双闭环直流调速系统
双闭环直流调速系统特性与原理
双闭环直流调速系统特性与原理双闭环直流调速系统是一种用于控制直流电动机转速的调速系统。
它由两个闭环控制回路组成,分别是转速外环和电流内环。
其中,转速外环控制直流电机的转速,通过调节电压来控制直流电机的转矩;而电流内环则控制直流电机的电流,通过调节电压来控制直流电机的转矩。
1.稳定性:双闭环控制系统能够有效地控制直流电动机的转速和电流,使其在运行过程中保持稳定的转矩输出。
通过转速外环对转速进行控制,可以实现精确的转速调节;而电流内环则能够控制电机的电流,防止过载和短路等故障。
2.响应速度:双闭环控制系统的转速外环具有较快的响应速度,能够实现快速的转速调节。
而电流内环的响应速度则相对较慢,主要起到电机保护的作用。
3.鲁棒性:双闭环控制系统具有较好的鲁棒性,能够对外部干扰和参数变化具有一定的抗干扰能力。
通过合理的控制策略和参数调整,可以提高系统的鲁棒性。
1.转速外环控制原理:转速外环将输出电压与给定的转速进行比较,得到转速误差,并通过调节电压反馈回内环控制器中。
转速外环控制器通常采用PI控制器,根据转速误差和积分项来控制输出电压。
通过不断调节输出电压,使得转速误差趋于零,从而实现对直流电机转速的调节。
2.电流内环控制原理:电流内环控制器将输出电压与给定的电流进行比较,得到电流误差,并通过调节输出电压来控制电流。
电流内环控制器通常也采用PI控制器,根据电流误差和积分项来控制输出电压。
通过不断调节输出电压,使得电流误差趋于零,从而实现对直流电机电流的调节。
3.反馈信号处理:双闭环直流调速系统中,转速和电流测量信号需要经过滤波和放大等处理,以便传递给控制器进行计算。
滤波器通常采用低通滤波器,用于去除高频噪声,放大器则用于放大信号强度。
4.控制指令处理:由上位机或人机界面输入的控制指令需要经过处理,包括限幅、线性化等,以确保输入信号符合控制系统的要求。
处理后的指令将送入控制器,进行计算和控制输出电压。
通过双闭环直流调速系统的控制,可以实现对直流电机的转速和电流的精确调节,并具有较好的稳定性、响应速度和鲁棒性,广泛应用于工业自动化领域。
双闭环直流调速系统
综述采用PI调节的单个转速闭环直流调速系统可以在保证系统稳定的前提下实现转速无静差。
但是,如果对系统的动态性能要求较高,例如要求快速制动,突加负载动态速降小等等,单闭环系统的动态性能就难以满足需要。
这主要是以为在单闭环系统中不能随心所欲地控制电流和转矩的动态过程。
为此本文提出一种将神经网络理论结合传统PID控制机理,构成单神经元PID控制器,并应用于直流调速系统。
通过在线边学习边控制的方式,解决了传统PID的不足,实现了调速系统的快速过程实时在线控制要求。
仿真结果表明,这控制方法具有良好的自适性,且系统鲁棒性优于传统双闭环控制。
1双闭环直流调速系统简介1.1 单闭环系统的劣势采用PI调节的单个转速闭环直流调速系统(以下简称单闭环系统)可以在保证系统稳定的前提下实现转速无静差。
但是,如果对系统的动态性能要求较高,例如要求快速制动,突加负载动态速降小等等,单闭环系统的动态性能就难以满足需要。
这主要是以为在单闭环系统中不能随心所欲地控制电流和转矩的动态过程。
在单闭环直流调速系统中,电流截止负反馈环节是专门用来控制电流的,但是它只能在超过临界电流Idcr值以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想的控制电机的动态波形。
带电流截止负反馈的单闭环直流调速系统启动和转速波形如图1-1(a)所示,启动电流突破Idr以后,受电流负反馈的作用,电流只能升高一点,经过某一最大值Idr以后就降了下来,电机的电磁转矩也随之减小,因而加速过程必须延长。
对于经常正、反转的调速系统,例如龙门刨床,可逆轧钢机等,尽量缩短起制动过程的时间是提高生产效率的重要因素。
为此,在惦记最大准许电流和转矩受限制的条件下,应该充分利用电机的过载能力,最好是在过渡过程中始终保持电流(转矩)为准许最大值,使电力拖动系统以最大的加速度起动,到稳态转速时,立即让电流降下来,使转矩马上与负载平衡,从而转入稳态运行。
这样的理想起动过程波形如图1-1(b)所示,这时,起动电流是方形波,转速按线性增长。
转速电流双闭环直流调速系统PPT课件
转速电流双闭环直流调速系统通常由 转速调节器、电流调节器、直流电机 、测速装置和功率电子装置等组成。
工作原理简介
工作原理
转速电流双闭环直流调速系统通过采集电机的转速和电流信号,经过调节器的处理,输出相应的控制信号来调节 电机的输入电压或电流,从而实现对电机速度的控制。
控制流程
转速调节器根据实际转速与设定转速的差值,输出一个转速调节电压;电流调节器根据实际电流与设定电流的差 值,输出一个电流调节电压。这两个调节电压共同作用,通过功率电子装置控制电机的输入电压或电流,实现电 机的精确调速。
抗扰动能力强
