =-05t ≤≤2长方形10770ABCD S cm =⨯=PCD ()11102735722P C D S C P C D t t =⋅=⨯-⨯=-又∵的面积为长方形面积的,∴=,∴70= =105-21t ,∴t = ,∴当t =为何值时,的面积为长方形面积的;(4)在中,AB =7cm ,在中,CD =7cm ,∴AB =CD ,∵和全等,所以或,当时,BP =CE =3,∴2t =3,∴,当时,AP =CE =3,∴,∴t =12,综上所述,秒或t =12秒时,和全等PCD ABCD 13长方形A B C D S 3 PCD S ()3357t ⨯-5353PCD ABCD 13ABP △CDE △ABP △DCE ≅ ABP DCE ≅ ABP CDE ≅ ABP DCE 32t =≅ ABP CDE 1071023t ++-=32t =ABP △DCE。
人教版八年级下册数学第十八章平行四边形考试试题及答案
人教版八年级下册数学第十八章平行四边形一、选择题(每小题3分,共30分)1.菱形和矩形一定都具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分且相等D.对角线互相平分2.能够判定一个四边形是矩形的条件是()A.对角线互相平分且相等B.对角线互相垂直平分C.对角线相等且互相垂直D.对角线互相垂直3.已知正方形的边长为4cm,则其对角线长是()A.8cm B.16cm C.32cm D.4cm4.在矩形ABCD中,AB=3,BC=4,则点A到对角线BD的距离为()A.B.2C.D.5.如图,▱ABCD中,CE⊥AB,垂足为E,如果∠A=115°,则∠BCE等于()A.65°B.25°C.30°D.15°6.如图,在正方形ABCD中∠DAE=25°,AE交对角线BD于E点,那么∠BEC等于()A.45°B.60°C.70°D.75°7.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC8.如图,菱形ABCD中对角线相交于点O,且OE⊥AB,若AC=8,BD=6,则OE的长是()A.2.5B.5C.2.4D.不确定9.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=8,则HE等于()A.20B.16C.12D.810.如图,△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DEFG是正方形.若DE=2cm,则AC的长为()A.cm B.4cm C.cm D.cm二、填空题(每小题3分,共18分)11.菱形的两条对角线分别长10cm,24cm,则菱形的边长为cm,2.面积为cm12.如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD2.的面积为cm13.如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点.若AC+BD=24厘米,△OAB的周长是18厘米,则EF=厘米.14.如图,在平面直角坐标系中,四边形AOBC是菱形.若点A的坐标是(3,4),则菱形的周长为,点B的坐标是.15.如图,四边形ABCD是正方形,P在CD上,△ADP旋转后能够与△ABP′重合,若AB=3,DP=1,则PP′=.16.如图,在正方形ABCD的外侧,作等边△ADE,则∠AEB=.三、解答题(共52分)17.如图,点D、E、F分别是△ABC各边中点.求证:四边形ADEF是平行四边形.18.如图,BD是菱形ABCD的对角线,点E、F分别在边CD、DA上,且CE=AF.求证:BE=BF.19.如图,正方形ABCD的对角线AC、BD相交于点O,∠OCF=∠OBE.求证:OE=OF.20.已知:如图,在Rt△ABC中,∠ACB=90°,CD平分∠ACB,DE⊥BC,DF⊥AC,垂足分别为E、F,求证:四边形CFDE是正方形.21.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.参考答案一、选择题(每小题3分,共30分)1.菱形和矩形一定都具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分且相等D.对角线互相平分考点:菱形的性质;矩形的性质.分析:根据矩形的对角线的性质(对角线互相平分且相等),菱形的对角线性质(对角线互相垂直平分)可解.解答:解:菱形的对角线互相垂直且平分,矩形的对角线相等且平分.菱形和矩形一定都具有的性质是对角线互相平分.故选:D.点评:此题主要考查矩形、菱形的对角线的性质.熟悉菱形和矩形的对角线的性质是解决本题的关键.2.能够判定一个四边形是矩形的条件是()A.对角线互相平分且相等B.对角线互相垂直平分C.对角线相等且互相垂直D.对角线互相垂直考点:矩形的判定.分析:根据矩形的判定定理逐一进行判定即可.解答:解:A、对角线互相平分且相等的四边形是矩形,故正确;B、对角线互相垂直平分的是菱形,故错误;C、对角线相等且互相垂直的四边形不一定是矩形,故错误;D、对角线互相垂直的四边形不一定是矩形,故错误,故选A.点评:本题主要考查了对矩形定义和判定的理解.矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形.(2)有三个角是直角的四边形是矩形.(3)对角线互相平分且相等的四边形是矩形.3.已知正方形的边长为4cm,则其对角线长是()A.8cm B.16cm C.32cm D.4cm考点:勾股定理.分析:作一个边长为4cm的正方形,连接对角线,构成一个直角三角形如下图所示:由勾2=AB2+BC2,求出AC的值即可.股定理得AC解答:解:如图所示:四边形ABCD是边长为4cm的正方形,在Rt△ABC中,由勾股定理得:AC==4cm.所以对角线的长:AC=4cm.故选:D.点评:本题主要考查勾股定理的应用,应先构造一个直角三角形,在直角三角形中斜边的平方等于两直角边的平方和,作图可以使整个题变得简洁明了4.在矩形ABCD中,AB=3,BC=4,则点A到对角线BD的距离为()A.B.2C.D.考点:矩形的性质.分析:本题只要根据矩形的性质,利用面积法来求解.×3×4=6,解答:解:因为BC=4,故AD=4,AB=3,则S△DBC=×5AE,故×5AE=6,AE=.又因为BD==5,S△ABD=故选A.点评:本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.5.如图,▱ABCD中,CE⊥AB,垂足为E,如果∠A=115°,则∠BCE等于()A.65°B.25°C.30°D.15°考点:平行四边形的性质.分析:由平行四边形的性质得出邻角互补,求出∠B,再由角的互余关系求出∠BCE即可.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°,∴∠B=180°﹣115°=65°,∵CE⊥AB,∴∠BEC=90°,∴∠BCE=90°﹣∠B=90°﹣65°=25°;故选:B.点评:本题考查了平行四边形的性质、角的互余关系;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.6.如图,在正方形ABCD中∠DAE=25°,AE交对角线BD于E点,那么∠BEC等于()A.45°B.60°C.70°D.75°考点:正方形的性质.分析:首先证明△AED≌△CED,即可证明∠ECD=∠DAE=25°,从而求得∠BEC,再根据三角形内角和定理即可求解.解答:解:在△AED和△CED中,,∴△AED≌△CED,∴∠ECD=∠DAE=25°,又∵在△DEC中,∠CDE=45°,∴∠CED=180°﹣25°﹣45°=110°,∴∠BEC=180°﹣110°=70°.故选:C.点评:此题主要考查了正方形的性质,正确理解,证明△AED≌△CED是解题的关键.7.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB∥DC,AD=BC考点:平行四边形的判定.分析:根据平行四边形判定定理进行判断.解答:解:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意;故选D.点评:本题考查了平行四边形的判定.(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.8.如图,菱形ABCD中对角线相交于点O,且OE⊥AB,若AC=8,BD=6,则OE的长是()A.2.5B.5C.2.4D.不确定考点:菱形的性质;勾股定理.分析:根据菱形的性质可得AC⊥DB,AO=AC,BO=BD,然后利用勾股定理计算出AB长,再根据菱形的面积公式得到S菱形ABCD=×8×6=24,进而得到△AOB的长,然后根据直角三角形的面积计算出EO长即可.解答:解:∵四边形ABCD是菱形,∴AC⊥DB,AO=AC,BO=BD,∵AC=8,BD=6,×8×6=24,∴AO=4,BO=3,S菱形ABCD=,∴AB==5,S△AOB=6∵•AB•EO=×AO×BO,∴5EO=4×3,EO=,故选:C.