北师大版初一数学上册有理数

合集下载

北师大版七年级数学上册有理数课件

北师大版七年级数学上册有理数课件
克记作+0.02克,那么﹣0.03克表示
.
解:-0.03克表示乒乓球的质量低于标准质量0.03克.
(3)某大米包装袋上标注着“净含量:10kg±150g”, 这里的
“10kg±150g”表示什么?
解:每袋大米的标准质量应为10kg,但实际每袋大米可能有
150g的误差,即最多超出标准质量150g,最少少于标准质量
巩固练习
变式训练
在0, 2,

-7,−

A.1个

,3.14,− ,-3,

B.2个
C.3个
+0.75中, 负数共有 (D
D.4个
探究新知
知识点 3
“0”的意义
瓦罐没有东西了——有了0
海平面记为“0”,高于海平面都记为“正”,
低于海平面都记为“负”.
探究新知
结论:(1)0既不是正数,也不是负数,0是正数与负数的分界点.
为负的,用负数来表示.
探究新知
1.形如8,2.6,150 ,…这样的数叫做正数.
> 0 (用“<”“>”“=”填空).
正数 _
2.在正数前面加上“-”号的数叫做负数,形如-8,-2.6, -150,…
负数 <
_ 0(用“<”“>”“=”填空).
探究新知
素养考点
正数、负数的概念
例 下列给出的各数,哪些是正数?哪些是负数?
答对
答错
不回答
某班举行知识竞赛,评分标准是答对一题加1分,答错一题扣1分,
不回答得0分;每个队的基本分均为0分.两个代表队答题情况下
表:
答题情况
第一队
第二队
探究新知
如果答对题所得的分用正数表示,那么你能用正负数表

2.1.2 认识有理数 课件 北师大版数学七年级上册

2.1.2 认识有理数 课件 北师大版数学七年级上册
|+0.006|=0.006<0.02,|-0.002|=0.002<0.02, |+0.015|=0.015<0.02,
所以抽查的螺母都在误差范围内,都合乎要求.
(2)绝对值越接近0,误差越小,质量越好, 所以检查结果为-0.002的螺母质量最好, 检查结果为-0.018的螺母质量最差.
【综合拓展类作业】
5.已知 | a
|=3,|b|=1,且 a<b,
解:因为|a
|=3,|b|=1,
所以a=±3,b=±1.
又因为a<b, 所以a=-3.
所以a
=-3,b=1或a=-3,b=-1.
求 a ,b的值。
05 课堂小结
数轴上表示互为相反数的 相反数 两个点位于原点的两侧,
且与原点距离相等.
(1)-2,6;
(2)0,-1.8;
(1) ,-4.
解:(1)因为正数大于负数,所以-2<6;
(2)因为负数小于0,所以0>-1.8; (3)因为两个负数,绝对值大的反而小,
而|
ห้องสมุดไป่ตู้
, |-4|=4, 4,所

04 课堂练习
【知识技能类作业】必做题:
1.下列说法正确的是( D ) A.10 是10的相反数 C.0没有相反数
+0.010,-0.018,+0.006,-0.002,+0.015.
(1)指出哪些螺母是合乎要求的(即在误差范围内); (2)指出合乎要求的螺母中哪个质量最好,哪个质量最差.
06 作业布置
【综合拓展类作业】
解:(1)因为|+0.010|=0.010<0.02, |-0.018|=0.018<0.02,

