实数单元达标测试题
人教版数学七年级下册:《实数》单元测试题
人教版数学七年级下册:《实数》单元测试题实数单元测试题一、选择题1、下列哪个数是正有理数?A。
-4B。
0.xxxxxxxx3…C。
-πD。
4答案:D2、下列哪些数是无理数?A。
3B。
3.C。
2/3答案:B3、如果±1是b的平方根,那么b2013等于:A。
±1B。
-1C。
±2013答案:C4、已知a=24.72,则a的整数部分是:A。
24B。
25C。
26答案:A5、若a=1.147,b=2.472,c=0.5325,则2a+b-c等于:A。
11.47B。
53.25C。
114.7D。
3答案:A6、已知甲=6+√3,乙=2+√3,丙=2-√3,则甲、乙、丙的大小关系为:A。
甲=乙=丙B。
丙<甲<乙C。
甲<丙<乙答案:B7、下列等式正确的有几个?①√1=1②实数包括无理数和有理数③∛27=3④无理数是带根号的数⑤2的算术平方根是±2⑥-√4=-2A。
2B。
3C。
4答案:C8、下列判断正确的有几个?①一个数的平方根等于它本身,这个数是1和-1②实数包括无理数和有理数③∛9=3④无理数是带根号的数⑤2的算术平方根是±2A。
4B。
3C。
2D。
1答案:B9、已知实数a,b,c在数轴上的位置是:a在b的左边,b在c的左边,c在0的右边,则计算a+|b-a|+|b-c|的结果是:A。
cB。
2b+cC。
2a-cD。
-2b+c答案:B10、如图所示,数轴上表示√3、√5的对应点分别为C、B,点C是AB的中点,则点A表示的数是:A。
√2B。
1C。
2D。
3答案:A二、填空题11、-4的相反数是_________,π的绝对值是_________,1/4的倒数是_________.答案:4,π,412、已知:√x=5,则x+17的算术平方根为_________.答案:613、已知:2a-4、3a-1是同一个正数的平方根,则这个正数是_________.答案:2514、一个负数a的倒数等于它本身,则a=_________;若一个数a的相反数等于它本身,则a=_________.答案:-1,015、若(x-15)²=169,(y-1)³=-0.125,则x=_________,y=_________.答案:-4,-116、如图,A,B,C是数轴上顺次三点,BC=2AB,若点A,B对应的实数分别为1,则点C对应的实数是_________.答案:3三、解答题17、计算:① 3.5×(1.2-0.8)÷2.50.56② 3√(8÷27)×(5√2-2√5)÷(5+2√2)15√2+6√10)/35③ (2√3+3√2)²-(2√3-3√2)²24√6④ 3/8-5/12+7/161/16答案:①0.56,②-(15√2+6√10)/35,③24√6,④1/1618、求下列各等式中的x:1)27x³-125=027x³=125x³=125/27x=∛(125/27)=5/32)|x+2|-|x-2|=|x+3|当x≤-3时,等式变为-x-2+x-2=-x-3,无解;当-3<x≤-2时,等式变为-x-2+x-2=x+3,解得x=-1/2;当-2<x≤2时,等式变为x+2-x+2=x+3,无解;当x>2时,等式变为x+2-x+2=x+3,解得x=3/2.答案:(1)5/3,(2)-1/2,3/2.。
第6章 实数 人教版数学七年级下册单元测试(含答案)
第六章实数达标检测一、单选题:1.在实数,,,,,3.212212221…中,无理数的个数是()个.A.1B.2C.3D.4【答案】D【分析】无理数常见的三种类型(1)开不尽的方根;(2)特定结构的无限不循环小数;(3)含有π的绝大部分数,如2π.【详解】−1.414是有限小数,是有理数,是无理数,π是无理数,无限循环小数是有理数,是无理数,3.212212221…是无限不循环小数是无理数,故选:D.【点睛】本题主要考查的是无理数的认识,掌握无理数的常见类型是解题的关键.2.下列各式中,正确的是( )A.B.C.D.【答案】A【分析】根据立方根,算术平方根逐项判断即可.【详解】解:A. ,故该选项正确;B. ,故该选项错误;C. ,故该选项错误;D. ,故该选项错误.故选:A.【点睛】本题考查立方根,算术平方根,解题关键是理解立方根与算术平方根的意义.3.下列说法正确的是()A.平方根是B.的平方根是C.平方根等于它本身的数是1和0D.一定是正数【答案】D【分析】A、根据平方根的概念即可得到答案;B、的平方根其实是9的平方根;C、平方根等于它本身的数与算术平方根是它本身的数要分清楚;D、先判断出,再利用算术平方根的性质直接得到答案.【详解】A、是负数,负数没有平方根,不符合题意;B、,9的平方根是,不符合题意;C、平方根等于它本身的数是0,1的平方根是,不符合题意;D、,正数的算术平方根大于0,符合题意.故选:D.【点睛】此题考查了平方根及算术平方根的定义及性质,熟练掌握相关知识是解题关键.4.下列关于的说法中,错误的是()A.是无理数B.C.5的平方根是D.【答案】C【分析】根据无理数的定义,算术平方根的估算,平方根和化简绝对值依次判断即可.【详解】解:A、是无理数,说法正确,不符合题意;B、2<<3,说法正确,不符合题意;C、5的平方根是±,故原题说法错误,符合题意;D、,说法正确, 不符合题意;故选C.【点睛】本题考查了平方根、算术平方根的估算,无理数的定义.注意一个正数的平方根有两个,它们互为相反数.5.计算:-+-的结果是( )A.1B.-1C.5D.-3【答案】D【分析】首先求出各个根式的值,进而即可求解.【详解】-+-,=-3+2-2,=-3.故选D.【点睛】此题主要考查了实数的运算,解题关键是能够求解一些简单的二次根式的加减问题.6.如图,在数轴上表示实数的点可能().A.点P B.点Q C.点M D.点N【答案】C【分析】确定是在哪两个相邻的整数之间,然后确定对应的点即可解决问题.【详解】解:∵9<15<16,∴3<<4,∴对应的点是M.故选:C.【点睛】本题考查实数与数轴上的点的对应关系,解题关键是应先看这个无理数在哪两个有理数之间,进而求解.7.有一个数值转换器,原理如下:当输入的x为4时,输出的y是()A.4B.2C.D.-【答案】C【分析】直接利用规定的运算顺序计算得出答案.【详解】解:4的算术平方根为:=2,则2的算术平方根为:,是无理数.故选C.【点睛】本题考查算术平方根、有理数和无理数定义,正确把握运算顺序是解题关键.8.若与互为相反数,则的值为().A.B.C.D.【答案】A【分析】根据相反数与立方根的性质计算即可得答案.【详解】解:∵与是相反数,∴==∴3x-1=2y-1,整理得:3x=2y,即,故选A.【点睛】本题主要考查立方根的性质,正数的立方根是正数,负数的立方根还是负数,一个数只有一个立方根,熟练掌握立方根的性质是解题关键.9.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A点,则A点表示的数是( )A.﹣2π﹣1B.﹣1+πC.﹣1+2πD.﹣π【答案】D【分析】先求出圆的周长π,即得到OA的长,然后根据数轴上的点与实数一一对应的关系即可得到点A表示的数.【详解】∵直径为单位1的圆的周长=π×1=π,∴OA=π,∴点A表示的数为﹣π,故选D.【点睛】本题考查了实数与数轴,解题的关键是熟知数轴上的点与实数一一对应.10.如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是( )A.2B.C.5D.【答案】B【分析】根据三角形数列的特点,归纳出每一行第一个数的通用公式,即可求出第9行从左至右第5个数.【详解】根据三角形数列的特点,归纳出每n行第一个数的通用公式是,所以,第9行从左至右第5个数是=.【点睛】本题主要考查归纳推理的应用,根据每一行第一个数的取值规律,利用累加法求出第9行第五个数的数值是解决本题的关键,考查学生的推理能力.二、填空题:11.的算术平方根是_________;的平方根是____________.【答案】 2【分析】根据算术平方根和平方根的定义求解即可.【详解】解∵,∴的算术平方根是2,的平方根是±3.故答案为:2,±3.【点睛】本题主要考查了算术平方根,平方根的定义,解题的关键在于能够熟练掌握平方根和算术平方根的定义.12._____;______;______;______.【答案】 2 3.5【分析】根据平方根的定义、算术平方根的定义以及立方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根;一般地,如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根,记作;如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果,那么x叫做a的立方根,记作:.计算即可.【详解】原式=2;原式;原式;原式;故答案为:2,,,.【点睛】本题主要考查了平方根,算术平方根以及立方根,熟记相关定义是解答本题的关键.13.若将三个数,,表示在数轴上,其中一个数被墨迹覆盖(如图所示),则这个被覆盖的数是______.【分析】根据被覆盖的数的范围求出被开方数的范围,然后即可得解.【详解】设被覆盖的数是,根据图形可得,∴,∴三个数,,中符合范围的是.故答案为:.【点睛】本题考查了实数与数轴的关系,根据数轴确定出被覆盖的数的取值范围是解题的关键.14.若一个正数的平方根是2a+1和﹣a+2,则a=_____,这个正数是_____.【答案】 -3 25【分析】根据已知得出方程2a+1﹣a+2=0,求出即可.【详解】解:∵一个正数的平方根是2a+1和﹣a+2,∴2a+1﹣a+2=0,解得:a=﹣3,即这个正数是[2×(﹣3)+1]2=25,故答案为:﹣3;25.【点睛】本题考查了对平方根的应用,注意:正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.15.计算:=___.【答案】3【分析】原式利用绝对值的代数意义,以及二次根式性质化简即可得到结果.【详解】解:∵>0,<0,﹣2<0,∴原式=﹣()+|﹣2|=﹣2+3-+2=3,故答案为:3.【点睛】本题考查了绝对值的化简,二次根式的性质,准确掌握性质是解题的关键.16.比较大小:____;____;____;____.【答案】 <, <, >, >【分析】根据实数的比较大小,将根指数不同的根式化为与之相等的同根式比较,利用放缩法比较,利用中间过渡法比较,利用有理数化为根式形式比较.【详解】解:∵,,8<9,∴_<_;∵,即,∴_<___;∵,,∴,∴__>__;∵7=,_>__.故答案为<;<;>;>.【点睛】本题考查实数的大小比较,掌握实数的比较方法,化为同次根式,比较被开方数大小,放缩法比较大小,中间过渡法比较是解题关键.17.