小学奥数18数的组成及页码问题

合集下载

小学奥数模块教程平均数问题和页码问题

小学奥数模块教程平均数问题和页码问题

平均数问题和页码问题发现不同知识框架一、平均数问题:平均数:总数量÷总份数=平均数(这个可以和行程问题里面的平均速度要区分并联系)二、页码问题:页码问题与图书的页码有密切联系.事实上,页码问题就是根据书的页码而编制出来的一类应用题.编一本书的页码,一共需要多少个数码呢?反过来,知道编一本书的页码所需的数码数量,求这本书的页数.这是页码问题中的两个基本内容.页码问题是现在的奥数竞赛中常见的、经常考试的知识点.页码问题实际上是数论的问题.为了顺利地解答页码问题,我们先看一下“数”与“组成它的数码个数”之间的关系.一位数共有9个,组成所有的一位数需要9个数码;两位数共有90个,组成所有的两位数需要2×90=180(个)数码;三位数共有900个,组成所有的三位数需要3×900=2700(个)数码.例题精讲【例 1】用4个同样的杯子装水,水面高度分别是4厘米,5厘米,7厘米,8厘米,这4个杯子水面平均高度是多少厘米?【巩固】小叶子这学期前5次作业的得分分别是95,87,92,100,96.求小叶子这5次作业的平均成绩?【例 2】已知8个数的平均数是8,如果把其中一个数改为8后这8个数的平均数变为7,那么这个被改动的数原来是___________.【巩固】有五个数,平均数是9,如果把其中的一个数改为1,那么这五个数的平均数是8,这个改动的数原来是多少?【例 3】果品店把3千克水果糖,9千克奶糖混合成什锦糖,已知水果糖每千克7元,奶糖每千克11元,那么什锦糖每千克多少元?【巩固】果品店把2千克酥糖,3千克水果糖,5千克奶糖混合成什锦糖已知.酥糖每千克4.40元,水果糖每千克4.20元,奶糖每千克7.20元.问:什锦糖每千克多少元?【例 4】一辆摩托车从甲地开往乙地,前2小时每小时行驶60千米,后3小时每小时行驶70千米,平均每小时行驶多少千米?【巩固】小新算了一下今年自己的零花钱,他前三个月平均每个月的零花钱是88元,四、五月份两个月的零花钱平均是83元,那么小新前五个月的零花钱平均是多少元?【例 5】小华期末考试时,语文、数学和音乐三科成绩平均分是96分,英语成绩公布后,四科平均分下降了2分,小华英语成绩是多少分?【巩固】在一次数学测验中,包括小明在内的6名同学的平均分为70分,其中小明得了96分,则小明以外的另5位同学的平均分为分.【例 6】老师在黑板上写了十三个自然数,让同学们计算它们的平均数,要求保留两位小数,王林算得答案是12.43,老师说最后一个数字错了,那么正确的答案是多少?A. 12.42B. 12.44C. 12.46D. 12.47【巩固】从5开始的一串连续自然数5,6,7,8,……,17,拿走其中一个数,余下的数的平均数是10.75,那么拿走的数是.【例 7】人大附小有100名学生参加学而思杯数学竞赛,平均分是63分,其中参赛男同学平均分为60分,女同学平均分为70分,那么人大附小参赛男同学比女同学多几人?【巩固】六个自然数的平均数是7,其中前四个数的平均数是8,第4个数是11,求后三个数的平均数?【例 8】小永的三门功课的成绩,如果不算语文,平均分是98分;如果不算数学,平均分是93;如果不算英语,平均分是91.小永三门功课的平均成绩是分.【巩固】琪琪画了一幅画,请爷爷、奶奶、爸爸和妈妈评分.爷爷的平均分是94分,奶奶和爸爸评分的平均分是90分,爸爸和妈妈评分的平均分是92分,那么爷爷和妈妈评分的平均分是分?【例 9】某校男老师的平均年龄是27岁,女老师的平均年龄是32岁,全体老师的平均年龄是30岁.如果男老师比女老师少13名,那么该校共有_________名老师.【巩固】人大附小有100名学生参加学而思杯数学竞赛,平均分是63分,其中参赛男同学平均分为60分,女同学平均分为70分,那么人大附小参赛男同学比女同学多几人?【例 10】某班一次数学考试,所有成绩得优的同学的平均分是95分,没有得优的同学的平均分是80分,已知全班同学的平均成绩不少于90分,问得优的同学占全班同学的比例至少是多少?【巩固】一次数学竞赛满分是100分,某班前六名同学的平均得分是95.5分,排名第六的同学的得分是89分,每人得分是互不相同的整数,那么排名第三的同学至少得分.【例 11】蔡琛在期末考试中,政治、语文、数学、英语、生物五科的平均分是 89分.政治、数学两科的平均分是91.5分.语文、英语两科的平均分是84分.政治、英语两科的平均分是86分,而且英语比语文多10分.问蔡琛这次考试的各科成绩应是多少分?【巩固】小永的三门功课的成绩,如果不算语文,平均分是98分;如果不算数学,平均分是93;如果不算英语,平均分是91.小永三门功课的平均成绩是分.页码问题【例 12】一本《数学漫画》共560页,则需要多少个数码编页码?【巩固】一本小说的页码,在印刷时必须用999个铅字,问这本书共有多少页?【例 13】爷爷在看一本旧书,正文有182页.由于年代久远,书的16页至27页,62页至83页都被虫蛀了.这本书正文中没被虫蛀的有多少页?【巩固】有一本48页的书,中间缺了一张,小明将残书的页码相加,得到1131.老师说小明计算错了,你知道为什么吗?【例 14】将自然数按从小到大的顺序无间隔地排成一个大数:123456789101112…问:左起第2000位上的数字是多少?【巩固】一本书共500页,编上页码:1,2,3,4……499,500.问:数字2在页码中一共出现了多少次?课堂检测【随练1】把自然数1、2、3…33分成三组,如果每一组的平均数恰好都相等,那么这三个平均数的和是.【随练2】有七个不同的数,最大的数比最小的数多26,七个数的平均数是20.如果去掉最大的和最小的数,剩下的数的平均数是18.这七个数中最大的一个数是( ).A. 28B. 30C. 38D. 42E. 44【随练3】有六个数排成一列,这六个数的平均数是8,前四个数的平均数是9.后三个数的平均数是10,第四个数是.【随练4】有9个数,它们的平均数是72,去掉一个数后,余下的数的平均数是78,去掉的数是( )A. 20B. 21C. 22D. 23E. 24【随练5】四个数的平均数是整数,其中三个数是927、938、949,那么第四个数是( ).A. 995B.996C. 997D. 998E. 999【随练6】把写着1~1000的1000张不同数码的纸,依次按照李明1张,刘英2张,张华3张,王强4 张,陈红5张的顺序分发,发完一遍再一遍,……直到发完.最后1张发给( ).A.李明B.刘英C.张华D.王强E. 陈红家庭作业【作业1】一本书,已看了30页,剩下的准备8天看完,如果每天看的页数相等,3天看的页数恰好为全书的5/22,这本书共有多少页?【作业2】小林高136厘米,小强高132厘米,小刚比他们三人的平均身高要高2厘米.问小刚的身高是多少厘米?【作业3】在一次数学竞赛中,甲队的平均分为75分,乙队的平均分为73分,两队全体同学的平均分为73.5分,又知乙队比甲队多6人,那么乙队有多少人?【作业4】李明和张亮轮流打一份稿件,李明每天打15页,张亮每天打10页,他们一连打了25天,平均每天打12页,问李明、张亮各打了多少天?【作业5】暑假中,小明读一本长篇小说.如果第一天读40页,以后每天都比前一天多读5页,结果最后一天读35页可读完;如果第一天读50页,以后每天都比前一天多读5页,结果最后一天读45页可读完.试问这本小说共多少页?【作业6】某篮球运动员参加了l0场比赛,他在第6、7、8;9场比赛中分别得到了23、14、11和20分,他在前9场比赛的平均分比前5场比赛的平均分要高.如果他l0场比赛的平均分超过l8分,那么他在第l0场比赛至少得分.【作业7】已知八个连续奇数的和是144,求这八个连续奇数.【作业8】五次测验的平均成绩是90,中位数是91(居中的成绩),众数(出现次数最多的那个成绩)是94.则最低两次测验的成绩之和是____.【作业9】一本书共204页,需多少个数码编页码?【作业10】有一本96页的书,中间缺了一张.如果将残书的所有页码相加,那么可能得到偶数吗?【作业11】将自然数按从小到大的顺序无间隔地排成一个大数:123456789101112…问:左起第1000位上的数字是多少?。