转速环调节器能够有效地抑制外部扰动和内部参数变化对系统稳定性的影响。
转速环的抗干扰性能
抗噪声干扰
采用滤波算法等手段减小噪声对转速检测的影响,提高转速 检测的准确性。
抗负载扰动
通过优化调节器设计,减小负载扰动对转速环稳定性的影响 ,提高系统的鲁棒性。
03
电流控制环
电流检测与调节器设计
02
转速控制环
转速检测与调节器设计
转速检测
采用光电编码器等传感器实时检 测电机转速,并将转速信号转换 为电信号传输给调节器。
调节器设计
根据转速偏差和转速变化率等信号, 采用比例、积分、微分(PID)等 控制算法计算出控制量,实现对电 机转速的调节。
转速环的动态特性
快速响应
转速环调节器具有较快的响应速度,能够快速地调节电机转速,减小超调量。
测试方案制定
根据系统要求,搭建测试平台,包括电源 、电机、测速装置、数据采集系统等。
根据系统性能指标,制定详细的测试方案 ,包括测试项目、测试步骤、测试数据记 录等。
测试数据采集与分析
验证与改进
双闭环直流调速系统工作原理
双闭环直流调速系统工作原理1.系统结构:双闭环直流调速系统主要由两个闭环控制组成,即速度内环和电流外环。
速度内环控制器接收速度设定值和速度反馈信号,通过计算得到电流设定值,并发送给电流外环控制器。
电流外环控制器接收电流设定值和电流反馈信号,通过计算得到电压设定值,并输出给电源控制器。
电源控制器接收电压设定值和电源反馈信号,通过调节电源输出电压,以确保电机输出的电压和电流符合控制要求。
2.速度内环控制:速度内环控制器是实现速度调节的关键部分。
它通过比较速度设定值和速度反馈信号,得到速度差,然后根据速度差来调节电流设定值。
控制器根据速度差的大小来调整电流设定值的大小,如果速度差较大,则增大电流设定值;如果速度差较小,则减小电流设定值。
通过不断调整电流设定值,使得速度差逐渐减小,最终达到设定的速度。
3.电流外环控制:电流外环控制器是为了保证电流的稳定性而设置的闭环控制。
它接收电流设定值和电流反馈信号,通过比较二者的差异,计算得到电压设定值。
控制器根据电流设定值和电流反馈信号的差异来调整电压设定值的大小,如果电流差较大,则增大电压设定值;如果电流差较小,则减小电压设定值。
通过不断调整电压设定值,使得电流差逐渐减小,最终达到设定的电流。
4.电源控制:电源控制器是为了保证电机输出的电压和电流符合控制要求而设置的。
它接收电压设定值和电源反馈信号,通过调节电源输出电压来实现电机的调速。
当电压设定值与电源反馈信号存在差异时,控制器会相应地改变电源输出电压,使得电机的电压和电源设定值尽可能接近。
通过不断调整电压输出,最终使得电机的电压和电流稳定在设定值。
5.系统优点:双闭环直流调速系统能够实现对电机的精确调节,具有较高的速度和电流控制精度。
通过速度内环和电流外环的联合控制,可以准确地调节电机的转速,并且能够自动调整输出电流,适应不同负载。
此外,该系统还具有较好的稳定性和抗干扰能力,在外界干扰较大时仍能保持较高的控制精度。
第二章双闭环直流调速系统
•系统原理图
+
RP1 Un R0
-
R0
Ufn
-
Rn Cn
U+fi
R0
ASR
-
+
+
Ui
LM
R0
-
TA
Ri Ci
L
ACR
LM GT
-
+
+
Uc
V
Id
UPE +Ud
MM
+TGG -
双闭环直流调速系统电路原理图
第15页/共199页
调节器输出限幅值的整定
图中表出,两个调节器的输出都是带限 幅作用的。
(2) 转速调节器饱和
这时,ASR输出达到限幅值Uim ,转速外环呈 开环状态,转速的变化对系统不再产生影响。双 闭环系统变成一个电流无静差的单电流闭环调节 系统。稳态时
Id
Uim
Idm
式中,最大电流 Idm 是由设计者选定的,取决于 电机的容许过载能力和拖动系统允许的最大加速 度。
第36页/共199页
第28页/共199页
2.2 双闭环调速系统的稳态结构图及其静特 性
为了分析双闭环调速系统的静特性,必须先绘出它的稳态结构图, 如下图。它可以很方便地根据上图的原理图画出来,只要注意用带限幅的输 出特性表示PI 调节器就可以了。分析静特性的关键是掌握这样的 PI 调节器 的稳态特征。
第29页/共199页
第11页/共199页
1. 系统的组成
TA
L
内环
Un +-
Ufi
V
Ui ASR +
ACR Uc UPE
+
双闭环调速系统
双闭环系统的静特性
第十页,课件共有22页
特点:
• 1)n0-A
• ①系统处正常负载运行,ASR不饱和,起调节作用,达到转 速无静差,保证系统具有很硬的静特性;
• ②电流调节器起辅助调节作用,负载电流大小与电流给定值 成正比,两调节器输入偏差电压都为零,所以无静差
• 式中, n0---理想空载转速。
第十七页,课件共有22页