若与互为相反数,则________.【答案】2.【分析】根据相反数的概念列式,根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【详解】解:由题意得:,则:a−1=0,b+1=0,解得:a=1,b=−1,则1+1=2,故答案为:2.【点睛】本题考查了非负数的性质.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.18.若2+的小数部分为a,5-的小数部分为b,则a+b的值为______.【答案】1【分析】估算确定出a与b的值,即可求出所求.【详解】解:∵4<6<9,∴2<<3,即4<2+<5,2<5-<3,则a=2+-4,b=5--2,则a+b=2+-4+5--2=1.故答案为1.【点睛】本题考查有理数的大小,弄清估算的方法是解本题的关键.19.已知的立方根是3,的算术平方根是4,c是的整数部分,则的平方根为___________.【答案】±4【分析】利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值,代入代数式求出值后,进一步求得平方根即可.【详解】∵5a+2的立方根是3,3a+b-1的算术平方根是4,∴5a+2=27,3a+b-1=16,∴a=5,b=2,∵c是的整数部分,∴c=3,∴∴的平方根是±4.故答案为:±4.【点睛】本题主要考查的知识点是立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值,解题关键是读懂题意,掌握解答顺序,正确计算即可.20.已知,若,则______;________;_________;若,则_______.【答案】 214000 214【分析】根据平方根、算术平方根、立方根的概念依次求解即可.【详解】解:∵,且,∴,∵,∴,∵,∴,∵且,∴,故答案为:214000,±0.1463,-0.1289,214.【点睛】本题考查了平方根、算术平方根、立方根的概念等,属于基础题,熟练掌握其定义是解决本类题的关键.三、解答题:21.把下列各数分别填入相应的集合中:-(-230),,0,-0.99,1.31,5,,3.14246792…,-.(1)整数集合:{…}(2)非正数集合:{…}(3)正有理数集合:{…}(4)无理数集合:{…}【答案】(1)整数集合:{-(-230),0,5,…};(2)非正数集合:{0,-0.99,-,…};(3)正有理数集合:{-(-230),,1.31,5,…};(4)无理数集合:{,3.142 467 92…,…}【分析】根据整数、非负数、有理数、无理数的定义判断可得答案.【详解】解:根据整数、非负数、有理数、无理数的定义可得:(1)整数集合:{-(-230),0,5,…};(2)非正数集合:{0,-0.99,-,…};(3)正有理数集合:{-(-230),,1.31,5,…};(4)无理数集合:{,3.142 467 92…,…}【点睛】本题主要考查整数、非负数、有理数、无理数的定义.22.求下列各式的值:(1);(2);(3);(4).【答案】(1);(2);(3)0.4;(4)0.3【分析】根据平方根和立方根的定义,即可求解.【详解】解:(1);(2);(3);(4).【点睛】本题主要考查了平方根和立方根的定义,熟练掌握一般地,如果一个数的平方等于,则称是的一个平方根,记作:;如果一个数的立方等于,则称是的一个立方根,记作:是解题的关键.23.比较下列各组数的大小:(1)与6;(2)与;(3)与.【答案】(1);(2);(3)【分析】(1)直接化简二次根式进而比较得出答案;(2)直接估算无理数的取值范围进而比较即可;(3)直接估算无理数的取值范围进而比较即可.【详解】解:(1)∵,∴;(2)∵,∴;(3)∵,∴,∵,∴,∴.【点睛】本题主要考查了实数比较大小,正确估算无理数取值范围是解题关键.24.计算:(1)(2)【答案】(1)(2)9【分析】(1)根据绝对值的意义去绝对值,然后合并即可;(2)先进行开方运算,然后进行加法运算.【详解】解:(1)原式==2-4;(2)原式=-(-2)+5+2=2+5+2=9.25.求下列各式中的x:(1);(2)(3);(4).【答案】(1);(2);(3)或;(4)【分析】(1)先移项,系数化为1,再根据平方根定义进行解答.(2)由得=,再根据立方根定义即可解答.(3)由得:,再开平方后解一元一次方程即可.(4)由得:,再开平方后解一元一次方程即可.【详解】(1)移项得:,系数化为1:,∵,∴.(2)由得:,∵,∴,解得:.(3)由得:,∴或,解得:或.(4)由得:,,∴或,解得:.【点睛】本题考查平方根、立方根的意义,等式的性质,掌握等式的性质和平方根、立方根的求法是正确计算的前提.26.已知的平方根是,的算术平方根是4,求的平方根.【答案】【分析】根据平方根和算术平方根的定义即可求出和的值,进而求出a和b的值,将a和b的值代入即可求解.【详解】解:∵的平方根是,的算术平方根是4,∴=9,=16,∴a=4,b=-1把a=4,b=-1代入得:3×4-4×(-1)=16,∴的平方根为:.【点睛】本题主要考查了算术平方根和平方根,熟练掌握算术平方根和平方根的定义是解题的关键.注意:一个正数有两个平方根,它们互为相反数.27.已知M是m+3的算术平方根,N是n﹣2的立方根.求(n﹣m)2008.【答案】【分析】由M是m+3的算术平方根,N是n﹣2的立方根,建立方程组:,解方程组可得答案.【详解】解:M是m+3的算术平方根,N是n﹣2的立方根.即:解得:,【点睛】本题考查的是算术平方根,立方根的含义,二元一次方程组的解法,乘方符号的确定,掌握以上知识是解题的关键.28.观察下列各式,并用所得出的规律解决问题:(1),,,……,,,……由此可见,被开方数的小数点每向右移动______位,其算术平方根的小数点向______移动______位.(2)已知,,则_____;______.(3),,,……小数点的变化规律是_______________________.(4)已知,,则______.【答案】(1)两;右;一;(2)12.25;0.3873;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)-0.01【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果.【详解】解:(1),,,……,,,……由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位.故答案为:两;右;一;(2)已知,,则;;故答案为:12.25;0.3873;(3),,,……小数点的变化规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)∵,,∴,∴,∴y=-0.01.【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.。
七年级初一数学下学期第六章 实数单元达标质量专项训练试卷
七年级初一数学下学期第六章 实数单元达标质量专项训练试卷一、选择题1.下列各组数中,互为相反数的是( ) A .2-与12-B .|2|-与2C .2(2)-与38-D .38-与38-2.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+p=0,则m ,n ,p ,q 四个有理数中,绝对值最大的一个是( )A .pB .qC .mD .n3.在实数227,042中,是无理数的是( ) A .227B .0C 4D 24.设42a ,小整数部分为b ,则1a b-的值为( ) A .2-B 2C .21+D .21 5.估计65的立方根大小在( ) A .8与9之间B .3与4之间C .4与5之间D .5与6之间6.若m 、n 满足()21150m n -+-=m n +的平方根是( ) A .4±B .2±C .4D .27.330x y =,则x 和y 的关系是( ) A .0x y ==B .0x y -=C .1xy=D .0x y +=8.下列各数中,属于无理数的是( ) A .227B 2C 9D .0.10100100019.若4a =2=3b ,且a +b <0,则a -b 的值是( ) A .1或7 B .﹣1或7 C .1或﹣7 D .﹣1或﹣7 10.下列各数中,介于6和7之间的数是( )A 43B 50C 58D 339二、填空题11.按如图所示的程序计算:若开始输入的值为64,输出的值是_______.12.将1,2,3,6按下列方式排列,若规定(,)m n 表示第m 排从左向右第n 个数,则(20,9)表示的数的相反数是___13.下面是按一定规律排列的一列数:14,37,512,719,928…,那么第n 个数是__. 14.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n 值为正整数,最后输出的结果为656,则开始输入的n 值可以是________. 15.23(2)0y x --=,则y x -的平方根_________.16116的算术平方根为_______. 17.1111111111112018201920182019202020182019202020182019⎛⎫⎛⎫⎛⎫⎛⎫--++----+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭________.18.下列说法: ()210-10-=;②数轴上的点与实数成一一对应关系;③两条直线被第三条直线所截,同位角相等;④垂直于同一条直线的两条直线互相平行;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,其中正确的个数有 ___________ 19.定义:对于任意数a ,符号[]a 表示不大于a 的最大整数.例如:[][][]3.93,55,4π==-=-,若[]6a =-,则[]2a 的值为______.20.如图,数轴上的点A 能与实数15,3,22---_____________三、解答题21.读一读,式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和.由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1+2+3+4+5+…+100”表示为1001n n =∑,这里“∑”是求和符号.例如:1+3+5+7+9+…+99,即从1开始的100以内的连续奇数的和,可表示为501(21)n n =-∑,又知13+23+33+43+53+63+73+83+93+103可表示为1031n n=∑.