初中数学概念定义公式大全
初中数学公式大全完整版可打印
初中数学公式大全完整版可打印一、有理数。
1. 有理数加法法则。
- 同号两数相加,取相同的符号,并把绝对值相加。
例如:3 + 5=8,( - 3)+(-5)= - 8。
- 异号两数相加,绝对值相等时和为0(即互为相反数的两数相加得0);绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
例如:3+( - 5)= - 2,5+( - 3)=2。
- 一个数同0相加,仍得这个数。
例如:0 + 3=3。
2. 有理数减法法则。
- 减去一个数,等于加上这个数的相反数。
即a - b=a+( - b)。
例如:5 - 3 =5+( - 3)=2。
3. 有理数乘法法则。
- 两数相乘,同号得正,异号得负,并把绝对值相乘。
例如:3×5 = 15,( - 3)×(-5)=15,3×(-5)= - 15。
- 任何数同0相乘,都得0。
4. 有理数除法法则。
- 除以一个不等于0的数,等于乘这个数的倒数。
即a÷ b=a×(1)/(b)(b≠0)。
- 两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。
5. 乘方的定义。
- 求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在a^n中,a 叫做底数,n叫做指数。
例如:2^3=2×2×2 = 8。
二、整式的加减。
1. 单项式。
- 由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。
例如:3x,-5,a都是单项式。
- 单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数。
例如:在单项式3x^2中,系数是3,次数是2。
2. 多项式。
- 几个单项式的和叫做多项式。
其中每个单项式叫做多项式的项,不含字母的项叫做常数项。
例如:2x^2+3x - 1,2x^2、3x、-1都是它的项,-1是常数项。
- 多项式里次数最高项的次数,叫做这个多项式的次数。
初中数学概念公式归纳
初中数学概念公式归纳初中数学概念公式是指在学习初中数学过程中,所学习到的各种概念和公式的总结和归纳。
这些概念和公式是数学基础知识的重要组成部分,是学习数学的基石。
下面将从初中数学的各个章节,简要地总结和归纳相关的概念和公式。
1.数与式-数的读法:读整数、分数、小数-定义整数的正负性、分数的大小比较-常见整数、分数与小数的运算-简便运算法则:乘法分配律、加法交换律、加法结合律-运算顺序:用括号确定运算顺序-求算式的值2.代数式-代数式的定义和基本概念(字母、常数、系数、幂)-代数式的运算(加减乘除)-因式、倍式、约分、分式-代数式的化简3.方程与不等式-方程的定义和基本概念(未知数、等号、解)-方程的解的基本概念(方程有唯一解、有无穷多解、无解)-一元一次方程的解的求解方法(凑、消、移项、等价方程)-不等式的定义和基本概念(大于、小于、大于等于、小于等于)-一元一次不等式的解的求解方法(加减法、乘除法)4.图形的认识-点、线、面的定义和基本概念-直线的性质(平行、垂直、交点)-各种图形的基本概念(三角形、四边形、多边形)-圆的基本概念(半径、直径、弧长、面积)-直角三角形、等腰三角形的性质-各种图形的周长和面积的计算公式5.相似与全等-相似和全等的概念和判定条件-相似三角形的性质(对应角相等、对应边成比例)-全等三角形的性质(对应边相等、对应角相等)-面积比例和周长比例6.三角形的计算-正弦定理、余弦定理、正切定理-面积公式:海伦公式、高度公式、正弦公式、面积比例公式-解三角形问题:根据已知条件求解未知量-直线与平行线的性质(内角和、同旁内角、同位角、对顶角、平行线的判定条件)7.数据的分析-数据的搜集、整理、归纳、展示方法-数据的概率与统计分析-统计图的绘制和解读(条形图、折线图、饼图)-统计指标的计算和比较(平均数、中位数、众数、范围)综上所述,初中数学概念公式的归纳可以涵盖数与式、代数式、方程与不等式、图形的认识、相似与全等、三角形的计算以及数据的分析等各个方面。
初中数学所有公式定义性质定理
初中数学所有公式定义性质定理初中数学是学生接触的第一门高等数学课程,其中涵盖了许多重要的公式,定义,性质和定理。
这些数学概念和结果将帮助学生发展数学思维,提高解决问题的能力。
本文将介绍常见的初中数学公式、定义、性质和定理,帮助学生更好地理解和应用数学知识。
一、数学公式1.一次方程求解公式一次方程是形如ax+b=0的方程,其中a和b是实数且a≠0。
一次方程的求解公式为x=-b/a。
2.二次方程求根公式二次方程是形如ax²+bx+c=0的方程,其中a、b和c是实数且a≠0。
求根公式为x=(-b±√(b²-4ac))/2a。
3.相似三角形比例公式对于两个相似三角形,它们对应边的比例相等。
设两个相似三角形的对应边长度分别为a、b、c和x、y、z,则有a/x=b/y=c/z。
4.正弦定理正弦定理适用于任意三角形ABC,其中a、b和c是对应的边长,A、B和C是对应的角度。
定理表述为a/sinA=b/sinB=c/sinC。
5.余弦定理余弦定理适用于任意三角形ABC,其中a、b和c是对应的边长,A、B和C是对应的角度。
定理表述为c²=a²+b²-2abcosC。
6.圆的周长公式二、数学定义1.有理数有理数是可以表示为两个整数的比值的数。
有理数包括整数、分数和小数。
2.无理数无理数是不能表示为有理数的小数。
例如,π和√2都是无理数。
3.等差数列等差数列是指数列中相邻两个数之差都相等的数列。
公差是等差数列中相邻两个数之差的值。
4.等比数列等比数列是指数列中相邻两个数之比都相等的数列。
公比是等比数列中相邻两个数之比的值。
5.直角三角形直角三角形是其中一个角为90度的三角形。
直角三角形的斜边是两条直角边的最长边。
三、数学性质1.乘法交换和结合律乘法满足交换律和结合律,即对于任意实数a、b和c,有a*b=b*a,(a*b)*c=a*(b*c)。
2.加法交换和结合律加法满足交换律和结合律,即对于任意实数a、b和c,有a+b=b+a,(a+b)+c=a+(b+c)。
初中数学概念公式大全
初中数学逢考必出的公式定理一、数学性质1、一元二次方程根的情况△=b2-4a c(前提必须化成一般形式a x2+b x+c=0)当△>0时,一元二次方程有2个不相等的实数根;当△=0时,一元二次方程有2个相等的实数根;当△<0时,一元二次方程没有实数根2、平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。
②平行四边形不相邻的两个顶点连成的线段叫它的对角线。
③平行四边形的对边相等并且平行,对角相等,邻角互补。
④平行四边形的对角线互相平分。
3、菱形:①一组邻边相等的平行四边形是菱形②领形的四条边相等,对边平行,两条对角线互相垂直平分,每一组对角线平分一组对角。
③判定条件:定义、对角线互相垂直的平行四边形、四条边都相等的四边形。
4、矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。
②矩形的对角线相等且平分,四个角都是直角。
④正方形具有平行四边形,矩形,菱形的所有性质。
⑤一组邻边相等的矩形是正方形,有一个角是直角的菱形是正方形。
5、多边形:①n边形的内角和等于(n-2)180°②多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的外角和多边形的外角和都等于360度。
6、平均数:7、加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。
8、方差公式:二、基本定理2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线与已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,那么这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1直角三角形的两个锐角互余19、推论2三角形的一个外角等于和它不相邻的两个内角的和20、推论3三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等全等三角形的判定方法:22、边角边公理(SA S)有两边和它们的夹角对应相等的两个三角形全等23、角边角公理( A SA)有两角和它们的夹边对应相等的两个三角形全等24、推论(A A S)有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SS S)有三边对应相等的两个三角形全等26、斜边、直角边公理(H L)有斜边和一条直角边对应相等的两个直角三角形全等角平分线的性质:27、定理1在角的平分线上的点到这个角的两边的距离相等28、定理2到一个角的两边的距离相等的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合等腰(边)三角形的性质:30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31、推论1等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3等边三角形的各角都相等,并且每一个角都等于60°等腰(边)三角形的判定:34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1三个角都相等的三角形是等边三角形36、推论2有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半。
初中数学定义公式大全
5. 关于中心对称的两个图形是全 等的 .