(完整word版)小学奥数-页码(word文档良心出品)

(完整word版)小学奥数-页码(word文档良心出品)

小学奥数-页码问题页码问题就是根据书的页码而编制出来的一类应用题.编一本书的页码,一共需要多少个数码呢?反过来,知道编一本书的页码所需的数码数量,求这本书的页数.这是页码问题中的两个基本内容。

页码问题实际上是数论的问题。

一、页码问题的几种题型:(1)已知页码数,要求考生求出书中一共含有多少个数码。

(2)已知页码数,要求考生求此书中某个数码出现的次数。

(3)已知书中包含的数码数,要求考生求出该书的页码数。

(4)已知书中某个数码出现的次数,要求考生求出该书的页码数。

二、页码问题解题基本原理要想要想顺利解答页码问题,首先要弄明白“页码”与“组成它的数码个数”之间的关系。

1.一位数组成的页码共有9个(从1~9),组成所有的一位数需要:(9-1+1)×1=9×1=9(个)数码。

2.两位数共有90个(从10~99),组成所有的两位数需要:2×(99-10+1)=180(个)数码。

3.三位数共有900个(从100~999),组成所有的三位数需要:3×(999-100+1)=2700(个)数码。

4.四位数共有9000个(从1000~9999),组成所有四位数需要:4×(9999-1000+1)=36000(个)数码。

5.9页的书共有:9个数码组成。

6.99页的书共有:9+180=189个数码组成。

7.999页的书共有:2700+180+9=2889个数码组成。

8.9999页的书共有:36000+2700+180+9=38889个数码组成。

三.例题:例1 一本书共204页,需多少个数码编页码?分析与解:1~9页每页上的页码是一位数,共需数码1×9=9(个);10~99页每页上的页码是两位数,共需数码2×90=180(个);100~204页每页上的页码是三位数,共需数码:(204-100+1)×3=105×3=315(个).综上所述,这本书共需数码:9+180+315=504(个).例2 一本小说的页码,在排版时必须用2211个数码.问:这本书共有多少页?分析:因为189<2211<2889,所以这本书有几百页.由前面的分析知道,这本书在排三位数的页码时用了数码(2211-189)个,所以三位数的页数有(2211-189)÷3=674(页).因为不到三位的页数有99页,所以这本书共有:99+674=773(页).解:99+(2211-189)÷3=773(页).答:这本书共有773页.例3 一本书的页码从1至62,即共有62页.在把这本书的各页的页码累加起来时,有一个页码被错误地多加了一次.结果,得到的和数为2000.问:这个被多加了一次的页码是几?分析与解:因为这本书的页码从1至62,所以这本书的全书页码之和为1+2+…+61+62=62×(62+1)÷2=31×63=1953.由于多加了一个页码之后,所得到的和数为2000,所以2000减去1953就是多加了一次的那个页码,是2000-1953=47.例4 有一本48页的书,中间缺了一张,小明将残书的页码相加,得到1131.老师说小明计算错了,你知道为什么吗?分析与解:48页书的所有页码数之和为1+2+…+48=48×(48+1)÷2=1176.按照小明的计算,中间缺的这一张上的两个页码之和为1176-1131=45.这两个页码应该是22页和23页.但是按照印刷的规定,书的正文从第1页起,即单数页印在正面,偶数页印在反面,所以任何一张上的两个页码,都是奇数在前,偶数在后,也就是说奇数小偶数大.小明计算出来的是缺22页和23页,这是不可能的.例5 将自然数按从小到大的顺序无间隔地排成一个大数:123456789101112…问:左起第2000位上的数字是多少?分析与解:本题类似于“用2000个数码能排多少页的页码?”因为(2000-189)÷3=603……2,所以2000个数码排到第99+603+1=703(页)的第2个数码“0”.所以本题的第2000位数是0.例6 排一本400页的书的页码,共需要多少个数码“0”?分析与解:将1~400分为四组:1~100,101~200,201~300,301~400.在1~100中共出现11次0,其余各组每组都比1~100多出现9次0,即每组出现20次0.所以共需要数码“0”例6、13/1995 化成小数后是一个无限小数,问在这个无限小数的小数点后面,从第一位到1995位,在这1995个数中,数字6共出现了多少次?解答:这是一个关于循环小数的周期问题。

四年级奥数详解答案-第23讲-页码问题

四年级奥数详解答案-第23讲-页码问题

四年级奥数详解答案第23讲第二十三讲页码问题一、知识概要页码是指书本每一页(面)上所标注的数目。

(这里的“页”不是指书中的一张纸,而是指一张纸的一面)。

页码问题主要是研究编一本书的页码,一共需要多少个数码,以及知道编一本书的页码所需的数码数量,求这本书页数。

典型的页码问题有如下三类(最基本的):(1)算页码中所用数字个数的和,或是根据已知的页码中所用数字个数的和来求页码。

(2)计算页码中某个数字出现的项数。

(3)计算页码中所有数字的和。

解决页码问题的基本方法是:分段(或分类或分组)计算。

页码个数与组成页码的数码个数之间的关系,如下表所示。

二、典型题目精讲1、一本故事书共180页,需多少个数码编页码?解:数码是指0,1,2,3,4,5,6,7,8,9这十个数字,页码就是由每页上由数码组成的数目。

所以,1~9页有9个数码;10—99页有180个数码;100~180页有81×3=243 (个)数码。

一共有9+180+243=432(个)2、有一本辞典,所编页码共用了3401个数码,这本辞典一共有________页。

解:①1~9页用9个数码;10—99页用了180个数码;100~999用了2700个数码;则1~999页共用数码9+180+2700=2889(个)。

②1000~?页共用数码(3401-2889)=512 (个);则512÷4=128(页)。

故这本辞典共有999+128=1127(页)3、一本漫画共121页,在这本书的页码中数字一共出现了_______次。

解:(分类计算)①在个位上,1出现13次(即1,11,21……101,111,121);②在十位上,1出现20次(即10,11,12……19;110,111,112……119);③在百位上,1出现22次(即100,101,102,……121)。