通过对以上材料的阅读,请解答下列问题.(1)2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符合可表示为_________. (2)1+12+13+…+110用求和符号可表示为_________. (3)计算6211n n =-∑()=_________.(填写最后的计算结果)22.阅读型综合题对于实数x y ,我们定义一种新运算(),L x y ax by =+(其中a b ,均为非零常数),等式右边是通常的 四则运算,由这种运算得到的数我们称之为线性数,记为(),L x y ,其中x y ,叫做线性数的一个数对.若实数 x y ,都取正整数,我们称这样的线性数为正格线性数,这时的x y ,叫做正格线性数的正格数对.(1)若(),3L x y x y =+,则()2,1L = ,31,22L ⎛⎫= ⎪⎝⎭; (2)已知(),3L x y x by =+,31,222L ⎛⎫=⎪⎝⎭.若正格线性数(),18L x kx =,(其中k 为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由. 23.在有理数的范围内,我们定义三个数之间的新运算法则“⊕”:a ⊕b ⊕c =2a b c a b c --+++.如:(1)-⊕2⊕3=123(1)2352---+-++=.①根据题意,3⊕(7)-⊕113的值为__________; ②在651128,,,,0,,,,777999---这15个数中,任意取三个数作为a ,b ,c 的值,进行“a ⊕b ⊕c ”运算,在所有计算结果中的最大值为__________;最小值为__________.24.已知:b是立方根等于本身的负整数,且a、b满足(a+2b)2+|c+12|=0,请回答下列问题:(1)请直接写出a、b、c的值:a=_______,b=_______,c=_______.(2)a、b、c在数轴上所对应的点分别为A、B、C,点D是B、C之间的一个动点(不包括B、C两点),其对应的数为m,则化简|m+12|=________.(3)在(1)、(2)的条件下,点A、B、C开始在数轴上运动,若点B、点C都以每秒1个单位的速度向左运动,同时点A以每秒2个单位长度的速度向右运动,假设t秒钟过后,若点A与点C之间的距离表示为AC,点A与点B之间的距离表示为AB,请问:AB−AC的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求出AB−AC 的值.25.阅读理解.23.∴11<21的整数部分为1,12.解决问题:已知a﹣3的整数部分,b﹣3的小数部分.(1)求a,b的值;(2)求(﹣a)3+(b+4)22=17.26.阅读材料,回答问题:(1)对于任意实数x,符号[]x表示“不超过x的最大整数”,在数轴上,当x是整数,[]x就是x,当x不是整数时,[]x是点x左侧的第一个整数点,如[]33=,[]22-=-,[]2.52=,[]1.52-=-,则[]3.4=________,[]5.7-=________.(2)2015年11月24日,杭州地铁1号线下沙延伸段开通运营,极大的方便了下沙江滨居住区居民的出行,杭州地铁收费采用里程分段计价,起步价为2元/人次,最高价为8元/人次,不足1元按1元计算,具体权费标准如下:①若从下沙江滨站到文海南路站的里程是3.07公里,车费________元,下沙江滨站到金沙湖站里程是7.93公里,车费________元,下沙江滨站到杭州火东站里程是19.17公里,车费________元;②若某人乘地铁花了7元,则他乘地铁行驶的路程范围(不考虑实际站点下车里程情况)?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先化简,然后根据相反数的意义进行判断即可得出答案.【详解】解:A. 2-与12-不是一组相反数,故本选项错误;B. |,所以|不是一组相反数,故本选项错误;,故选:C【点睛】本题考查了相反数,能将各数化简并正确掌握相反数的概念是解题关键.2.B解析:B【分析】根据n+p=0可以得到n和p互为相反数,原点在线段PN的中点处,从而可以得到绝对值最大的数.【详解】解:∵n+p=0,∴n和p互为相反数,∴原点在线段PN的中点处,∴绝对值最大的一个是Q点对应的q.故选B.【点睛】本题考查了实数与数轴及绝对值.解题的关键是明确数轴的特点.3.D解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. 【详解】解:227是分数,属于有理数,故选项A 不合题意; 0是整数,属于有理数,故选项B 不合题意;2=-,是整数,属于有理数,故选项C 不合题意;是无理数,故选项D 符合题意.故选:D . 【点睛】本题考查了无理数的定义,掌握无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数是关键.4.D解析:D 【详解】解:∵1<2<4,∴1<2, ∴﹣2<<﹣1,∴2<43, ∴a=2,b=422=-2∴1221a b -===. 故选D . 【点睛】本题考查估算无理数的大小.5.C解析:C 【分析】先确定65介于64、125这两个立方数之间,从而可以得到45<<,即可求得答案.【详解】解:∵3464=,35125= ∴6465125<<∴45<.故选:C 【点睛】本题考查了无理数的估算,“夹逼法”是估算的一种常用方法,找到与65临界的两个立方数是解决问题的关键.6.B解析:B【分析】根据非负数的性质列式求出m、n,根据平方根的概念计算即可.【详解】由题意得,m-1=0,n-15=0,解得,m=1,n=15,=4,4的平方根的±2,故选B.【点睛】考查的是非负数的性质、平方根的概念,掌握非负数之和等于0时,各项都等于0是解题的关键.7.D解析:D【分析】根据立方根的性质得出x+y=0即可解答.【详解】+=,∴x+y=0故答案为D.【点睛】本题主要考查了立方根的性质,通过立方根的性质得到x+y=0是解答本题的关键.8.B解析:B【分析】无限不循环小数是无理数,根据定义解答即可.【详解】A、227是小数,不是无理数;B是无理数;C是整数,不是无理数;D、0.1010010001是有限小数,不是无理数,故选:B.【点睛】此题考查无理数的定义,熟记定义并运用解题是关键.9.D解析:D【分析】根据题意,利用绝对值的代数意义及二次根式性质化简,确定出a与b的值,即可求出-a b的值.【详解】a==,且a+b<0,解:∵3∴a=−4,a=−3;a=−4,b=3,则a−b=−1或−7.故选D.【点睛】本题考查实数的运算,掌握绝对值即二次根式的运算是解题的关键.10.A解析:A【分析】求出每个根式的范围,再判断即可.【详解】解:A、67,故本选项正确;B、78,故本选项错误;C、78,故本选项错误;D、34,故本选项错误;故选:A.【点睛】本题考查了估算无理数的大小的应用,关键是求出每个根式的范围.二、填空题11.【分析】根据运算顺序,先求算术平方根,再求立方根,最后求算术平方根,可得答案.【详解】解:=8,=2,2的算术平方根是,故答案为:.【点睛】本题考查了算术平方根和立方根的意义,熟练掌握【分析】根据运算顺序,先求算术平方根,再求立方根,最后求算术平方根,可得答案.【详解】82,2,. 【点睛】本题考查了算术平方根和立方根的意义,熟练掌握算术平方根和立方根的意义是解题关键.12.【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列解析:【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m 排第n 个数到底是哪个数后再计算. 【详解】(20,9)表示第20排从左向右第9个数是从头开始的第1+2+3+4+…+19+9=199个数,∵1994493÷=……,即1中第三个数故答案为. 【点睛】此题主要考查了数字的变化规律,这类题型在中考中经常出现.对于找规律的题目找准变化是关键.13.【解析】∵分子分别为1,3,5,7,…,∴第n 个数的分子是2n -1, ∵4-3=1=12,7-3=4=22,12-3=9=32,19-3=16=42,…, ∴第n 个数的分母为n2+3,∴第n 个数 解析:2213n n -+ 【解析】∵分子分别为1,3,5,7,…,∴第n 个数的分子是2n -1, ∵4-3=1=12,7-3=4=22,12-3=9=32,19-3=16=42,…, ∴第n 个数的分母为n 2+3,∴第n 个数是2213n n -+,故答案为:2213n n -+. 14.131或26或5. 【解析】试题解析:由题意得,5n+1=656, 解得n=131,5n+1=131, 解得n=26, 5n+1=26, 解得n=5.解析:131或26或5. 【解析】试题解析:由题意得,5n+1=656, 解得n=131, 5n+1=131, 解得n=26, 5n+1=26, 解得n=5.15.【分析】根据算术平方根的性质及乘方的性质解答,得到y=3,x=2,再进行计算即可. 【详解】 解:,且, ∴y-3=0,x-2=0, . .的平方根是. 故答案为:. 【点睛】 此题考查算术平 解析:±1【分析】根据算术平方根的性质及乘方的性质解答,得到y=3,x=2,再进行计算即可. 【详解】解:23(2)0y x -+-=20,(2)0x -≥,∴y-3=0,x-2=0,3,2y x ∴==. 1y x ∴-=.y x ∴-的平方根是±1.故答案为:±1. 【点睛】此题考查算术平方根的性质及乘方的性质,求一个数的平方根,根据算术平方根的性质及乘方的性质求出x 与y 的值是解题的关键.16.【分析】利用算术平方根的定义计算得到的值,求出的算术平方根即可..【详解】∵,,∴的算术平方根为;故答案为:.【点睛】此题考查了算术平方根,熟练掌握平方根的定义是解本题的关键. 解析:12【分析】14=的值,求出14的算术平方根即可.. 【详解】14=12=,的算术平方根为12; 故答案为:12. 【点睛】此题考查了算术平方根,熟练掌握平方根的定义是解本题的关键.17.【分析】设,代入原式化简即可得出结果.【详解】原式故答案为:.【点睛】本题考查了整式的混合运算,设将式子进行合理变形是解题的关键. 解析:12020【分析】 设1120182019m =+,代入原式化简即可得出结果. 【详解】原式()111120202020m m m m ⎛⎫⎛⎫=-+--- ⎪ ⎪⎝⎭⎝⎭ 221202*********m m m m m m =-+--++ 12020= 故答案为:12020. 【点睛】 本题考查了整式的混合运算,设1120182019m =+将式子进行合理变形是解题的关键. 