2024北师大数学七年级上册

2024北师大数学七年级上册

2024北师大数学七年级上册一、有理数。

1. 有理数的概念。

- 整数和分数统称为有理数。

整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。

- 例如:2, -3,0,0.5(可化为(1)/(2)),-(3)/(4)等都是有理数。

2. 数轴。

- 规定了原点、正方向和单位长度的直线叫做数轴。

- 数轴上的点与有理数一一对应。

右边的数总比左边的数大。

- 例如:在数轴上表示 -2和3, -2在原点左边2个单位长度处,3在原点右边3个单位长度处。

3. 相反数与绝对值。

- 相反数:只有符号不同的两个数互为相反数。

0的相反数是0。

例如:3和 -3互为相反数。

- 绝对值:一个数在数轴上所对应的点与原点的距离叫做这个数的绝对值。

正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

例如:| -5| = 5,| 4| = 4。

4. 有理数的运算。

- 加法:- 同号两数相加,取相同的符号,并把绝对值相加。

例如:3 + 5=8,(-2)+(-3)= - 5。

- 异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

例如:3+(-2)=1,-5 + 3=-2。

- 减法:减去一个数等于加上这个数的相反数。

例如:5 - 3 = 5+(-3)=2。

- 乘法:- 两数相乘,同号得正,异号得负,并把绝对值相乘。

例如:3×5 = 15,(-2)×(-3)=6,3×(-4)= - 12。

- 任何数与0相乘都得0。

- 除法:除以一个不等于0的数,等于乘这个数的倒数。

例如:6÷3 =6×(1)/(3)=2,(-8)÷(-2)=(-8)×(-(1)/(2)) = 4。

- 乘方:求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。

a^n中,a 叫做底数,n叫做指数。

例如:2^3 = 2×2×2 = 8,(-3)^2=(-3)×(-3)=9。

有理数的乘方 北师大版数学七年级上册

有理数的乘方  北师大版数学七年级上册

知识点1 科学记数法
还记得底数为10的幂有什么规律吗?算一算,想一想. 101=__1_0_ , 102=_1_0_0_ ,103=_1_0_0_0_ , 104=_1_0_0_0_0_, 106=_1_0_0_0__0_0_0_, 1010 =_1_0_0_0_0__0_0_0_0_0_0__, … 指数与运算结果的位数有什么关系?
地球半径约为 6 400 000 m.
生活中常常会遇到比100万还大的数,比如:
光在真空中的传播速度约为 300 000 000米/秒
有使这些大数易 写易读的方法吗?
这些大数书写起来非 常不便,也容易写错.
知识点1 科学记数法
还记得底数为10的幂有什么规律吗?算一算,想一想.
101=__1_0_ , 102=_1_0_0_ ,103=_1_0_0_0_ , 104=_1_0_0_0_0_, 106=_1_0_0_0__0_0_0_, 1010 =_1_0_0_0_0__0_0_0_0_0_0__, … 指数与运算结果中的0的个数有什么关系? 10的指数等于1后面0的个数;
有一张厚度为0.1 mm的纸,将它对折1次后,厚度为2×0.1 mm.
(2) 假设对折20次,厚度为多少毫米?
对折1次: 21层 对折2次: 22层
220×0.1=104 857.6(mm) =104.857 6 m
对折3次: 23层
104.857 6 ÷3≈35
… …
对折20次: 220层 这张纸对折20次后大约有35层楼高.
知识点1 底数是2的幂
对折1次
对折2次
对折3次 ……
对折20次
21层
22层
23层 …… 220层
22 ×0.1=0.4(mm) 220×0.1=104 857.6(mm)

北师大版七年级数学上册 (有理数)有理数及其运算教育教学课件

北师大版七年级数学上册 (有理数)有理数及其运算教育教学课件

知2-讲
1.生活中到处都存在相反意义的量. 2.在相反意义的量中,我们把其中一个意义的量规定为正,
那么另一个量就是负. 要点精析: (1)相反意义的量是指意义相反的两个量,相反意义
的量是成对出现的. (2)判断相反意义的量的标准:①两个同类量;②意义相反. (3)具有相反意义的量的正负性是相对的,且是可以互换的.
(来自《典中点》)
知识点 3 有理数及其分类
知3-讲
1.定义:整数和分数统称有理数. 要点精析: (1)一个有理数不是整数就是分数. (2)如果一个数既不是整数也不是分数,那么它一 定不是有理数.
知3-讲
2. 整数和分数:正整数、0、负整数统称为整数. 正分数、负分数统称为分数. 要点精析:几种常用整数和分数名词的含义: (1)正整数:既是正数,又是整数的数; (2)负整数:既是负数,又是整数的数; (3)正分数:既是正数,又是分数的数; (4)负分数:既是负数,又是分数的数; (5)非负整数:正整数和0; (6)非正整数:0和负整数.
(3)判断一个数是正、负数的方法:①不为零;②含 “+”“-”的情况 (无“+” “-”视同含“+”),两 者必须同时看.
知1-讲
2. 数的特征及种类: (1)数有带符号(+、-)的数和不带符号的数两 种呈现形式; (2)数包括正数、0、负数三种情况. 拓展:符号“+” “-”的含义: (1)作为运算符号是加减号; (2)作为数的性质是正负号.
解题关键点 看符号
特征 数(0除外)前面带“+”
或无符号 数(0除外)前面带
“-”的数
结论 正数 负数
(来自《点拨》)
知1-练
1 (中考·广州)四个数-3.14,0,1,2中为负数
的是( A )

北师大版初一数学知识点归纳

北师大版初一数学知识点归纳

北师大版初一数学知识点归纳一、有理数1. 有理数的概念整数和分数统称为有理数。

整数包括正整数、0、负整数,分数包括正分数和负分数。

比如2是正整数,-3是负整数,1/2是正分数,-3/4是负分数。

有理数还可以分为正有理数、0、负有理数。

正有理数包括正整数和正分数,负有理数包括负整数和负分数。

2. 有理数的数轴表示规定了原点、正方向和单位长度的直线叫做数轴。

一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数 -a的点在原点的左边,与原点的距离是a个单位长度。