• ⑵第Ⅱ阶段:恒流升速阶段(t1~t2),即电动机保 持最大电流作等加速起动阶段 从电流升到最大值Idm开始,到转速升到给定值为 止,属于恒流升速阶段,是起动过程的主要阶段。 此时ASR一直是处于饱和状态的,转速环相当于 开环状态,系统表现为在恒值电流给定作用下的电流 调节系统,基本上保持电流Id恒定,电动机以恒定的 加速度上升,转速呈线性增长。与此同时,电动机的 反动势也按线性增长。对电流调节系统来说,这个 反电动势是一个线性渐增的扰动量,ACR起调节作 用,使Ucl和Ud0基本上按线性增长,保持Id恒定, 以克服这个扰动。
第二十一页,课件共有22页
• 三、双闭环调速系统的抗扰性能 1)抗负载的扰动 2)抗电网电压的扰动 综上所述,转速和电流两个闭环的作用以及双闭环调速
系统在起动过程的特点可归纳如下: 转速和电流两个闭环的作用:
(1)电流环的作用:在转速调节过程中,当负载变化时, 电动机电流Id跟随给定电压 变化。在起动过程中,电流环 又可限制起动电流,保证在允许最大电流下起动,实现准 时间最优控制,对于电网电压的扰动起到及时抗扰作用; 当电动机过载,甚至堵转时,限制电枢电流为Idm,并获 得理想下垂特性,从而起到快速安全保护作用。
第十三页,课件共有22页
§2-2 双闭环调速系统动态特性
双闭环直流调速系统(课程设计)
4•仿真实验95•仿真波形分析13三、心得体会14四、参考文献161•课题研究的意义从七十年代开始,由于晶闸管直流调速系统的高效、无噪音和快速响应等优点而得到广泛应用。
双闭环直流调速系统就是一个典型的系统,该系统一般含晶闸管可控整流主电路、移相控制电路、转速电流双闭环调速控制电路、以及缺相和过流保护电路等。
直流调速是现代电力拖动自动控制系统中发展较早的技术。
就目前而言,直流调速系统仍然是自动调速系统的主要形式,在许多工业部门,如轧钢、矿山采掘、纺织、造纸等需要高性能调速的场合得到广泛的应用。
且直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,在许多需要调速和快速正反向的电力拖动领域中得到了广泛的应用。
由于直流拖动控制系统在理论上和实践上都比较成熟,而且从控制的角度来看,它又是交流拖动控制系统的基础。
所以加深直流电机控制原理理解有很重要的意义。
2•课题研究的背景电力电子技术是电机控制技术发展的最重要的助推器,电力电机技术的迅猛发展,促使了电机控制技术水平有了突破性的提高。
从20世纪60年代第一代电力电子器件-晶闸管(SCR)发明至今,已经历了第二代有自关断能力的电力电子器件-GTR、GTO、MOSFET,第三代复合场控器件-IGBT、MCT等,如今正蓬勃发展的第四代产品-功率集成电路(PIC)。
每一代的电力电子元件也未停顿,多年来其结构、工艺不断改进,性能有了飞速提高,在不同应用领域它们在互相竞争,新的应用不断出现。
同时电机控制技术的发展得力于微电子技术、电力电子技术、传感器技术、永磁材料技术、自动控制技术和微机应用技术的最新发展成就。
正是这些技术的进步使电动机控制技术在近二十多年内发生了天翻地覆的变化。
(3-16) 取:(3-17) ◎i=4.3%<5%,满足课题所给要求。
3.3速度调节器设计电流环等效时间常数1/K。
取KT乙=0.5,贝IJ:1二2X0.0067二0.0134K(3-15)转速滤波时间常数T on。
双闭环直流电机调速系统设计
双闭环直流电机调速系统设计在今天的科技世界里,电机就像是家里的“万能小助手”,无处不在。
你想想,电风扇、洗衣机、甚至小汽车,都少不了它们的身影。
而双闭环直流电机调速系统就是这个小助手的“智囊团”,让它在各种环境中游刃有余,真是个神奇的存在。
今天,我们就来聊聊这个系统是怎么工作的,听起来是不是有点高大上?别担心,咱们用通俗易懂的语言来探讨,让你在闲聊中也能装装逼!1. 什么是双闭环控制?1.1 直流电机的基本知识直流电机,这东西其实就是通过直流电来转动的电机,简单说,就是通过电流来产生磁场,让电机的轴子转动起来。
想象一下,你在玩一辆遥控小车,控制它的速度和方向,其实和电机的工作原理类似。
电流大了,小车跑得快;电流小了,小车就慢了。
是不是很简单?不过,要把这个电机调得又快又稳,就得靠我们的双闭环系统了。
1.2 双闭环系统的工作原理双闭环控制,顾名思义,分为两个环,一个是速度环,一个是电流环。
速度环就像是你的眼睛,时刻盯着电机的转速,确保它不会跑偏。
而电流环就像是你的手,及时调整电机所需的电流,让它在需要的时候有充足的动力。
就好比你骑自行车,风一吹,你得用力蹬脚踏,让车子稳稳前行,这就是速度和电流的配合。
两者相辅相成,形成了一个良性的循环,确保电机在各种负载下都能稳定工作。
2. 设计双闭环系统的重要性2.1 提高系统性能你想啊,电机如果没有双闭环控制,开得快的时候,可能转速就飙到天上,没法控制;慢的时候,又感觉力不从心。
这就像你打球,想要扣篮却被卡在了框下,真是让人心急火燎!而有了双闭环系统,电机就能在不同的环境中保持稳定的转速,性能大大提升。
无论是重载还是轻载,电机都能游刃有余,根本不在话下。
2.2 降低能耗再来谈谈能耗的问题。