综合①②③可知,1在书的页码中共出现(13 +20+22)=55(次)。

4、一本书共200页,求页码中全部数字的和。

小学数学思维训练——页码问题

小学数学思维训练——页码问题

小学数学思维训练----页码问题一、知识讲解:页码问题顾名思义是与图书的页码有密切联系的问题。

事实上,页码问题就是根据书的页码而编制出来的一类应用题。

页码问题中有两个基本内容:编一本书的页码,一共需要多少个数码;知道编一本书的页码所需的数码数量,求这本书的页数。

为了顺利地解答页码问题,我们先了解一下“数”与“组成它的数码个数”之间的关系:1、一位数共有9个,组成所有的一位数需要9个数码;两位数共有90个,组成所有的两位数需要2×90=180(个)数码;三位数共有900个,组成所有的三位数需要3×900=2700(个)数码……2、100以内的数字中(不包括100),1到9九个数字分别出现了20次;【以“1”为例:在个位出现10次(1、11、21……91),在十位出现10次(10、11……19),共20次。

】1000以内的数字中(不包括1000),1到9九个数字分别出现了300次;【以“1”为例:在个位出现了100次(10个10次),在十位上出现了100次,在百位上出现了100次,共300次。

】二、例题解析例1一本书有160页,共要用多少个数字来编页码?解:我们把这本书的页码分成三段计算。

(1)1~9一位数9个,共用9个数字;(2)10~99两位数90个,共用数字:(99-9)×2=180(个);(3)100~160三位数61个,共用数字:(160-99)×3=183(个)。

所以这本书有160页,共要用数字:9+180+183=372(个)。

例2一本小说的页码,在排版时必须用2010个数码。

问:这本书共有多少页?分析:因为189<2010<2889,所以这本书有几百页。

由前面的分析知道,这本书在排三位数的页码时用了数码(2010-189)个,所以三位数的页数有例3一本书有950页,编排这本书的所有页码中会出现多少个1个?分析:950页书的页码是从1~950这950个连续自然数,数字1出现的次数可以分两类计算。

六年级奥数题及答案:页码应用题

六年级奥数题及答案:页码应用题

六年级奥数题及答案:页码应用题
教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书,包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等,下面是由小编为大家整理的范文模板,仅供参考,欢迎大家阅读.
1.一页书共380页,印刷厂的排版工人编排这本书,仅排页码一共要用多少个铅字?
2.从“1”一直写到“7_”:_34567891__2……6997_7_。

共有多少个阿拉伯数字
3.一本故事书,仅排页码就用去_92个铅字(数字)。

这本书有多少页?
4.在2、4、6、……、396和398这些偶数的数列中,数字“2“一个有多少个?
5.排版工人给一本书编排页码,共用去942个数字(铅字),这本书有多少页?
6.自然数的平方按从小到大排成一行:_9_253649……,那么第_2个位置上的数字是多少?
7.设小数A = _234567891_1……998999,试问,小数点右边第_98位上的数字是几?
8.一本书共399页,编上页码:1、2、3、4……398、399,问数字“2“在页码中共有多少个?
9.设小数B = _4681_2……_98_,那么小数点右边第_位上的数字是几?
_.有一本书中间被撕掉一张,余下各页的页码数之和正好是_45。

那么,被撕掉那一张的页码数是什么?
六年级奥数题及答案:页码应用题.到电脑,方便收藏和打印:。

小学奥数训练题页码数串与周期(无答案)

小学奥数训练题页码数串与周期(无答案)

页码、数串与周期1、将自然数从小到大无间隔地排列起来,得到一串数码1 2 3 4 5 6 7 8 910 11 12 13 14 15…这串数码中从左起第1000个数码是几2、一本书的页码由7641个数码组成,这本书共有多少页3、排印一本200页的书的页码,共需要多少个数码4、一本书有500页,问:数码0在页码中出现多少次5、甲、乙两册书的页码共用了777个数码,且甲册比乙册多7页。

甲册书有多少页6、按自然数的顺序从1写到n,总共用了3193个数码。

问:n是什么数7、自然数的平方按从小到大排列成1 4 9 16 25 36 49 64…从左至右第100个数码是几8、在1~1000这1000个自然数中,总共有多少个数码“1”9、下面的一列数中,只有一个九位数,这个九位数是几1234,5678,9101112,,…10、有一串数字,任何相邻的4个数码之和都是20,从左边起第2,7,12个数码分别是2,6,8,求第1个数码。

11、有一串数字9286…从第3个数码起,每一个数码都是它前面2个数码的积的个位数。

问:第100个数码是几前100个数码之和是多少12、有一串数字9213…从第3个数码起,每一个数码都是它前面2个数码的和的个位数。

问:第100个数码是几前100个数码之和是多少13、在下面的一串数中,从第五个数起,每个数都是它前面四个数之和的个位数字。

那么在这串数中,能否出现相邻的四个数依次是2,0,0,01,9,9,9,8,5,1,3,7,6,7,3,3,9,2,7,1,9,9,6,…14、八个自然数排成一排,从第三个数开始,每个数都是它前面两个数之和,已知第五个数是7,求第八个数。

15、从1开始连续n个自然数的和的个位可以有多少种不同的数字16、A,B,C,D,E五个盒子中依次放有9,5,3,2,1个小球。

第1个小朋友找到放球最少的盒子,然后从其它盒子中各取一个球放入这个盒子;第2个小朋友也先找到放球最少的盒子,然后也从其它盒子中各取一个球放入这个盒子……当1000位小朋友放完后,A,B,C,D,E五个盒子中各放有几个球17、A,B,C,D四个盒子中依次放有8,5,3,2个小球。

小学奥数 页码问题

小学奥数 页码问题

奥数:页码问题(数论问题)页码问题与图书的页码有密切联系.事实上,页码问题就是根据书的页码而编制出来的一类应用题.编一本书的页码,一共需要多少个数码呢?反过来,知道编一本书的页码所需的数码数量,求这本书的页数.这是页码问题中的两个基本内容。

页码问题是现在的奥数竞赛以及公务员考试中常见的、经常考试的知识点。

页码问题实际上是数论的问题。

为了顺利地解答页码问题,我们先看一下数”与组成它的数码个数”之间的关系.一位数共有9个,组成所有的一位数需要9个数码;两位数共有90个,组成所有的两位数需要2 >90=180(个)数码;三位数共有900个,组成所有的三位数需要3X900= 2700(个)数码。

为了清楚起见,我们将n位数的个数、组成所有n位数需要的数码个数、组成所有不大于n 位的数需要的数码个数之间的关系列表如下:由上表可以看出,如果一本书不足100页,那么排这本书的页码所需的数码个数不会超过189个;如果某本书排的页码用了10000个数码,因为2889V 10000< 38889,所以这本书肯定是上千页。