点评:此题主要考查了菱形的性质、面积,以及勾股定理,关键是掌握菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.9.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=8,则HE等于()A.20B.16C.12D.8考点:三角形中位线定理;直角三角形斜边上的中线.分析:利用三角形中位线定理知DF=AC;然后在直角三角形AHC中根据“直角三角形斜边上的中线等于斜边的一半”即可将所求线段EH与已知线段DF联系起来了.解答:解:∵D、F分别是AB、BC的中点,∴DF是△ABC的中位线,∴DF=AC(三角形中位线定理);又∵E是线段AC的中点,AH⊥BC,∴EH=AC,∴EH=DF=8.故选D.点评:本题综合考查了三角形中位线定理、直角三角形斜边上的中线.三角形的中位线平行于第三边且等于第三边的一半.10.如图,△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DEFG是正方形.若DE=2cm,则AC的长为()A.cm B.4cm C.cm D.cm考点:三角形中位线定理;等腰三角形的性质;勾股定理;正方形的性质.专题:计算题.分析:根据三角形的中位线定理可得出BC=4,由AB=AC,可证明BG=CF=1,由勾股定理求出CE,即可得出AC的长.解答:解:∵点D、E分别是边AB、AC的中点,∴DE=BC,∵DE=2cm,∴BC=4cm,∵AB=AC,四边形DEFG是正方形.∴△BDG≌△CEF,∴BG=CF=1,∴EC=,∴AC=2cm.故选D.点评:本题考查了相似三角形的判定、勾股定理、等腰三角形的性质以及正方形的性质,是基础题,比较简单.二、填空题(每小题3分,共18分)11.菱形的两条对角线分别长10cm,24cm,则菱形的边长为13cm,面积为120cm2.考点:菱形的性质.分析:根据菱形的对角线性质,得出两条对角线的一半为5与12.然后可用勾股定理求出其边长.利用菱形的面积公式:对角线之积的一半进行计算.解答:解:根据题意可得AC=10cm,BD=24cm,∵四边形ABCD是菱形,∴AO=AC,BO=BD,AC⊥BD,∵AC=10cm,BD=24cm,∴AO=5cm,BO=12cm,∴AB==13cm,2).面积:AC•BD=×10×24=120(cm故答案为:13;120.点评:此题主要考查了菱形的性质,以及勾股定理的应用,关键是掌握菱形四边相等,对角线互相垂直平分.12.如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD2.的面积为2cm考点:菱形的性质;勾股定理.分析:因为DE丄AB,E是AB的中点,所以AE=1cm,根据勾股定理可求出DE的长,菱形的面积=底边×高,从而可求出解.解答:解:∵E是AB的中点,∴AE=1cm,∵DE丄AB,∴DE==cm.2.∴菱形的面积为:2×=2cm故答案为:2.点评:本题考查菱形的性质,四边都相等,菱形面积的计算公式以及勾股定理的运用等.13.如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点.若AC+BD=24厘米,△OAB的周长是18厘米,则EF=3厘米.考点:三角形中位线定理;平行四边形的性质.分析:根据平行四边形的性质可知OA=AC,OB=BD,结合AC+BD=24厘米,△OAB 的周长是18厘米,求出AB的长,利用三角形中位线定理求出EF的长.解答:解:∵▱ABCD的对角线AC,BD相交于点O,∴点O是AC、BD的中点,∵AC+BD=24厘米,∴OB+0A=12厘米,∵△OAB的周长是18厘米,∴AB=18﹣12=6厘米,∵▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,∴AB=2EF,∴EF=6÷2=3厘米,故答案为:3.点评:本题主要考查了三角形中位线定理以及平行四边形的性质的知识,解答本题的关键是求出AB的长,此题难度不大.14.如图,在平面直角坐标系中,四边形AOBC是菱形.若点A的坐标是(3,4),则菱形的周长为20,点B的坐标是(5,0).考点:菱形的性质;坐标与图形性质.分析:过A作AE⊥x轴于点E,根据勾股定理可求出OA的长,进而可求出菱形的周长,再由菱形的性质可得AO=AC=BO=BC=5,即可求出点B的坐标.解答:解:过A作AE⊥x轴于点E,∵点A的坐标是(3,4),∴OE=3,AE=4.∴AO==5,∵四边形AOBC是菱形,∴AO=AC=BO=BC=5,∴菱形的周长=4AB=20,点B的坐标是(5,0),故答案为:20,(5,0).点评:此题主要考查了菱形的性质,解题的关键是利用勾股定理求出OA的长,是2015届中考常见题型,比较简单.15.如图,四边形ABCD是正方形,P在CD上,△ADP旋转后能够与△ABP′重合,若AB=3,DP=1,则PP′=2.考点:旋转的性质.分析:由正方形的性质得出AB=AD=3,∠ABC=∠D=∠BAD=90°,由勾股定理求出AP,再由旋转的性质得出△ADP≌△ABP′,得出AP′=AP=,∠BAP′=∠DAP,证出△PAP′是等腰直角三角形,得出PP′=AP,即可得出结果.解答:解:∵四边形ABCD是正方形,∴AB=AD=3,∠ABC=∠D=∠BAD=90°,∴AP==,∵△ADP旋转后能够与△ABP′重合,∴△ADP≌△ABP′,∴AP′=AP=,∠BAP′=∠DAP,∴∠PAP′=∠BAD=90°,∴△PAP′是等腰直角三角形,∴PP′=AP=2;故答案为:2.点评:本题考查了旋转的性质、勾股定理、全等三角形的性质、等腰直角三角形的性质;熟练掌握正方形和旋转的性质是解决问题的关键.16.如图,在正方形ABCD的外侧,作等边△ADE,则∠AEB=15°.考点:正方形的性质;等边三角形的性质.专题:计算题分析:由四边形ABCD为正方形,三角形ADE为等比三角形,可得出正方形的四条边相等,三角形的三边相等,进而得到AB=AE,且得到∠BAD为直角,∠DAE为60°,由∠BAD+∠DAE求出∠BAE的度数,进而利用等腰三角形的性质及三角形的内角和定理即可求出∠AEB的度数.解答:解:∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=90°,∠DAE=60°,∴∠BAE=∠BAD+∠DAE=150°,又∵AB=AE,∴∠AEB==15°.故答案为:15°.点评:此题考查了正方形的性质,以及等边三角形的性质,利用了等量代换的思想,熟练掌握性质是解本题的关键.三、解答题(共52分)17.如图,点D、E、F分别是△ABC各边中点.求证:四边形ADEF是平行四边形.考点:三角形中位线定理;平行四边形的判定.专题:证明题.分析:根据三角形的中位线定理可得DE∥AC,EF∥AB,再根据两组对边分别平行的四边形是平行四边形证明即可.解答:证明:∵D、E分别为AB、BC的中点,∴DE∥AC,∵E、F分别为BC、AC中点,∴EF∥AB,∴四边形ADEF是平行四边形.点评:此题主要考查了三角形的中位线定理,勾股定理以及平行四边形的判定定理,关键是掌握三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.18.如图,BD是菱形ABCD的对角线,点E、F分别在边CD、DA上,且CE=AF.求证:BE=BF.考点:菱形的性质;全等三角形的判定与性质.专题:证明题.分析:根据菱形的性质可得AB=BC,∠A=∠C,再证明△ABF≌△CBE,根据全等三角形的性质可得BF=BE.解答:证明:∵四边形ABCD是菱形,∴AB=BC,∠A=∠C,∵在△ABF和△CBE中,,∴△ABF≌△CBE(SAS),∴BF=BE.点评:此题主要考查了菱形的性质,以及全等三角形的判定与性质,关键是掌握菱形的四条边都相等.19.如图,正方形ABCD的对角线AC、BD相交于点O,∠OCF=∠OBE.求证:OE=OF.考点:正方形的性质;全等三角形的判定与性质.专题:证明题.分析:根据正方形的性质及全等三角形的判定得到△OCF≌△OBE,从而可得到结论.解答:证明:∵四边形ABCD是正方形,∴AC⊥BD,即∠AOB=∠BOC=90°,∴BO=OC,∵∠OCF=∠OBE,∴△OCF≌△OBE,∴OE=OF.点评:本题利用了正方形的性质(正方形的四个角都是直角,对角线互相垂直平分且相等),还利用了全等三角形的判定.20.已知:如图,在Rt△ABC中,∠ACB=90°,CD平分∠ACB,DE⊥BC,DF⊥AC,垂足分别为E、F,求证:四边形CFDE是正方形.考点:正方形的判定;角平分线的性质;矩形的判定与性质.专题:证明题.分析:由题意可得,四边形CFDE是矩形,根据角平分线的性质得到DE=DF,根据有一组邻边相等的矩形是正方形,四边形CFDE是正方形.解答:证明:∵∠ACB=90°,DE⊥BC,DF⊥AC,∴四边形CFDE是矩形.又∵CD平分∠ACB,DE⊥BC,DF⊥AC,∴DE=DF.∴四边形CFDE是正方形(有一组邻边相等的矩形是正方形).点评:本题是考查正方形的判别方法,判别一个四边形为正方形主要根据正方形的概念,途经有两种:①先说明它是矩形,再说明有一组邻边相等;②先说明它是菱形,再说明它有一个角为直角.21.