关于中心对称的两个图形,对称 点连线都经过对称中心,并且被 对称中心平分 .
1. 关于某条直线对称的两个图
6. 若两个图形的对应点连线都
经过某一点 , 并且被这一点平分, 那么这两个图形关于这一点成中 心对称 .
k>0, y 随 x 的增大而增大
圆拄的表面积 s 2 rh
2
2r
圆锥的侧面积 s 1 .2 rl
rl
2
圆锥的表面积 s
rl
r2
幂的运算:① a≠ 0 时来自a0=1, a= -p 1
ap
② am a n= a m+n;( am) n= a m n
③ 0 的 0 次幂没有意义 平方差: a2-b 2=(a+b)(a-b)
勾股定理的逆定理 如果三角形
1. 平行四边形的对角相等 .
的三边长 a、b、c 有关系 a2+b2=c2 , 那么这个三角形是直角①直角三
2. 平行四边形的对边相等 .
角形中,如果一个锐角等于 30° 3. 夹在两条平行线间的平行线段
那么它所对的直角边等于斜边的
相等 .
一半 .
4. 平行 四边 形的对 角线互 相平
③如果三角形一边上的中线等于 这边的一半,
直角三角形三边为 a、 b、c,c 为
斜边,则外接圆的半径
切圆的半径 r a b c
2
R c ;内
2
直线和圆的位置关系
①直线 L 和⊙O相交 d <r ②直线 L 和⊙O相切 d=r ③直线 L 和⊙O相离 d >r 切线的判定:经过半径的外端且 垂直于这切线 切线的性质:圆的切线垂直于经
初中数学概念定理公式大全
初中数学概念定理公式大全初中数学涉及的概念、定理和公式非常多,下面是一些常见的数学概念、定理和公式:一、数的性质和运算1.基本运算:加法、减法、乘法、除法2.数的性质:整数、自然数、有理数、无理数、实数、虚数3.质数和合数:质数的定义、判断质数和合数的方法4.互质和最大公约数:互质的定义、最大公约数的概念、求最大公约数的方法5.奇数和偶数:奇数和偶数的性质、相邻奇偶数之和的规律6.分数和比例:分数的概念、比例的概念、比例的性质、比例的延伸应用二、代数运算1.代数式的定义:代数式的定义、代数式的常见形式2.代数式的运算:-合并同类项:合并同类项的概念、合并同类项的方法-因式分解:因式分解的概念、因式分解的方法-展开式:展开式的概念、展开式的方法-化简式:化简式的概念、化简式的方法三、方程与不等式1.一元一次方程:一元一次方程的定义、解一元一次方程的方法2.一元二次方程:一元二次方程的定义、求解一元二次方程的方法3.一元一次不等式:一元一次不等式的概念、解一元一次不等式的方法4.一元二次不等式:一元二次不等式的概念、解一元二次不等式的方法5.消元法:消元法的概念、使用消元法解方程和不等式四、几何1.点、线和面:点、线、面的概念及基本性质2.图形的构造:用尺规作图和量角器作图3.圆的性质:圆的定义、圆的性质、判定两条线段相等的方法4.三角形的性质:三角形的定义、三角形的性质、特殊三角形的性质5.直线和平面的相交关系:相交、平行和垂直的概念及判定方法6.三角形的面积和周长:三角形的面积公式、三角形的周长公式、特殊三角形的面积和周长公式五、统计与概率1.平均数:算术平均数、几何平均数、调和平均数的概念和计算方法2.概率:概率的概念、事件的概念、计算概率的方法3.统计图表:频数、频率、统计表和统计图的基本概念及应用六、计算器使用技巧1.整数运算:整数加减乘除的计算方法2.分数运算:分数加减乘除的计算方法、混合数的运算方法3.平方根和立方根:平方根和立方根的计算方法4.百分数的计算:百分数的计算方法、提高和降低百分数的计算方法。
初中数学常用的概念公式定理
初中数学常用的概念公式定理1.概念:-整数:整数是由正整数、负整数和零组成的数集。
-分数:分数是由一个整数除以另一个非零整数所得的数。
-小数:小数是有限或无限十進制数字。
-百分数:百分数是以百分之一为单位的分数形式表示的数。
-正负数:正数是大于零的数,负数是小于零的数。
-平方根:平方根是一个数与自身相乘等于给定数的非负数。
-面积:面积是二维图形所占的平方单位面积。
-体积:体积是三维图形所占的立方单位体积。
2.公式:- 一次方程:ax + b = 0,其中a和b是已知常数,x是未知数。
- 二次方程:ax^2 + bx + c = 0,其中a,b和c是已知常数,x是未知数。
-直角三角形斜边长度:c=√(a^2+b^2),其中a和b是直角边的长度,c是斜边的长度。
-圆的周长:C=2πr,其中π是约等于3.14的数,r是圆的半径。
-圆的面积:A=πr^2,其中π是约等于3.14的数,r是圆的半径。
-矩形的周长:P=2(a+b),其中a和b是矩形的边长。
- 矩形的面积:A = ab,其中a和b是矩形的边长。
-三角形的周长:P=a+b+c,其中a,b和c是三角形的边长。
-三角形的面积:A=1/2×底×高,其中底是三角形的底边长度,高是与底垂直的线段长度。
3.定理:- 整除定理:如果整数a能被整数b整除,则存在一个整数k,使得a = kb。
- 同余定理:如果两个整数a和b除以正整数m得到的余数相等,则称a与b同余,记作a ≡ b (mod m)。
-直角三角形定理:在一个直角三角形中,两条边的平方和等于斜边的平方,即a^2+b^2=c^2-对角定理:对于平行四边形,相邻两个角互补,即相邻的两个角的和为180度。
-中线定理:在一个三角形中,连接每个顶点至对边中点的线段(即中线),三条中线相交于一个点,且该点距离顶点相等于与该顶点相对的边长的一半。
- 余弦定理:在一个三角形中,边长a,b,c所对应的角分别为A,B,C,则有c^2 = a^2 + b^2 - 2abcosC。
初中数学所有公式定义性质定理
初中数学所有公式定义性质定理数学是一门基础学科,其中包含了大量的公式、定义、性质和定理。
以下是一些初中数学中常见的公式、定义、性质和定理。
1.公式:- 一次方程:ax + b = 0,其中 a 和 b 是已知常数,x 是未知数。
- 二次方程:ax^2 + bx + c = 0,其中 a、b 和 c 是已知常数,x 是未知数。
-直角三角形勾股定理:a^2+b^2=c^2,其中a和b是直角三角形的两条直角边,c是斜边。
-等差数列前 n 项和:Sn = (a1 + an) * n / 2,其中 a1 是首项,an 是末项,n 是项数。
-等比数列前n项和:Sn=a1*(q^n-1)/(q-1),其中a1是首项,q是公比,n是项数。
-圆的面积:A=π*r^2,其中r是半径。
-三角形的面积:A=1/2*b*h,其中b是底边长,h是高。
2.定义:-等腰三角形:具有两条边相等的三角形。
-直角三角形:具有一个角为直角(90度)的三角形。
-平行四边形:具有两对对边平行的四边形。
-正方形:具有四条边相等且四个角都是直角的四边形。
-梯形:具有两对平行边的四边形。
-锐角、直角和钝角:锐角小于90度,直角等于90度,钝角大于90度。
-圆:由平面上到圆心距离相等的所有点组成的图形。
3.性质:- 两个正数的乘积等于其对数的和:a * b = c,c = loga + logb。
- 两个正数的商等于其对数的差:a / b = c,c = loga - logb。
-乘法交换律:a*b=b*a。
-加法交换律:a+b=b+a。
-乘法结合律:(a*b)*c=a*(b*c)。
-加法结合律:(a+b)+c=a+(b+c)。
4.定理:-两个相等的角的补角相等。
-相等的直角三角形的两条直角边相等。
-对角线相等的平行四边形是矩形。
-在一个等腰三角形中,等腰边的中线也是高和角平分线。
-一个三角形的内角和等于180度。
-具有相等底边和高的梯形面积相等。
初中数学知识重要概念和公式
初中数学知识重要概念和公式有理数1.有理数: 整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值: (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.6.有理数乘方的法则: (1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .7.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.8、.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.整式的加减1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3. 多项式:几个单项式的和叫多项式.一元一次方程1.一元一次方程的标准形式: ax+b=0(x 是未知数,a 、b 是已知数,且a ≠0).2.一元一次方程解法的一般步骤: 整理方程 …… 去分母 …… 去括号 …… 移项 …… 合并同类项 …… 系数化为1 …… (检验方程的解).3.列方程解应用题的常用公式:(1)行程问题: 距离=速度·时间 时间距离速度= 速度距离时间=; (2)工程问题: 工作量=工效·工时 工时工作量工效= 工效工作量工时=; (3)比率问题: 部分=全体·比率 全体部分比率= 比率部分全体=; (4)顺逆流问题: 顺流速度=静水速度+水流速度, 逆流速度=静水速度-水流速度;(5)商品价格问题: 售价=定价·折·101 , 利润=售价-成本, %100⨯-=成本成本售价利润率; (6)周长、面积、体积问题:C 圆=2πR ,S 圆=πR 2,C 长方形=2(a+b),S 长方形=ab , C 正方形=4a ,S 正方形=a 2,S 环形=π(R 2-r 2),V 长方体=abc ,V 正方体=a 3,V 圆柱=πR 2h ,V 圆锥=31πR 2h. 相交线与平行线1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
初中数学 七年级上册数学必背概念、定义全部公式总结,新学期用上
初中数学七年级上册数学必背概念、定义全部公式总结,新学期用上初中数学 | 七年级上册数学必背概念、定义全部公式总结,新学期用上!_有理数_绝对值_个数人教版第一章有理数概念、定义:1、大于0的数叫做正数(positive number)。