我们都知道,能源危机可是个大麻烦。
双闭环系统能够通过实时监测和调节,确保电机在最优状态下运行,从而降低能耗。
想象一下,省电就像是在家里随便找零花钱,谁不乐意呢?通过科学合理的控制,电机就能用更少的电,做更多的事,真是一举两得!3. 实际应用案例3.1 工业自动化说到双闭环系统的实际应用,那可真是多得数不过来。
双闭环直流电动机调速系统讲解学习
B—电流负反馈特性 A—转速负反馈特性
O
Id
调速系统静特性Idbl
系统稳态结构框图
Id
Rc
R
U*n + -Ui ∆Un -
Kp Uc
Ks
Ud0 -
+
E
1/Ce
n
Un
转速和电流负反馈系统稳态结构框图
静特性方程
nKpKsUn * RdIKpKsRcId
Ce
Ce
Ce
与转速闭环控制调速系统特性方程相比,上式 多了一项由电流反馈引起的转速降落。
晶闸管触发与整流失控时间分析
u
2
O0
ud
Ud01
t Ud02
0O
Uc
Uc1
TS
Uc2
t
O0 1
1
2
2 t
O0
t
晶闸管触发与整流装置的失控时间
晶闸管触发器和整流装置输入输出关系为
Ud0KsUct(tTs)
两端进行拉氏变换得
Ud0(s) Ks Uct (s) 1Tss
晶闸管触发器和整流装置动态结构图为
U d0EIdR Ld d ItdR (IdT ld d Itd)
进行拉氏变换得 U d 0 (s ) E (s ) R Id (s )( 1 T ls )
Id(s) 1 Ud0(s)E(s) R(1Tls)
电动机传动系统传函
电动机传动系统运动方程式为
TM
Tl
GD2 375
dn dt
QT M C m Id
Uct
K s Ud0(s) -
1 Tss
1
Ce
n(s)
Tm s(TL s 1) 1
双闭环直流调速系统原理介绍
双闭环直流调速系统原理介绍双闭环直流调速系统由两个环路组成,速度环和电流环。
速度环控制电机的速度,使其始终保持在设定值附近,而电流环控制电机的电流,保证电机的负载特性和响应速度。
速度环和电流环是相互独立的控制过程,通过串联连接实现整体调速控制。
速度环负责对电机转速进行调节,基本原理是将实际转速与设定转速进行比较,然后根据差值计算出调节量,最后通过调节电机的输入电压实现转速调节。
速度环的核心是比例-积分(PI)控制器,通过设定合适的比例系数和积分时间,可以实现对转速的精确调节。
速度环还可以加入速度前馈器,将速度设定值的变化率作为额外输入信号,进一步提高系统的响应速度和稳定性。
电流环负责对电机的电流进行调节,保证电机的负载特性和响应速度。
电流环的基本原理是将实际电流与设定电流进行比较,然后根据差值计算出调节量,最后通过调节电机的输入电压或电流实现电流调节。
电流环的核心也是比例-积分(PI)控制器,通过设定合适的比例系数和积分时间,可以实现对电流的精确调节。
电流环还可以加入电流前馈器,将电流设定值的变化率作为额外输入信号,进一步提高系统的响应速度和稳定性。
双闭环直流调速系统中,速度环和电流环之间通过串联连接的方式进行控制。
速度环输出电压指令作为电流环的输入电流设定值,电流环通过调节电机的输入电流实现电流调节。
而电流环输出电压指令作为速度环的输入电压设定值,速度环通过调节电机的输入电压实现转速调节。
通过这种双重反馈的控制方式,可以实现对电机转速和电流的精确控制。
1.精确控制:通过精确的调节速度环和电流环的参数,可以实现对电机转速和电流的精确控制,满足不同工况下的要求。
2.快速响应:双闭环结构可以利用速度环和电流环的双重反馈信息,在系统受到外部扰动时,能够快速调节输出,保持稳定的运行状态。
3.负载适应性:通过电流环的控制,可以根据电机所承受的外部负载变化,自动调整输出电压或电流,保持电机的运行稳定性和性能。
直流双闭环调速系统设计与仿真
直流双闭环调速系统设计与仿真一、直流双闭环调速系统的基本原理电流环用于控制电机的电流,通过测量电机的电流反馈信号与给定的电流信号进行比较,得到误差信号,然后经过PID控制器计算控制信号,最后通过逆变器输出给电机控制电流。
二、直流双闭环调速系统的设计1.确定系统参数:包括电机的转矩常数,转矩惯量,电感,电阻等参数。
2.设计速度环控制器:根据转速信号和转速误差信号,设计速度环控制器的传递函数。
可以选择PID控制器,也可以选择其他类型的控制器。
3.设计电流环控制器:根据电流信号和电流误差信号,设计电流环控制器的传递函数。
同样可以选择PID控制器或其他类型的控制器。
4.进行系统仿真:将设计好的速度环和电流环控制器加入电机模型,进行系统仿真。
通过调整控制器参数,观察系统的响应特性,可以优化系统性能。
5.调整控制参数:根据仿真结果,调整控制器的参数,使系统响应更加快速、稳定。
三、直流双闭环调速系统的仿真1.定义系统模型:建立直流电机的状态方程,包括速度环和电流环的动态方程。
2.设定系统初始条件和输入信号:设置电机的初始状态和给定的转速信号以及电流信号。