例1 一本书共204页,需多少个数码编页码?分析与解:1〜9页每页上的页码是一位数,共需数码1X9= 9(个);10〜99页每页上的页码是两位数,共需数码2X90= 180(个);100〜204页每页上的页码是三位数,共需数码(204- 100+ 1)>= 105X3= 315(个).综上所述,这本书共需数码9+ 180+ 315= 504(个).例2 一本小说的页码,在排版时必须用2211 个数码.问:这本书共有多少页?分析:因为189V2211< 2889,所以这本书有几百页.由前面的分析知道,这本书在排三位数的页码时用了数码(2211—189)个,所以三位数的页数有(2211—189)-3=674(页).因为不到三位的页数有99页,所以这本书共有:99+674=773(页).解:99+ (2211 —189) -3= 773(页).答:这本书共有773页.例3 一本书的页码从1 至62,即共有62 页.在把这本书的各页的页码累加起来时,有一个页码被错误地多加了一次.结果,得到的和数为2000.问:这个被多加了一次的页码是几?分析与解:因为这本书的页码从1至62,所以这本书的全书页码之和为1+2+…+ 61 + 62=3103=1953.由于多加了一个页码之后,所得到的和数为2000,所以2000减去1 953就是多加了一次的那个页码,是2000—1953= 47.例4 有一本48 页的书,中间缺了一张,小明将残书的页码相加,得到1131.老师说小明计算错了,你知道为什么吗?分析与解:48 页书的所有页码数之和为1+2+…+ 48= 1176.1 1 76 —1 1 3 1 = 4 5 .这两个页码应按照小明的计算,中间缺的这一张上的两个页码之和为该是22页和23页.但是按照印刷的规定,书的正文从第1 页起,即单数页印在正面,偶数页印在反面,所以任何一张上的两个页码,都是奇数在前,偶数在后,也就是说奇数小偶数大.小明计算出来的是缺22 页和23 页,这是不可能的.例5将自然数按从小到大的顺序无间隔地排成一个大数: 123456789101112…问:左起第 2000 位上的数字是多少?分析与解:本题类似于 用2000个数码能排多少页的页码? ”因为(2000- 189)七=603……2,所以2000个数码排到第99 + 603+ 1 = 703(页)的第2个数码“ 0.”所以本题的第2000位数是 0.分析与解:将1〜400分为四组:1〜100, 101〜200, 201〜300, 在 1〜100中共出现 11 次 0,其余各组每组都比 1〜100多出现 9 次 0,即每组出现 20次0.所以共需要数码 “ 0”典型例题:例 1、13/1995 化成小数后是一个无限小数, 问在这个无限小数的小数点后面,从第一位 到 1 995位,在这 1995个数中,数字 6 共出现了多少次?解答:这是一个关于循环小数的周期问题。

五年级下册数学奥数经典培训讲义——页码问题(二)全国通用

五年级下册数学奥数经典培训讲义——页码问题(二)全国通用

五年级下册数学奥数经典培训讲义——页码问题(⼆)全国通⽤页码问题(⼆)【例题1】⼀本⼩说的页码,在排版时须⽤2211个数码。

问:这本书共有多少页?1、给⼀本书编码,⽤了2049个数码,这本书有多少页?2、给⼀把长篇⼩说编页码,共⽤3005个数字,这本书有多少页?【例题2】在1~200这200个⾃然数中,数字“0”出现了多少次?1、⼀本400页的书,数码0、1在页码中分别出现多少次?2、⼀本书有608页,页码编号为1、2、3、...608.问:数字“3”在页码中出现多少次?3、⼀本400页的书,数码2在页码中出现多少次?【例题3】⼀本故事书中数字0出现了65次,这本书⾄少有多少页?1、⼀本故事书的页码共⽤了18个“0”这本书⼀共有多少页?2、⼀本故事书的页码共⽤了31个“0”这本书⼀共有多少页?【例题4】将⾃然数按从⼩到⼤的顺序⽆间隔地排成⼀个⼤数:123456789101112...问:左起第2018位上的数字是多少?1、《现代汉语词典》共有1772页,如果把它的页码按从⼩到⼤的顺序⽆间隔地排成⼀个⼤数:1234567891011121314151617181920...,请问左起第2020位上的数字是多少?2、将⾃然数按从⼩到⼤的顺序不间断地排成⼀个⼤数:12345678910111213...,这个⼤数左起第1000位是⼏?课堂巩固练习1、⼀本故事书的页码共⽤了38个“0”这本书共有多少页?2、排⼀本书,它的页码中共出现了71个零,问这本书共有多少页?3、今年是2018年,如果把公元1年到今年的所有年份连续放在⼀起,组成⼀个很⼤的数:1234567891011121314......2018。

这个很⼤的数是⼏位数?4、⼀本⼩学⽣作⽂选有320页。

问:(1)编这本书要⽤多少个数码?(2)数字2在页码中出现⼏次?5、将⾃然数按从1到460不间断地排成⼀个⼤数:12345678910111213...459460这个⼤数是⼏位数?第300个数字是⼏?6、在1984后⾯接着写⼀个数字,写下的每⼀个数字都是他前⾯的两个数的乘积的个位数,如:8×4=32,就在4后⾯写2,4×2=8,就在2后⾯写8,在1984286......这个数字中:①第2018位上的数它是多少?②这2018个数的和是多少?7、将⾃然数按从⼩到⼤的顺序⽆间隔地排成⼀个⼤数:123456789101112...问:左起第 2000位上的数字是多少?8、⼀本书的页码为1⾄62,即共有62页。

(完整word版)小学奥数页码问题

(完整word版)小学奥数页码问题

奥数:页码问题(数论问题)页码问题与图书的页码有亲密联系.事实上,页码问题就是依据书的页码而编制出来的一类应用题.编一本书的页码,一共需要多少个数码呢?反过来,知道编一本书的页码所需的数码数目,求这本书的页数.这是页码问题中的两个基本内容。

页码问题是此刻的奥数比赛以及公事员考试中常有的、常常考试的知识点。

页码问题其实是数论的问题。

为了顺利地解答页码问题,我们先看一下“数”与“构成它的数码个数”之间的关系.一位数共有 9 个,构成全部的一位数需要 9 个数码;两位数共有 90 个,构成全部的两位数需要 2×90=180(个 )数码;三位数共有 900 个,构成全部的三位数需要 3×900=2700(个)数码。

为了清楚起见,我们将 n 位数的个数、构成全部 n 位数需要的数码个数、构成全部不大于 n 位的数需要的数码个数之间的关系列表以下:由上表能够看出,假如一本书不足100 页,那么排这本书的页码所需的数码个数不会超过 189 个;假如某本书排的页码用了 10000 个数码,因为 2889<10000< 38889,因此这本书一定是上千页。

例1 一本书共 204 页,需多少个数码编页码?剖析与解: 1~ 9 页每页上的页码是一位数,共需数码1×9= 9(个);10~99 页每页上的页码是两位数,共需数码2×90=180(个);100~ 204 页每页上的页码是三位数,共需数码(204-100+1) ×3=105×3= 315(个).综上所述,这本书共需数码9+180+315= 504(个) .例2 一本小的,在排版必用 2211 个数.:本共有多少?剖析:因 189< 2211< 2889,因此本有几百.由前面的剖析知道,本在排三位数的用了数(2211-189)个,因此三位数的数有(2211-189) ÷3= 674( ).因不到三位的数有99 ,因此本共有: 99+674=773( ).解: 99+(2211-189) ÷3=773( ).答:本共有773 .例 3 一本的从 1 至 62,即共有 62 .在把本的各的累加起来,有一个被地多加了一次.果,获得的和数 2000.:个被多加了一次的是几?剖析与解:因本的从 1 至 62,因此本的全之和1+2+⋯+ 61+62= 62×(62+ 1) ÷2= 31×63= 1953.因为多加了一个以后,所获得的和数2000,因此 2000 减去 1953 就是多加了一次的那个,是2000-1953=47.例 4有一本48的,中缺了一,小明将残的相加,获得1131.老小明算了,你知道什么?剖析与解: 48 的全部数之和1+2+⋯+ 48=48×(48+ 1) ÷2=1176.依据小明的算,中缺的一上的两个之和1176-1131= 45.两个是 22 和 23 .可是依据印刷的定,的正文从第 1 起,即数印在正面,偶数印在反面,因此任何一上的两个,都是奇数在前,偶数在后,也就是奇数小偶数大.小明算出来的是缺22 和 23 ,是不行能的.第2000 位上的数字是多少?剖析与解:本似于“用2000 个数能排多少的?”因(2000-189) ÷3=603⋯⋯2,因此2000 个数排到第 99+603+1=703( )的第 2 个数“ 0.”因此本的第 2000 位数是 0.例6 排一本 400 的的,共需要多少个数“0?”剖析与解:将1~400 分四:1~100,101~ 200,201~300, 301~400.在 1~100 中共出 11 次 0,其他各每都比 1~ 100 多出 9 次 0,即每出 20 次0.因此共需要数“ 0”典型例:例 1、13/1995 化成小数后是一个无穷小数,在个无穷小数的小数点后边,从第一位到1995 位,在 1995 个数中,数字 6 共出了多少次?解答:是一个对于循小数的周期。