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.考点:矩形的判定;角平分线的性质;等腰三角形的性质;正方形的判定.专题:证明题;开放型.分析:(1)根据矩形的有三个角是直角的四边形是矩形,已知CE⊥AN,AD⊥BC,所以求证∠DAE=90°,可以证明四边形ADCE为矩形.(2)根据正方形的判定,我们可以假设当AD=BC,由已知可得,DC=BC,由(1)的结论可知四边形ADCE为矩形,所以证得,四边形ADCE为正方形.解答:(1)证明:在△ABC中,AB=AC,AD⊥BC,∴∠BAD=∠DAC,∵AN是△ABC外角∠CAM的平分线,∴∠MAE=∠CAE,∴∠DAE=∠DAC+∠CAE=180°=90°,又∵AD⊥BC,CE⊥AN,∴∠ADC=∠CEA=90°,∴四边形ADCE为矩形.(2)当△ABC满足∠BAC=90°时,四边形ADCE是一个正方形.理由:∵AB=AC,∴∠ACB=∠B=45°,∵AD⊥BC,∴∠CAD=∠ACD=45°,∴DC=AD,∵四边形ADCE为矩形,∴矩形ADCE是正方形.∴当∠BAC=90°时,四边形ADCE是一个正方形.点评:本题是以开放型试题,主要考查了对矩形的判定,正方形的判定,等腰三角形的性质,及角平分线的性质等知识点的综合运用.。
人教版数学八年级下册第十八单元测试试卷(含答案)
人教版数学8年级下册第18单元·时间:90分钟满分:120分班级__________姓名__________得分__________一.选择题(共10小题,满分30分,每小题3分)1.(3分)若菱形的周长为8,高为2,则菱形的面积为( )A.2B.4C.8D.162.(3分)在Rt△ABC中,∠ACB=90°,点D为斜边AB的中点,若CD=4,那么AB的长是( )A.4B.8C.12D.243.(3分)下列∠A:∠B:∠C:∠D的值中,能判定四边形ABCD是平行四边形的是( )A.1:2:3:4B.1:4:2:3C.1:2:2:1D.3:2:3:2 4.(3分)菱形ABCD添上下列的哪个条件,可证明ABCD是正方形( )A.AC=BD B.AB=CD C.BC=CD D.都不正确5.(3分)如图,在菱形ABCD中,对角线AC,BD相交于点O,则下列结论一定成立的是( )A.∠BAD=60°B.AC=BD C.AB=BC D.OA=2OD 6.(3分)在▱ABCD中,若∠A=38°,则∠C等于( )A.142°B.132°C.38°D.52°7.(3分)相邻边长为a,b的矩形的周长为12,面积为6,则a2b+ab2的值为( )A.72B.36C.24D.8.(3分)正方形具有而矩形不一定有的性质是( )A.对角互补B.四个角相等C.对角线互相垂直D.对角线相等9.(3分)在菱形ABCD中,∠ABC=80°,BA=BE,则∠BAE=( )A.70°B.40°C.75°D.30°10.(3分)如图,E是正方形ABCD的边DC上一点,过点A作FA=AE交CB的延长线于点F,若AB=4,则四边形AFCE的面积是( )A.4B.8C.16D.无法计算二.填空题(共5小题,满分15分,每小题3分)11.(3分)如图,在菱形ABCD中,DE⊥AB,DF⊥BC,垂足分别为点E,F.若∠ADE+∠CDF=80°,则∠EDF等于 度.12.(3分)添加一个条件,使矩形ABCD是正方形,这个条件可能是 .13.(3分)如图所示,四边形ABCD为矩形,AE⊥EG,已知∠1=25°,则∠2= 14.(3分)如图,两个正方形边长分别为2、a(a>2),图中阴影部分的面积为 .15.(3分)如图,在▱ABCD中,∠A=125°,则∠1= .三.解答题(共10小题,满分75分)16.(7分)如图,正方形ABCD中,点P,Q分别为CD,AD边上的点,且DQ=CP,连接BQ,AP.求证:BQ⊥AP.17.(7分)已知:▱ABCD中,E、F是对角线BD上两点,连接AE、CF,若∠BAE=∠DCF.求证:AE=CF.18.(7分)如图,点O为▱ABCD的对角线BD的中点,经过点O的直线分别交BA的延长线,DC的延长线于点E,F,求证:AE=CF.19.(7分)如图,在平行四边形ABCD中,∠C=70°,点E为AD上一点,AB=BE,求∠EBC的度数.20.(7分)把一张长方形(对边平行)纸条按如图所示折叠.判断∠1与∠2相等吗?说明理由.21.(7分)如图,正方形ABCD中,点E,F分别在AD,CD上,且BE=AF,连接BE,AF.求证:AE=DF.22.(7分)如图,已知▱ABCD与▱EBFD的顶点A、E、F、C在同一条直线上.求证:AE=CF.23.(8分)如图,▱ABCD的对角线AC与BD相交于点O,AC+BD=24,∠ABC=70°,△ABO的周长是20.(1)求∠ADC的度数;(2)求AB的长.24.(8分)拿出平行四边形的活动框架,对角线是两根橡皮筋.如果把DC沿CB方向平行移动,▱ABCD的边、内角、对角线都随着变化.当平移DC使BC=AB时:(1)▱ABCD四条边的大小有什么关系?结合图形说明理由.(2)对角线AC、BD的位置有什么关系?结合图形说明理由.25.(10分)如图,在平行四边形ABCD中,对角线AC,BD相交于点O,点M为AD的中点,过点M作MN∥BD交CD延长线于点N.(1)求证:四边形MNDO是平行四边形;(2)请直接写出当四边形ABCD的边AB与BD满足什么关系时,四边形MNDO分别是菱形、矩形、正方形.参考答案1.B;2.B;3.D;4.A;5.C;6.C;7.B;8.C;9.A;10.C;11.50;12.AB=AD(或AC⊥BD答案不唯一);13.115°;14.12a2―a+2;15.55°;16.解:在正方形ABCD中,AB=AD=CD,∠BAD=∠ADC=90°,∵DQ=CP,∴AD﹣DQ=CD﹣CP,∴AQ=DP,∴△ABQ≌△DAP(SAS),∴∠DAP=∠ABQ,∵∠DAP+∠BAP=90°,∴∠ABQ+BAP=90°,∴BQ⊥AP.17.证明∵四边形ABCD为平行四边形∴AB∥CD,AB=CD∴∠ABD=∠CDB∵∠BAE=∠DCF,CD=AB,∠ABD=∠BDC∴△ABE≌△CDF∴AE=CF18.证明:∵四边形ABCD是平行四边形,∴AB∥CD.∴∠E=∠F,∠EBO=∠FDO.又∵OB=OD,∴△EBO≌△FDO.∴BE=DF.又∵AB=CD,即AE=CF.19.解:在平行四边形ABCD中,∠A=∠C=70°,AD∥BC,∵AB=BE,∴∠BEA=∠A=70°,∵AD∥BC,∴∠EBC=∠BEA=70°,故答案为:70°.20.解:∠1=∠2,理由如下:∵四边形ABCD是矩形,∴CF∥BD,∴∠1=∠CBA',∵将长方形折叠,∴∠CBA'=∠2,∴∠1=∠2.21.证明:∵四边形ABCD是正方形,∴∠BAE=∠ADF=90°,AB=AD,又∵BE=AF,在Rt△BAE和Rt△ADF中,BE=AFAB=AD,∴Rt△BAE≌Rt△ADF(HL),∴AE=DF.22.证明:如图,连接BD交AC于点O,∵四边形ABCD与四边形EBFD都是平行四边形,∴AO=CO,EO=FO,即AE=CF.23.解:(1)∵四边形ABCD是平行四边形,∴∠ADC=∠ABC=70°;(2)∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∴AO+BO=12(AC+BD)=12,∴AO+BO+AB=20,∴AB=8.24.解:(1)▱ABCD四条边相等,理由:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∴BC=AB,∴AB=BC=CD=AD,∴四边形ABCD是菱形,∴▱ABCD四条边相等;(2)对角线AC、BD互相垂直,理由:由(1)得:四边形ABCD是菱形,∴AC⊥BD,∴对角线AC、BD互相垂直.25.(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,∵点M为AD的中点,∴OM是△ACD的中位线,∴OM//CD,即OM//DN,∵MN∥BD,∴四边形MNDO是平行四边形;(2)由(1)知四边形MNDO是平行四边形,若四边形MNDO是菱形,只需OM=OD,而OM=12CD=12AB,OD=12BD,∴AB=BD时,四边形MNDO是菱形;若四边形MNDO是矩形,只需∠MOD=90°,而∠MOD=∠ABD,∴∠ABD=90°时,四边形MNDO是矩形,即AB⊥BD;若四边形MNDO是正方形,需OM=OD,∠MOD=90°,∴AB=BD,AB⊥BD时,四边形MNDO是正方形.。
2018年人教版初二数学下册第十八章 单元测试题及答案