3.选择控制器类型和参数:根据设计要求,选择控制器类型和参数。
可以选择PID控制器,并根据调试经验选择合适的参数。
4.搭建控制系统模型:将速度环和电流环的控制器模型和电机模型连接在一起,构建闭环控制系统模型。
5.进行系统仿真:利用MATLAB或其他仿真软件进行系统仿真,根据给定的转速信号和电流信号,观察系统的响应特性。
四、直流双闭环调速系统的优化1.参数调整:根据仿真结果,调整控制器的参数,使系统的性能得到优化。
可以通过试探法或自适应调节方法进行参数调整。
2.饱和处理:考虑到电机的饱和特性,可以在控制器中添加饱和处理模块,以提高系统的稳定性和抗干扰能力。
3.鲁棒性设计:考虑到系统参数的不确定性,可以采用鲁棒控制方法,提高系统的鲁棒性能。
4.死区补偿:在电机控制中常常会出现死区现象,可以在控制器中添加死区补偿模块,以减小死区对系统性能的影响。
双闭环直流调速系统
双闭环直流调速系统双闭环直流调速系统是一种电力电子变换器设计用于控制直流电机转速的重要方法。
它使用两个控制循环,内环控制电机转速,外环控制负载的速度变化。
其中一般采用PI控制器,理论上能够在滞后角度及相位裕量方面提供相应的保障。
本文将对双闭环直流调速系统进行详细讲解。
系统结构双闭环直流调速系统包含两个主要部分:电机和电力电子变换器。
电机是系统的执行部分,它将电能转化为机械能。
电力电子变换器则是将电源接通到电机的途径。
其包含整流器/变频器、PWM控制器和功率放大器等组成部分。
在系统中,电力电子变换器通过对电流、电压和功率方面的控制,实现对电机的控制。
双闭环直流调速系统包含两个控制环路,内环和外环。
内环用于控制电机的转速,外环用于控制负载的变化速度。
内环控制器与电机直接耦合,接受电机转速控制信号,并控制电机驱动电压或电流。
外环控制器将负载反馈信号与期望速度信号进行比较,并计算出负载期望机械功率。
内环控制器为外环控制器提供实时电机转速,以便自动调整期望速度。
内部控制环路内环是双闭环直流调速系统的核心部分,它使用反馈控制技术控制电机转速。
内环控制器接受来自电机的反馈信号,并根据电机实际转速和期望转速之间的差异来控制驱动电压或电流。
转速反馈可以使用反电动势(EMF)或霍尔传感器来实现。
最常用的电机控制器是基于PI型控制器。
此控制器将PID控制(比例、积分、微分控制)的K值设定为0(因为在直流电机控制中微分控制几乎不可行),并针对不同比例和积分控制来为电机控制提供所需的响应特性。
反馈中的延迟和其他因素会导致偏差,因此比例控制器通常用于加速响应。
积分控制器用于使系统更加稳定,以响应慢速变化。
这些控制器参数通常是根据预期转速、电压和电流范围进行调整。
系统优缺点优点1.与传统的直流调速系统相比,双闭环直流调速系统能够更好地控制直流电机的转速。
内外环的设计使得控制速度响应更快,同时提高了系统的稳定性。
2.内环和外环控制器,使用的是速度反馈,可实时监测直流电机的转速,以控制电压和电流从而实现所需功率/MN的输出。
《双闭环调速系统》课件
实际应用效果
在电动汽车控制系统中应用双闭环调速系统,可以提高车辆的能源利用效率,延长续航里 程,同时提高车辆的操控性能和行驶安全性。
06 双闭环调速系统的未来发 展与展望
技术发展趋势
数字化
随着数字化技术的不断发展,双闭环调速系统将更加依赖于数字信号处理,实现更快速 、更精确的控制。
电流环的控制方式
通常采用比例控制器(P)或比例积分控制器(PI),根据电流偏 差进行调节。
PI调节器
PI调节器的定义
PI调节器是一种线性调节器,由比例(P)和积分(I)两部分组 成。
PI调节器的作用
根据输入的偏差信号,输出相应的控制信号,以减小偏差。
PI调节器的参数调整
需要根据实际情况调整比例和积分系数,以获得最佳的控制效果。
各种设备的速度进行精确控制,确保生产流程的稳定性和高效性。
03
实际应用效果
在工业自动化生产线上应用双闭环调速系统,可以提高生产效率,降低
人工干预,减少生产成本。
案例三:电动汽车控制系统中的应用
电动汽车控制系统概述
电动汽车控制系统是指通过电子控制技术实现对电动汽车的能源管理和行驶控制。
双闭环调速系统的应用方式
触发电路
触发电路的定义
01
触发电路是用于控制电机换相的电路。
触发电路的工作原理
02
根据电流环的输出和实际电流的偏差,调整触发脉冲的相位,
以控制电机的换相时刻。
触发电路的控制方式
03
通常采用锯齿波或正弦波控制方式,根据需要选择合适的控制
方式。
保护电路
双闭环直流调速系统特性与原理
双闭环直流调速系统特性与原理双闭环直流调速系统是一种常见的电机调速系统,通过两个闭环控制来实现对电机转速的精确控制。
在双闭环直流调速系统中,第一个闭环控制回路称为速度环,用来控制电机转速;第二个闭环控制回路称为电流环,用来控制电机电流。
下面将详细介绍双闭环直流调速系统的特性与原理。
1.转速稳定性好:由于双闭环控制系统可以将负载变化的影响控制在较小的范围内,所以电机的转速可以保持在给定值附近稳定运行。