18.2个【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平行线的性质即可判断;根据平行公理的推论对④进行判断;⑤根据无理数的性质即可判定;⑥根据无理数的定义即解析:2个【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平行线的性质即可判断;根据平行公理的推论对④进行判断;⑤根据无理数的性质即可判定;⑥根据无理数的定义即可判断.【详解】①10=,故①错误;②数轴上的点与实数成一一对应关系,故说法正确;③两条平行直线被第三条直线所截,同位角相等;故原说法错误; ④在同一平面内,垂直于同一条直线的两条直线互相平行,故原说法错误;与的和是0,是有理数,故说法错误;⑥无理数都是无限小数,故说法正确.故正确的是②⑥共2个.故答案为:2个.【点睛】 此题主要考查了有理数、无理数、实数的定义及其关系.有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无π也是无理数.19.-11或-12【分析】根据题意可知,,再根据新定义即可得出答案.【详解】解:由题意可得:∴∴的值为-11或-12.故答案为:-11或-12.【点睛】本题考查的知识点是有理数比较大小解析:-11或-12【分析】根据题意可知65a -≤<-,12210a -≤<-,再根据新定义即可得出答案.【详解】解:由题意可得:65a -≤<-∴12210a -≤<-∴[]2a 的值为-11或-12.故答案为:-11或-12.【点睛】本题考查的知识点是有理数比较大小,理解题目的新定义,根据新定义得出a 的取值范围是解此题的关键.20.【分析】先把数轴的原点找出来,再找出数轴的正方向,分析A 点位置附近的点和实数,即可得到答案.【详解】解:∵数轴的正方向向右,A 点在原点的左边,∴A 为负数,从数轴可以看出,A 点在和之间,解析:【分析】先把数轴的原点找出来,再找出数轴的正方向,分析A 点位置附近的点和实数12-. 【详解】解:∵数轴的正方向向右,A 点在原点的左边,∴A 为负数,从数轴可以看出,A 点在2-和1-之间,2<=-,故不是答案;刚好在2-和1-之间,故是答案;112->-,故不是答案;是正数,故不是答案;故答案为.【点睛】本题主要考查了数轴的基本概念、实数的比较大小,要掌握能从数轴上已标出的点得到有用的信息,学会实数的比较大小是解题的关键.三、解答题21.(1)5012n n =∑;(2)1011n n =∑;(3)50【分析】(1)根据题中的新定义得出结果即可;(2)根据题中的新定义得出结果即可;(3)利用题中的新定义将原式变形,计算即可得到结果.【详解】解:解:(1)根据题意得:2+4+6+8+10+…+100=5012n n =∑;(2)1+12+13+…+110=1011n n =∑; (3)原式=1-1+4-1+9-1+16-1+25-1+36-1=85.故答案为:(1)5012n n =∑;(2)1011n n =∑;(3)85. 【点睛】此题考查了有理数的加法和减法运算,弄清题中的新定义是解本题的关键.22.(1)5,3;(2)有正格数对,正格数对为()26L ,【分析】(1)根据定义,直接代入求解即可;(2)将31,222L ⎛⎫= ⎪⎝⎭代入(),3L x y x by =+求出b 的值,再将(),18L x kx =代入(),3L x y x by =+,表示出kx ,再根据题干分析即可.【详解】解:(1)∵(),3L x y x y =+∴()2,1L =5,31,22L ⎛⎫= ⎪⎝⎭3 故答案为:5,3;(2)有正格数对. 将31,222L ⎛⎫= ⎪⎝⎭代入(),3L x y x by =+, 得出,1111323232L b ⎛⎫=⨯+⨯= ⎪⎝⎭,, 解得,2b =,∴()32L x y x y =+,,则()3218L x kx x kx =+=, ∴1832x kx -=∵x ,kx 为正整数且k 为整数∴329k +=,3k =,2x =, ∴正格数对为:()26L ,. 【点睛】本题考查的知识点是实数的运算,理解新定义是解此题的关键.23.(1)3(2)53(3)117-【分析】 (1)根据给定的新定义,代入数据即可得出结论;(2)分a-b-c≥0和a-b-c≤0两种情况考虑,分别代入定义式中找出最大值,比较后即可得出结论.【详解】解:①根据题中的新定义得:3⊕()7-⊕113=()()111137373332---++-+= ②当a-b-c≥0时,原式()12a b c a b c a =--+++=, 则取a 的最大值,最小值即可,此时最大值为89,最小值为67-; 当a-b-c≤0时,原式()12a b c a b c b c =-+++++=+,此时最大值为785993b c+=+=,最小值为6511777b c⎛⎫⎛⎫+=-+-=-⎪ ⎪⎝⎭⎝⎭,∵58611 3977 >>->-∴综上所述最大值为53,最小值为117-.【点睛】本题考查了有理数的混合运算,读懂题意弄清新定义式的运算是解题的关键.24.(1)2;-1;12-;(2)-m-12;(3)AB−AC的值不会随着时间t的变化而改变,AB-AC=1 2【分析】(1)根据立方根的性质即可求出b的值,然后根据平方和绝对值的非负性即可求出a和c 的值;(2)根据题意,先求出m的取值范围,即可求出m+12<0,然后根据绝对值的性质去绝对值即可;(3)先分别求出运动前AB和AC,然后结合题意即可求出运动后AB和AC的长,求出AB−AC即可得出结论.【详解】解:(1)∵b是立方根等于本身的负整数,∴b=-1∵(a+2b)2+|c+12|=0,(a+2b)2≥0,|c+12|≥0∴a+2b=0,c+12=0解得:a=2,c=1 2 -故答案为:2;-1;12 -;(2)∵b=-1,c=12-,b、c在数轴上所对应的点分别为B、C,点D是B、C之间的一个动点(不包括B、C两点),其对应的数为m,∴-1<m<1 2 -∴m+12<0∴|m+12|= -m-12故答案为:-m-12;(3)运动前AB=2-(-1)=3,AC=2-(12 -)=52由题意可知:运动后AB=3+2t+t=3+3t,AC=52+2t+t=52+3t∴AB-AC=(3+3t)-(52+3t)=12∴AB−AC的值不会随着时间t的变化而改变,AB-AC=12.【点睛】此题考查的是立方根的性质、非负性的应用、利用数轴比较大小和数轴上的动点问题,掌握立方根的性质、平方、绝对值的非负性、利用数轴比较大小和行程问题公式是解决此题的关键.25.(1)a=1,b﹣4;(2)±4.【分析】(1)根据被开饭数越大算术平方根越大,可得a,b的值,(2)根据开平方运算,可得平方根.【详解】解:(1<,∴4<<5,∴1﹣3<2,∴a=1,b4;(2)(﹣a)3+(b+4)2=(﹣1)3+﹣4+4)2=﹣1+17=16,∴(﹣a)3+(b+4)2的平方根是:±4.【点睛】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出4<5是解题关键.26.(1)3;6-;(2)①2;3;6.②这个乘客花费7元乘坐的地铁行驶的路程范围为:大于24公里小于等于32公里.【分析】(1)根据题意,确定实数左侧第一个整数点所对应的数即得;(2)①根据表格确定乘坐里程的对应段,然后将乘坐里程分段计费并累加即得;②根据表格将每段的费用从左至右依次累加直至费用为7元,进而确定7元乘坐的具体里程即得.【详解】(1)∵3 3.44<<∴[]3.43=∵6 5.75-<-<-∴[]5.76-=-故答案为:3;6-.(2)①∵3.074<∴3.07公里需要2元∵47.9312<<∴7.93公里所需费用分为两段即:前4公里2元 ,后3.93公里1元∴7.93公里所需费用为:2+1=3(元)∵19.212174<<∴19.17公里所需费用分为三段计费即: 前4公里2元,4至12公里2元,12公里至19.17公里2元;∴19.17公里所需费用为:2226++=(元)故答案为:2;3;6.②由题意得:乘坐24公里所需费用分为三段:前4公里2元,4至12公里2元,12公里至24公里2元;∴乘坐24公里所需费用为:2226++=(元)∵由表格可知:乘坐24公里以上的部分,每一元可以坐8公里∴7元可以乘坐的地铁最大里程为:24+8=32(公里)∴这个乘客花费7元乘坐的地铁行驶的路程范围为:大于24公里小于等于32公里 答:这个乘客花费7元乘坐的地铁行驶的路程范围为:大于24公里小于等于32公里.【点睛】本题是阅读材料题,考查了实数的实际应用,根据材料中的新定义举一反三并挖掘材料中深层次含义是解题关键.。
实数单元测试题及答案
实数单元测试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是实数?A. √2B. √-1C. 0/0D. 1/0答案:A2. 实数集R中,最小的数是:A. 0B. 1C. -∞D. ∞答案:C3. 以下哪个表达式表示有理数?A. πB. eC. √2D. 3/4答案:D4. 绝对值的定义是:A. 一个数与0的距离B. 一个数的相反数C. 一个数的平方D. 一个数的立方答案:A5. 下列哪个数是无理数?A. 2B. √4C. 0.5D. 0.333...答案:A6. 两个负实数相加,其和是:A. 正数B. 负数C. 零D. 无法确定答案:B7. 一个数的立方根是它自己,那么这个数可以是:A. 1B. -1C. 0D. 所有选项答案:D8. 实数的运算法则中,以下哪个是错误的?A. a + b = b + aB. a * b = b * aC. a + (b + c) = (a + b) + cD. a * (b + c) = a * b + a * c答案:D9. 一个数的倒数是它自己,那么这个数可以是:A. 1B. -1C. 0D. 2答案:A10. 下列哪个是实数的单位元?A. 0B. 1C. -1D. √2答案:B二、填空题(每题4分,共20分)1. 一个数的平方是25,那么这个数可以是______。
答案:±52. 一个数的绝对值是3,那么这个数可以是______。
答案:±33. 一个数的立方是-8,那么这个数是______。
答案:-24. 一个数的倒数是1/3,那么这个数是______。
答案:35. 一个数的平方根是2,那么这个数是______。
答案:4三、解答题(每题10分,共50分)1. 计算:(√3 + 1)²答案:4 + 2√32. 计算:(2 - √5)²答案:9 - 4√53. 计算:√(4 + 4√3)答案:2 + √34. 计算:(√2 - 1)(√2 + 1)答案:15. 计算:(3 + 4√2)(3 - 4√2)答案:1。
《实数》单元检测(原创2)
21.已知
x 8 y 17 0 求 x y 的算术平方根.