八年级数学下册第十八章单元测试卷分,共30分) 3一、选择题(每小题) 3,则其中较小的内角是(1.若平行四边形中两个内角的度数比为1∶.75°CB.45°.60° DA.30°是,EBD相交于点O2.如图,已知四边形ABCD是平行四边形,对角线AC,) 以下说法错误的是(,BC的中点1 OBE=∠OCE C.∠BOE=∠OBA DA.OE.∠=DC B.OA=OC2,第题图6,第2题图,第3题图) 则AB的长为(cm,∠AOD=120°,AC3.如图,矩形ABCD的对角线=8cm D.4 cm B.2 cm C.23 A.3 cm) ,下列结论中不正确的是(4.已知四边形ABCD是平行四边形它是菱形⊥BD时,,它是菱形 B.当ACA.当AB=BC时它是正方形BD时,它是矩形 D.当AC=C.当∠ABC=90°时,) 则该四边形一定是(5.若顺次连接四边形各边中点所得的四边形是菱形,.一组对边相等,另一组对边平行的四边形A.矩形 B D.对角线互相垂直的四边形C.对角线相等的四边形那么°,DAE=∠B=80且∠.如图,已知点E是菱形ABCD的边BC上一点,6)∠CDE的度数为( D.35°° C.30° 25A.20° B.) 下结论正确的有(4,当?ABCD的面积最大时,37.在?ABCD中,AB=,BC=. AC=BD;③AC⊥BD;④=①AC=5;②∠A+∠C180°.①③④ D .①②④A.①②③ B C.②③④,AE=2AD边的B′处,若恰好落在翻折把矩形8.如图,ABCD沿EF,点B60°,则矩形ABCD的面积是(∠DE=6,EFB′=)3 16.D 3 12.C 24 .B12 .A.第10第8题图题图,第9题图,,,=22.5°的边长为4,点E在对角线BD 上,且∠BAE9.如图,正方形ABCD)垂足为EF⊥AB,F,则EF的长为( -4 D.32 2 C.A.1 4-2B.2 ,FCD于点,∠EBC的平分线交在矩形ABCD中,点E是AD的中点10.如图,有下列N,BC,EF交于点D恰好落在BE上点M处,延长沿将△DEFEF 折叠,点其中3S,BEN是等边三角形;④S==CF;②BF⊥EN;③△四个结论:①DF DEFBEF△△)正确的结论是( D.①②③④.①②④ C.②③④ A.①②③ B24分,共)(二、填空题每小题3分11.如图,在?ABCD中,AB=5,AC=6,当BD=____时,四边形ABCD是菱形.,第11题图),第12题图),第14)题图12.(2016·江西)如图,在?ABCD中,∠C=40°,过点D作CB的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为____.13.在四边形ABCD中,AD∥BC,分别添加下列条件之一:①AB∥CD;②AB =CD;③∠A=∠C;④∠B=∠C.能使四边形ABCD为平行四边形的条件的序号是____.114.如图,∠ACB=90°,D为AB中点,连接DC并延长到点E,使CE=CD,4过点B作BF∥DE交AE的延长线于点F,若BF=10,则AB的长为____.15.如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,则∠BCE的度.____度数是第16题图第15题图)),,)题图,第第,17题图)18分,,GH垂足为点O,E,FABCD16.如图,在四边形中,对角线AC⊥BD,的面积为____.=6,则四边形EFGH8AB,BC,CD的中点,若AC=,BD别为边AD,的,CDM,N分别是边BC的两条对角线长分别为17.已知菱形ABCD6和8, ____.PM+PN的最小值是是对角线中点,PBD上一点,则,上CD,DA,P,G分别在边AB,BC,在正方形18.如图,ABCD中,点E,NS MNPQ正方形的MNPQ 和AEFG均为正方形,则且四边形,点MF,Q都在对角线BD上,S AEFG正方形值等于___.)66分共三、解答题(F,AE=AF,分别以点E,AE)19.(8分如图,点,F分别是锐角∠两边上的点DF.连接,DE,,,为圆心以AE的长为半径画弧两弧相交于点D(1)请你判断所画四边形的形状,并说明理由;(2)连接EF,若AE=8 cm,∠A=60°,求线段EF的长.20.(8分)如图,已知BD是△ABC的角平分线,点E,F分别在边AB,BC上,ED∥BC,EF∥AC.求证:BE=CF.21.(9分)如图,将?ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F.(1)求证:△BEF≌△CDF;(2)连接BD,CE,若∠BFD=2∠A,求证:四边形BECD是矩形.DF.BE=中,E,F两点在对角线BD上,?22.(9分)如图,在ABCD;AE(1)求证:=CFBD-AC 的值.请求出为矩形时(2)当四边形AECF,BE分别,FBC的中点,E分别是边,,(1023.分)如图在矩形ABCD中M,NAD,,BMCM的中点.是线段;DCM(1)求证:△ABM≌△,并说明理由.是正方形四边形时∶=∶填空:当(2)ABAD__12__,MENF24.(10分)(2016·遵义)如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)求证:四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.25.(12分)如图,在正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于点Q. (1)如图①,当点Q在DC边上时,猜想并写出PB与PQ所满足的数量关系,并加以证明;(2)如图②,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.单元检测题第十八章)分满分:120(时间:120分钟)共30分(一、选择题每小题3分,) B1.若平行四边形中两个内角的度数比为1∶3,则其中较小的内角是( B.45° C.60° D.75°A.30°,的中点BC2.如图,已知四边形ABCD是平行四边形,对角线AC,BD相交于点O,E是)以下说法错误的是(D1 OCE OBA D.∠OBE=∠=.DC BOA=OCA.OE C.∠BOE=∠2第6题图3题图,第题图 ,,第2) (120°,D则AB的长为3.如图,矩形ABCD的对角线AC=8 cm,∠AOD=2 cm C.23 cm D.4 cm A.3 cm B.4.已知四边形ABCD是平行四边形,下列结论中不正确的是(D)A.当AB=BC时,它是菱形 B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形 D.当AC=BD时,它是正方形5.若顺次连接四边形各边中点所得的四边形是菱形,则该四边形一定是(C)A.矩形 B.一组对边相等,另一组对边平行的四边形C.对角线相等的四边形 D.对角线互相垂直的四边形6.如图,已知点E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE的度数为(C)A.20° B.25° C.30° D.35°7.在?ABCD中,AB=3,BC=4,当?ABCD的面积最大时,下结论正确的有(B)①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.A.①②③ B.①②④ C.②③④ D.①③④8.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB′=60°,则矩形ABCD的面积是(D)A.12 B.24 C.123 D.163,第8题图,第9题图,第10题图9.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为(C)A.1 B.2 C.4-22 D.32-410.如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF 折叠,点D恰好落在BE上点M处,延长BC,EF交于点N,有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S=3S)B(其中正确的结论是,DEFBEF△△.BA.①②③.①②④ C.②③④ D.①②③④)分3二、填空题(每小题分,共24 511.如图,在?ABCD中,AB=,AC=6,当BD=ABCD,是菱形.__8__四边形时,第11题图),第12题图),第14题图)12.如图,在?ABCD中,∠C=40°,过点D作CB的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为__50°__.13.在四边形ABCD中,AD∥BC,分别添加下列条件之一:①AB∥CD;②AB=CD;③∠A=∠C;④∠B=∠C.能使四边形ABCD为平行四边形的条件的序号是__①或③__.114.如图,∠ACB=90°,D为AB中点,连接DC并延长到点E,使CE=CD,过点B作4BF ∥DE交AE的延长线于点F,若BF=10,则AB的长为__8__.15.如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,则∠BCE的度数是__22.5__度.,第15题图),第16题图),第17题图),第18题图)16.如图,在四边形ABCD中,对角线AC⊥BD,垂足为点O,E,F,G,H分别为边AD,AB,BC,CD的中点,若AC=8,BD=6,则四边形EFGH的面积为__12__.17.已知菱形ABCD的两条对角线长分别为6和8,M,N分别是边BC,CD的中点,P是对角线BD上一点,则PM+PN的最小值是__5__.18.