2.转速快速响应:双闭环控制系统可以通过调节速度环和电流环的参数来实现转速的快速响应,使得电机在变化负载下能够迅速调整转速。
3.调节范围广:双闭环直流调速系统可以通过改变速度环和电流环的控制策略来调节电机的转速范围。
可以实现低转速和高转速的调节。
4.可靠性高:双闭环直流调速系统采用两个闭环控制回路,其中速度环和电流环可以相互独立地控制电机的转速和电流,从而提高系统的可靠性。
速度环:速度环的目标是实现对电机转速的精确控制。
速度环根据给定的转速信号与实际转速信号之间的误差,通过PID控制器计算出控制电压,然后将控制电压输出给电流环。
电流环:电流环的目标是控制电机的电流,保持电机的转速稳定。
电流环通过反馈电流信号与速度环输出的控制电压之间的误差,通过PID控制器计算出电压调节量,然后将调节量输出给电机驱动器。
1.给定一个转速信号,如旋钮或数字输入。
2.速度环将给定转速信号与实际转速信号之间的误差传递给PID控制器。
3.PID控制器计算出控制电压,并将其传递给电流环。
4.电流环将反馈电流信号与PID控制器输出的控制电压之间的误差传递给PID控制器。
5.PID控制器计算出电压调节量,并将其传递给电机驱动器。
6.电机驱动器根据PID控制器输出的电压调节量,控制电机的电流,从而控制电机的转速。
总之,双闭环直流调速系统通过速度环和电流环两个闭环控制回路的相互作用,可以实现对电机转速的精确控制。
通过调节速度环和电流环的参数,可以调节电机的转速范围和响应速度,从而满足不同应用场景的需求。
双闭环直流调速系统介绍
双闭环直流调速系统介绍
系统由两个主要的闭环控制回路组成:速度环和电流环。
速度环是系统的外环控制回路,其作用是根据用户对电机转速的需求进行反馈控制。
速度传感器测量电机的转速,并将测量值与设定值进行比较,产生差值作为输入信号。
这个差值通过控制器(通常为PID控制器)进行处理,并输出一个调节信号。
调节信号通过控制执行器(如PWM控制器)调节电机的输入电压或电流,从而控制电机的转速。
速度环的目标是使电机的转速稳定在用户设定的值附近。
电流环是系统的内环控制回路,其作用是根据速度环的输出信号来补偿负载扰动和电机参数变化所引起的转矩变化。
电流环的输入信号为速度环的输出调节信号,通过控制器处理后,输出一个电流指令。
这个电流指令通过控制执行器调节电机的输入电压或电流,从而控制电机的转矩。
电流环的目标是使电机的转矩稳定在速度环要求的范围内。
1.高精度:通过使用两个闭环控制回路,系统能够实现高精度的电机转速调节,并具备对负载扰动和电机参数变化的补偿能力。
2.快速响应:系统使用PID控制器作为控制算法,能够快速响应用户对电机转速的需求。
3.稳定性好:速度环和电流环形成了互补的控制关系,能够保持电机转速和转矩的稳定性。
4.可靠性高:双闭环直流调速系统结构简单,组件少,可靠性较高。
综上所述,双闭环直流调速系统通过使用速度环和电流环两个闭环控制回路,实现对电机转速的高精度控制和负载扰动补偿。
该系统具备精度
高、响应快、稳定性好、可靠性高等优点,广泛应用于各种需要精确电机调速的领域。
第二章转速、电流双闭环直流调速系统
如采用自适应控制、鲁棒控制等策略,提 高系统对负载扰动的抵抗能力。
加入滤波器
优化系统结构
在系统中加入适当的滤波器,以滤除高频 噪声和干扰信号,提高系统稳定性。
通过改进系统结构或采用先进的控制算法 ,提高系统的稳定性和动态性能。
05
双闭环直流调速系统动态性能分 析
动态性能指标评价
跟随性
系统输出跟随输入指令变化的快速性和准确性,通常由上升时间、 超调量和调节时间等指标来评价。
工程整定法
基于经验公式或实验数据,通过 试凑法调整参数,使系统满足性 能指标要求。
解析法
02
03
仿真法
通过建立系统数学模型,利用控 制理论求解满足性能指标的参数 值。
利用计算机仿真技术,模拟系统 实际运行情况,通过调整参数优 化系统性能。
性能指标评价
稳态误差
反映系统稳态精度,要求稳态误差小 于允许值。
为企业带来了显著的经济效益和 市场竞争力提升。
THANKS
感谢观看
解析法
02
通过建立系统数学模型,利用优化算法求解最优参数。
智能优化算法
03
如遗传算法、粒子群算法等,可自动寻优得到最佳参数组合。
性能指标评价
稳态误差
反映系统稳态精度,越小越好。
调节时间
反映系统从扰动发生到重新达到稳态所需的 时间,应尽可能短。
超调量
反映系统动态过程中的最大偏离量,应尽可 能小。
鲁棒性
传统调速系统存在的问题
传统单闭环调速系统存在调速精度低、动态响应慢等问题, 无法满足现代工业生产的需要。
系统设计方案及实施过程
设计方案:采用转速 、电流双闭环控制策 略,其中转速环为外 环,电流环为内环, 通过PI调节器实现对 电机转速和电流的高 精度控制。
pwm直流双闭环调速系统设计
PWM直流双闭环调速系统设计引言PWM(Pulse Width Modulation)直流双闭环调速系统是一种常用于电动机调速的控制系统。