例如,在数轴上表示3的点在原点右边3个单位长度处,而表示 -2的点在原点左边2个单位长度处。

3. 有理数的大小比较正数大于0,0大于负数,正数大于负数。

两个负数,绝对值大的反而小。

比如,3>0,0> -2,3> -2;又比如 -3 = 3, -2 = 2,因为3>2,所以 -2> -3。

二、整式的加减1. 整式的概念单项式和多项式统称为整式。

单项式是数或字母的乘积,单独的一个数或一个字母也是单项式。

比如3x是单项式, -5也是单项式。

多项式是几个单项式的和,比如2x + 3y是多项式,它是由单项式2x和3y组成的。

2. 整式的加减运算整式加减的实质就是合并同类项。

同类项是指所含字母相同,并且相同字母的指数也相同的项。

例如,在3x + 2y - 5x + 4y中,3x和 -5x是同类项,2y和4y是同类项。

合并同类项后得到(3x - 5x)+(2y + 4y)= -2x + 6y。

三、一元一次方程1. 一元一次方程的概念只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程。

一般形式是ax + b = 0(a≠0)。

比如2x + 3 = 0是一元一次方程,其中a = 2,b = 3。

2. 一元一次方程的解法解一元一次方程的一般步骤是:去分母(如果有分母的话)、去括号、移项、合并同类项、系数化为1。

七年级数学上册《有理数及其运算》知识点归纳北师大版

七年级数学上册《有理数及其运算》知识点归纳北师大版

七年级数学上册《有理数及其运算》知识点归纳北师大版1.有理数:有理数=整数+分数整数=正整数+0+负整数分数=正分数+负分数有理数=正有理数+0+负有理数正有理数=正整数+正分数负有理数=负整数+负分数l正数的概念:数轴上0右边的数即比0大的数叫正数,形如+1,+0.5,+10.1,0.001…l负数的概念:数轴上0左边的数,形如-3,-0.2,-100…(负号不能省略).l0既不是正数也不是负数,0是整数也是偶数.①正负数的表示方法:盈利,亏损;足球比赛胜,负;收入,支出;提高,降低;上升,下降;②不投入不支出,不盈也不亏,海平面的海拔,某一个标准或基准….用0表示;2.数轴:概念:规定了原点,正方向和单位长度的直线数轴是一条可以向两端无限延伸的直线,数轴有三要素:原点,正方向,单位长度;画法:首先画一条直线;在这条直线上任取一点,作为原点;再确定正方向,大凡规定向右为正,画上箭头,反方向为负方向;最后选取适应的长度作为单位长度;数轴上的点与有理数的关系:任意一个有理数都可以用数轴上的点来表示。

有理数的大小比较:在数轴上表示的两个数,右边的数比左边的数大,正数都大于0,负数都小于0,正数大于负数.3.相反数:(1)只有符号例外的两个数叫做互为相反数(在数轴上互为相反数的两点位于原点两侧,并且到原点的距离相等),0的相反数是0;a,b互为相反数a+b=0;(2)求一个数的相反数,只要在它的前面添上负号“-”即得原数的相反数,当原数是多个数的和差时,要用括号括起来再添“-”;下面的a,b即可以是数字,字母,也可以是代数式;(3)大凡地,数a的相反数是-a,这里的a表示任意一个数,可以是正数、负数、0.4.绝对值:(1)几何定义:大凡地,数轴上表示数a的点与原点的距离叫做数a的绝对值;(2)代数定义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0;互为相反数的两个数的绝对值相等.(3)对于任何有理数a,都有a的绝对值≥0,即绝对值非负性;若几个数的绝对值的和等于0,则这几个数同时为0;(4)比较两个负数,绝对值大的反而小;5.倒数:(1)乘积为1的两个数互为倒数,所以数a的倒数是1/a,0没有倒数;(2)求一个整数的倒数,写成这个整数分之一;求一个小数的倒数,先将其化成分数,再求其倒数;求一个带分数的倒数,先将其化为假分数,再求出倒数.(3)用1除以一个非0数,商就是这个数的倒数.6.有理数的四则运算:⑴加法法则:①同号两数相加,符号不变,把绝对值相加;②异号两数相加,绝对值相等时(即互为相反数的两个数)相加得0;绝对值不相等时,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数;有理数加法运算律:交换律和结合律(互为相反数的可先相加;相加可得整数的可先相加;同分母的分数可先相加;符号相同的可先相加;易于通分的可先相加).⑵减法法则:①减去一个数,等于加上这个数的相反数,依据加法法则②加减混合运算,通过减法法则将减法转化为加法,统一成只含有加法运算的和式;减法没有交换律.⑶乘法法则:①两数相乘,同号得正,异号得负,把绝对值相乘;②任何数同0相乘,得0;(另外1乘任何数都等于这个数本身;-1乘以任何数都等于这个数的相反数.)③几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数的个数是奇数时,积为负;当负因数的个数是偶数时,积为正.乘法的运算律:交换律、结合律、乘法对加法的分配律.⑷除法法则:①两数相除,同号得正,异号得负,把绝对值相除;②0除以任何非0的数都得0.③除以一个数,等于乘上这个数的倒数,即.⑸乘方:①求几个相同因数积的运算,叫做乘方;乘方的结果叫做幂;,表示n个相同因数乘积的运算;②负数乘方要用括号括起来;分数乘方要用括号括起来;当指数是1时,可省略不写;③正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数(奇次幂2n+1,2n-1;偶次幂2n);0的正整数次幂都是0.⑹混合运算:①从左到右的顺序进行;②先乘方,再乘除,后加减;如有括号,应先算括号里面的;7.科学记数法(1)把一个大于10的数表示成的形式(其中a是整数数位只有一位的数,n是正整数,它的值等于原数的整数位数减1,),这种记数方法叫科学记数法;(2)确凿数与相似数:与实际完全相符的数是确凿数;与实际相接近的数是相似数;(3)精准度:相似数与确凿数的接近程度,可以用精准度表示;大凡地,把一个数四舍五入到哪一位,就说这个数精准到了那一位;所以,精准度是描述一个相似数的相似程度的量;(4)有效数字:在相似数中,从左边第一个不是0的数字起,到精准的数位止,所有的数字都叫做这个数的有效数字;一共包含的数字的个数,叫做有效数字的个数;两数相除,同号得正,异号得负,把绝对值相除;②0除以任何非0的数都得0.③除以一个数,等于乘上这个数的倒数,即.⑸乘方:①求几个相同因数积的运算,叫做乘方;乘方的结果叫做幂;,表示n个相同因数乘积的运算;②负数乘方要用括号括起来;分数乘方要用括号括起来;当指数是1时,可省略不写;③正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数(奇次幂2n+1,2n-1;偶次幂2n);0的正整数次幂都是0.⑹混合运算:①从左到右的顺序进行;②先乘方,再乘除,后加减;如有括号,应先算括号里面的;7.科学记数法(1)把一个大于10的数表示成的形式(其中a是整数数位只有一位的数,n是正整数,它的值等于原数的整数位数减1,),这种记数方法叫科学记数法;(2)确凿数与相似数:与实际完全相符的数是确凿数;与实际相接近的数是相似数;(3)精准度:相似数与确凿数的接近程度,可以用精准度表示;大凡地,把一个数四舍五入到哪一位,就说这个数精准到了那一位;所以,精准度是描述一个相似数的相似程度的量;(4)有效数字:在相似数中,从左边第一个不是0的数字起,到精准的数位止,所有的数字都叫做这个数的有效数字;一共包含的数字的个数,叫做有效数字的个数;两数相除,同号得正,异号得负,把绝对值相除;②0除以任何非0的数都得0.③除以一个数,等于乘上这个数的倒数,即.⑸乘方:①求几个相同因数积的运算,叫做乘方;乘方的结果叫做幂;,表示n个相同因数乘积的运算;②负数乘方要用括号括起来;分数乘方要用括号括起来;当指数是1时,可省略不写;③正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数(奇次幂2n+1,2n-1;偶次幂2n);0的正整数次幂都是0.⑹混合运算:①从左到右的顺序进行;②先乘方,再乘除,后加减;如有括号,应先算括号里面的;7.科学记数法(1)把一个大于10的数表示成的形式(其中a是整数数位只有一位的数,n是正整数,它的值等于原数的整数位数减1,),这种记数方法叫科学记数法;(2)确凿数与相似数:与实际完全相符的数是确凿数;与实际相接近的数是相似数;(3)精准度:相似数与确凿数的接近程度,可以用精准度表示;大凡地,把一个数四舍五入到哪一位,就说这个数精准到了那一位;所以,精准度是描述一个相似数的相似程度的量;(4)有效数字:在相似数中,从左边第一个不是0的数字起,到精准的数位止,所有的数字都叫做这个数的有效数字;一共包含的数字的个数,叫做有效数字的个数;。