如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,S8MNPQ 都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则的值等于____. 9S AEFG正方形三、正方形Q解答题(共66分)19.(8分)如图,点E,F分别是锐角∠A两边上的点,AE=AF,分别以点E,F为圆心,以AE的长为半径画弧,两弧相交于点D,连接DE,DF.并说明理由;请你判断所画四边形的形状,(1) 的长.,求线段EF°8 cm,∠A=60=EF(2)连接,若AE,AF∵(2)AE=AEDF==AEAF=EDDF,∴四边形是菱形理由:根据题意得菱形解:(1),8 cm=AEEF,EAF,60A∠=°∴△是等边三角形∴=,BC上,ED∥BC是△ABC的角平分线,点E,F分别在边AB,BD20.(8分)如图,已知CF. ∥AC.求证:BE=EF,ABCBD平分∠∵∴四边形EFCD是平行四边形,∴DE=CF,BC解:∵ED∥,EF∥AC,CF =∴EBEDEBD=∠EDB,∴EB=,,∴∠EBD=∠DBC,∵DE∥BC∴∠EDB=∠DBC,∴∠F. BC于点,连接延长到点E,使BE=ABDE,交边(921.分)如图,将?ABCD的边AB CDF;(1)求证:△BEF≌△BECD是矩形.BFD=2∠A,求证:四边形,(2)连接BDCE,若∠AB∵AB,∴BE=CD.=∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∵BE解:(1)是平行≌△CDF(ASA)(2)∵四边形ABCD,,∴∠BEF=∠CDF∠EBF=∠DCF,∴△BEF∥CD 是平行BECDEB,∴四边形AB=∠DCB,∵=BE,∴CD=CD,四边形∴AB∥CD,AB=,∠ADF,∴∠DCF,∴∠DCF=∠FDC=BFD=,∴BFCF,EF=DF,∵∠=2∠A,∴∠BFD2四边形是矩形DE=BC,∴四边形BECD∴=CF,DF.两点在对角线BD上,=BEABCD.22(9分)如图,在?中,E,F=CF;(1)求证:AEAC-BD的值.请求出(2)当四边形AECF为矩形时,BEAC∵四边形AECF是矩形,∴AF(2)≌△由解:(1)SAS证△ABECDF即可连接CE,,AC.DFEFBE+BD-ACBD-2BE=EF,∴====2BEBEBEBE,分别是线段BM,的中点E,F,M,N分别是边AD,BC分23.(10)如图,在矩形ABCD中 CM 的中点. DCM;(1)求证:△ABM≌△四边形MENF是正方形,∶,∶AD=2__并说明理由.时__1(2)填空:当AB11,=AM,∴ABAD,∵AM=AD=可证(2)理由:∵AB∶AD=1∶2,∴AB解:(1)由SAS22DMC ∠=BMCM,∵△ABM≌△DCM,∴,∵∠A=90°,∴∠AMB=45°,∴∠ABM=∠AMBFN,EN ∥CMCM,BC的中点,∴90°,∵E,F,N分别是BM,=∠AMB=45°,∴∠BMC=是正方形,∴菱形MENF∵∠BMC=90°∥BM,EM=MF,∴四边形MENF是菱形,的ADE是D是BC的中点,△ABC中,∠BAC=90°,)(201624.(10分·遵义)如图,在RtF. 的延长线于点交BEA作AF∥BC中点,过点;≌△DEB(1)求证:△AEF 是菱形;求证:四边形ADCF(2) 的面积.求菱形ADCFAB=5,(3)若AC=4,,=DCDB,∵DB△AEF≌△DEB,则AF=解:(1)由AAS易证△AFE≌△DBE(2)由(1)知,AD,∴是BC的中点,∵∠BAC=90°,D=∴AFCD,∵AF∥BC,∴四边形ADCF是平行四边形1是平行四ABDF,∴四边形由(2)知AF綊BDADCFBC,∴四边形是菱形(3)连接DF,=DC=21110=×5AC·DF=×4=边形,∴DF=AB=5,∴S ADCF22菱形一边始终经过,,今有较大的直角三角板ABCD中,AC是对角线25.(12分)如图,在正方形Q.DC于点AC上移动,另一边交点B,直角顶点P在射线,并加以证明;与PQ所满足的数量关系Q在DC边上时,猜想并写出PB当点(1)如图①,并证明你,与PQ满足的数量关系落在DC 的延长线上时,猜想并写出PB,(2)如图②当点Q 的猜想.解:(1)PB=PQ.证明:连接PD,∵四边形ABCD是正方形,∴∠ACB=∠ACD,∠BCD=90°,BC=CD,又∵PC=PC,∴△DCP≌△BCP(SAS),∴PD=PB,∠PBC=∠PDC,∵∠PBC+∠∴,PD=PQ∴,PQD=∠PDC∴∠,PQD=∠PBC∴∠,°180=PQC+∠PQD∠,°180=PQC.PB=PQ(2)PB=PQ.证明:连接PD,同(1)可证△DCP≌△BCP,∴PD=PB,∠PBC=∠PDC,∵∠PBC=∠Q,∴∠PDC=∠Q,∴PD=PQ,∴PB=PQ。
完整版人教版八年级下册数学第十八章 平行四边形含答案
人教版八年级下册数学第十八章 平行四边形含答案一、单选题(共15题,共计45分)1、如图,在△ABC 中,AD 平分∠BAC,按如下步骤作图:第一步,分别以点A 、D 为圆心,以大于AD 的一半长为半径在AD 两侧作弧,交于两点M 、N ;第二步,连接MN 分别交AB 、AC 于点E 、F ;第三步,连接DE 、DF ,则可以得到四边形AEDF 的形状( )A.仅仅只是平行四边形B.是矩形C.是菱形D.无法判断 2、已知下列命题:①对角线互相平分的四边形是平行四边形;②等腰梯形的对角线相等;③对角线互相垂直的四边形是菱形;其中假命题有 ( )A.1个B.2个C.3个D.4个 3、下列命题中错误的是( )A.平行四边形的对边相等B.两组对边分别相等的四边形是平行四边形C.矩形的对角线相等D.对角线相等的四边形是矩形 4、如图,在▱ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,S △DEF :S △ABF =4:25,则DE :EC=( )A.2:5B.2:3C.3:5D.3:25、如图,在▱ABCD中,对角线AC、BD相交于点O,且OA=OB,若AD=4,∠AOD=60°,则AB的长为()A.4B.2C.8D.86、如图,将长方形纸片折叠,使A点落BC上的F处,折痕为BE,若沿EF剪下,则折叠部分是一个正方形,其数学原理是()A.邻边相等的矩形是正方形B.对角线相等的菱形是正方形C.两个全等的直角三角形构成正方形 D.轴对称图形是正方形7、下列结论中,矩形具有而菱形不一定具有的性质是()A.内角和为360°B.对角线互相平分C.对角线相等D.对角线互相垂直8、如图,矩形ABCD的对角线交于点O,若∠BAO=55°,则∠AOD等于( )A.105°B.110°C.115°D.120°9、下列命题正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直且相等的四边形是正方形 C.对角线互相垂直的四边形是菱形 D.两组对角分别相等的四边形是平行四边形10、如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是()A.14B.16C.18D.2011、如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB,BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是()A.4.8B.5C.6D.7.212、如图,在菱形ABCD中,对角线AC、BD相交于点O,延长CB至E使BE=CB,连续AE.下列结论①AE=2OE;② ;③四边形ADBE为平行四边形;④ 中,正确的个数有()A.1个B.2个C.3个D.4个13、如图,在边长为3的菱形ABCD中,点P从A点出发,沿A→B→C→D运动,速度为每秒3个单位;点Q同时从A点出发,沿A→D运动,速度为每秒1个单位,则的面积S关于时间的函数图象大致为()A. B. C. D.14、如图,在▱ABCD中,∠D=120°,则∠A的度数等于()A.120°B.60°C.40°D.30°15、如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE =5,F为DE的中点.若△CEF的周长为18,则OF的长为()A.3B.4C.D.二、填空题(共10题,共计30分)16、如图,抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),点A的对应点为A′,则抛物线上PA段扫过的区域(阴影部分)的面积为________.17、如图,正方形ABCD中,AB=6,点E在边CD上,且CE=2DE.将△ADE沿AE 对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG//CF;⑤S△FGC=3.6.