2、在正数前面加上负号“-”的数叫做负数(negative number)。
3、整数和分数统称为有理数(rational number)。
4、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis)。
5、在直线上任取一个点表示数0,这个点叫做原点(origin)。
6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value)。
7、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
8、正数大于0,0大于负数,正数大于负数。
9、两个负数,绝对值大的反而小。
10、有理数加法法则(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
(3)一个数同0相加,仍得这个数。
11、有理数的加法中,两个数相加,交换交换加数的位置,和不变。
12、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
13、有理数减法法则减去一个数,等于加上这个数的相反数。
14、有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值向乘。
任何数同0相乘,都得0。
15、有理数中仍然有:乘积是1的两个数互为倒数。
16、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
17、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
18、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
19、有理数除法法则除以一个不等于0的数,等于乘这个数的倒数。
20、两数相除,同号得正,异号得负,并把绝对值相除。
初中数学概念公式归纳汇总
初中数学概念、公式归纳汇总1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12 两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论 1 直角三角形的两个锐角互余19 推论 2 三角形的一个外角等于和它不相邻的两个内角的和20 推论 3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22 边角边公理 SAS 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理 ASA 有两角和它们的夹边对应相等的两个三角形全等24 推论 AAS 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理 SSS 有三边对应相等的两个三角形全等26 斜边、直角边公理 HL 有斜边和一条直角边对应相等的两个直角三角形全等27 定理 1 在角的平分线上的点到这个角的两边的距离相等28 定理 2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等即等边对等角31 推论 1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论 3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等等角对等边35 推论 1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60° 的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30° 那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理 1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理 3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45 逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46 勾股定理直角三角形两直角边 a 、 b 的平方和、等于斜边 c 的平方,即a^2+b^2=c^247 勾股定理的逆定理如果三角形的三边长 a 、 b 、 c 有关系 a^2+b^2=c^2 ,那么这个三角形是直角三角形48 定理四边形的内角和等于360°49 四边形的外角和等于360°50 多边形内角和定理 n 边形的内角的和等于 n-2 ×180°51 推论任意多边的外角和等于360°52 平行四边形性质定理 1 平行四边形的对角相等53 平行四边形性质定理 2 平行四边形的对边相等54 推论夹在两条平行线间的平行线段相等55 平行四边形性质定理 3 平行四边形的对角线互相平分56 平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形57 平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形58 平行四边形判定定理 3 对角线互相平分的四边形是平行四边形59 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形60 矩形性质定理 1 矩形的四个角都是直角61 矩形性质定理 2 矩形的对角线相等62 矩形判定定理 1 有三个角是直角的四边形是矩形63 矩形判定定理 2 对角线相等的平行四边形是矩形64 菱形性质定理 1 菱形的四条边都相等65 菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66 菱形面积 = 对角线乘积的一半,即S= a×b ÷267 菱形判定定理1 四边都相等的四边形是菱形68 菱形判定定理 2 对角线互相垂直的平行四边形是菱形69 正方形性质定理 1 正方形的四个角都是直角,四条边都相等70 正方形性质定理 2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71 定理 1 关于中心对称的两个图形是全等的72 定理 2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74 等腰梯形性质定理等腰梯形在同一底上的两个角相等75 等腰梯形的两条对角线相等76 等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77 对角线相等的梯形是等腰梯形78 平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论 1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论 2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L= a+b ÷2S=L×h83 1 比例的基本性质如果 a:b=c:d, 那么 ad=bc, 如果ad=bc, 那么 a:b=c:d84 2 合比性质如果 a / b=c / d, 那么a±b /b=c±d / d85 3 等比性质如果 a / b=c /d=…=m /nb+d+…+n≠0, 那么a+c+…+m /b+d+…+n=a / b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边或两边的延长线,所得的对应线段成比例88 定理如果一条直线截三角形的两边或两边的延长线所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边或两边的延长线相交,所构成的三角形与原三角形相似91 相似三角形判定定理 1 两角对应相等,两三角形相似 ASA92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理 2 两边对应成比例且夹角相等,两三角形相似 SAS94 判定定理 3 三边对应成比例,两三角形相似 SSS95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理 1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理 2 相似三角形周长的比等于相似比98 性质定理 3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101 圆是定点的距离等于定长的点的集合102 圆的内部可以看作是圆心的距离小于半径的点的集合103 圆的外部可以看作是圆心的距离大于半径的点的集合104 同圆或等圆的半径相等105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107 到已知角的两边距离相等的点的轨迹,是这个角的平分线108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109 定理不在同一直线上的三点确定一个圆;110 垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111 推论 1 ①平分弦不是直径的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112 推论 2 圆的两条平行弦所夹的弧相等113 圆是以圆心为对称中心的中心对称图形114 定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115 推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116 