北师大版初一数学上册知识点

北师大版初一数学上册知识点

北师大版初一数学上册知识点北师大版初一数学上册学问点1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.留意:0即不是正数,也不是负数;-a不肯定是负数,+a也不肯定是正数;π不是有理数;(2)留意:有理数中,1、0、-1是三个特别的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)留意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b 的相反数是-a-b;4.肯定值:(1)正数的肯定值是其本身,0的肯定值是0,负数的肯定值是它的相反数;留意:肯定值的意义是数轴上表示某数的点离开原点的距离;(2)肯定值可表示为:肯定值的问题常常分类商量;(3)a|是重要的非负数,即|a|≥0;留意:|a|?|b|=|a?b|, 5.有理数比大小:(1)正数的肯定值越大,这个数越大;(2)正数永久比0大,负数永久比0小;(3)正数大于一切负数;(4)两个负数比大小,肯定值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数0,小数-大数0.北师大版初一数学上册学问点二元一次方程组1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.留意:一般说二元一次方程有很多个解.2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.留意:一般说二元一次方程组只有解(即公共解).4.二元一次方程组的解法:(1)代入消元法;(2)加减消元法;(3)留意:推断如何解简洁是关键.※5.一次方程组的应用:(1)对于一个应用题设出的未知数越多,列方程组可能简单一些,但解方程组可能比较麻烦,反之则难列易解(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系.一元一次不等式(组)1.不等式:用不等号,把两个代数式连接起来的式子叫不等式.2.不等式的基本性质:不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要转变.3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式全部解的集合,叫做这个不等式的解集.4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b0或ax+b0,(a0).5.一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但肯定要留意不等式性质3的应用;留意:在数轴上表示不等式的解集时,要留意空圈和实点.北师大版初一数学上册学问点整式的加减一、代数式1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

北师大版七年级数学上册《有理数》课件(共29张PPT)