其中正确结论是________.18、如图所示,P是矩形ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论:①S1+S4=S2+S3;②S2+S4=S1+S2;③若S3=2S1,则S4=2S2;④若S1=S2,则S3=S4,其中正确结论的序号是________.19、如图,AB为⊙O直径,E是BC中点,OE交BC于点D,BD=3,AB=10,则AC=________.20、如图,小志同学将边长为3的正方形塑料模板与一块足够大的直角三角板叠放在一起,其中直角三角板的直角顶点落在点处,两条直角边分别与交于点,与延长线交于点,则四边形的面积是________.21、如图,平行四边形ABCD的对角线AC,BD交于点O,点E是AD的中点,△的周长为6,则△ 的周长为________.22、已知:如图,在菱形ABCD中,AE⊥BC,垂足为E,对角线BD=4,tan∠CBD=,则AB= ________ ,sin∠ABE=________ .23、如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1:,点A的坐标为(0,1),则点E的坐标是________.24、在矩形ABCD中,AB=6,AD=4,点E是DC的中点,点F在AD上,连接BF,EF,若FE恰好平分∠BFD,则FD=________.25、如图,在正方形ABCD中,AB=4,E、F是对角线AC上的两个动点,且EF =2,P是正方形四边上的任意一点.若△PEF是等边三角形,则符合条件的P 点共有________个,此时AE的长为________.三、解答题(共5题,共计25分)26、如图,在平行四边形ABCD中,点E,F分别在AB,CD上,AE=CF.求证:DE=BF.27、已知:如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF.求证:四边形BFDE是平行四边形.28、教材习题第3题变式如图,AD是△ABC的角平分线,过点D分别作AC和AB的平行线,交AB于点E,交AC于点F.求证:四边形AEDF是菱形.29、如图,矩形ABCD中,BC=2AB=4,AE平分∠BAD交边BC于点E,∠AEC的分线交AD于点F,以点D为圆心,DF为半径画圆弧交边CD于点G,求弧FG的长30、已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,若MA=MC,∠BAN=90°,求证:四边形ADCN是矩形.参考答案一、单选题(共15题,共计45分)1、C2、A3、D4、B5、A6、A7、C8、B9、D10、C11、A12、D13、D14、B15、D二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
人教版八年级数学下册第18章测试题(附答案)
人教版八年级数学下册第18章测试题(附答案)姓名:__________ 班级:__________考号:__________一、单选题(共12题;共24分)1.平行四边形具有的性质是( )A. 四边相等B. 对角线相等C. 对角线互相平分D. 四个角都是直角2.下列条件中,能判定四边形是平行四边形的是()A. 对角线互相平分B. 一组对角相等C. 一组对边相等D. 对角线互相垂直3.如图,在平行四边形ABCD中,AD=7,CE平分∠BCD交AD边于点E,且AE=4,则AB的长为()A. 4B. 3C.D. 24.某人准备设计平行四边形图案,拟以长为4cm,5cm,7cm的三条线段中的两条为边,另一条为对角线画不同形状的平行四边形,他可以画出形状不同的平行四边形的个数为()A. 1B. 2C. 3D. 45.下列说法不正确的是()A. 一组邻边相等的矩形是正方形B. 对角线相等的菱形是正方形C. 对角线互相垂直的矩形是正方形D. 有一个角是直角的平行四边形是正方形6.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A. AB∥DC,AD∥BCB. AB=DC,AD=BCC. AO=CO,BO=DOD. AB∥DC,AD=BC7.菱形的周长为20cm,两个相邻的内角的度数之比为1:2,则较长的对角线的长度是()A. 20B. 5 cmC. cmD. 5cm8.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A. OA=OC,OB=ODB. ∠BAD=∠BCD,AB∥CDC. AD∥BC,AD=BCD. AB=CD,AO=CO9.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G.若BG=4,则△CEF的面积是()A. B. 2 C. 3 D. 410.如图,△ABC中,D,E分别是边AB,AC的中点.若DE=2,则BC=()A. 2B. 3C. 4D. 511.如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA1A2B1,…,依此规律,则点A8的坐标是()A. (﹣8,0)B. (0,8)C. (0,8 )D. (0,16)12.有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A. 1:B. 1:2C. 2:3D. 4:913.如图,四边形ABCD是菱形,如果AB=5,那么菱形ABCD的周长是________.14.如果平行四边形的一条边长为4cm,这条边上的高为3cm,那么这个平行四边形的面积等于________15.已知菱形的两条对角线的长分别是4cm和8cm,则它的边长为________ cm.16.如图,在矩形ABCD中,对角线AC、BD相交于点O,若AE平分∠BAD交BC于点E,且BO=BE,连接OE,则∠BOE=________.17.直线a,b,c是三条平行线,已知a与b的距离为5厘米,b与c的距离为2厘米,则a与c的距离为________18.如图,两条宽度为1的带子,相交成∠α,那么重叠部分(阴影部分)的面积是________.19.如图,在边长为1的菱形ABCD中,∠ABC=120°.连接对角线AC,以AC为边作第二个菱形ACEF,使∠ACE=120°.连接AE,再以AE为边作第三个菱形AEGH,使∠AEG=120°,…,按此规律所作的第n个菱形的边长是________.20.如图,在图(1)中,A1、B1、C1分别是△ABC的边BC、CA、AB的中点,在图(2)中,A2、B2、C2分别是△A1B1C1的边B1C1、C1A1、A1B1的中点,…,按此规律,则第n个图形中平行四边形的个数共有________个21.如图所示,在△ABC中,点D在BC上且CD=CA,CF平分∠ACB,AE=EB,求证:EF=BD.22.定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°,①若AB=CD=1,AB//CD,求对角线BD的长.②若AC⊥BD,求证:AD=CD.(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形.求AE的长.23.已知四边形ABCD的对角线AC与BD交于点O,给出下列四个论断①OA=OC ②AB=CD ③∠BAD=∠DCB ④AD∥BC请你从中选择两个论断作为条件,以“四边形ABCD为平行四边形”作为结论,完成下列各题:(1)构造一个真命题,画图并给出证明;(2)构造一个假命题,举反例加以说明.四、综合题(共3题;共35分)24.如图,在▱ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过点A作AG∥DB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90°,求证:四边形DEBF是菱形.25.如图,在四边形ABCD中,E、F分别为对角线BD上的两点,且BE=DF.(1)若四边形AECF是平行四边形,求证:四边形ABCD是平行四边形;(2)若四边形AECF是菱形,则四边形ABCD是菱形吗?请说明理由?(3)若四边形AECF是矩形,则四边形ABCD是矩形吗?不必写出理由.26.如图,△ABC是等边三角形,点E,F分别在BC,AC上,且BE=CF,连结AE与BF相交于点G.将△ABC 沿AB边折叠得到△ABD,连结DG.延长EA到点H,使得AH=BG,连结DH.(1)求证:四边形DBCA是菱形.(2)若菱形DBCA的面积为8 ,,求△DGH的面积.答案一、单选题1. C2. A3. B4.C5.D6. D7.B8. D9. B 10.C 11.D 12. D二、填空题13.20 14.12 15.2 16.75°17.7厘米或3厘米18.19.20.3n三、解答题21.证明:∵CD=CA,CF平分∠ACB,∴F是AD中点,∵AE=EB,∴E是AB中点,∴EF=BD.22.(1)解:①因为AB=CD=1,AB//CD, 所以四边形ABCD是平行四边形. 又因为AB=BC,所以□ABCD是菱形. 又因为∠ABC=90度,所以菱形ABCD是正方形.所以BD= .②如图1,连结AC,BD,因为AB=BC,AC⊥BD,所以∠ABD=∠CBD,又因为BD=BD,所以△ABD≅△CBD,所以AD=CD.(2)解:若EF与BC垂直,则AE≠EF,BF≠EF,所以四边形ABFE不是等腰直角四边形,不符合条件;若EF与BC不垂直,①当AE=AB时,如图2,此时四边形ABFE是等腰直角四边形.