四、解答题(题型注释) 19. (1)若∣x-3∣+(4+y) +
2
z 2 =0,求 3x+y+z 的值。
22.已知 a,b 互为相反数,c,d 互为倒数,x 是 64 的立方根,求
5a b 2cd x 的值. a 2 b2
17.计算: 4 ( 1) 2014 ( 2) 0 3 8 ( ) 2
1 3
20.已知一个圆与正方形的面积都是 3 cm 2 ,请分别求出它们的周长并比较大小.
18.计算: 3 ( ) 3 ( 5 ) 0 9 (1) 2015
1 2
《实数》单元检测
一、选择题(题型注释) 1.规定:用符号[m]表示一个实数 m 的整数部分,例如: =0,[3.14]=3.按此规定 3 为 A.3
A.x≥-3 B.x>3 10.∣-4∣的平方根是 A.2 B.±2 C.-2
C.x≥3 D.不存在
D.x≤3
2
10 1的值
1
8.下列说法中正确的是( ) A.立方根是它本身的数只有 1 和 0 B.算术平方根是它本身的数只有 1 和 0 C.平方根是它本身的数只有 1 和 0 D.绝对值是它本身的数只有 1 和 0 9.若代数式 x 3 在实数范围内有意义,则 x 的取值范围是( )
第 1页 共 4页
◎
第 2页 共 4页
(2)设 2 7 的小数部分是 a,求 a(a+2)的值。
第 3页 共 4页
◎
第 4页 共 4页
2
三、计算题(题型注释) 15.计算: 1
《实数》单元测试题
第六章《实数》测试卷(四)一、选择题(每小题4分,共16分) 1. 有下列说法:(1)无理数就是开方开不尽的数; (2)无理数是无限不循环小数;(3)无理数包括正无理数、零、负无理数; (4)无理数都可以用数轴上的点来表示。
其中正确的说法的个数是( )A .1B .2C .3D .4 2.()20.7-的平方根是( )A .0.7-B .0.7±C .0.7D .0.493.若=,则a 的值是( )A .78 B .78- C .78± D .343512- 4.若225a =,3b =,则a b +=( ) A .-8 B .±8 C .±2 D .±8或±2 二、判断题(1分×10=10分)1. 3是9的算术平方根 ( ) 2. 0的平方根是0,0的算术平方根也是0 ( ) 3. (-2)2的平方根是2- ( ) 4. -0.5是0.25的一个平方根 ( ) 5.a 是a 的算术平方根 ( )6. 64的立方根是4± ( )7. -10是1000的一个立方根 ( ) 8. -7是-343的立方根 ( ) 9. 无理数也可以用数轴上的点表示出来 ( ) 10.有理数和无理数统称实数 ( 三、填空题(每小题3分,共18分) 5.在-52,3π3.14,01-,21中,其中: 整数有 ; 无理数有 ; 有理数有 。
6.2-的相反数是 ;绝对值是 。
7.在数轴上表示的点离原点的距离是 。
8= 。
910.1== 。
10.若一个数的立方根就是它本身,则这个数是 。
11.9 的算术平方根是 ;2)3(-的算术平方根 ;3的平方根是12.0的立方根是 ;-8的立方根是 ;4的立方根是13.一个数的平方等于它本身,这个数是 ;一个数的平方根等于它本身,这个数是 ,一个数的算术平方根等于它本身,这个数是 14.若x x =3,则=x ;若x x =3,则=x 15.比较下列各组数的大小:⑴ 5.1- 5.1 ⑵215- 21⑶ π 14.3四、解答题(本大题共66分) 11.计算(每小题5分,共20分) (1)(2)2+-0. 01);(3(4))11-(保留三位有效数字)。
实数单元测试题(附答案解析)
WORD 格式整理版实数单元测试题一、选择题(每题 3 分,共 24 分) 1.(易错易混点) 4 的算术平方根是() A . 2B .2C .2D .22、下列实数中 ,无理数是 ()A.4B.C. 21 3D. 1 23.(易错易混点) 下列运算正确的是()2A 、9 3B 、3 3C 、9 3D 、3 94、3 27 的绝对值是()A .3B . 3C .13D .1 35、若使式子x 2在实数范围内有意.义..,则 x 的取值范围是 ()A . x 2B . x 2C . x 2D . x 22011x6、若 x ,y 为实数,且 x 2y 2 0,则的值为()yA .1B . 1C .2D . 27、有一个数值转换器,原理如图,当输入的x 为 64 时,输出的 y 是()A 、8B 、 2 2C 、 2 3D 、 3 28.设a2 ,2b(3) ,39c,11d( ) ,则 a ,b ,c ,d 按由小到大的顺序排列 2正确的是( )A . c a d bB . b d a cC . a c dbD . b c a d二、填空题(每题 3 分,共 24 分) 9、9的平方根是.学习好帮手WORD格式整理版10、在3,0, 2 , 2 四个数中,最小的数是11、(易错易混点)若 2(a3) 3 a ,则a与3 的大小关系是12、请写出一个比5小的整数.13、计算:03 ( 2 1)。
14、如图2,数轴上表示数 3 的点是.15、化简:3 8 5 32 的结果为。
16 、对于任意不相等的两个数 a ,b ,定义一种运算※如下:a※b=aabb,如3 23※2= 53 2.那么12※4= .三、计算(17-20题每题4分,21题12分)117(1)计算:3 3 16 .3(2)计算:110 2 | 2|(π2) 9 ( 1) 318、将下列各数填入相应的集合内。
学习好帮手-7,0.32, 13,0,8 ,12,3 125 ,,0.1010010001 ⋯①有理数集合{⋯}②无理数集合{⋯}③负实数集合{⋯}19、求下列各式中的x2 (1)x2 121= 17;(2)x49= 0。
人教版七下数学第6章《实数》单元测试卷
人教版七下数学第6章《实数》单元测试卷一.选择题(共10小题)1.下列四个数中,是无理数的是( )A .π2B .227C .√4D .0.1010012.64的算术平方根是( )A .8B .±8C .6D .±63.9的平方根是( )A .3B .﹣3C .±3D .±√34.下列各式成立的是( )A .√643=8B .√(−2)2=−2C .√6+√2=2√2D .√6⋅√2=2√3 5.在227,2π3,√2,−√3,√−83,−√16,3.14,0.5757757775……(相邻两个5之间7的个数逐次加1)中,无理数的个数为( )A .2B .3C .4D .56.实数a 在数轴上对应的点如图所示,则a 、﹣a 、﹣1的大小关系正确的是( )A .﹣1<a <﹣aB .﹣a <﹣1<aC .﹣1<﹣a <aD .a <﹣1<﹣a7.下列说法中,正确的是( )A .﹣4没有立方根B .1的立方根是±1C .136的立方根是16D .﹣5的立方根是√−53 8.估计√3(√12+√6)的值在( )A .7和8之间B .8和9之间C .9和10之间D .10和11之间9.若一个数的平方根是±8,则这个数的立方根是( )A .4B .±4C .2D .±210.﹣a 2的立方根的值一定为( )A .非正数B .负数C .正数D .非负数二.填空题(共5小题)11.某正数的平方根分别是2a +1和a +5,则a = .12.计算:√(π−4)2=.13.若一个正数的两个平方根分别为a与﹣2a+3,则这个正数为.14.数轴上的点A表示的数是2−√5,那么它到原点的距离是.15.一块面积为5m2的正方形桌布,其边长为.三.解答题(共8小题)16.已知:3a+1的立方根是﹣2,2b﹣1的算术平方根是3,c是√10的整数部分.(1)求a、b、c的值;(2)求2b﹣a+c的平方根.3.17.计算:−12023+√16+(−6)÷√−818.求下列各式中x的值:(1)x2﹣81=0;(2)(x﹣1)3=64.19.根据下表回答下列问题:x1717.117.217.317.417.517.617.717.817.918 x2289292.41295.84299.29302.76306.25309.76313.29316.84320.41324(1)295.84的算术平方根是,316.84的平方根是;(2)√29241=,√3.1329=;(3)若√325的整数部分为m,求√3m−5−(m−16)3的值.20.已知3a﹣2b+1的算术平方根是3,a+2b是﹣8的立方根,c是2+√7的整数部分.(1)求a,b,c;(2)求a﹣b+c的平方根.21.已知2a﹣1的算术平方根是3,3a+b﹣9的立方根是2,c是√10的整数部分,求7a﹣2 b﹣2c的平方根.22.有理数a,b在数轴上对应点的位置如图所示.(1)结合数轴可知:﹣a﹣b(用“>、=或<”填空);(2)结合数轴化简|1﹣a|﹣|﹣b+1|+|b﹣a|.23.已知x,y,z满足x2﹣4x+y2+6y+√z+4+13=0,求x,y,z的值.。
《实数》单元测试卷
《实数》单元测试卷一、选择题(每题2分,共20分)1. 实数包括有理数和无理数,以下哪个选项不是实数?A. √2B. -3C. 0.33333...(无限循环)D. π2. 以下哪个数是无理数?A. 1/2B. √3C. 22/7D. -13. 如果a是一个正实数,那么下列哪个表达式的结果不是正实数?A. a + 1B. a - 1C. a × 1D. a / a4. 两个负实数相加的结果是什么?A. 正实数B. 负实数C. 零D. 无理数5. 实数的绝对值总是非负的,以下哪个表达式的结果不是非负数?A. |-5|B. |5|C. |-5 + 5|D. |-5| - 5二、填空题(每题2分,共20分)1. 有理数和无理数的集合统称为_______。