北师大版七年级数学上册《有理数》课件(共29张PPT)
(3)-1,2,-3,4,-5,6,-7,8 ,-9…… 其中第279个数为 _____ ,第320个数的符号 为___,规律是______________;
199
奇数为+ 偶数为-
+
-279
-345
2002
-2002
3的倍数为-其它为+
奇数为- 偶数为+
选做题
2、去超市买食品时经常看到包装袋上写着净重 150g±5g.这里表示什么意思?
用正数和负数可以表示具有相反意义的量
例1 (1)在知识竞赛中,如果+10分表示加10分,那么 扣20分怎样表示? (2)某人转动转盘,如果用+5表示沿逆时针方向转 了5圈,那么沿顺时针方向转了12圈怎样表示? (3)在某次乒乓球质量检测中,一只乒乓球超出标 准质量0.02克记作+0.02,那么-0.03克表示什么?
0
数怎么不够用了?
加10分
扣10分
得0分
第1题
第2题
第3题
第4题
第5题
第一队
第二队
第三队
第四队
某班进行知识竞赛,评分标准是:答对一题加10分, 答错一题扣10分,不答不得分;每一个队的基础分都是0分。
红色所表示的得 分比0分低。
带“-”的得分比0分低。
这里出现了比0分低的得分,我们可以用带有“-”号的数来表示,如-10(读作:负10)表示比0分低10分的数; 对于比0分高的得分,可以在前面加上“+”号,如+10(读作:正10)表示比0分高10的数。
里面食品的重量为比150g左右,多不会超过155g, 少不会少于145g.
选做题
3、小明的爸爸开的小店昨天获利120元,他在每日 收支账本上记下“120元”。今天小店亏了20元, 他应记作__。

2.1.1认识有理数 课件 北师大版数学七年级上册

2.1.1认识有理数 课件 北师大版数学七年级上册
-1.8%表示跌了1.8% 0.4%表示涨了0.4%
图2-2
03 新知讲解
“加分与扣分”“零上温度与零下温度”“高于海平面与低于海平 面”“上涨量与下跌量”等都是具有相反意义的量。 为了表示具有相反意义的量,我们可以把其中一个量规定为正的,把 与这个量意义相反的量规定为负的,并分别用“+”“—”来表示。 例如,“加3分”记为+3分,“扣2分”就记为-2分。
0
03 新知讲解
尝试 ·交流
(1)下表是2023年1月1日四个城市的气温情况。你能说出表中各 数的实际意义吗?
城市 北京
昆明
西安
哈尔滨
气温
-7℃~-5℃ 7℃~13℃ -2℃~2℃ -19℃~-14℃
-7℃,-2℃,-19℃,-14℃表示零度以下 5℃,7℃,13℃,2℃表示零度以上
03 新知讲解
A.+30 元 B.-20 元 C.-30 元 D.+20 元
2.某食品包装袋上标有“净含量:250克±5克”,有4袋食品 的质量如下,其中不合格的是( A ) A.256 克 B.248 克 C.253 克 D.249 克
04 课堂练习
【知识技能类作业】选做题:
3.一次数学测试,如果以90分为基准简记,例如96分记为+6 分,那么85分应记为 - 5 分 .
(2)求这七次测量结果的平均值.
04 课堂练习
【综合拓展类作业】
解 : ( 1 ) 若 以 8 0 m 为标准,用正数表示超出部分,用负数表示不足 部分,则表示七次测得的数据分别是(单位: m):
-0.2,+0.6,+0.4,-0.9,+0.3,-0.7,+0.5.
(2)(79.8+80.6+80.4+79.1+80.3+79.3+80.5)÷7

有理数的混合运算 北师大版数学七年级上册

有理数的混合运算  北师大版数学七年级上册

有 理
有理数混合运算的法则: 1.先算乘方,再算乘除,最后算加减

2.同级运算,从左到右进行

3.如有括号,要先算括号里面的

合 运
有理数混合运算的简算: 在运算过程中,可以利用运算律来简化运算

北师大版数学七年级上册
第二章 有理数及其运算
2.5.2 计算器的认识及应用
第二课时
1. 熟悉计算器的各功能键,并能正确使用.
解:3+22×(−15)
= 3+4×(−15)
= 3+(−45)
=
11 5
知识点1 有理数的混合运算
例1 计算:18−6÷(−2)×(−13) 先算除法,再算乘法,最后算减法. 解:18−6÷(−2)×(−13) =18−(−3)×(−13) =18−1 =17.
知识点1 有理数的混合运算
例2
计算:(−3)2×
新知探究 知识点2 使用计算器
例1 用计算器求下列各式的值.
(1) (3.2−4.5)×32−25
解:(1)按键顺序为
· · ( 3
2−4
5 ) ×3
−2
5
计算器显示结果为−11201,可以按 −12.1, 所以(3.2−4.5)×32−25=−12.1.
键切换为小数格式
知识点2 使用计算器
例1 用计算器求下列各式的值. (2) 3×(−2) 3+1 ÷(−65 )
知识点2 使用计算器
例2 (1)测量一种圆柱形饮料罐的底面半径和高,精确到0.1cm. 用计算器计算出这个饮料罐的容积(π取3.14),结果精确到1cm3, 并将你的结果与包装上的数据进行比较.
分析:圆柱形饮料罐的容积应运用公式:V=πr2h (r为圆柱形饮料罐的底面半径,h为圆柱形饮料罐的 高)进行计算.