所以AE=AB=5.②当BF=AB时,如图3,此时四边形ABFE是等腰直角四边形.所以BF=AB=5,因为DE//BF,所以△PED~△PFB,所以DE:BF=PD:PB=1:2,所以AE=9-2.5=6.5.综上所述,AE的长为5或6.5.23.(1)解:①④作为条件时,如图,∵AD∥BC,∴∠ADB=∠DBC,在△AOD和△COB中,∵,∴△AOD≌△COB(AAS),∴AD=CB,∴四边形ABCD是平行四边形.(2)解:②④作为条件时,此时一组对边相等,一组对边平行,是等腰梯形.四、综合题24.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵点E、F分别是AB、CD的中点,∴BE= AB,DF= CD.∴BE=DF,BE∥DF,∴四边形DFBE是平行四边形,∴DE∥BF(2)证明:∵∠G=90°,AG∥BD,AD∥BG,∴四边形AGBD是矩形,∴∠ADB=90°,在Rt△ADB中∵E为AB的中点,∴AE=BE=DE,∵四边形DFBE是平行四边形,∴四边形DEBF是菱形.25.(1)证明:连接AC交BD于点O,如图所示:∵四边形AECF是平行四边形,∴OA=OC,OE=OF,∵BE=DF,∴OB=OD,∴四边形ABCD是平行四边形(2)解:理由如下:∵四边形AECF是菱形,∴AC⊥BD,由(1)知,四边形ABCD是平行四边形;∴四边形ABCD是菱形(3)解:四边形ABCD不是矩形;理由如下:∵四边形AECF是矩形,∴OA=OC,OE=OF,AC=EF,∴OA=OC=OE=OF,∵BE=DF,∴OB=OD,∴AC<BD,∴四边形ABCD是平行四边形,不是矩形.26.(1)证明:∵△ABC是等边三角形,∴AC=BC由折叠知AC=AD,BC=BD,∴AC=AD=BC=BD,∴四边形DBCA是菱形(2)解:∵△ABC 是等边三角形,∴AB=BC,∠ABC=∠C=60°,在△ABE与△BCF 中,,∴△ABE≌△BCF(SAS),∴∠AEB=∠BFC,∵四边形DBCA是菱形,∴DA∥BC,DB∥AC,∠BDA=∠C=60°,∴∠HAD=∠AEB,∠DBG=∠BFC,∴∠HAD=∠DBG,在△DBG与△DAH中,,∴△DBG≌△DAH(SAS),∴DG=DH,∠BDG=∠ADH,∴∠HDG=∠ADH+∠GDA=∠BDG+∠GDA=∠BDA=60°,又∵DA=DB,DG=DH,∴△DBA∽△DGH,∴,∵S△DBA= S菱形DBCA= ,∴S△DGH=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年八年级数学下册第十八章单元测试卷(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.若平行四边形中两个内角的度数比为1∶3,则其中较小的内角是()A.30°B.45°C.60°D.75°2.如图,已知四边形ABCD是平行四边形,对角线AC,BD相交于点O,E是BC的中点,以下说法错误的是()A.OE=12DC B.OA=OC C.∠BOE=∠OBA D.∠OBE=∠OCE ,第2题图,第3题图,第6题图3.如图,矩形ABCD的对角线AC=8 cm,∠AOD=120°,则AB的长为()A. 3 cm B.2 cm C.2 3 cm D.4 cm4.已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形5.若顺次连接四边形各边中点所得的四边形是菱形,则该四边形一定是() A.矩形B.一组对边相等,另一组对边平行的四边形C.对角线相等的四边形D.对角线互相垂直的四边形6.如图,已知点E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE的度数为()A.20°B.25°C.30°D.35°7.在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下结论正确的有()①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.A.①②③B.①②④C.②③④D.①③④8.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB′=60°,则矩形ABCD的面积是()A .12B .24C .12 3D .16 3,第8题图 ,第9题图 ,第10题图9.如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且∠BAE =22.5°,EF ⊥AB ,垂足为F ,则EF 的长为( )A .1 B. 2 C .4-2 2 D .32-410.如图,在矩形ABCD 中,点E 是AD 的中点,∠EBC 的平分线交CD 于点F ,将△DEF 沿EF 折叠,点D 恰好落在BE 上点M 处,延长BC ,EF 交于点N ,有下列四个结论:①DF =CF ;②BF ⊥EN ;③△BEN 是等边三角形;④S △BEF =3S △DEF ,其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④ 二、填空题(每小题3分,共24分)11.如图,在▱ABCD 中,AB =5,AC =6,当BD =____时,四边形ABCD 是菱形.,第11题图),第12题图) ,第14题图)12.(2016·江西)如图,在▱ABCD 中,∠C =40°,过点D 作CB 的垂线,交AB 于点E ,交CB 的延长线于点F ,则∠BEF 的度数为____.13.在四边形ABCD 中,AD ∥BC ,分别添加下列条件之一:①AB ∥CD ;②AB =CD ;③∠A =∠C ;④∠B =∠C.能使四边形ABCD 为平行四边形的条件的序号是____.14.如图,∠ACB =90°,D 为AB 中点,连接DC 并延长到点E ,使CE =14CD ,过点B 作BF ∥DE 交AE 的延长线于点F ,若BF =10,则AB 的长为____.15.如图,四边形ABCD 是正方形,延长AB 到点E ,使AE =AC ,则∠BCE 的度数是____度.,第15题图),第16题图),第17题图),第18题图) 16.如图,在四边形ABCD中,对角线AC⊥BD,垂足为点O,E,F,G,H分别为边AD,AB,BC,CD的中点,若AC=8,BD=6,则四边形EFGH的面积为____.17.已知菱形ABCD的两条对角线长分别为6和8,M,N分别是边BC,CD的中点,P是对角线BD上一点,则PM+PN的最小值是____.18.如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则S正方形MNPQ S正方形AEFG的值等于___.三、解答题(共66分)19.(8分)如图,点E,F分别是锐角∠A两边上的点,AE=AF,分别以点E,F 为圆心,以AE的长为半径画弧,两弧相交于点D,连接DE,DF.(1)请你判断所画四边形的形状,并说明理由;(2)连接EF,若AE=8 cm,∠A=60°,求线段EF的长.20.(8分)如图,已知BD是△ABC的角平分线,点E,F分别在边AB,BC上,ED∥BC,EF∥AC.求证:BE=CF.21.(9分)如图,将▱ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC 于点F.(1)求证:△BEF≌△CDF;(2)连接BD,CE,若∠BFD=2∠A,求证:四边形BECD是矩形.22.(9分)如图,在▱ABCD中,E,F两点在对角线BD上,BE=DF.(1)求证:AE=CF;(2)当四边形AECF为矩形时,请求出BD-ACBE的值.23.(10分)如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)填空:当AB∶AD=__1∶2__时,四边形MENF是正方形,并说明理由.24.(10分)(2016·遵义)如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)求证:四边形ADCF 是菱形;(3)若AC =4,AB =5,求菱形ADCF 的面积.25.(12分)如图,在正方形ABCD 中,AC 是对角线,今有较大的直角三角板,一边始终经过点B ,直角顶点P 在射线AC 上移动,另一边交DC 于点Q.(1)如图①,当点Q 在DC 边上时,猜想并写出PB 与PQ 所满足的数量关系,并加以证明;(2)如图②,当点Q 落在DC 的延长线上时,猜想并写出PB 与PQ 满足的数量关系,并证明你的猜想.第十八章 单元检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.若平行四边形中两个内角的度数比为1∶3,则其中较小的内角是( B ) A .30° B .45° C .60° D .75°2.如图,已知四边形ABCD 是平行四边形,对角线AC ,BD 相交于点O ,E 是BC 的中点,以下说法错误的是( D )A .OE =12DC B .OA =OC C .