在许多应用中,需要对电动机的速度进行精确控制,以满足不同的工作需求。
PWM直流双闭环调速系统通过不断调整电动机输入电压的占空比,使电动机保持稳定的转速,具有快速响应、良好的稳定性和较大的负载适应能力等优点。
本文将介绍PWM直流双闭环调速系统的设计原理、硬件电路和控制算法,并提供代码示例和性能分析。
设计原理闭环控制系统PWM直流双闭环调速系统由两个闭环控制回路组成:速度闭环和电流闭环。
速度闭环通过反馈电动机的实际转速来调整电动机输入电压,以使其达到期望转速。
电流闭环通过反馈电动机的实际电流来调整PWM信号的占空比,以使电动机输出的扭矩与负载要求相匹配。
速度闭环控制速度闭环控制由速度传感器、比例积分控制器和电动机驱动器组成。
速度传感器通常采用编码器或霍尔传感器来测量电动机转速,并将其转换为电压信号。
比例积分控制器根据速度误差和积分误差来计算控制器输出,并将其输入给电动机驱动器。
电流闭环控制电流闭环控制由电流传感器、比例积分控制器和PWM模块组成。
电流传感器用于测量电动机的电流,并将其转换为电压信号。
比例积分控制器计算电流误差和积分误差,并生成控制器输出,将其输入给PWM模块。
硬件电路设计PWM直流双闭环调速系统的硬件电路设计包括电源模块、电流传感器、速度传感器、比例积分控制器、PWM模块和电动机驱动器等。
电源模块电源模块用于提供系统所需的直流电压。
它可以采用稳压稳流电路来稳定输出电压和电流。
电流传感器电流传感器用于测量电动机的电流。
常用的电流传感器包括霍尔传感器和电阻传感器。
它将电动机的电流转换为电压信号,并输入给比例积分控制器。
速度传感器速度传感器用于测量电动机的转速。
常用的速度传感器有编码器、霍尔传感器和光电传感器等。
比例积分控制器比例积分控制器是PWM直流双闭环调速系统的核心控制模块。
双闭环直流调速系统介绍
09
显示与操作界面: 用于显示系统状 态和进行参数设
置
10
通信接口:用于 与其他设备进行 通信和信息交换
双闭环调速系统的工作原理
双闭环调速系 统由两个闭环 组成:速度闭 环和电流闭环
速度闭环控制 电机的转速, 使其达到设定 值
电流闭环控制 电机的电流, 使其保持在安 全范围内
两个闭环相互 协调,共同实 现对电机的精 确控制和保护
速
2
交流电机调速:通过双闭环调 速系统实现交流电机的精确调
速
3
4
电力电子变换器:双闭环调速 系统在电力电子变换器中的应用,
如整流器、逆变器等
电力系统稳定控制:双闭环调速 系统在电力系统稳定控制中的应 用,如电压稳定、频率稳定等
双闭环调速系统在节能环保中的应用
节能:双闭环调速系统可以精确控制电机的转 制。
双闭环调速系统的参数整定:根据系统特性和实际需求,对 速度环和电流环的参数进行整定,以实现最佳的调速性能。
3
双闭环直流调速 系统的应用
双闭环调速系统在工业控制中的应用
01 电机控制:用于控制电 机的转速、 位 置 和 扭 矩 等 参数, 实 现 精 确 控 制
双闭环直流调速系统介 绍
演讲人
目录
01. 2. 3.
双闭环直流调速系统的基本 概念 双闭环直流调速系统的设计 双闭环直流调速系统的应用
04. 双闭环直流调速系统的发展 趋势
1
双闭环直流调速 系统的基本概念
双闭环调速系统的组成
01
速度环:用于控 制电机转速,实
现速度调节
02
电流环:用于控 制电机电流,实
04
节能环保:采 用节能技术和 环保材料,降 低系统的能耗 和污染排放
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
下一页 返回
项目二 双闭环直流调速系统的静特性
• 2. 双 闭 环 调 速 系 统 的 静 特 性 • 起 动 时 , 突 加 给 定 信 号 U *m ,由 于 机 械 惯 性 , 转 速 不
模块二 双闭环直流调速系统
• 项目一 双闭环直流调速系统的组成 • 项目二 双闭环直流调速系统的静特
性 • 项目三 双闭环直流调速系统的动态
特性
返回
项目一 双闭环直流调速系统的 组成
• 任务一 双闭环直流调速系统的原理
• 采 用 PI 调 节 器 组 成 的 单 闭 环 转 速 负 反 馈 调 速 系 统 能 够 实 现 系 统 的 稳 定 运 行 和 无 静 差 调速 , 但 不 能 限 制 起 动 电 流。当系统在阶跃信号给定作用下起动时,由于机械 惯 性 的 作 用 , 转速 不 能 立 即 建 立 起 来 , 会 造 成 起 动 电 流 过 大 ; 并 且 某 些 生 产 机 械 经 常 处 于 正 / 反 转 运 行 的 调速 阶段,要尽可能缩短起动、制动过程的时间以提高生 产 效 率 。 为 达 到 这 一 目 的 , 工 程 上 常采 用 双 闭 环 控 制 。
上一页 下一页 返回
项目一 双闭环直流调速系统的 组成