定理一条弧所对的圆周角等于它所对的圆心角的一半117 推论 1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118 推论 2 半圆或直径所对的圆周角是直角;90° 的圆周角所对的弦是直径119 推论 3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120 定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121 ①直线 L 和⊙ O 相交 d < r②直线 L 和⊙ O 相切 d=r③直线 L 和⊙ O 相离 d > r122 切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123 切线的性质定理圆的切线垂直于经过切点的半径124 推论 1 经过圆心且垂直于切线的直线必经过切点125 推论 2 经过切点且垂直于切线的直线必经过圆心126 切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127 圆的外切四边形的两组对边的和相等128 弦切角定理弦切角等于它所夹的弧对的圆周角129 推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130 相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131 推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132 切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133 推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134 如果两个圆相切,那么切点一定在连心线上135 ①两圆外离 d > R+r②两圆外切 d=R+r③两圆相交 R-r < d < R+rR > r④两圆内切 d=R-rR > r ⑤两圆内含 d < R-rR > r136 定理相交两圆的连心线垂直平分两圆的公共弦137 定理把圆分成nn≥3:⑴依次连结各分点所得的多边形是这个圆的内接正 n 边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正 n 边形138 定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139 正 n 边形的每个内角都等于 n-2 ×180° / n140 定理正 n 边形的半径和边心距把正 n 边形分成 2n 个全等的直角三角形141 正 n 边形的面积 Sn=pnrn / 2 p 表示正 n 边形的周长142 正三角形面积√ 3a / 4 a 表示边长143 如果在一个顶点周围有 k 个正 n 边形的角,由于这些角的和应为360° ,因此k×n-2180° /n=360° 化为 n-2 k-2=4144 弧长计算公式: L=n 兀R / 180145 扇形面积公式: S 扇形 =n 兀 R^2 / 360=LR / 2146 内公切线长 = d-R-r 外公切线长 = d-R+r实用工具 : 常用数学公式公式分类公式表达式乘法与因式分 a2-b2=a+ba-b a3+b3=a+ba2-ab+b2 a3-b3=a-ba2+ab+b2 三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√b2 -4ac/ 2a -b-√b2 -4ac/ 2a根与系数的关系 X1+X2=-b/a X1X2=c/a 注:韦达定理判别式b2 -4ac=0 注:方程有两个相等的实根b2 -4ac>0 注:方程有两个不等的实根b2 -4ac<0 注:方程没有实根,有共轭复数根三角函数公式两角和公式sinA+B=sinAcosB+cosAsinBsinA-B=sinAcosB-sinBcosAcosA+B=cosAcosB-sinAsinBcosA-B=cosAcosB+sinAsinBtanA+B=tanA+tanB/1-tanAtanBtanA-B=tanA-tanB/1+tanAtanBctgA+B=ctgActgB-1/ctgB+ctgActgA-B=ctgActgB+1/ctgB-ctgA倍角公式tan 2A=2tanA/1-tan 2A ctg 2A=ctg 2A-1/2ctgacos 2a=cos 2a-sin 2a=2cos 2a-1=1-2sin 2a半角公式sinA/2=√1-cosA/2 sinA/2=-√1-cosA/2cosA/2=√1+cosA/2cosA/2=-√1+cosA/2tanA/2=√1-cosA/1+cosAtanA/2=-√1-cosA/1+cosActgA/2=√1+cosA/1-cosActgA/2=-√1+cosA/1-cosA和差化积2sinAcosB=sinA+B+sinA-B2cosAsinB=sinA+B-sinA-B2cosAcosB=cosA+B-sinA-B-2sinAsinB=cosA+B-cosA-BsinA+sinB=2sinA+B/2cosA-B/2cosA+cosB=2cosA+B/2sinA-B/2tanA+tanB=sinA+B/cosAcosBtanA-tanB=sinA-B/cosAcosBctgA+ctgBsinA+B/sinAsinB-ctgA+ctgBsinA+B/sinAsinB某些数列前 n 项和1+2+3+4+5+6+7+8+9+…+n=nn+1/21+3+5+7+9+11+13+15+…+2n-1=n22+4+6+8+10+12+14+…+2n=nn+112+22+32+42+52+62+72+82+…+n2=nn+12n+1/613+23+33+43+53+63+…n3 =n2n+12/4 12+23+34+45+56+67+…+nn+1=nn+1n+2/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角 B 是边 a 和边 c 的夹角圆的标准方程x-a2+y-b2=r2 注: a,b 是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注: D2+E2 -4F>0抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积 S=ch 斜棱柱侧面积 S=c'h正棱锥侧面积 S=1/2ch' 正棱台侧面积 S=1/2c+c'h'圆台侧面积 S=1/2c+c'l=piR+rl 球的表面积S=4pir2圆柱侧面积 S=ch=2pih 圆锥侧面积 S=1/2cl=pirl弧长公式l=ar a 是圆心角的弧度数 r >0 扇形面积公式 s=1/2lr锥体体积公式V=1/3SH 圆锥体体积公式 V=1/3pir2h斜棱柱体积 V=S'L 注:其中 ,S' 是直截面面积, L 是侧棱长柱体体积公式 V=sh 圆柱体 V=pir2h。
初中数学公式大全(整理打印版)
初中数学公式大全初中数学定理、公式汇编一、数与代数1.数与式(1)实数实数的性质:①实数a 的相反数是—a ,实数a 的倒数是(a≠0);a1②实数a 的绝对值:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a ③正数大于0,负数小于0,两个负实数,绝对值大的反而小。
二次根式:①积与商的方根的运算性质:(a≥0,b≥0);b a ab ⋅=(a≥0,b >0);ba ba =②二次根式的性质:⎩⎨⎧<-≥==)0()0(2a a a a a a (2)整式与分式①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即(m 、n 为正整数);n m n m a a a +=⋅②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0,m 、n 为正整数,m>n );n m n m a a a -=÷③幂的乘方法则:幂的乘方,底数不变,指数相乘,即(n 为正nnnb a ab =)(整数);④零指数:(a≠0);10=a⑤负整数指数:(a≠0,n 为正整数);n naa1=-⑥平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即;22))((b a b a b a -=-+⑦完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即;2222)(b ab a b a +±=±分式①分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即;,其中m 是不等于零的代数式;m b m a b a ⨯⨯=m b m a b a ÷÷=②分式的乘法法则:;bdacd c b a =⋅③分式的除法法则:;)0(≠=⋅=÷c bcadc d b a d c b a ④分式的乘方法则:(n 为正整数);n nn ba b a =)(⑤同分母分式加减法则:;c ba cbc a ±=±⑥异分母分式加减法则:;bccdab b d c a ±=±2.方程与不等式①一元二次方程(a≠0)的求根公式:02=++c bx ax )04(2422≥--+-=ac b aac b b x ②一元二次方程根的判别式:叫做一元二次方程ac b 42-=∆(a≠0)的根的判别式:02=++c bx ax 方程有两个不相等的实数根;⇔>∆0方程有两个相等的实数根;⇔=∆0方程没有实数根;⇔<∆0③一元二次方程根与系数的关系:设、是方程1x 2x 02=++c bx ax(a≠0)的两个根,那么+=,=;1x 2x a b -1x 2x ac 不等式的基本性质:①不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;②不等式两边都乘以(或除以)同一个正数,不等号的方向不变;③不等式两边都乘以(或除以)同一个负数,不等号的方向改变;3.函数一次函数的图象:函数y=kx+b(k 、b 是常数,k≠0)的图象是过点(0,b )且与直线y=kx 平行的一条直线;一次函数的性质:设y=kx+b (k≠0),则当k>0时,y 随x 的增大而增大;当k<0, y 随x 的增大而减小;正比例函数的图象:函数的图象是过原点及点(1,k )的一条直线。