∠BOE =∠OBA D .∠OBE =∠OCE,第2题图 ,第3题图 ,第6题图3.如图,矩形ABCD 的对角线AC =8 cm ,∠AOD =120°,则AB 的长为( D ) A. 3 cm B .2 cm C .2 3 cm D .4 cm4.已知四边形ABCD 是平行四边形,下列结论中不正确的是( D ) A .当AB =BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形C .当∠ABC =90°时,它是矩形D .当AC =BD 时,它是正方形5.若顺次连接四边形各边中点所得的四边形是菱形,则该四边形一定是(C)A.矩形B.一组对边相等,另一组对边平行的四边形C.对角线相等的四边形D.对角线互相垂直的四边形6.如图,已知点E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE的度数为(C)A.20°B.25°C.30°D.35°7.在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下结论正确的有(B)①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.A.①②③B.①②④C.②③④D.①③④8.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB′=60°,则矩形ABCD的面积是(D)A.12 B.24 C.12 3 D.16 3,第8题图,第9题图,第10题图9.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为(C)A.1 B. 2 C.4-2 2 D.32-410.如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF 沿EF 折叠,点D恰好落在BE上点M处,延长BC,EF交于点N,有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S△BEF=3S△DEF,其中正确的结论是(B)A.①②③B.①②④C.②③④D.①②③④二、填空题(每小题3分,共24分)11.如图,在▱ABCD中,AB=5,AC=6,当BD=__8__时,四边形ABCD是菱形.,第11题图),第12题图),第14题图) 12.如图,在▱ABCD中,∠C=40°,过点D作CB的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为__50°__.13.在四边形ABCD中,AD∥BC,分别添加下列条件之一:①AB∥CD;②AB=CD;③∠A =∠C;④∠B=∠C.能使四边形ABCD为平行四边形的条件的序号是__①或③__.14.如图,∠ACB=90°,D为AB中点,连接DC并延长到点E,使CE=14CD,过点B作BF∥DE交AE的延长线于点F,若BF=10,则AB的长为__8__.15.如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,则∠BCE的度数是__22.5__度.,第15题图),第16题图),第17题图) ,第18题图)16.如图,在四边形ABCD 中,对角线AC ⊥BD ,垂足为点O ,E ,F ,G ,H 分别为边AD ,AB ,BC ,CD 的中点,若AC =8,BD =6,则四边形EFGH 的面积为__12__.17.已知菱形ABCD 的两条对角线长分别为6和8,M ,N 分别是边BC ,CD 的中点,P 是对角线BD 上一点,则PM +PN 的最小值是__5__.18.如图,在正方形ABCD 中,点E ,N ,P ,G 分别在边AB ,BC ,CD ,DA 上,点M ,F ,Q 都在对角线BD 上,且四边形MNPQ 和AEFG 均为正方形,则S 正方形MNPQ S 正方形AEFG的值等于__89__.三、解答题(共66分)19.(8分)如图,点E ,F 分别是锐角∠A 两边上的点,AE =AF ,分别以点E ,F 为圆心,以AE 的长为半径画弧,两弧相交于点D ,连接DE ,DF.(1)请你判断所画四边形的形状,并说明理由;(2)连接EF ,若AE =8 cm ,∠A =60°,求线段EF 的长.解:(1)菱形,理由:根据题意得AE =AF =ED =DF ,∴四边形AEDF 是菱形 (2)∵AE =AF ,∠A =60°,∴△EAF 是等边三角形,∴EF =AE =8 cm20.(8分)如图,已知BD 是△ABC 的角平分线,点E ,F 分别在边AB ,BC 上,ED ∥BC ,EF ∥AC.求证:BE =CF.解:∵ED ∥BC ,EF ∥AC ,∴四边形EFCD 是平行四边形,∴DE =CF ,∵BD 平分∠ABC ,∴∠EBD =∠DBC ,∵DE ∥BC ,∴∠EDB =∠DBC ,∴∠EBD =∠EDB ,∴EB =ED ,∴EB =CF21.(9分)如图,将▱ABCD 的边AB 延长到点E ,使BE =AB ,连接DE ,交边BC 于点F. (1)求证:△BEF ≌△CDF ;(2)连接BD ,CE ,若∠BFD =2∠A ,求证:四边形BECD 是矩形.解:(1)∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD.∵BE =AB ,∴BE =CD.∵AB ∥CD ,∴∠BEF =∠CDF ,∠EBF =∠DCF ,∴△BEF ≌△CDF(ASA) (2)∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∠A =∠DCB ,∵AB =BE ,∴CD =EB ,∴四边形BECD 是平行四边形,∴BF =CF ,EF =DF ,∵∠BFD =2∠A ,∴∠BFD =2∠DCF ,∴∠DCF =∠FDC ,∴DF =CF ,∴DE =BC ,∴四边形BECD 是矩形22.(9分)如图,在▱ABCD 中,E ,F 两点在对角线BD 上,BE =DF.(1)求证:AE =CF ;(2)当四边形AECF 为矩形时,请求出BD -ACBE的值.解:(1)由SAS 证△ABE ≌△CDF 即可 (2)连接CE ,AF ,AC.∵四边形AECF 是矩形,∴AC=EF ,∴BD -AC BE =BD -EF BE =BE +DF BE =2BEBE=223.(10分)如图,在矩形ABCD 中,M ,N 分别是边AD ,BC 的中点,E ,F 分别是线段BM ,CM 的中点.(1)求证:△ABM ≌△DCM ;(2)填空:当AB ∶AD =__1∶2__时,四边形MENF 是正方形,并说明理由.解:(1)由SAS 可证 (2)理由:∵AB ∶AD =1∶2,∴AB =12AD ,∵AM =12AD ,∴AB =AM ,∴∠ABM =∠AMB ,∵∠A =90°,∴∠AMB =45°,∵△ABM ≌△DCM ,∴BM =CM ,∠DMC =∠AMB =45°,∴∠BMC =90°,∵E ,F ,N 分别是BM ,CM ,BC 的中点,∴EN ∥CM ,FN ∥BM ,EM =MF ,∴四边形MENF 是菱形,∵∠BMC =90°,∴菱形MENF 是正方形24.(10分)(2016·遵义)如图,在Rt △ABC 中,∠BAC =90°,D 是BC 的中点,E 是AD 的中点,过点A 作AF ∥BC 交BE 的延长线于点F.(1)求证:△AEF ≌△DEB ;(2)求证:四边形ADCF 是菱形;(3)若AC =4,AB =5,求菱形ADCF 的面积.解:(1)由AAS 易证△AFE ≌△DBE (2)由(1)知,△AEF ≌△DEB ,则AF =DB ,∵DB =DC ,∴AF =CD ,∵AF ∥BC ,∴四边形ADCF 是平行四边形,∵∠BAC =90°,D 是BC 的中点,∴AD=DC =12BC ,∴四边形ADCF 是菱形 (3)连接DF ,由(2)知AF 綊BD ,∴四边形ABDF 是平行四边形,∴DF =AB =5,∴S 菱形ADCF =12AC·DF =12×4×5=1025.(12分)如图,在正方形ABCD 中,AC 是对角线,今有较大的直角三角板,一边始终经过点B ,直角顶点P 在射线AC 上移动,另一边交DC 于点Q.(1)如图①,当点Q 在DC 边上时,猜想并写出PB 与PQ 所满足的数量关系,并加以证明; (2)如图②,当点Q 落在DC 的延长线上时,猜想并写出PB 与PQ 满足的数量关系,并证明你的猜想.解:(1)PB =PQ.证明:连接PD ,∵四边形ABCD 是正方形,∴∠ACB =∠ACD ,∠BCD =90°,BC =CD ,又∵PC =PC ,∴△DCP ≌△BCP(SAS),∴PD =PB ,∠PBC =∠PDC ,∵∠PBC +∠PQC =180°,∠PQD +∠PQC =180°,∴∠PBC =∠PQD ,∴∠PDC =∠PQD ,∴PQ =PD ,∴PB =PQ (2)PB =PQ.证明:连接PD ,同(1)可证△DCP ≌△BCP ,∴PD =PB ,∠PBC =∠PDC ,∵∠PBC =∠Q ,∴∠PDC =∠Q ,∴PD =PQ ,∴PB =PQ。