2. 一个数的绝对值是该数与零的距离,例如,|-3| = _______。
3. 无理数是不可以表示为两个整数的比的数,例如_______是一个无理数。
4. 两个实数相除,如果除数为零,则结果为_______。
5. 实数的乘方运算中,任何数的零次方等于_______。
三、计算题(每题5分,共30分)1. 计算下列表达式的值:(3 + √5)²2. 求下列方程的解:2x - 5 = 73. 计算下列表达式的值:(-2)³ + √44. 求下列方程的解:x² - 4x + 4 = 0四、解答题(每题10分,共30分)1. 描述实数的分类,并给出有理数和无理数的例子。
2. 解释绝对值的概念,并给出几个绝对值的例子。
3. 讨论实数的运算规则,特别是乘方和开方。
五、附加题(10分)1. 证明:对于任意实数a和b,如果a > b,则|a| ≥ |b|。
【答案】一、选择题1. D2. B3. D4. B5. D二、填空题1. 实数2. 33. √24. 无定义5. 1三、计算题1. (3 + √5)² = 9 + 6√5 + 5 = 14 + 6√52. 2x - 5 = 7 → 2x = 12 → x = 63. (-2)³ + √4 = -8 + 2 = -64. x² - 4x + 4 = (x - 2)² = 0 → x = 2四、解答题1. 实数可以分为有理数和无理数。
第二章实数单元测试卷 2024-2025学年北师大版八年级数学上册
第二章实数单元测试卷一、选择题(每题 3分,共30分)1.下列式子中,是二次根式的是 ( ) A.√−3 B √9 C √3 D √a2.9的平方根是 ( ) A.3 B.±3 C.±√3 D.81 3 下列各数是无理数的是 ( ) A.-2 024 B.√20242 C.|-2024| D.√202434. 某同学利用科学计算器进行计算,其按键顺序如下:SHIFT 显示结果为( )A.32B.8C.4D.25.下列运算正确的是 ( ) A.3+√3=3√3 B.√2+√3=√5 C.√273÷√3=√3 D.√12−√102=√6−√56.估计 5−√13的值在 ( ) A.0和1之间 B.1和2之间 C.2和3之间 D.3和 4 之间7. 我国古代的《洛书》记载了世界上最早的幻方——“九宫格”.在如图所示的“九宫格”中,若要使横、竖、斜对角的3个实数相乘都得到同样的结果,则M 代表的实数为( )A.6√2B.2√3 C √6 D. √68.一个等腰三角形,已知其底边长为 √5 分米,底边上的高 √15分米,那么它的面积为 ( ) A.45√52平方分米 B.45√3平方分米 C.45√32平方分米 D.45√5平方分米9.若x 是整数,且 √x −3⋅√5−x 有意义,则 √x −3⋅√5−x 的值是 ( ) A.0或1 B.±1 C.1或2 D.±210.如果一个三角形的三边长分别为 12,k,72,则化简 √k 2−12k +36−|2k −5|的结果是( )A.-k--1B. k+1C.3k-11D.11-3k+)二、填空题(每题3分,共15分)11.计算√−198−13=¯.12 √64₄的倒数是,|π−11|=¯,√5−3的相反数是.13. 手工制作手工课上老师拿走了一块大的正方形布料做教学材料,小红和小芸按照如图所示的方式各剪下一块面积为42cm²和28cm²的小正方形布料做沙包,那么剩下的两块长方形布料的面积和为.14.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的三斜求积公式, 即如果一个三角形的三边长分别为a,b,c,那么该三角形的面积. S=√14[a2b2−(a2+b2−c22)2],现已知△ABC的三边长分别为2, √6,3,则△ABC的面积为.15.若等式(√x3−2)x−1=1成立,则x的取值可以是.三、解答题(16, 17题每题8分, 19, 21题每题12分, 22题15分, 其余每题10分, 共75分)16.计算: (1)(√3+2)(√3−1)+|√3−2|;(2)√48÷√3−2√15×√30+(2√2+√3)2.17.解方程: 2√3x−√48=√3x+√12.18.先化简,再求值:(√2x+√y)(√2x−√y)−(√2x−√y)2,其中x=34,y=12.19.(1)若|2x−4|+(y+3)2+√x+y+z=0,求. x−2y+z的平方根;(2)如图,实数a,b,c是数轴上A,B,C三点所对应的数,化简√c33+|c−b|−√(a−b)2+|a+c|.20.已知7+√5和7−√5的小数部分分别为a,b,试求代数式. ab−a+4b−3的值.21. 高空抛物极其危险,是我们必须杜绝的行为.据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足式子t=√ℎ(不考虑风速的影响).5(1)从50 m高空抛物,落地所需时间l₁是多少秒? 从100m高空抛物,落地所需时间l₂是多少秒?(2)t₂是t₁的多少倍?22. 一只蜗牛A从原点出发向数轴负方向运动,同时,另一只蜗牛B 也从原点出发向数轴正方向运动,3√2秒后,两蜗牛相距15个单位长度.已知蜗牛A,B的速度比是1:4.(速度单位:单位长度/秒)(1)求两只蜗牛的运动速度,并在如图所示的数轴上标出蜗牛A,B从原点出发运动3√2秒时的大致位置.(2)若蜗牛A,B从(1)中的位置同时向数轴负方向运动,几秒时,原点恰好处在两只蜗牛的正中间?(3)若蜗牛A,B从(1)中的位置同时向数轴负方向运动时,另一只蜗牛C也同时从蜗牛B 的位置出发向蜗牛A 运动,当遇到蜗牛A后,立即返回向蜗牛B运动,遇到蜗牛B后又立即返回向蜗牛A运动,如此往返,直到蜗牛B追上蜗牛A 时,蜗牛C立即停止运动.若蜗牛C一直以2√5单位长度/秒的速度匀速运动,那么蜗牛C从开始运动到停止运动,运动的路程是多少个单位长度?一、1. C 2. B 3. D 4. C 5. C 6. B 7. B 8. C 9. A10. D 【点拨】因为一个三角形的三边长分别 12₂, k 72所以 72−12<k <12+72,所以3<k<4,所以k-6<0,2k-5>0.所以 √k 2−12k +36−|2k −5|=√(k −6)2−|2k −5|=6-k-(2k-5)=11-3k.二、11. 3212 14₄;11-π;3 √5 13.2 √6 cm14.√954【点拨】因为△ABC 的三边长分别为2 √6₆,3所以 S ADC =√14{22×(√6)2−[22+(√6)2−322]2} =√954. 15.1或3 或27 【点拨】①当底数为1时,无论指数为何数,等式都成立.令 √x3−2=1,解得x=27.②当底数 为 一1,指数 为偶数时,等式成立. 由 √x3−2=−1,得x=3.当x=3时,x--1=2,则x=3符合题意. ③当指数为0,底数不为0时,等式成立. 令x-1=0,得x=1.将x=1代入 √x3−2,得 √13− 2=√33−2≠0,所以当x=1时,等式成立.综上可知,x 的值为1或3或27.三、16.【解】(1)原式 =(√3)2−√3+2√3−2+2− √3=3. (2)原式 =4−2√6+8+3+4√6=2√6+15. 17.【解】移项,得 2√3x −√3x =√48+√12,所以 √3x =4√3+2√3, 所以 √3x =6√3,解得x=6.18.【解】原式 =(√2x)2−(√y)2−(√2x −√y)2=2x −y −2x +2√2xy −y =2√2xy −2y.当 x =34,y =12时,原式 =2√2×34×12−2× 12=√3−1, 19.【解】(1)因为 |2x −4|+(y +3)2+√x +y +z =0,所以2x-4=0,y+3=0,x+y+z=0, 所以x=2,y=-3,z=1, 所以x-2y+z=2+6+1=9,所以x-2y+z的平方根为±3.(2)由数轴可知,b<a<0<c,|c|>|a|,所以c--b>0,a-b>0,a+c>0,所以√c33+|c−b|−√(a−b)2+|a+c| =c+c-b-(a-b)+a+c=c+c-b-a+b+a+c=3c.20.【解】因√5₅的整数部分为2所以7+√5=9+a,7−√5=4+b即a=−2+√5,b=3−√5.所以ab−a+4b−3=(−2+√5)×(3−√5)−(−2+√5)+4×(3−√5)−3=−11+5√5+2−√5+12−4√5−3=0.21. 【解】(1)当h=50m时, t1=√505=√10(s).当h=100m时, ι2=√1005=√20=2√5(s).(2)因为l2t1=√5√10=√2,所以l₂是l₁√2₂倍22.【解】(1)设蜗牛A的速度为x单位长度/秒,蜗牛B的速度为4x单位长度/秒.依题意,得3√2(x+4x)=15.解得x=√22.所以4x=2√2.所以蜗牛A的运动速度√2₂单位长度/秒,蜗牛的运动速度为√2₂单位长度/秒运动√2₂秒时,蜗牛A的位置在一3处,蜗牛B的置在12处.在图上标注略.(2)设t秒时原点恰好处在两只蜗牛的正中间.依题意,得12−2√2t=3+√22t.解得t=9√25.答:9√25秒时,原点恰好处在两只蜗牛的正中间.(3)设y秒时蜗牛B 追上蜗牛A,依题意,得2√2y−√22y=15,解得y=5√2.所以蜗牛C从开始运动到停止运动,运动的路程为2√5×5√2=10√10(个).单位长度.。