• 以 电 流 调 节 器 ACR 为 核 心 的 电 流 环 自 动 调 节 过 程 如 下 。 • 电 流 环 电 流 调 节 器 ACR 和 电 流 负 反 馈 环 节 组 成 闭 合 回
路 , 通 过 电 流 负 反 馈 的 作 用 去 稳定 电 流 。 由 于 ACR 为 PI 调 节 器 , 稳 态 时 , 输 入 偏 差 电 压 ΔU i = U *i+ U i = - U *i+ βI d =0, 即β = U *i/ I d ( 其 中 β 为 电流反馈系数)。
• n = U*n , 速 度 调 节 器ASR 饱 和 , 输 出 为 限 幅 值 U *i m , 电 流 调 节 器 ACR 的 输 出U ct 及 电 动 机 的 电 枢 电 流 和 转 速 的 动态 响 应 过 程 分 为 3 个 阶 段 :
上一页 下一页 返回
项目二 双闭环直流调速系统的静特性
• 1. 第 一 阶 段 ( 电 流 上 升 阶 段 ) • 刚 起 动 时 , 转 速 n 为 零 ,ΔUn= U *n- αn 为 最 大 , 它
使 速 度 调 节 器 ASR 的 输 出 电 压| U *i| 迅 速 增 大 , 很 快 达 到 限 幅 值 U *im 。 此 时 U*im 作 为 电 流 环 的 给 定 电 压 , 其 输 出 电 流 迅 速上 升 , 当 I d = I dL 时 , 转 速 n开始上升,由于电流调节器的调节作用,很快使I d = I dm , 标 志着 电 流 上 升 过 程 结 束 , 见 图 2 -6 的 0~t1阶段。 • 状 态 : 速 度 ASR 调 节 器 迅 速 达 到 饱 和 状 态 , 不 再 起 调 节 作 用 。 因 电 磁 时 间 常 数 T L小 于 机 电 时 间 常 数 T m , U i 比 U n 增 长 得 快 , 使 得 电 流 调 节 器 ACR 不 饱 和 , ACR 起 主 要调 节 作 用 。
• 在 图 2 -3 中 , ACR 和 ASR 的 输 入 与 输 出 信 号 的 极 性 要 视 触 发 电 路 对 控 制 电 压 的 要 求 而定 。 若 触 发 电 路 要 求 ACR 的 输 出 U ct 为 正 极 性 , 由 于 PI 调 节 器 为 反 相 输 入 , 则 要 求 ACR 的输 入 U *i为 负 极 性 ; 所 以 要 求 ASR 的 输 入 ( 给 定 电 压 U *n )为 正 极 性 。
• 图 2 -1 ( a) 所 示 , 单 闭 环 调 速 系 统 的 起 动 过 程 并 不 理 想 , 为 了 达 到 图 2 -1 ( b) 所 示的 理 想 起 动 过 程 , 依据自动控制原理,在单闭环转速负反馈调速系统的 基 础 上 , 再 引 入 一 个电 流 负 反 馈 , 构 成 转 速 、 电 流 双 闭 环调速系统。
下一页 返回
项目一 双闭环直流调速系统的 组成
• 为了使转速负反馈和电流负反馈分别起作用,必须在 系 统 中 设 计 两 个 PI 调 节 器 , 即 速度 调 节 器 ASR 和 电 流 调 节 器 ACR, 如 图 2 -2 所 示 。
• 任务二 双闭环直流调速系统的自动 调节过程
• 为 了 更 好 地 诠 释 双 闭 环 调 速 系 统 工 作 过 程 , 将 图 2 -2 所 示 的 双 闭 环 直 流 调 速 的 原 理 图转 换 成 系 统 的 稳 态 结 构 框 图 , 如 图 2 -3 所 示 。
能 立 即 跟 随 上 给 定 信 号 , 转 速 很小 , 转 速 偏 差 电 压 ΔU n 很 大 , 转 速 调 节 器 ASR 饱 和 , 输 出 为 限 幅 值 U *im 且 不 变 , 转 速 环 相 当于 开 环 。 此 种 情 况 下 , 电 流 负 反 馈 环节起恒流调节作用,转速线性上升,从而获得极好 的 下垂 特 性 曲 线 , 如 图 2 -5 中 的 AB 段 所 示 。 当 转 速 达 到 给 定 值 且 略 有 超 调 时 , 转 速 环 的 输 入信 号 变 极 性 , 转速调节器退饱和,转速负反馈环节起调节作用,使 转 速 保 持 恒 定 , 即 n =U *n/ α 保 持 不 变 , 如 图 2 -5 中n0A段所示。
上一页 下一页 返回
项目二 双闭环直流调速系统的静特性
• 任务二 双闭环直流调速系统的起动 过程
• 双闭环直流调速系统的起动特性如图2-6所示。在 突 加 阶 跃 给 定 信 号 U *n的 情 况 下 ,由 于 起 动 瞬 间 电 动 机 的 转 速 为 零 , 速 度 调 节 器 ASR 的 输 入 偏 差 电 压ΔU
上一页
返一 双闭环直流调速系统的稳态 结构框图
• 为了分析双闭环调速系统的静特性,必须先绘出它的 稳 态 结 构 框 图 , 如 图 2 -4 所 示 。
• 1. 双 闭 环 调 速 系 统 各 变 量 的 稳 态 工 作 点 和 稳 态 参 数 计 算