页码问题

页码问题

奥数:页码问题(数论问题)一、基本知识页码问题与图书的页码有密切联系。

事实上,页码问题就是根据书的页码而编制出来的一类应用题。

编一本书的页码,一共需要多少个数码呢?反过来,知道编一本书的页码所需的数码数量,求这本书的页数.这是页码问题中的两个基本内容。

页码问题是现在的奥数竞赛以及公务员考试中常见的、经常考试的知识点。

页码问题实际上是数论的问题。

页码问题涉及的应用题包含四个基本内容:(1)已知页码数,要求考生求出书中一共含有多少个数码;(2)已知页码数,要求考生求此书中某个数码出现的次数;(3)已知书中包含的数码数,要求考生求出该书的页码数;(4)已知书中某个数码出现的次数,要求考生求出该书的页码数。

为了顺利地解答页码问题,我们先看一下“数”与“组成它的数码个数”之间的关系:(1)一位数共有9个,1~9,组成所有的一位数需要9个数码;(2)两位数共有90个,10~99,组成所有的两位数需要2×90=180(个)数码;(3)三位数共有900个,100~999,组成所有的三位数需要3×900=2700(个)数码。

(4)四位数共有9000个,1000~9999,组成所有的三位数需要4×9000=36000(个)数码。

...................为了清楚起见,我们将n位数的个数、组成所有n位数需要的数码个数、组成所有不大于n位的数需要的数码个数之间的关系列表如下:由上表看出,如果一本书不足100页,那么排这本书的页码所需的数码个数不会超过189个;如果某本书排的页码用了10000个数码,因为2889<10000<38889,所以这本书肯定是上千页。

二、举例说明例1 一本书共204页,需多少个数码编页码?分析与解:1~9页每页上的页码是一位数,共需数码1×9=9(个);10~99页每页上的页码是两位数,共需数码2×90=180(个);100~204页每页上的页码是三位数,共需数码(204-100+1)×3=105×3=315(个)。

小学奥数页码问题精粹

小学奥数页码问题精粹

知识要点基础知识【例 1】 (2007年第六届“小机灵杯”复赛C 卷)小刚从一本书的54页阅读到67页,苏明从95页阅读到135页,小强从180页阅读到237页,他们总共阅读了________页。

页码问题主要是指一本书的页数与所有的数字之间的关系的一类应用题。

数字又称数码,它的个数是有限的。

在十进制中,有0、1、2、3、4、5、6、7、8、9共十个数字(数码)。

页码又称页数,它是由数字(数码)组成的,一个数字(数码)组成一位数、两个数字(数码)组成两位数、三个数字(数码)组成三位数……,页码(页数)的个数是无限的。

在解决这类问题时,在审题、解题过程中要特别注意并加以区别。

一本书的页码有以下规律: 1、同一张纸的正反面页码是先奇后偶的两个相邻自然数。

2、任意翻开的两页页码是先偶后奇的两个相邻自然数。

3、任意翻开的两页的页码和除以4余1。

4、同一张纸的页码和除以4余3。

知道页码数求页数知道页数求页码数同一张纸的页码和除以4余3任意翻开的两页的页码和除以4余1任意翻开的两页页码是先偶后奇的两个相邻自然数同一张纸的正反面页码是先奇后偶的两个相邻自然数区分“数”和“数字(数码)”页码问题【例 2】柯南有一本旧书,正文182页。

由于年代久远,书的16页至27页,62页至83页都被虫蛀了。

这本书正文中没有被虫蛀的有多少页【例 3】图书馆中有一本破旧不堪的书,共208页。

书的4页至8页,111页至123页都因时间久远而被虫蛀掉了。

这本书一共被蛀了多少页纸典型题目【例 4】(第6届“小机灵杯”邀请赛第5题B卷)一本书有185页,编这本书的页码一共要用多少个数字【例 5】一本科幻小说共320页,请问编印这本科幻小说共用了多少个数字【例 6】(2004年“均瑶杯”初赛)给一本书编页码一共用了666个数字,这本书一共______页。

【例 7】给一本书编页码,在印刷时必须用到2010个铅字(一个铅字代表一个数字)。

五年级《页码问题》奥数教案

五年级《页码问题》奥数教案

师:很好,我们减一下可以得到差是45。

所以根据45可以知道的那页是多少呢?生:45页。

师:45页?还有不同答案吗?生:22页和23页。

师:对,同学们真细心。

所以卡尔的书掉了22页和23页。

同学们觉得有什么问题吗?师:同学们,我们可以翻开我们的书,一起来看一看,22页和23页在哪里。

【配合课件动画】生:老师,这是在两张上的。

师:对了,而我们题目中告诉我们卡尔的的书掉了几张?生:1张。

师:所以,我们算出来的和实际并不符合。

同学们知道老师为什么知道卡尔算错了吗?生:知道了。

师:如果我们不翻书,同学们能知道22页和23页为什么不在同一页上吗啊?生:知道。

师:嗯,因为每一张纸的前面一页是奇数,后面一页是偶数。

【教师在讲解时,要配合课件演示整个解题过程】师:既然你们都理解了,那就一起来计算一下练习五的题吧。

师:我请两位同学上台板演,其他同学写在课堂练习本上。

【课件出示练习五,教师请两位中上的学生上台板演,教师下台巡视观察学生的解题情况】板书:(1+48)×48÷2=11761176-1131=45(45-1)÷2=22(页)22+1=23(页)22页和23页不在同一张纸上。

答:卡尔算出的掉的两页不在同一张上。

练习五:一本书的中间被撕掉了一张,余下的各页码数和正好是1200,这本书有多少页,撕掉的一张上的页码分别是什么?分析:本题难度中等偏难。

学生要对学过的知识牢牢掌握,就能较快的解出。

这题需要学生利用等差数列求和的公式,并利用“凑数法”和1200比较大小。

板书:假设这本书有50页,(1+50)×50÷2=1275。

小学奥数-页码

小学奥数-页码

小学奥数-页码问题页码问题就是根据书的页码而编制出来的一类应用题.编一本书的页码,一共需要多少个数码呢?反过来,知道编一本书的页码所需的数码数量,求这本书的页数.这是页码问题中的两个基本内容。