初中数学概念、定义、定理、公式大全(最新版)
初中数学概念、定义、定理、公式大全(最新版)初中数学概念、定义、定理、公式第二版逻辑与命题实验、观察、操作得出的结论有时不够深入、全面,甚至是错误的。
因此,判断某一事情的句子称为命题。
如果条件成立,那么结论也成立,这样的命题称为真命题。
但条件成立时,结论不一定总是正确,这样的命题称为假命题。
如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题称为互逆命题。
其中一个命题称为另一个命题的逆命题。
数系及运算正数是比大的数,负数是比小的数,零既不是正数也不是负数。
数轴上表示一个数的点与原点的距离,称为这个数的绝对值。
如果两个数的符号不同而绝对值相同,那么它们互为相反数,其中一个是另一个的相反数。
例如,3和-3是互为相反数的。
一个数的相反数是它的相反数。
例如,-5的相反数是5.两个正数相加,绝对值大的正数大;两个负数相加,绝对值大的负数反而小。
有理数加法的法则是:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两数和为0;一个数与0相加,仍得这个数。
有理数加法满足交换律和结合律。
减去一个数等于加上这个数的相反数,即a-b=a+(-b)。
两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数与0相乘都得0.有理数乘法满足交换律、结合律和分配率。
除以一个不等于0的数等于乘这个数的倒数。
幂是指相同因数的积的运算,乘方运算的结果称为幂。
正数的任何次幂都是正数。
负数的奇数次幂是负数,偶数次幂是正数。
科学计数法是一种表示大于10的数的方法,其中1≤a <10,n是正整数。
有理数混合运算的顺序是先乘方,再乘除,最后加减。
如果有括号,先进行括号内的运算。
幂的乘方,底数不变,指数相乘。
(m、n是正整数)积的乘方,把积的每一个因式分别乘方,再把所得的幂相乘。
(n是正整数)同底数幂相除,底数不变,指数相减。
最全面的初中数学概念定义公式大全
最全面的初中数学概念定义公式大全1.数的概念和运算-自然数(N):正整数,包括0。
-整数(Z):由自然数和负数组成的集合。
-有理数(Q):可以表示为两个整数的比值的数,包括整数和分数。
-实数(R):包括有理数和无理数的集合。
-加法运算:两个数相加的操作。
-减法运算:一个数减去另一个数的操作。
-乘法运算:两个数相乘的操作。
-除法运算:一个数除以另一个数的操作。
2.整数运算-绝对值:一个数去除符号得到的非负数。
-相反数:与一个数绝对值相等但符号相反的数。
-加法逆元:满足两数相加为0的数。
-加法消去律:对于任意整数a,有a+(-a)=0。
-乘法逆元:满足两数相乘为1的数。
-乘法消去律:对于任意非零整数a,有a×(1/a)=13.分数-分数:由一个整数(分子)和一个非零整数(分母)组成的表达形式。
-分数化简:将分子和分母约简到互质的形式。
-假分数:分子大于分母的分数。
-带分数:由一个整数和一个真分数组成的表达形式。
-真分数:分子小于分母的分数。
-分数的加、减、乘、除运算。
4.比例与比例常用的计算-比例:两个数之间的比关系。
-同比例:两个比例相等。
-比例的倒数:两个比例的倒数相等。
-比例的逆比例:两个比例的乘积为1-直接比例:当一个数的增加(减少),另一个数也相应地增加(减少)。
-反比例:当一个数的增加(减少),另一个数相应地减少(增加)。
-比例方程:一个包含比例的等式。
-比例常用的计算方法:已知三个量中任意两个,求第三个。
5.小数、百分数与含括号的计算-小数:用数字和小数点组成的数。
-小数化分数:将小数改写为分数的形式。
-百分数:百分之一的意思,百分数=小数×100%。
-百分数化小数:将百分数除以100。
-去括号:根据分配率去除含括号。
-分配率:a×(b+c)=a×b+a×c。
-合并同类项:将同类项的系数相加或相减。
6.平行线与比例尺-平行线:在同一个平面内,永远不会相交的直线。
初中数学常用概念公式和定理
初中数学重要的概念、公式和定理第一章 有理数正数:大于0的数叫正数负数:小于0的数叫负数有理数:整数和分数统称有理数数轴:规定了方向、原点、单位长度的一条直线; 相反数:只有符号不同的两个数叫相反数;例a a -与绝对值:数轴上一个数到原点的距离叫绝对值;负数正数〉〉0,两个负数,绝对值大的反而小性质:正数的绝对值是它本身,0的绝对值是0,负数的绝对值是他的相反数有理数的加法法则:1、同号两数相加,取相同的符号,并把它们的绝对值相加;2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对数减去较小的绝对值,互为相反数的两数相加得0;3、一个数同0相加,仍得这个数:加法交换律:两数相加,交换加数的位置,和不变;a b b a +=+加法结合律:三个数相加,先把前两数相加或先把后两个数相加,和不变;)(c b a c b a ++=++)( 减去一个数,等于 加上这个数的相反数;)(b a b a -+=-乘法法则:两数相乘同号得正,异号得负并把绝对值相乘;任何数同0相乘都得0; 倒数:乘积为1的两个数互为倒数;乘法交换律:两数相乘,交换因数的位置,积不变;ba ab =乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等;)()(bc a c ab =乘法分配率:一个数同两个数的和相乘,等于把这两个数分别同这个数相乘,再把积相加;ac ab c b a +=+)(有理数除法法则:除以一个不等于0的数,等于乘以这个数的倒数;)0(1≠•=÷b b a b a两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0;乘方:求n 个相同因数的积的运算叫乘方;乘方的结果最做幂;n a 叫做幂,其中a 叫底数,n 叫指数负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数,0的任何非0次幂都是0;科学计数法:把一个数写成n a 10⨯的形式叫科学计数法;1≤a <10, n 为整数一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:精确到得,结果有两个有效数字6,0.有理数的混合运算:先算乘除、后算加减、有括号的先算括号、有乘方的先算乘方;第二章整式的加减单项式:数或字母的积叫单项式,单独的一个数或一个字母也叫单项式;单项式的系数:单项式中的数字因数;π不能看作字母单项式的次数:单项式中所有字母指数的和;多项式:几个单项式的和叫多项式;其中每个单项式叫多项式的项,来含字母的项叫常数项;多项式的次数:多项式里次数最高项的次数叫多项的次数;单项式和多项式统称整式;同类项:所含字母相同,并且相同字母的指数也相同的项叫同类项;常数项都是同类项合并同类项:字母部分不变,系数相加;把几个同类项合并成一项叫合并同类项; 去括号:括号前面是正号,去括号后括号内各项的符不变;括号前面是负号,去括号后括号内各项要变号;第三章一元一次方程方程:含有未知数的等式叫方程;一元一次方程:只含有一个未知数,并且未知数的最高次数是一次的方程叫一元一次方程;方程的解:使方程等号两边相等的未知数的值;等式的性质:1、等式两边加上减去同一个数或式子,结果仍相等;若ba=,则cbca±=±2、等式两边乘同一个数,或除以同一个来为0的数,结果仍相等;若ba=,则bcac=;若ba=,则)0(≠=ccbca解方程的一般步骤或方法:去分母;2、去括号;3、移项;4、合并同类项;5、系数化为1;6、检验分式方程第四章图形认识初步几何图形:从实物中抽象出的各种图形统称几何图形;立体图形:几何图形的各部分不都在同一平面内的图形叫立体图形;平面图形:几何图形的各部分都在同一平面内的图形叫立体图形;两点确定一条直线;两点之间,线段最短;同一平面内两直线的位置关系:相交、平行;角:由两条有公共端点的射线组成的图形叫角;或由一条射线绕端点旋转得到的图形;角的平分线:从角的顶点出发,把一个角分成两个相等的角的射线;余角:两角的和为90°,则称这两个角互为余角;同角或等角的余角相等;补角:两角的和为180°,则称这两个角互为补角;同角或等角的补角相等;第五章 相交线与平行线邻补角:有一条公共边,另一边互为反向延长线的两个角;对顶角:一个角的两边分别是另一个角两边的反向延长线的两个角;对顶角相等; 点到直线垂线段最短;过一点有且只有一条直线与已知直线垂直;同位角、内错角、同旁内角平行线的判定:1、同位角相等,两直线平行;2、内错角相等,两直线平行;3、同旁内角互补,两直线平行:平行线的性质:1、两直线平行,同位角相等;2、两直线平行,内错角相等;3、两直线平行,同旁内角互补:命题:判断一件事情的语句;分真命题和假命题;定理:经过推理证实是正确的命题叫定理;平移变换也叫平移:1、平移不改变图形的形状和大小;2、对应点的连线平行且相等:第六章 平面直角坐标系有序数对:把有顺序的两个数组成的数对叫做有序数对;点的坐标是一个有序数对;平面直角坐标系:平面内两条互相垂直、原点重合的数轴; 坐标k >0 ×1-横坐标x 向右移动k 个单位 向左移动k 个单位 关于纵轴y 轴对称 纵坐标y 向上移动k 个单位 向下移动k 个单位 关于横轴x 轴对称 坐标y x , 向右移动k 个单位,再向上移动k 个单位 向左移动k 个单位;再向下移动k 个单位关于原点0,0中心对称三角形:由不在同一直线上的三条线段首尾顺次相接而成的图形;分类:按边 按角: 三角形三边关系:三角形两边之和大于第三边三角形两边之差小于第三边三角形的高、中线、角平分线 三角形具有稳定性:三角形的内角和等于180°三角形外角:三角形的一个外角等于它不相邻的两个内角的和三角形的一个外角大于与它不相邻的任何一个内角多边形:由一些线段首尾顺次相接而成的图形;对角线:多边形不相邻顶点的连线段;正多边形:各角都相等,各边都相等的多边形多边形的内角和︒-=180)2(n多边形的内角和等于360°第八章 二元一次方程组二元一次方程:含有两个未知数,含有未知数的项的次数都是1的方程;{{三角形不等边三角形等腰三角形形底边和腰不相等的三角等腰三角形{⎪⎩⎪⎨⎧有一个角是钝角钝角三角形有一个角是直角直角三角形三个角都是锐角锐角三角形三角形:::二元一次方程组:具有相同未知数的两个二元一次方程合在一起,就组成一个二元一次方程组.