北师大版初一数学上册知识点汇总[通用]

北师大版初一数学上册知识点汇总[通用]

北师大版初一数学上册知识点汇总[通用]北师大版初一数学上册知识点汇总1第一章有理数1.正数和负数2.有理数3.有理数的加减4.有理数的乘除5.有理数的乘方重点:数轴、相反数、绝对值、有理数计算、科学计数法、有效数字难点:绝对值易错点:绝对值、有理数计算中考必考:科学计数法、相反数(选择题)第二章整式的加减1.整式2.整式的加减重点:单项式与多项式的概念及系数和次数的确定、同类项、整式加减难点:单项式与多项式的系数和次数的确定、合并同类项易错点:合并同类项、计算失误、整数次数的.确定中考必考:同类项、整数系数次数的确定、整式加减第三章一元一次方程1.从算式到方程2.解一元一次方程----合并同类项与移项3.解一元一次方程----去括号去分母4.实际问题与一元一次方程重点:一元一次方程(定义、解法、应用)难点:一元一次方程的解法(步骤)易错点:去分母时,不含有分母项易漏乘、解应用题时,不知道如何找等量关系第四章图形认识实步1.多姿多彩的图形2.直线、射线、线段3.角4.课题实习----设计制作长方形形状的包装纸盒重点:直线、射线、线段、角的认识、中点和角平分线的相关计算、余角和补角,方位角等难点:中点和角平分线的相关计算、余角和补角的应用易错点:等量关系不会转化、审题不清北师大版初一数学上册知识点汇总2知识要点:1.有理数加法的意义(1)在小学我们学过,把两个数合并成一个数的运算叫加法,数的范围扩大到有理数后,有理数的加法所表示的意义仍然是这种运算.(2)两个有理数相加有以下几种情况:①两个正数相加;②两个负数相加;③异号两数相加;④正数或负数或零与零相加.(3)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加.异号两数相加,绝对值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.一个数同0相加,仍得这个数.注意:①有理数的加法和小学学过的加法有很大的区别,小学学习的加法都是非负数,不考虑符号,而有理数的加法涉及运算结果的符号;②有理数的加法在进行运算时,首先要判断两个加数的符号,是同号还是异号?是否有零?接下来确定用法则中的哪一条;③法则中,都是先强调符号,后计算绝对值,在应用法则的过程中一定要“先算符号”,“再算绝对值”.2.有理数加法的运算律(1)加法交换律:a+b=b+a;(2)加法结合律:(a+b)+c=a+(b+c).根据有理数加法的运算律,进行有理数的'运算时,可以任意交换加数的位置,也可以先把其中的几个数加起来,利用有理数的加法运算律,可使运算简便.3.有理数减法的意义(1)有理数的减法的意义与小学学过的减法的意义相同.已知两个加数的和与其中一个加数,求另一个加数的运算,叫做减法.减法是加法的逆运算.(2)有理数的减法法则:减去一个数等于加上这个数的相反数.4.有理数的加减混合运算对于加减混合运算,可以根据有理数的减法法则,将加减混合运算转化为有理数的加法运算。

北师大版七年级数学上册有理数

北师大版七年级数学上册有理数
(2)明确具有相反意义的量的“基准”,把一种意义的量规定为
正,另一种和它意义相反的量则为负.
(3)用符号、数和单位分别表示出问题中具有相反意义的量.
二、新知探究
议一议:选定一个高度作为标准,用正负数表示你们班每位同
学的身高与选定的身高标准的差异。你是怎样表示的?与同伴
进行交流。
解:比如设定160cm为标准,则高出的记作+,低于的记作-。
结绳计数:由记数、
排序,产生数1,2,3…
由表示“没有”、
“空位”,产生数0

一、导入新课
思考:1.小学我们学过的数包括哪些? 自然数、整数、分数、小数。
2.数学中仅有这些数够用了吗?用小学学过的数能表示下列数吗?
零上5ºC
零下5ºC
一、导入新课
3.我国有一座世界最高峰-珠穆朗玛峰,高度比海平面高 8844米,在新疆境内,还有一
个队的基本分均为0分.两个代表队答题情况如下表:
答对
答错
不回答
答题情况
第一队
第二队
如果答对题所得的分用正数表示,那么你能用正负数表示每个代表队答题得分的
情况吗?
二、新知探究
答题情况
第一队
第二队
试完成下表:
答对题的得分
第一队
第二队
+6
+8
答错题的得分
-3
-2
未回答题
的得分
0
二、新知探究
正数和负数的概念
北师大版 数学 七年级上册
第二章 有理数及其运算
1 有理数
学习目标
1.在具体情境中,进一步认识负数,理解有理数的意义(重点);
2. 经历用正负数表示具有相反意义的量的过程,体会负数是实际

北师大版初一上册第二章有理数概念及其运算知识点总结

北师大版初一上册第二章有理数概念及其运算知识点总结

北师大版初一上册第二章有理数概念及其运算知识点总结一、有理数有理数包括正整数、负整数、0和分数。

其中正整数和负整数统称为整数。

有理数可以用分数的形式表示,即分子、分母都是整数,并且分母不为0。

二、有理数的比较两个有理数的大小关系取决于它们的大小和符号,具体规则如下:- 同号,比大小;- 异号,比绝对值大小,正数大于负数。

三、有理数的加减运算有理数的加减运算遵循以下规则:- 同号相加,不改变符号,绝对值相加;- 异号相加,绝对值相减,符号与绝对值较大的数相同。

例如:- $2-3=-1$- $-2+3=1$- $-2-(-3)=1$- $-2+(-3)=-5$四、有理数的乘法有理数的乘法运算遵循以下规则:- 同号相乘得正,异号相乘得负;- 0乘任何数都得0。