页码问题实际上是数论的问题。

一、页码问题的几种题型:(1)已知页码数,要求考生求出书中一共含有多少个数码。

(2)已知页码数,要求考生求此书中某个数码出现的次数。

(3)已知书中包含的数码数,要求考生求出该书的页码数。

(4)已知书中某个数码出现的次数,要求考生求出该书的页码数。

二、页码问题解题基本原理要想要想顺利解答页码问题,首先要弄明白“页码”与“组成它的数码个数”之间的关系。

1.一位数组成的页码共有9个(从1~9),组成所有的一位数需要:(9-1+1)×1=9×1=9(个)数码。

2.两位数共有90个(从10~99),组成所有的两位数需要:2×(99-10+1)=180(个)数码。

3.三位数共有900个(从100~999),组成所有的三位数需要:3×(999-100+1)=2700(个)数码。

4.四位数共有9000个(从1000~9999),组成所有四位数需要:4×(9999-1000+1)=36000(个)数码。

5.9页的书共有:9个数码组成。

6.99页的书共有:9+180=189个数码组成。

7.999页的书共有:2700+180+9=2889个数码组成。

8.9999页的书共有:36000+2700+180+9=38889个数码组成。

三.例题:例1 一本书共204页,需多少个数码编页码?分析与解:1~9页每页上的页码是一位数,共需数码1×9=9(个);10~99页每页上的页码是两位数,共需数码2×90=180(个);100~204页每页上的页码是三位数,共需数码:(204-100+1)×3=105×3=315(个).综上所述,这本书共需数码:9+180+315=504(个).例2 一本小说的页码,在排版时必须用2211个数码.问:这本书共有多少页?分析:因为189<2211<2889,所以这本书有几百页.由前面的分析知道,这本书在排三位数的页码时用了数码(2211-189)个,所以三位数的页数有(2211-189)÷3=674(页).因为不到三位的页数有99页,所以这本书共有:99+674=773(页).解:99+(2211-189)÷3=773(页).答:这本书共有773页.例3 一本书的页码从1至62,即共有62页.在把这本书的各页的页码累加起来时,有一个页码被错误地多加了一次.结果,得到的和数为2000.问:这个被多加了一次的页码是几?分析与解:因为这本书的页码从1至62,所以这本书的全书页码之和为1+2+…+61+62=62×(62+1)÷2=31×63=1953.由于多加了一个页码之后,所得到的和数为2000,所以2000减去1953就是多加了一次的那个页码,是2000-1953=47.例4 有一本48页的书,中间缺了一张,小明将残书的页码相加,得到1131.老师说小明计算错了,你知道为什么吗?分析与解:48页书的所有页码数之和为1+2+…+48=48×(48+1)÷2=1176.按照小明的计算,中间缺的这一张上的两个页码之和为1176-1131=45.这两个页码应该是22页和23页.但是按照印刷的规定,书的正文从第1页起,即单数页印在正面,偶数页印在反面,所以任何一张上的两个页码,都是奇数在前,偶数在后,也就是说奇数小偶数大.小明计算出来的是缺22页和23页,这是不可能的.例5 将自然数按从小到大的顺序无间隔地排成一个大数:123456789101112…问:左起第2000位上的数字是多少?分析与解:本题类似于“用2000个数码能排多少页的页码?”因为(2000-189)÷3=603……2,所以2000个数码排到第99+603+1=703(页)的第2个数码“0”.所以本题的第2000位数是0.例6 排一本400页的书的页码,共需要多少个数码“0”?分析与解:将1~400分为四组:1~100,101~200,201~300,301~400.在1~100中共出现11次0,其余各组每组都比1~100多出现9次0,即每组出现20次0.所以共需要数码“0”例6、13/1995 化成小数后是一个无限小数,问在这个无限小数的小数点后面,从第一位到1995位,在这1995个数中,数字6共出现了多少次?解答:这是一个关于循环小数的周期问题。

四年级奥数:页码问题及对应答案分析

四年级奥数:页码问题及对应答案分析

四年级奥数:页码问题及对应答案分析奥数:页码问题(数论问题)页码问题与图书的页码有密切联系.事实上,页码问题就是根据书的页码而编制出来的一类应用题.编一本书的页码,一共需要多少个数码呢?反过来,知道编一本书的页码所需的数码数量,求这本书的页数.这是页码问题中的两个基本内容。

页码问题是现在的奥数竞赛以及公务员考试中常见的、经常考试的知识点。

页码问题实际上是数论的问题。

为了顺利地解答页码问题,我们先看一下“数”与“组成它的数码个数”之间的关系.一位数共有9个,组成所有的一位数需要9个数码;两位数共有90个,组成所有的两位数需要2×90=180(个)数码;三位数共有900个,组成所有的三位数需要3×900=2700(个)数码。

现在我们来看几道例题.例1 一本书共204页,需多少个数码编页码?例2 一本小说的页码,在排版时必须用2211个数码.问:这本书共有多少页?例3 一本书的页码从1至62,即共有62页.在把这本书的各页的页码累加起来时,有一个页码被错误地多加了一次.结果,得到的和数为2000.问:这个被多加了一次的页码是几?例4 有一本48页的书,中间缺了一张,小明将残书的页码相加,得到1131.老师说小明计算错了,你知道为什么吗?例5 将自然数按从小到大的顺序无间隔地排成一个大数:123456789101112…问:左起第2000位上的数字是多少?例6 排一本400页的书的页码,共需要多少个数码“0”?典型例题:例1、13/1995 化成小数后是一个无限小数,问在这个无限小数的小数点后面,从第一位到1995位,在这1995个数中,数字6共出现了多少次?例2、有一本96页的书,中间缺了一张。

如果将残书的所有页码相加,那么可能得到偶数吗?例3、将自然数按从小到大的顺序无间隔地排成一个大数:123456789101112…问:左起第1000位上的数字是多少?例4、有一本科幻故事书,每四页中,有一页为文字,其余三页为图画。

小学奥数系列:18数阵图初步

小学奥数系列:18数阵图初步

数阵图初步【内容概述】各种较为基本的数阵图问题,主要是格中填数要求某些线或圆上各数之和相等这一类型.解题的基本方法是计算格的重数,并通常把重数具有特殊性的位置作为突破口.【典型问题】1.把1至6分别填人图18—1的各方格中,使得横行3个数的和与竖列4个数的和相等.2.把10至20这11个数分别填入图18—2的各圆圈内,使每条线段上3个圆内所填数的和都相等.如果中心圆内填的数相等,那么就视为同一种填法.请写出所有可能的填法.图18一l 图18—2 图18—33.请分别将1,2,4,6这4个数填在图18—3的各空白区域内,使得每个圆圈里4个数的和都等于15.4.在图18—4的7个圆内填人7个连续自然数,使得每两个相邻圆内所填数的和都等于连线上的已知数,那么标有六的圆内填的数是多少?图18-4 图18-55.图18—5的6条线分别连接着9个圆圈,其中一个圆圈里的数是6.请你选9个连续自然数(包括6在内)填人圆圈内,使每条线上各数的和都等于23.6.将1,2,3,…,9,10这10个数分别填入图18—6中的圆圈内,使得每条线段两端的数相乘的积,除以13都余2.问这5 个商数的和是多少?7.在图18—7的中间圆圈内填一个数,计算每一线段两端的两数之差(大减小),然后算出这3个差数之和,那么这个差数之和的最小值是多少?图18—6 图18—7 图18—88.请在图18—8中的7个小圆圈内各填入一个自然数,使得图中给出的每个数都是相邻两个圆圈中所填数的差(大数减小数),产且所填的7个数之和是1997.9.图18—9是奥林匹克的五环标志,其中以,b,c,d,P,f,g,h,i处分别填人整数1至9,如果每一个圆环内所填的各数之和都相等,那么这个相等的和最大是多少,最小是多少?图18—9 图18—1010.有10个连续的自然数,9是其中第三大的数.现在把这10个数填到图18—10的10个方格中,每格内填一个数,要求图中3个2×2的正方形中的4个数之和相等.那么,这个和数的最小值是多少?11.如图18—11,“好、伙、伴、助、手、参、谋”这7个汉字分别代表1至7这7个数字.已知3条直线上的3个数相加、2个圆周上的3个数相加,所得的5个和相同.那么,“好”字代表多少?图18—11 图18—1212.能否将数0,1,2,…,9分别填人图18—12的各个圆圈内,使得各阴影三角形的3个顶点上的数之和相等?13.如图18—13,大三角形被分成了9个小三角形.试将1,2,3,4,5,6,7,8,9分别填入这9个小三角形内,每个小三角形内填一个数,要求靠近大三角形3条边的每5个数相加的和相等,问这5个数的和最大可图18-13 能是多少?14.将1,2,3,4,5,6,7,8这8个数分别填入图18—14的8个空格中,使四边正好组成加、减、乘、除4个正确的等式.。