第13章《实数》单元水平测试(含答案)
2 248 1426 48 88?第13章 实数整章水平测试题一、选择题:1、在实数70107.081221.03、、、、- 。
π中,其中无理数的个数为( ) A 、1 B 、2 C 、3 D 、4 2、16的算术平方根为( )A 、4B 、4±C 、2D 、2±3、下列语句中,正确的是( )A 、无理数都是无限小数B 、无限小数都是无理数C 、带根号的数都是无理数D 、不带根号的数都是无理数 4、若a 为实数,则下列式子中一定是负数的是( )A 、2a - B 、2)1(+-a C 、2a - D 、)1(+--a 5、下列说法中,正确的个数是( )(1)-64的立方根是-4; (2)49的算术平方根是7±; (3)271的立方根为31; (4)41是161的平方根。
A 、1 B 、2 C 、3 D 、4 6.估算728-的值在A. 7和8之间B. 6和7之间C. 3和4之间D. 2和3之间 7、下列说法中正确的是( )A 、若a 为实数,则0≥aB 、若a 为实数,则a 的倒数为a1 C 、若y x 、为实数,且y x =,则y x =D 、若a 为实数,则02≥a8、若10<<x ,则x xx x 、、、12中,最小的数是( )A 、xB 、x1 C 、x D 、2x 9、下列各组数中,不能作为一个三角形的三边长的是( )A 、1、1000、1000B 、2、3、5C 、222543、、 D 、33364278、、10. (南宁课改)观察图8寻找规律,在“?”处填上的数字是()(A)128 (B)136 (C)162 (D)188二、填空题:1. 和数轴上的点一一对应.2.若实数a b ,满足0a b a b +=,则________ab ab=. 3、如果2a =,3b =,那么2a b 的值等于 . 4.有若干个数,依次记为123n a a a a ,,,,若112a =-,从第2个数起,每个数都等于1与它前面的那个数的差的倒数,则2005a = . 5.比较大小:23- 0.02-;6. 如图,数轴上的两个点A B ,所表示的数分别是a b ,,在a b +,a b -,ab ,a b -中,是正数的有 个.7.若3+x 是4的平方根,则=x ______,若-8的立方根为1-y ,则y=________. 8、计算:2)4(3-+-ππ的结果是______。
实数单元测试(人教版)(含答案)
学生做题前请先回答以下问题问题1:平方根的定义:一般地,如果 ___________________ ,那么这个数就叫做 a 的平方根,记作________.问题2:正数有____个平方根,它们________; 0 有_____个平方根,是_______;负数______ 平方根.问题3:算术平方根的定义:一般地,如果 ___________________ ,那么这个正数 x 就叫做 a 的算术平方根,记作_______.问题4:立方根的定义:一般地,如果 ___________________ ,那么这个数就叫做 a 的立方根,记作____________.问题5:正数的立方根是_____, 0 的立方根是______ ,负数的立方根是 ______.问题6: ______________________ 叫做无理数.无理数的和、差、积、商 ______是无理数.问题7: _______________________ 统称为实数.实数单元测试(人教版)一、单选题(共12道,每道8分)1.的平方根是( )A.9B.±9C.±3D.3答案: C解题思路:试题难度:三颗星知识点:算术平方根2.的平方根是( )A. B.2C. D.±2答案: C解题思路:试题难度:三颗星知识点:算术平方根, 0.1414,,.其中无理数有( )3.下列实数:,A.2 个B.3 个C.4 个D.5 个答案: B解题思路:试题难度:三颗星知识点:无理数的定义4.下列说法正确的是( )A.无限小数是无理数B.有理数只是有限小数C.无理数的相反数还是无理数D.两个无理数的和还是无理数答案: C解题思路:试题难度:三颗星知识点:无理数的概念5.一个正方体的水晶砖,体积为 100cm3 ,它的棱长大约在( )A.4cm 与 5cm 之间B.5cm 与 6cm 之间C.6m 与 7cm 之间D.7cm 与 8cm 之间答案: A解题思路:试题难度:三颗星知识点:比较大小6.已知一个正数的两个平方根分别是和,则这个正数是( )A.4B.2C.-2D.36答案: A解题思路:试题难度:三颗星知识点:平方根的性质7.关于 x 的方程的解为( )A.x=2B.x=-2C.x=-4D.A.B .答案: B 解题思路:试题难度: 三颗星知识点: 立方根的定义8.若,则化简的结果是( )A.B.C.-1D.1答案: D 解题思路:试题难度: 三颗星知识点: 实数的化简9.若实数( )在数轴上的对应点的位置如图所示,则化简 的结果为C.D答案: D解题思路:试题难度:三颗星知识点:实数的化简10.计算的结果为( )A.3B.C.1D.-1答案: D解题思路:试题难度:三颗星知识点:实数的计算11.计算:=( )A. B.C. D.0答案: B解题思路:试题难度:三颗星知识点:实数的计算12.如图,在数轴上表示 -1,的对应点分别为 A, B,若点 A 是线段 BC 的中点,则点 C 表示的数为( )A. B.C. D.答案: D解题思路:试题难度:三颗星知识点:实数的数轴表示。
七年级实数单元测试题
七年级实数单元测试题一、选择题(每题2分,共20分)1. 实数-3的相反数是:A. -3B. 3C. 0D. 12. 下列哪个数不是实数:A. πB. √2C. -1D. i3. 若a是一个无理数,b是一个有理数,那么a+b是:A. 有理数B. 无理数C. 实数D. 无法确定4. 以下哪个数是实数的平方根:A. 4B. -4C. 2D. -25. 绝对值|-5|等于:A. -5B. 5C. 0D. 106. 两个实数相除,结果为实数,那么这两个实数:A. 必须都是有理数B. 必须都是无理数C. 至少有一个是有理数D. 可以是任意实数7. 实数集合中,最小的数是:A. 0B. -∞C. 1D. 没有最小数8. 以下哪个数是实数的立方根:A. 1B. -1C. 0D. 89. 两个负实数相加,结果为:A. 正实数B. 负实数C. 零D. 实数10. 如果x是实数,那么x²的值:A. 总是正数B. 总是非负数C. 总是非正数D. 可以是任意实数二、填空题(每题2分,共20分)11. 无理数 ________ 的平方是2。
12. 绝对值是5的数有两个,分别是 ________ 和 ________ 。
13. 两个相反数的和是 ________ 。
14. 立方根是它本身的数有 ________ 个。
15. 一个数的相反数等于它本身,这个数是 ________ 。
16. 一个数的绝对值是非负数,最小的绝对值是 ________ 。
17. 一个数的平方根有两个,它们互为 ________ 。
18. 两个数的乘积为正数,那么这两个数 ________ 。
19. 一个数的立方根是它本身,这个数可以是 ________ 或________ 。
20. 一个数的绝对值等于它本身,这个数是非负数,也可以是________ 。
三、计算题(每题5分,共30分)21. 计算 |-7| + √9 - 3²。
22. 求 (-2)³ + √4 - (-3)。
2021-2022学年人教版七年级数学下册《第6章实数》单元综合达标测试题(附答案)
2021-2022学年人教版七年级数学下册《第6章实数》单元综合达标测试题(附答案)一.选择题(共8小题,满分40分)1.估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间2.化简的结果是()A.﹣4B.4C.±4D.23.若8x m y与6x3y n的和是单项式,则(m+n)3的平方根为()A.4B.8C.±4D.±84.若+b2﹣4b+4=0,则ab的值等于()A.﹣2B.0C.1D.25.在实数范围内定义运算“☆”:a☆b=a+b﹣1,例如:2☆3=2+3﹣1=4.如果2☆x=1,则x的值是()A.﹣1B.1C.0D.26.一个正方体的体积扩大为原来的27倍,则它的棱长变为原来的()倍.A.2B.3C.4D.57.下列结论正确的是()A.64的立方根是±4B.﹣没有立方根C.立方根等于本身的数是0D.=﹣38.若+(y+2)2=0,则(x+y)2020等于()A.﹣1B.1C.32020D.﹣32020二.填空题(共10小题,满分40分)9.已知实数﹣,0.16,,π,,,其中为无理数的是.10.估计与0.5的大小关系是:0.5.(填“>”、“=”、“<”)11.已知≈1.038,则≈.12.下面是一个简单的数值运算程序,当输入x的值为16时,输出的数值为.(用科学计算器计算或笔算).13.计算:27的立方根是;的平方根是.14.若|a|=,则﹣的相反数是.15.若a﹣1和﹣5是实数m的两个不同的平方根,则a的值为.16.的立方根与﹣27的立方根的差是.17.,,,…,,其中n为正整数,则的值是.18.已知,实数x满足x=20202+20212,求代数式的值等于.三.解答题(共5小题,满分40分)19.计算:|﹣5|﹣+(﹣2)2+4÷(﹣).20.已知一个正数m的两个不相等的平方根是a+6与2a﹣9.