小波分析在故障诊断中的实际应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
测 控 系统 课 程 设 计
题目:基于小波分析的故障诊断
院 (系) 机电及自动化学院
专 业 测控技术与仪器1班
学 号 0911211014
姓 名 李志文
级 别 2 0 0 9
指导老师 王启志
2012年6月
Huaqiao university
摘要
基于小波变换的故障诊断是当前比较热门的一项研究之一,如何快速、准确地提取故障信号,如何准确定位故障的发生点及进行故障的预测是故障分析与检测的关键性问题。本文就此问题展开如下研究。
本文详细分析了小波变换的基本理论、小波变换用于故障检测的基本原理。介绍了几种常用的小波及其应用特点。通过实例分析比较不同小波类型的应用特点,通过对他们的优缺点的了解,能够在不同的环境下选取合适的小波类型进行故障检测,同时针对不同的着重点选取恰当的小波。
关键词:小波分析,故障检测,小波基选取,奇异性
ABSTRACT
Fault diagnosis based on wavelet transform is one of the popular a study, how quickly and accurately extract the fault signal, and how to accurately locate the fault occurred and the failure of the forecasts are the key issues of fault analysis and detection. On this issue, the following research.
In this paper a detailed analysis of the basic theory of wavelet transform, the basic principles of wavelet transform for fault detection. Several commonly used wavelet and its application characteristics. By case analysis comparing different wavelet characteristics, by understanding their strengths and weaknesses in different environments to select the appropriate wavelet for fault detection, and select the appropriate wavelet for a different focus.
KEY WORDS:wavelet analysis,defect detection,wavelet basis selection, singularity
目录
一、小波分析概述 (1)
二、小波分析的兴起及其在故障诊断的应用 (1)
三、几种常用小波介绍 (3)
四、小波分析在故障诊断中的应用实例 (7)
4.1 利用小波分析检测传感器故障 (7)
4.2 利用小波分析检测信号突变点 (10)
4.3 小波类型的选择对检测突变信号的影响 (11)
4.4 Daubechies5小波用于检测含有突变点的信号 (18)
五、心得体会 (20)
六、参考文献 (21)
一、小波分析概述
小波分析(Wavelet Analysis)即小波变换是80年代中期发展起来的一门新兴的数学理论和方法,它被认为是傅立叶分析方法的突破性进展,它具有许多优良的特性。小波变换的基本思想类似于Fourier变换,就是用信号在一族基函数张成的空间上的投影表征该信号。经典的Fourier变换把信号按三角正、余弦基展开,将任意函数表示为具有不同频率的谐波函数的线性迭加,能较好地刻划信号的频率特性,但它在时空域上无任何分辨,不能作局部分析,这在理论和应用上都带来了许多不便。小波分析优于傅立叶之处在于,小波分析在时域和频域同时具有良好的局部化性质,因为小波函数是紧支集,而三角正、余弦的区间是无穷区间,所以小波变换可以对高频成分采用逐渐精细的时域或空间域取代步长,从而可以聚焦到对象的任意细节。因此,小波变换被誉为分析信号的显微镜,傅立叶分析发展史上的一个新的里程碑。小波分析是一个新的数学分支,它是泛函分析、傅立叶分析、数值分析的最完美结晶;在应用领域,特别是在信号处理、图象处理、语音分析、模式识别、量子物理、生物医学工程、计算机视觉、故障诊断及众多非线性科学领域都有广泛的应用。
二、小波分析的兴起及其在故障诊断的应用
小波分析是近年来国际上掀起的一个前沿领域,它被认为是傅立叶分析方法的突破性进展。小波分析优于傅立叶之处在于,小波分析在时域和频域同时具有良好的局部化性质。可以对高频成分采用逐渐精细的时域或空间域取代步长,从而可以聚焦到对象的任意细节。因此,小波变换被誉为分析信号的显微镜,傅立叶分析发展史上的一个新的里程碑。小波分析是一个新的数学分支,它是泛函分
析、傅立叶分析、数值分析的最完美结晶:在应用领域,特别是在信号处理、图象处理、语音分析、模式识别、量子物理、生物医学工程、计算机视觉、故障诊断及众多非线性科学领域都有广泛的应用。小波分析最初由法国理论物理学家Grossman和法国数学家Morlet共同提出的。与傅里叶变换相比,它具有许多优良的特性。
小波变换能够通过多尺度分析提取信号的奇异点。基本原理是当信号在奇异点附近的Lipschitz指数a>0时,其小波变换的模极大值随尺度的增大而增大;当a<0时,则随尺度的增大而减小。噪声对应的Lipschitz指数远小于0,而信号边沿对应的Lipschitz指数大于或等于0因此,利用小波变换可以区分噪声和信号边沿,有效地检测出强噪声背景下的信号边沿(缓变或突变)。离散正交小波变换和连续正交小波变换的时频特性相似,二者都能够描述信号的频谱随时间变化情况或信号在某时刻附近的频率分布。
目前利用小波变换进行故障诊断的方法有三种:
(l)利用观测信号的奇异性进行故障诊断
动态系统的故障通常会导致系统的观测信号发生变化,若能采取一定的措施消除系统状态变化以外的因素的影响,直接利用连续小波变换检测观测信号的奇异点就可以检测出系统故障。
(2)利用观测信号频率结构的变化进行故障诊断
振动系统的故障通常会导致系统观测信号的频率发生变化。若能采用一定的措施消除系统状态变化以外的因素对观测信号的影响,则利用离散正交小波变换分析观测信号的频率结构随时间的变化情况,就可以检测系统的故障。
(3)利用脉冲响应函数的小波变换进行故障诊断
Eykhoff的连续系统脉冲响应辨识方法的基本思想是将系统脉冲响应函数的辨识转化为脉冲响应函数在一组正交函数基上的投影系数的辨识。若将Eykhoff 方法中的正交函数基取为离散正交小波基,所得到的脉冲响应辨识方法除了保持原方法的有效性外,而且较基于传统正交函数基的Eykhoff方法,具有更强的跟踪参数变化的能力,辨识结果具有明确的频域物理意义。系统脉冲响应函数在最大尺度下的小波变换系数描述了它在大尺度下的概貌情况,完全可以代表其整体特性。而且通常这些小波变换系数中只有2-3个元素具有较大的模,其余元素的