使二元一次方程两边的值相等的未知数的值,叫做二元一次方程的解;两个二元一次方程组两个方程的公共解,叫做二元一次方程组的解;解二元一次方程组的方法:1、代入消元法; 2、加减消元法:第九章 不等式与不等式组不等式:用不等号表示大小关系的式子叫不等式;不等式解集:使不等式成立的未知数的取值范围叫不等式的解的集合;简称解集; 一元一次不等式:含有一个未知数,并且未知数的次数是一次的不等式叫一元一次不等式;不等式的性质:1、不等式两边加或减同一个数或式子,不等号的方向不变;如果a >b ,那么a ±c >b ±c . 2、不等式两边乘或除以同一个正数,不等号的方向不变;如果a >b , c >0,那么ac >bc .或 c b c a 〉 3、不等式两边乘或除以同一个负数,不等号的方向改变;a >b , c <0,那么ac <bc . 或 cb c a 〈 一个一元一次不等式组:具有相同未知数的两个一元一次不等式合在一起,就组成一个一元一次不等式组.解不等式组的解集:几个不等式的解的公共部分,叫做不等式组的解集;解不等式组就是求它的解集;取两个不等式的公共解集:1、同大取大;2、同小取小;3、大于小的小于大的取之间;4、大于大的小于小的无解:第十章 数据的收集、整理与描述收集数据:整理数据:描述数据:列表法;条形图;扇形图:全面调查:对考察全体对象的调查;抽样调查:抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况的调查;总体:要考察的全体对象;个体:组成总体的每一个考察对象;样本:被抽取的个体组成一个样本;样本容量:样本中个体的数目;简单随机抽样:总体中的每一个个体都有相等的机会被抽到的抽样方法: 第十一章 全等三角形全等形:能够完全重合的两个图形;形状相同、大小相等全等三角形:能够完全重合的两个三角形;性质:对应边相等;对应角相等: 三角形的判定:SSS 、SAS 、ASA 、AAS 、Rt △HL角的平分线:性质:1、角的平分线上的点到角的两边的距离相等;2、到角两边距离相等的点在角的角的平分线上;第十二章 轴对称轴对称图形:如果一个图形沿一条直线折叠,直线两旁能互相重合;这条直线就是它的对称轴;把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那第说这两个图形关于这条直线对称;折叠后重合的点是对应点,叫做对称点;垂直平分线:经过线段中点并且垂直于这条线段的直线;线段垂直平分线上的点到这条线段两端距离相等;到线段两端距离相等的点在这条线段的垂直平分线上;轴对称图形的对称轴垂直平分对应点的连线;等腰三角形:两边相等的三角形;性质:1、两底角相等等边对等角、等角对等边;2、顶角平分线、底边上的中线、底边上的高相互重合三线合一:等边三角形正三角形:三边都相等的三角形;性质:三个内角都相等并且每一个内角都等于60°;判定:1、三个角都相等的三角形是等边三角形:2、有一个角是60°的等腰三角形是等边三角形:直角三角形中30°角所对的边等于斜边的一半;第十三章 实数算术平方根:如果一个正数x 的平方等于a a x =2,那么这个正数x 叫做a 的算术平方根;记为:a ,读作“根号a ”, a 叫做被开方数;0的算术平方根是0; 平方根二次方根:一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根; 开平方:求一个数a 的平方根的运算叫做开平方;1、正数的两个平方根,它们互为相反数;2、0的平方3、根是0;负数没有平方根:立方根三次方根:如果一个数的立方等于a ,那么这个数叫做a 的立方根开立方:求一个数的立方根的运算叫做开立方;用3a 表示,读作“三次根号a ”其中3叫根指数1、正数的立方根是正数;2、0的立方根是0;3、负数的立方根是0:{实数可以写成有限小数或无限循环小数的数有理数无理数无限不循环小数⎩⎨⎧按小数分数{{{实数正有理数正无理数负有理数负无理数正实数负理数按大小分类第十四章 一次函数变量:数值会发生变化的量;常量:数值始终不变的量;函数:如果在一个变化过程中有两个变量x 和y ,对于x 的每一个确定的值,y 都有一个唯一的值与它对应,我们就说x 是自变量,y 是x 的函数;表示函数的方法:列表法;解析法;图象法:一次函数:一般形式)0(≠+=k b kx y 正比列函数:0)0(≠≠=b k kx y 经过原点 图象:一条直线;画函数图象的步骤:列表、描点、连线;性质::x ,y ;k x ,y k 的增大而减小随时增大而增大随时00〈〉第十五 章整式的乘法与因式分解单项式×单项式:把它们的系数×系数、相同字母×相同字母单项式×多项式:用单项式去乘以多项式的每一项多项式×多项式:用一个多项式每一项乘以另一个多项式的每一项平方差公式:22))((b a b a b a -=-+完全平方公式:2222)(b ab a b a +±=±2222)(b ab a b a ++=+ 2222)(b ab a b a +-=-去括号:括号前面是正号,去括号后各项都不变号;括号前面是负号,去括号后各项都要变号:因式分解分解因式:把一个多项式化成几个整式的乘积的形式;方法:提公因式法和公式法;第十六 章分式分式:分母中含有字母的式子分式的基本性质:1、分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变;2、①同分母:分母不变,分子相加减;②异分母:先通分,变为同分母,再按同分母分式相加减进行运算;约分:根据分式的性质,约去分式的分子和分母的公因式;最简分式:分子分母没有公因式、分子分母中的系数都是整数、分子分母中没有分式;通分:把不同分母分式的分母化相同;最简公分母分式方程:分母中含有未知数的方程;第十七章 反比列函数反比列函数:一般形式:)0(≠=k x k y图象:双曲线 性质:1、k >0时,;x ,y 、的增大而减小随三象限图象在第一2、k <0时,;x ,y 、的增大而减大随四象限图象在第二第十八章 勾股定理勾股定理: 222,Rt c b a c ,b ,a =+∆那么斜边为中两直角边分别为勾股定理的逆定理:若三角形中,三边长222,,c b a c b a =+满足,那么,这个三角形是直角三角形第十九章平行四边形平行四边形:两组对边分别平行的四边形叫做平行四边形性质1、平行四边形的对角相等平行四边形性质定理2 、平行四边形的对边相等3、 平行四边形的对角线互相平分推论 夹在两条平行线间的平行线段相等判定定理判定:1、定义两组对边分别平行的四边形是平行四边形2、两组对角分别相等的四边形是平行四边形3、两组对边分别相等的四边形是平行四边形4、对角线互相平分的四边形是平行四边形5、一组对边平行相等的四边形是平行四边形三角形的中位线平行且等于第三边的一半;矩形:有一个角是直角的平行四边形;性质:1、矩形的四个角都是直角叫矩形2、 矩形的对角线相等判定:1、定义有一个角是直角的平行四边形是矩形定义2、有三个角是直角的四边形是矩形3、对角线相等的平行四边形是矩形菱形:有一组邻边相等的平行四边形是叫菱形性质:1、菱形的四条边都相等2、菱形的对角线互相垂直,并且每一条对角线平分一组对角菱形面积=对角线乘积的一半,ab :s 21=即判定1、四边都相等的四边形是菱形2、对角线互相垂直的平行四边形是菱形正方形:有一个角是直角有一组邻边相等的平行四边形是正方形性质1、正方形的四个角都是直角,四条边都相等2、正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 梯形:有一组对边平行,另一组对边不平行的四边形叫做梯形;等腰梯形:两腰相等的梯形;直角梯形:有一个角是直角的梯形;性质1、等腰梯形在同一底上的两个角相等2、两条对角线相等判定1、两腰相等的梯形是等腰梯形2、在同一底上的两个角相等的梯形是等腰梯形3、对角线相等的梯形是等腰梯形 第二十章数据的代表nn n w w w w x w x w x x ++++++= 212112:加权平均数权:数据的重要程度;n n w w w ;x x x ;n ,,,,,,2121 每个数据的权这组数据为这组数据的个数中位数:一组数据按顺序排列,处于中间位置的数;众数:一组数据中出现次数最多的数据;极差:一组数据中最大数据与最小数据的差;⎥⎦⎤⎢⎣⎡-++-+-=---)()()(1212x x x x x x n :s n 方差方差越大,数据波动越大;方差越小,数据波动越小:标准差:⎥⎦⎤⎢⎣⎡-++-+-=---)()()(121x x x x x x n s n n x x x ;x ,,,21 这组数据为这组数据的平均数第二十一章二次根式 二次根式:形如)0(≥a a 的式子;“”称为二次根号;代数式:用基本运算符号把数和表示数的字母连接起来的式子;基本运算符号有:加、减、乘、除、乘方和开方最简二次根式:必须满足1、被开方数不含分母;2、被开方数中不含开得尽的因数或因式:二次根式的加减:先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并;第二十二章一元二次方程一元二次方程:只含有一个未知数,未知数的最高次数是二次的方程;一元二次方程的解也叫一元二次方程的根;一元二次方程的一般形式:)0(02≠=++a c b a c bx ax 为常数、、解一元二次方程的方法:1、配方法;2、公式法;3、因式分解法: 第二十三章旋转旋转:把一个图形绕着平面某一个点转动一个角度;旋转中心、旋转心方向、旋转角旋转图形:1、对应点到旋转中心的距离相等;2、对应点与旋转中心所连的夹角等于旋转角;3、旋转前、后图形全等:中心对称图形:把一个图形绕某一个点旋转180°,如果它能与另一个图形重合,那么这两个图形叫中心对称图形;也说这两个图形关于这个点中心对称,这个点叫对称中心.