小学奥数页码问题

小学奥数页码问题

页码问题的常见类型
页码中数字的总和
连Байду номын сангаас页码的数字和
添加标题
添加标题
特定数字的页码
添加标题
添加标题
页码中某一位数字的出现次数
小学奥数页码问题的解题思路
枚举法
定义:通过一一 列举所有可能的 情况来解决问题 的方法
适用范围:当问 题的答案数量有 限或者答案范围 较小时
解题步骤:逐一 列举所有可能的 情况,并分析每 种情况下的答案
规律
步骤:列举特 例,观察分析, 归纳总结,得
出结论
适用范围:适 用于解决一些 具有规律性、 重复性的问题
注意事项:在 归纳过程中要 确保特例的全 面性和代表性, 避免以偏概全
小学奥数页码问题的常见题型
求某一页码数字的和
求某一页码数字的和 判断某一页码是否存在 计算某一页码的数字个数 找出某一页码的数字规律
注意事项:列举 时要全面,不要 遗漏任何一种可 能的情况
数学推导法
定义:通过数 学公式和逻辑 推理来解决问
题的方法
适用范围:适 用于解决各种 数学问题,包 括小学奥数页
码问题
步骤:分析问 题、选择合适 的数学模型、 推导公式、解
决问题
优势:能够快 速准确地解决 问题,提高数
学思维能力
归纳法
定义:从个别 到一般的推理 方法,通过对 特例的分析来 推断出一般性
THANK YOU
汇报人:XX
汇报时间:20XX/XX/XX
YOUR LOGO
求某一页码数字的积
求某一页码数字的积:例如求1~100的所有页码数字之和。 页码数字的排列规律:例如找出1~100页码中数字“1”出现的次数。 页码数字的加减法:例如求两个连续页码数字之差。 页码数字的倍数关系:例如找出1~100页码中能被3整除的数字。

五年级下册数学奥数经典培训讲义——页码问题(二)全国通用

五年级下册数学奥数经典培训讲义——页码问题(二)全国通用

页码问题(二)【例题1】一本小说的页码,在排版时须用2211个数码。

问:这本书共有多少页?1、给一本书编码,用了2049个数码,这本书有多少页?2、给一把长篇小说编页码,共用3005个数字,这本书有多少页?【例题2】在1~200这200个自然数中,数字“0”出现了多少次?1、一本400页的书,数码0、1在页码中分别出现多少次?2、一本书有608页,页码编号为1、2、3、...608.问:数字“3”在页码中出现多少次?3、一本400页的书,数码2在页码中出现多少次?【例题3】一本故事书中数字0出现了65次,这本书至少有多少页?1、一本故事书的页码共用了18个“0”这本书一共有多少页?2、一本故事书的页码共用了31个“0”这本书一共有多少页?【例题4】将自然数按从小到大的顺序无间隔地排成一个大数:123456789101112...问:左起第2018位上的数字是多少?1、《现代汉语词典》共有1772页,如果把它的页码按从小到大的顺序无间隔地排成一个大数:1234567891011121314151617181920...,请问左起第2020位上的数字是多少?2、将自然数按从小到大的顺序不间断地排成一个大数:12345678910111213...,这个大数左起第1000位是几?课堂巩固练习1、一本故事书的页码共用了38个“0”这本书共有多少页?2、排一本书,它的页码中共出现了71个零,问这本书共有多少页?3、今年是2018年,如果把公元1年到今年的所有年份连续放在一起,组成一个很大的数:1234567891011121314......2018。

这个很大的数是几位数?4、一本小学生作文选有320页。

问:(1)编这本书要用多少个数码?(2)数字2在页码中出现几次?5、将自然数按从1到460不间断地排成一个大数:12345678910111213...459460这个大数是几位数?第300个数字是几?6、在1984后面接着写一个数字,写下的每一个数字都是他前面的两个数的乘积的个位数,如:8×4=32,就在4后面写2 ,4×2=8,就在2后面写8,在1984286......这个数字中:①第2018位上的数它是多少?②这2018个数的和是多少?7、将自然数按从小到大的顺序无间隔地排成一个大数:123456789101112...问:左起第 2000位上的数字是多少?8、一本书的页码为1至62,即共有62页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章数论2.1数的组成2.1.1数字组数例1 用1、2、3、4、5、6、7、8、9这九个数字组成质数,如果每个数字都要用到,并且只能用一次,那么这九个数字最多能组成______个质数。

讲析:自然数1至9这九个数字中,2、3、5、7本身就是质数。

于是只剩下1、4、6、8、9五个数字,它们可组成一个两位质数和一个三位质数:41和689。

所以,最多能组成六个质数。

例2 用0、1、2、……9这十个数字组成五个两位数,每个数字只用一次,要求它们的和是一个奇数,并且尽可能的大。

那么,这五个两位数的和是______。

讲析:组成的五个两位数,要求和尽可能大,则必须使每个数尽可能大。

所以它们的十位上分别是9、8、7、6、5,个位上分别是0、1、2、3、4。

但要求五个两位数和为奇数,而1+2+3+4=10为偶数,所以应将4与5交换,使和为:(9+8+7+6+4)×10+(1+2+3+5)=351。

351即本题答案。

例 3 一个三位数,如果它的每一个数字都不超过另一个三位数对应数位上的数字,那么就称它被另一个三位数“吃掉”。

例如,241被342吃掉,123被123吃掉(任何数都可以被与它相同的数吃掉),但240和223互不被吃掉。

现请你设计出6个三位数,它们当中任何一个数不被其它5个数吃掉,并且它们的百位上数字只允许取1、2;十位上数字只允许取1、2、3;个位上数字只允许取1、2、3、4。