例如:- $2\times 3=6$- $-2\times 3=-6$- $-2\times (-3)=6$- $0\times 5=0$五、有理数的除法有理数的除法其实就是乘以倒数,即$\dfrac{a}{b}\div\dfrac{c}{d}=\dfrac{a}{b}\times \dfrac{d}{c}$。

其中$b\neq 0$,$c\neq 0$。

例如:- $\dfrac{2}{3}\div \dfrac{4}{5}=\dfrac{2}{3}\times\dfrac{5}{4}=\dfrac{5}{6}$- $(-2)\div \dfrac{3}{4}=(-2)\times \dfrac{4}{3}=-\dfrac{8}{3}$六、绝对值一个数的绝对值表示这个数到0点的距离,记作$|a|$。

其中:- 若$a>0$,则$|a|=a$;- 若$a<0$,则$|a|=-a$;- 若$a=0$,则$|a|=0$。

例如:$|-5|=5$,$|6|=6$,$|0|=0$。

七、有理数的混合运算有理数的混合运算是指有理数的加减乘除四则运算的有理数表达式计算。

北师大版七年级上册数学有理数课件

北师大版七年级上册数学有理数课件




… ;
}

正数集合:{

2,-,-3.14

负数集合:{

};
合作探究
单击此处编辑母版文本样式

分数集合:{
整数集合:{
5.8,-,-3.14
·

, ,0.46
6,-2,0,2 …
非负数集合:{
}

}

·

6,5.8,0,2, ,0.46

};

合作探究
单击此处编辑母版文本样式
可以有意识地强调0的归类,增强学生对于0的印象.
合作探究
单击此处编辑母版文本样式
0的意义
3.某食品每包的标准质量为200 g,超出标准质量记为正,不
足记为负.则203 g可以记为
200 g可以记为
0. g
+3 g ,198 g可以记为
-2 g ,
合作探究
单击此处编辑母版文本样式
4.下列是关于0的一些说法,其中正确的有( D )
方法归纳交流 按数的定义,有理数包括 整数 和
数 两大类,简称为两分法;按数的性质,有理数包括

数、
负有理 数和
0
,简称为

分法.


正有
合作探究
单击此处编辑母版文本样式
2.把下列有理数分别写入相应的集合.
·

��
6,-2,5.8,- ,0,-3.14,2,
,0.46.



6
5.8
2
0.463
5.温度下降了-3 ℃表示
温度上升了3 ℃ .

北师大版七年级数学上册《有理数》有理数及其运算PPT教学课件

北师大版七年级数学上册《有理数》有理数及其运算PPT教学课件
重要总结:
(1)正数中的“+”可以忽略不写,如+8可以写成8. 负数中的“-”不可忽略
(2)可以用正数和负数表示具有相反意义的量
在一次答题中,评分标准是:答对加1分,
答错减1分,不回答0分;有两个队,的基本分
均为0分.两队答题情况如下表:
现在我们可以用带有“﹢”号和“﹣”号的数
表示各队每道题的得分情况.试完成下表:
+14
-8
+7
+12
1.求该外卖小哥这一周平均每天送餐多少单?
2.外卖小哥每天的工资由底薪 30 元加上送单补贴构成,送单补贴的方案如下:每天送
餐量不超过40单的部分,每单补贴4元;超过40单但不超过50单的部分,每单补贴6元;
超过50单的部分,每单补贴8元求该外卖小哥这一周工资收入多少元?
课堂小练
第二章 有理数及其运算
1 有理数
七年级上册
新课导入
观 察
1.全国主要城市天气预报
城市
天气
高温
低温
城市
天气
高温
低温
长沙
小雨
15
6
长春
多云
18
10
沈阳
小雨
19
7
天津
小雨
12
8
呼和浩特
雨夹雪
8
﹣3
乌鲁木齐

4

﹣3
西宁
小雪
5
﹣4
银川
小雪
0
﹣3
同学们可知道天气预报播音员是怎样读这些城市的气温的?
2.地形局部示意图
3.若该种食品每袋的合格标准为4505克,求该食品的抽样检测的合格率.
每袋与标准质量的差值(单位:克)

北师大版七年级数学上册 (数轴)有理数及其运算教育课件

北师大版七年级数学上册 (数轴)有理数及其运算教育课件
类比归纳
数轴的概念与画法
数轴的画法:
1.画一条水平直线,定原点(如图),原点表示0.
2.规定从原点向右为正方向,那么相反的方向(从 原点向左)则为负方向.
3.选择适当的长度为单位长度.
“一画、二定、三取、四标”
数轴的概念与画法
1.
0

2.
4.
6.
3.
7.
5.
8.
0
(2)规定直线上从原点向右(或上)为正方向(用箭头表示),从原点向左(或下)为负方向。
(3)选取适当的长度为单位长度,直线上原点向右每隔一个单位长度取一个点,依次表示为1、2、3······;从原点向左,用类似方法依次表示为-1、-2、-3······。
规定
原点、
正方向、
单位长度
的直线叫做数轴。
6个单位


2个单位
2、若点P在数轴上且到原点距离为5个单位,则点P表示的数是__________。
5和-5
3、在数轴上,表示数-2,2.6, , 0, ,-1, 的点中,在原点左边的点有 个。
4
检测
4、一儿童节那天,小天使乐乐要到学校、书店、儿童医院给孩子们送健康与快乐。她的家与学校、书店依次坐落在一条东西走向的大街上,家位于学校西边300米处,书店位于学校东边200米处,乐乐先到学校和书店,接着又向西走了700米来到儿童医院。你能帮乐乐找出家A、学校B、书店C、儿童医院D在数轴上所对应的数吗?
2.(判断)数轴上的两个点可以表示同一个有理数.