这时对应点也叫对称点;第二十四章圆圆:在一个平面内,线段绕它的一个端点旋转一周,另一个端点形成的图形叫做圆;圆心、半径弦:圆上任意两点的线段;经过圆心的弦叫做直径;弧:圆上任意两点间的部分;半圆、等圆、等弧垂径定理:垂直于弦的直径平分弦,并且平分缠绵民对的两条弧;平分弦不是直径的直径垂直于弦,并且平分缠绵民对的两条弧;同圆或等圆中,弦、弧、圆心角、圆周角中,任意一个量相等,则另外三个量也相等; 圆内接四边形对角互动补;如果三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形; 点和圆的位置关系:P 表示点、d ”读作等价于点P 在圆外⇔d >r ;点P 在圆外⇔d=r ;点P 在圆外⇔d <r ;不在同一直线上的三点确定一个圆;反证法:由矛盾断定所假设不正确,从而得到原命题成立;直线和圆的位置关系:l 表示直线、d 表示这条直线到圆心的距离、r 表示半径 直线l 和圆相交⇔d <r ;直线l 和圆相切⇔d=r ;直线l 和圆相离⇔d >r圆的切线:经过半径外端、垂直于半径的直线;圆的切线垂直于经过切点的半径 切线长:经过圆外一点作圆的切线,这点和切点之间的线段长;从圆外一点可以作圆的两条切线,它们的切 线长相等,这点和圆心的连线平分两条切线的夹角;多边形内切圆:与多边形各边都相切的圆;内切圆的圆心叫多边形的内心;圆与圆的位置关系:d 表示两圆心之间的距离、R 表示大圆半径、r 表示小圆半径、R >r外离⇔d >R+r外切⇔d=R+r相交⇔R-r <d <R+r内切⇔d=R-r内含⇔d >R-r多边形的中心:正多边形外接圆的圆心;多边形的半径:正多边形外接圆的半径;多边形的中心角:正多边形每一边所对的圆心角;多边形的边心距:中心到正多边形一边的距离; 弧长: 180R n l π=l 表示弧长、n 表示圆心角、R 表示圆的半径 扇形面积:lR R n S 213602== π扇形圆锥侧面积:lR S π=圆锥侧 第二十五章概率初步 n mP =列表法,树状图第二十六章二次函数二次函数:用二次式表示的函数;一般形式解析式:)0,,,(2≠++=a c b a c bx ax y 是常数 图象:抛物线 性质:a b ac a b x a y c bx ax y 44)2(222-++=++=化成 第二十七章相似相似图形:形状相同的图形;相似多边形:形状相同的多边形;相似多边形:对应边的比相等,对应角相等;对应边的比叫相似比;相似三角形的判定:SSS 、SAS 、AA;相似三角形:相似比=边长比=周长比=对应边上的高或中线、角平分线的比 面积比=相似比的平方位似:两个多边形不且相似,而且对应点的连线相交于一点,对应边互相平行,这个点叫做位似中心;第二十八章锐角三角函数特殊的三角函数值: 第二十九章投影与视图 投影:光线照射物体,在某个平面上得到的影子;中心投影:由同一点发出的光线形成的投影; 锐角a三角函数 30° 60°45° sinA cosAtanA正投影:投影线垂直于投影面产生的投影;视图:从某一角度观察一个物体,所看到的图象;三视图:主视图、俯视图、左视图画三视图:主视图与俯视图长对正、主视图与左视图高平齐、左视图与俯视图宽相等;。
数学公式大全初中
数学公式大全初中1.代数公式:- 二次方程的解:对于二次方程ax²+bx+c=0,解为x = (-b ±√(b²-4ac))/(2a)。
- 因式分解:ab+ac = a(b+c)。
-根据两点坐标求直线方程:斜率m=(y₂-y₁)/(x₂-x₁)。
- 一次函数的定义:y = kx + b。
- 平方差公式:(a + b)² = a² + 2ab + b²,(a - b)² = a² - 2ab + b²。
-求和公式:1+2+3+...+n=(n(n+1))/2- 整式化简:(a + b)² = a² + 2ab + b²,(a - b)² = a² - 2ab + b²。
2.几何公式:-长方形面积:面积=长×宽。
-正方形面积:面积=边长²。
-圆的面积:面积=π×半径²。
-直角三角形勾股定理:a²+b²=c²(a、b为直角边,c为斜边长)。
-三角形面积公式:面积=(底×高)/2-多边形的内角和公式:内角和=(n-2)×180°(n表示边的数量)。
-三角形的外角和公式:外角和=360°。
-同位角公式:同位角相等。
-平行线性质:同位角相等,对内同旁,对外同旁。
3.比例公式:-比例的概念:a/b=c/d,记作a:b=c:d。
- 平均值不等式:(a1+a2+...+an)/n >= √(a1 × a2 × ... × an) (平均数≥几何平均数)。
- 正比例函数:y = kx(k为常数)。
-反比例函数:y=k/x(k为常数)。
4.概率公式:-事件发生的几率:几率=事件发生的次数/总次数。
-百分数与小数、分数的转化:百分数=小数×100%=分数/100。
初中数学知识点和公式大全
初中数学知识点和公式大全1.整数及其运算:-整数概念-整数的加减法-整数的乘法-整数的除法-整数的混合运算2.分数及其运算:-分数的概念-分数的加减法-分数的乘法-分数的除法-分数的混合运算3.百分数:-百分数的概念-百分数的转化-百分数的加减法-百分数的乘法-百分数的除法4.小数:-小数的概念-小数的加减法-小数的乘法-小数的除法-小数的混合运算5.平均数与比例:-算术平均数-加权平均数-比例的概念-比例的性质-比例的计算6.代数式:-代数式的概念-同类项与合并同类项-代数式的加减法-代数式的乘法-代数式的除法7.一元一次方程:-一元一次方程的概念-一元一次方程的解的性质-一元一次方程的解法-一元一次方程的应用问题8.一元一次不等式:-一元一次不等式的概念-一元一次不等式的解的性质-一元一次不等式的解法-一元一次不等式的应用问题9.平行线与相交线:-平行线与笛卡尔坐标系-平行线之间的关系-平行线之间的夹角-相交线的概念-相交线之间的关系10.图形的性质:-点、直线、线段和角的概念-三角形的性质-四边形的性质-圆的性质-常见几何图形的性质11.几何变换:-平移-旋转-对称-放缩-切变12.数据的收集与统计:-数据的收集-数据的整理与处理-数据的统计图与分析-数据的描述与比较-数据的预测与推断1.面积与周长公式:-长方形的面积公式:面积=长×宽-正方形的面积公式:面积=边长×边长-三角形的面积公式:面积=底×高/2-圆的面积公式:面积=π×半径²-长方形的周长公式:周长=2×(长+宽)-正方形的周长公式:周长=4×边长-三角形的周长公式:周长=边1+边2+边3-圆的周长公式:周长=2×π×半径2.二次根式运算公式:-二次根式的加减法公式:√a±√b=√a±√b(a≠b) - 二次根式的乘法公式:(√a) × (√b) = √ab-二次根式的除法公式:(√a)/(√b)=√(a/b)(b≠0)3.线性方程和一元一次方程公式:- 线性方程的一般形式:ax + b = 0-一元一次方程的解的公式:x=-b/a4.几何图形的面积和体积公式:-三角形的面积公式:面积=底×高/2-圆的面积公式:面积=π×半径²-球的体积公式:体积=(4/3)×π×半径³-长方体的体积公式:体积=长×宽×高-圆柱体的体积公式:体积=π×半径²×高-圆锥体的体积公式:体积=(1/3)×π×半径²×高5.正比例和反比例公式:- 正比例公式:y = kx (k为常数) -反比例公式:y=k/x(k为常数)。
初中数学定义公式大全
初中数学定义公式大全一、数与代数1.自然数:正整数1、2、3...2.整数:正整数、负整数以及0.。
3.有理数:可以表示为两个整数之比的数,包括整数、分数和小数.4.实数:有理数和无理数的总称.5.无理数:无法表示为两个整数之比的数,如π、√2等.6.绝对值:一个数与0的距离,记作,a,其中,a为实数.a.正数的绝对值等于其本身,即,a,=a.b.零的绝对值为0。
c.负数的绝对值等于其相反数,即,-a,=a.7.平方:一个数与其自身相乘的结果,记作a².8.立方:一个数与其自身相乘两次的结果,记作a³.9.积:两个数相乘的结果,记作a×b.10.商:两个数相除的结果,记作a÷b.11.指数与次方:表示一个数进行相乘所得的结果,记作aⁿ,其中,a 为底数,n为指数.a.如果n为正整数,则aⁿ表示a连乘n次的结果.b.如果n为负整数,则aⁿ表示对a连乘n次的结果取倒数.c.如果n为0。