这6个三位数是_______。

讲析:六个三位数中,任取两个数a和b,则同数位上的数字中,a中至少有一个数字大于b,而b中至少有一个数字大于a。

当百位上为1时,十位上可从1开始依次增加1,而个位上从4开始依次减少1。

即:114,123,132。

当百位上为2时,十位上从1开始依次增加1而个位上只能从3开始依次减少1。

即:213,222,231。

经检验,这六个数符合要求。

例4 将1、1、2、2、3、3、4、4这八个数字排成一个八位数,使得两个1之间有一个数字;两个2之间有两个数字;两个3之间有三个数字;两个4之间有四个数字。

那么这样的八位数中的一个是______。

讲析:两个4之间有四个数字,则在两个4之间必有一个数字重复,而又要求两个1之间有一个数,于是可推知,这个重复数字必定是1,即412134或421314。

然后可添上另一个2和3。

经调试,得23421314,此数即为所答。

2.1.2条件数字问题例1 某商品的编号是一个三位数,现有五个三位数:874,765,123,364,925。

其中每一个数与商品编号,恰好在同一位上有一个相同的数字,那么这个三位数是_______ 讲析:将五个数按百位、十位、个位上的数字分组比较,可发现:百位上五个数字都不同;十位上有两个2和两个6;个位上有两个4和两个5。

故所求的数的个位数字一定是4或5,百位上一定是2或6。

经观察比较,可知724符合要求。

例2 给一本书编页码,共用了1500个数字,其中数字“3”共用了_______个讲析:可先求出1500个数字可编多少页。

从第一页到第9页,共用去9个数字;从第10页到第99页,共用去2×90=180(个)数字;余下的数字可编(1500-189)÷3=437(页)所以,这本书共有536页。

l至99页,共用20个“3”,从100至199页共用20个“3”,从200至299页共用20个“3”,从300至399页共用去120个“3”,从400至499页共用去20个“3”,从500到536页共用去11个“3”。

所以,共用去211个数字3。

例3 在三位数中,数字和是5的倍数的数共有_______个。

讲析:可把三位数100至999共900个数,从100起,每10个数分为一组,得(100,101、……109),(110、111、……119),……(990、991、……、999)共分成了90组,而每组中有且只有两个数的数字和是5的倍数,所以一共有2×90=180(个)。

例 4 有四个数,取其中的每两个数相加,可以得到六个和。

这六个和中最小的四个数是83、87、92、94,原因数中最小的是______。

讲析:设原四个数从小到大为a、b、c、d,则有a+b=83,a+c=87,所以c比b大4。

而对于和为92和94时,或者是b+c=92,或者是b+c=94。

当b+c=92时,因c比b大4,可得b=45,进而可求得a=38。

当b+c=94时,因c比b大4,可得b=44,进而可求得a=39。

所以,原四数中最小的数是38或39。

例5 一个四位数abcd,增加它的8倍后,得到四位数dcba,那么原数abcd=______ 讲析:原四位数增加8倍后得新的四位数,也就是原四位数乘以9,得新四位数。

从而可知,a一定为1,否则积不能得四位数。

则d=9,进而可推abcd=1089。

例6 有两个两位数,它们的个位数字相同,十位数字之和是11。

这两个数的积的十位数字肯定不会是哪两个数字?讲析:由题意可知,两个数的十位上为(2,9),(3,8),(4,7),(5,6),而个位上则可以是0至9的任意一个数字。

设这两个数的个位数字是c,十位数字分别为a、b,则a+b=11,两数分别为(10a+c),(10b+c)。

(10a+c)×(10b+c)=100(ab+c)+(10c+c2)。

而100(ab+c)的个位和十位都是0,所以只需看10c+c2的十位数字。

把0至9这十个数字分别代入(10c+c2)中,由计算发现,十位上不能是6、8。

例7 日期的记法是用6个数字,前两个数字表示年份,中间两个数字表示月份,后两个数字表示日(如1976年4月5日记为760405)。

而1992年11月29日记作921129,这个数恰好左右对称。

因此这样的日期是“吉祥日”。

问:从87年9月1日到93年6月30日,共有_______个吉祥日。

讲析:一个六位数从中间分开,要求左右对称,则在表示月份的两个数中,只有11月份。

而且“年份”的个位数字只能是0、1、2。

所以是共有3个吉祥日:901109、911119、921129。

2.1.3页码问题顾名思义,页码问题与图书的页码有密切联系。

事实上,页码问题就是根据书的页码而编制出来的一类应用题。

编一本书的页码,一共需要多少个数码呢?反过来,知道编一本书的页码所需的数码数量,求这本书的页数。

这是页码问题中的两个基本内容。

为了顺利地解答页码问题,我们先看一下“数”与“组成它的数码个数”之间的关系。

一位数共有9个,组成所有的一位数需要9个数码;两位数共有90个,组成所有的两位数需要2×90=180(个)数码;三位数共有900个,组成所有的三位数需要3×900=2700(个)数码……为了清楚起见,我们将n位数的个数、组成所有n位数需要的数码个数、组成所有不大于n位的数需要的数码个数之间的关系列表如下:由上表看出,如果一本书不足100页,那么排这本书的页码所需的数码个数不会超过189个;如果某本书排的页码用了10000个数码,因为2889<10000<38889,所以这本书肯定是上千页。

例1 一本书共204页,需多少个数码编页码?分析与解:1~9页每页上的页码是一位数,共需数码1×9=9(个);10~99页每页上的页码是两位数,共需数码2×90=180(个);100~204页每页上的页码是三位数,共需数码(204-100+1)×3=105×3=315(个)。

综上所述,这本书共需数码9+180+315=504(个)。

例2 一本小说的页码,在排版时必须用2211个数码。

问:这本书共有多少页?分析:因为189<2211<2889,所以这本书有几百页。

由前面的分析知道,这本书在排三位数的页码时用了数码(2211-189)个,所以三位数的页数有(2211-189)÷3=674(页)。

因为不到三位的页数有99页,所以这本书共有99+674=773(页)。

解:99+(2211—189)÷3=773(页)。

答:这本书共有773页。

例3 一本书的页码从1至62、即共有62页。

在把这本书的各页的页码累加起来时,有一个页码被错误地多加了一次。

结果,得到的和数为2000。

问:这个被多加了一次的页码是几?分析与解:因为这本书的页码从1至62,所以这本书的全书页码之和为1+2+…+61+62=62×(62+1)÷2=31×63=1953。

由于多加了一个页码之后,所得到的和数为2000,所以2000减去1953就是多加了一次的那个页码,是2000—1953=47。

例4 有一本48页的书,中间缺了一张,小明将残书的页码相加,得到1131。

老师说小明计算错了,你知道为什么吗?分析与解:48页书的所有页码数之和为1+2+…+48=48×(48+1)÷2=1176。

按照小明的计算,中间缺的这一张上的两个页码之和为1176—1131=45。

这两个页码应该是22页和23页。

但是按照印刷的规定,书的正文从第1页起,即单数页印在正面,偶数页印在反面,所以任何一张上的两个页码,都是奇数在前,偶数在后,也就是说奇数小偶数大。

小明计算出来的是缺22页和23页,这是不可能的。

例5 将自然数按从小到大的顺序无间隔地排成一个大数:1234567891011l2…问:左起第2000位上的数字是多少?分析与解:本题类似于“用2000个数码能排多少页的页码?”因为(2000-189)÷3=603……2,所以2000个数码排到第99+603+1=703(页)的第2个数码“0”。

所以本题的第2000位数是0。

例6排一本400页的书的页码,共需要多少个数码“0”?分析与解:将1~400分为四组:1~100,101~200,201~300,301~400。

在1~100中共出现11次0,其余各组每组都比1~100多出现9次0,即每组出现20次0。

所以共需要数码“0”11+20×3=71(个)。

相关文档
最新文档