2个单位长度

6个单位长度
错,有理数与数轴上的点一一对应.
练一练
用数轴上的点表示有理数
例3 如图,数轴上点A表示的数为+3,把点A先向右平移5个单位,再向左平移10个单位到点B,则点B表示的数为 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数教案
教学目标:
知识与技能:1、使学生了解数是为了满足生产和生活的需要而产生、发展起来的;
2、会列举出周围具有相反意义的量,并用正负数来表示;会判断一个数是正数还是负数.培养学生的观察、想象、归纳与概括的能力。

过程与方法:3、探索负数概念的形成过程,使学生建立正数与负数的数感.
情感态度价值观:体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。

教学重点:
会判断正数、负数,运用正负数表示相反意义的量,理解0•表示量的意义.
教学难点:
负数的引入.
教学过程:
一.新课引入:
1.我们已经学过那些数?它们是怎样产生和发展起来的?
我们知道,为了表示物体的个体或事物的顺序,产生了数1,2,3……;为了表示“没有”,引入了数0;有时分配、测量的结果不是整数,需要用分数(小数)表示.总之,数是为了满足生产和生活的需要而产生、发展起来的.
2.让学生说出自己搜集到的生活中有关用负数表示的量.
3.在日常生活中,常会遇到下面的一些量,能用学过的数表示吗?
例1 汽车向东行驶3千米和向西行驶2千米.
例2 温度是零上10℃和零下5℃.
例3 收入500元和支出237元.
例4 水位升高1.2米和下降0.7米.
例5 买进100辆自行车和卖出20辆自行车.
二.新课讲解:
1.相反意义的量
学生分组讨论:上面这些例子中出现的各对量,有什么共同特点?
这里出现的每一对量,虽然有着不同的具体内容,但有着一个共同特点:它们都是具有相反意义的量.向东和向西、零上和零下、收入和支出、升高和下降、买进和买出都具有相反的意义.
让学生再举出几个日常生活中的具有相反意义的量.
2.正数与负数
只用原来所学过的数很难区分具有相反意义的量.例如,零上5℃用5表示,那么零下5℃再用同一个数5来表示就不够了.
在天气预报图中,零下5℃是用-5℃来表示的.一般地,对于具有相反意义的量,我们可以把其中一种意义的量规定为正的,用过去学过的数表示;把与它意义相反的量规定为负的,用过去学过的数(零除外)前面放上一个“-”(读作“负”)号来表示.就拿温度为例,通常规定零上为正,于是零下为负,零上10℃就用10℃表示,零下5℃则用-5℃来表示.
在例1中,如果规定向东为正,那么向西为负.汽车向东行驶3千米记作3千米,向西行驶2千米记作-2千米.
在例3中,如果规定收入为正,收入500元计作500元,那么支出237元应记作-237元.
在例4中,如果水位升高1.2米记作1.2米,那么下降0.7米计作-0.7米.
为了表示具有相反意义的量,上面我们引进了-5、-2、-237、-0.7,象这样的数是一种新数,叫做负数( negative number).过去学过的那些数(零除外),如10、3、500、1.2等,叫做正数(positive number).正数前面有时也可以放上一个“+”(读作“正”)号,如5可以写成+5,+5和5是一样的.
注意:零既不是正数,也不是负数.
例6 任意写出5个正数与6个负数,并分别把它们填入相应的大括号里:正数集合:{ …},负数集合:{ …}.
例7 “一个数,如果不是正数,必定就是负数.”这句话对不对?为什么?
例8 A地海拔高度是70m,B地海拔高度是30m,C地海拔高度是-10m,D 地海拔高度是-30m.哪个地方最高?哪个地方最低?最高的地方比最低的地方高多少?
分析根据题意,海拔高度是高于海平面为正,低于海平面的为负,所以-10m 是低于海平面10米,-30m是低于海平面30米.画出示意图即可求解.
解由图知,A地最高,D地最低.
所以,A地与D地的高度差为70+30=100(m).
所以,最高的地方比最低的地方高100米.
通过师生交流,引导学生概括出如下结论:由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数. 0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃.
1.举出几个具有相反意义的量,并用正数或负数来表示.
2.在中国地形图上,珠穆朗玛峰和吐鲁番盆地处都标有表明它们高度的数(单位:米),如图所示,这个数通常称为海拔高度,它是相对于海平面来说的.请说出图中所示的数8848和-155表示的实际意义.海平面的高度用什么数表示?
3.把下列各数分别填在相应的大括号里(数与数之间用逗号分开)
正数集合:{ …} 负数集合:{ …}
三、课堂小结:
用正数和负数可以简明地表示两种具有相反意义的量。

小学里所学的除0以外的数,即大于0的数叫做正数;在正数前面加上“-”号的数,叫做负数。

要注意零既不是正数也不是负数。

相关文档
最新文档