(1)求a的值;(2)求这个正数m;(3)求关于x的方程ax2﹣16=0的解.21.列方程解应用题小丽给了小明一张长方形的纸片,告诉他,纸片的长宽之比为3:2,纸片面积为294cm2.(1)请你帮小明求出纸片的周长.(2)小明想利用这张纸片裁出一张面积为157cm2的完整圆形纸片,他能够裁出想要的圆形纸片吗?请说明理由.(π取3.14)22.求一个正数的算术平方根,有些数可以直接求得,如,有些数则不能直接求得,如,但可以通过计算器求.还有一种方法可以通过一组数的内在联系,运用规律求得,请同学们观察下表:n160.160.00161600160000…4x0.04y400…(1)表格中x=;y=;(2)从表格中探究n与数位的规律,并利用这个规律解决下面两个问题:①已知≈1.435,则≈;②已知=1.83,若=0.183,则x=.23.我们知道,是一个无理数,将这个数减去整数部分,差就是小数部分,即的整数部分是1,小数部分是﹣1,请回答以下问题:(1)的小数部分是,﹣2的小数部分是.(2)若a是的整数部分,b是的小数部分,求a+b﹣的立方根.参考答案一.选择题(共8小题,满分40分)1.解:∵2=<=3,∴3<<4,故选:B.2.解:==4.故选:B.3.解:由8x m y与6x3y n的和是单项式,得m=3,n=1.(m+n)3=(3+1)3=64,64的平方根为±8.故选:D.4.解:由+b2﹣4b+4=0,得a﹣1=0,b﹣2=0.解得a=1,b=2.ab=2.故选:D.5.解:由题意知:2☆x=2+x﹣1=1+x,又2☆x=1,∴1+x=1,∴x=0.故选:C.6.解:一个正方体的体积扩大为原来的27倍,它的棱长变为原来的倍,即3倍.故选:B.7.解:A、64的立方根是4,原说法错误,故这个选项不符合题意;B、﹣的立方根为﹣,原说法错误,故这个选项不符合题意;C、立方根等于本身的数是0和±1,原说法错误,故这个选项不符合题意;D、=﹣3,原说法正确,故这个选项符合题意;故选:D.8.解:∵+(y+2)2=0,∴x﹣1=0,y+2=0,∴x=1,y=﹣2,∴(x+y)2020=(1﹣2)2020=1,故选:B.二.填空题(共10小题,满分40分)9.解:,、0.16是有理数;无理数有、π、.故答案为:、π、.10.解:∵﹣0.5=﹣=,∵﹣2>0,∴>0,∴>0.5.故答案为:>.11.解:==10×≈10.38.故答案为:10.38.12.解:由题图可得代数式为.当x=16时,原式=÷2+1=4÷2+1=2+1=3.故答案为:313.解:27的立方根是3;的平方根是.故答案为:3;.14.解:∵|a|=,∴a2=6,∴﹣=﹣=﹣2,﹣2的相反数是2.故本题的答案是2.15.解:因为a﹣1和﹣5是实数m的两个不同的平方根,可得:a﹣1+(﹣5)=0,解得:a=6.故答案为:6.16.解:根据题意得:﹣=2+3=5,故答案为:5.17.解:∵,,,,∴,=,=,=,=,=.故答案为.18.解:2x﹣1=2(20202+20212)﹣1=2[20202+(2020+1)2]﹣1=2(20202+20202+2×2020+1)﹣1=4×20202+4×2020+1=(2×2020+1)2=40412∴==4041故答案为:4041.三.解答题(共5小题,满分40分)19.解:原式=5﹣3+4﹣6=020.解:(1)由题意得,a+6+2a﹣9=0,解得,a=1;(2)当a=1时,a+6=1+6=7,∴m=72=49;(3)x2﹣16=0,x2=16,x=±4.21.解:设长方形纸片的长为3xcm,宽为2xcm.依题意,3x•2x=294,6x2=294,x2=49,x=±7,∵x>0,∴x=7,∴长方形的纸片的长为21厘米,宽为14厘米,(21+14)×2=70厘米.答:纸片的周长是70厘米.(2)设圆形纸片的半径为r,S=πr2=157,r2=50,由于长方形纸片的宽为14厘米,则圆形纸片的半径最大为7,72=49<50,所以不能裁出想要的圆形纸片.22.解:(1)根据题意得,x=0.4,y=40;故答案为:0.4,40;(2)①已知≈1.435,则≈143.5;故答案为:143.5;②已知=1.83,若=0.183,则x=0.03489.故答案为:0.03489.23.解:(1)∵3<<4.∴的整数部分是3,小数部分是﹣3.∵4<<5.∴2<﹣2<3.∴﹣2的整数部分是2,小数部分是﹣2﹣2=﹣4.故答案为:﹣3,﹣4.(2)∵,∴a=9.∵,∴,∴,∵=2.∴的立方根等于2.。
实数单元测试题2及答案
实数单元测试题2及答案一、选择题(每题3分,共30分)1. 实数集R中,最小的正整数是()。
A. 0B. 1C. 2D. 32. 若a > 0,b < 0,且|a| < |b|,则a + b()。
A. 一定小于0B. 一定大于0C. 一定等于0D. 无法确定3. 下列数中,不是实数的是()。
A. πB. √2C. iD. -14. 一个数的相反数是它本身,这个数是()。
A. 1B. 0C. -1D. 25. 若实数x满足|x - 3| = 2,则x的值是()。
A. 1或5B. 3或5C. 1或4D. 2或46. 一个正数的平方根是()。
A. 正数B. 负数C. 0D. 正数或负数7. 实数的绝对值()。
A. 总是正数B. 总是非负数C. 总是非正数D. 可以是任何实数8. 若a,b是实数,且a² + b² = 0,则a和b的值是()。
A. a = 0,b = 0B. a = 1,b = 0C. a = 0,b = 1D. a和b可以是任意实数9. 以下哪个表达式的结果不是实数?()A. √4B. √(-1)C. √9D. √1610. 一个数的立方根是它本身,这个数可以是()。
A. 1B. -1C. 0D. A和C二、填空题(每题2分,共10分)11. 若|a| = 5,则a的值可以是______。
12. 一个数的倒数是1/2,这个数是______。
13. 两个相反数的和为______。
14. 一个数的绝对值是它本身,则这个数是______。
15. 若x² = 4,则x的值可以是______。
三、解答题(每题10分,共60分)16. 计算以下表达式的值:|-5| + √(-4)²。
17. 证明:对于任意实数a和b,(a + b)² = a² + 2ab + b²。
18. 解方程:|x + 1| = 3。
19. 证明:对于任意实数x,x³ - 3x = 0的解是x = 0或x = ±√3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数单元达标测试题
(时间100分钟 满分100分)
一、选择题:各题都只有一个答案符合题目要求(每小题3分,共30分)
1.(-4)2的平方根是 ( )
A.16
B.-4
C.±4
D.没有平方根
2.下列数中:0,32,(-5)2,-4,-│-16│, π有平方根的个数是( )
A.3个
B.4个
C.5个
D.6个
3.如果一个数的平方根等于它的立方根,则这个数是( )
A.0
B.1
C.-1
D.±1
4.下列各式中,正确的是( )
±4 B.=-4
5.在227π,无理数的个数是( ) A.2个 B.3个 C.4个 D.5个
( )
A.4
B.±4
C.2
D.±2
7.下列说法正确的是( )
A.两个无理数的和一定是无理数;
B.负数没有平方根和立方根;
C.有理数和数轴上的点一一对应;
D.绝对值最小的数是0。
8.负数a 和它的相反数的差的绝对值是( )
A.2a
B.0
C.-2a
D.±2a
9.已知│x │)2 ,则x 为( )
B.-2
C.
D.±2
10.如图,正确的说法是( )
A.a-b 有平方根;
B.-a-b 有平方根;
C.b-a 有算术平方根;
D.ab 有平方根
二、填空题:(每小题3分,共30分)
11.49的平方根是________,36的算术平方根是______,-8的立方根是_____.
12.若│x │则x=________.
13.如果25x 2=16,则x=_______.
14.写一个大于2而小于5的无理数________.
________,绝对值是________.
16.已知x-1是64的算术平方根,则x的算术平方根是________.
17.若2(x-1)3+1
4
=0,则x=_______.
18.,则xy=_______.
=________.
20.如图,A,B两点的坐标分别是,0),则△OAB的面积是________.
三、解答题:(40分)
21.(4分)求下列各数的绝对值:
22.(9分)比较下列各组数的大小:(1)-3与-π;与;。
23.(6分)计算;π|-|π|。
24.(8分)求下列各式中的x:
(1)9x2=64 (2)121x2-25=0; (3)x3=-0.125 (4)│x2+1│=3
25.(6分)若a、b互为相反数,c、d互为倒数,m的绝对值是2,求2a+3cd+2b+m2的值.
26.(7分)一个正方体的体积为216cm3,求这个正方体的表面积.
答案:
1.C
2.B
3.A
4.C
5.C
6.D
7.D
8.C
9.D 10.C
11.±7,6,-2
12.•
13.±45
14.略
16.3 17.12
18.-6 19.-5,-34
20.12
, |0|=0,。
22.-3>- ,-2>-2
,>2•
;
24.(1)x=±
83; (2)x=±511
; (3)x=-0.5; (4)x= 25.7
26.216cm 2。