二、函数与方程1.函数:一种特殊的关系,将自变量的值映射到因变量的值.2. 一次函数:函数的表达式为y = kx + b,其中,k和b为常数,k 称为斜率,b称为截距.3. 二次函数:函数的表达式为y = ax² + bx + c,其中,a、b、c 为常数.a.如果a>0,则二次函数为开口向上的抛物线.b.如果a<0,则二次函数为开口向下的抛物线.4.解方程:寻找符合方程条件的未知数的值.5.一元一次方程:只有一个未知数的一次方程.a.方程的解为将未知数代入方程使其等号成立的值.b.方程左右两端加或减相同数,等号两边不变.c.方程左右两端乘或除相同数,等号两边不变.6.一元二次方程:只有一个未知数的二次方程.a.利用因式分解法,将一元二次方程化简为两个一元一次方程.b. 使用求根公式,即b²-4ac,根据判别式的值分别求解方程.三、几何与空间1.点:几何中不可分割的基本单位.2.线段:两个点之间的部分,用字母表示,如AB.3.直线:无限延伸的线段,用两个字母表示,如AB.4.射线:一段有一个端点的直线,延伸方向为单一方向,用两个字母表示,如A B⃗.5.角:平面上由两条射线的公共起点和其他两个点所围成的部分.6.平行线:在同一个平面内,永不相交的直线.7.垂直线:与另一条直线交成直角的线.8.过直线上一点的垂直线:与直线垂直并且过直线上一点的线.9.三角形:由三条线段围成的图形.a.根据边长,可以分为等边三角形、等腰三角形和普通三角形.b.根据角度,可以分为直角三角形、钝角三角形和锐角三角形.10.相似三角形:具有相同形状但不一定相同大小的三角形.a.两个三角形对应角度相等.b.两个三角形的对应边成比例.11.圆:由平面上到一点的距离相等的点组成的几何图形.a.半径:圆心到圆上任一点的距离.b.直径:通过圆心,且两端点在圆上的线段.c.弧:圆上两点之间的部分.d.弦:圆上两点间的线段.e.弧长:弧所对应的圆周的一部分.f.弧度:通过圆心两个射线所夹的角所对应的弧长.四、统计与概率1.数据:我们所采集到的信息.2.数据的分类与整理:根据不同的特点将数据进行系统的分类和整理.3.频数:一些数据出现的次数.4.直方图:由矩形表示不同数据类别的频数的图形.5.平均数:一组数据的总和除以数据的个数.6.中位数:一组已排序数据的中间值.7.众数:一组数据中出现次数最多的数.8.排列:从n个不同元素中选取m个元素,按照一定的顺序排列的方法总数.9.组合:从n个不同元素中选取m个元素,按照不同的顺序排列使得相同的元素看作是一样的,所能得到的不同组合的个数.10.概率:一些事件发生的可能性.a.实验的结果称为样本空间.b.发生一些事件的样本数除以样本空间的样本数等于该事件发生的概率.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学定义定理公式总结一、基本知识㈠、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。
正数大于0,负数小于0,正数大于负数。
绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。
两个负数比较大小,绝对值大的反而小。
有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。
②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
实数:①实数分有理数和无理数。
②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。
③每一个实数都可以在数轴上的一个点来表示。
3、代数式代数式:单独一个数或者一个字母也是代数式。
合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。
②把同类项合并成一项就叫做合并同类项。
③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。
4、整式与分式整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。
②一个单项式中,所有字母的指数和叫做这个单项式的次数。
③一个多项式中,次数最高的项的次数叫做这个多项式的次数。
整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。
幂的运算:A M+A N=A(M+N)(AM)N=A N M N(A/B)N=A N/B N 除法一样。
整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。
②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
公式两条:平方差公式/完全平方公式整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。
②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。
方法:提公因式法、运用公式法、分组分解法、十字相乘法。
分式:①整式A除以整式B,如果除式B 中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。
②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。
分式的运算:乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
除法:除以一个分式等于乘以这个分式的倒数。
加减法:①同分母的分式相加减,分母不变,把分子相加减。
②异分母的分式先通分,化为同分母的分式,再加减。
分式方程:①分母中含有未知数的方程叫分式方程。
②使方程的分母为0的解称为原方程的增根。
B、方程与不等式1、方程与方程组一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。
②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。
解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。
二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。
二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。
适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。
解二元一次方程组的方法:代入消元法/加减消元法。
一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程1)一元二次方程的二次函数的关系大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。
那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。
也就是该方程的解了2)一元二次方程的解法大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解(1)配方法利用配方,使方程变为完全平方公式,在用直接开平方法去求出解(2)分解因式法提取公因式,套用公式法,和十字相乘法。
在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解(3)公式法这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a3)解一元二次方程的步骤:(1)配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式(2)分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式(3)公式法就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c4)韦达定理利用韦达定理去了解,韦达定理就是在一元二次方程a2x+bx+c=0(a≠0)中,二根之和=-b/a,二根之积=c/a也可以表示为x1+x2=-b/a,x1x2=c/a。
利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用5)一元一次方程根的情况利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diao ta”,而△=b2-4ac,这里可以分为3种情况:I当△>0时,一元二次方程有2个不相等的实数根;II当△=0时,一元二次方程有2个相同的实数根;III当△<0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)2、不等式与不等式组不等式:①用符号〉,=,〈号连接的式子叫不等式。
②不等式的两边都加上或减去同一个整式,不等号的方向不变。
③不等式的两边都乘以或者除以一个正数,不等号方向不变。
④不等式的两边都乘以或除以同一个负数,不等号方向相反。
不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的所有解,组成这个不等式的解集。
③求不等式解集的过程叫做解不等式。
一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。
一元一次不等式组:①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
③求不等式组解集的过程,叫做解不等式组。
一元一次不等式的符号方向:在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。
在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:A>B,A+C>B+C在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:A>B,A-C>B-C在不等式中,如果乘以同一个正数,不等号不改向;例如:A>B,A*C>B*C(C>0)在不等式中,如果乘以同一个负数,不等号改向;例如:A>B,A*C<B*C(C<0)如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;3、函数变量:因变量,自变量。
在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。
一次函数:①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数。
②当B=0时,称Y是X的正比例函数。
一次函数的图象:①把一个函数的自变量X 与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。
②正比例函数Y=KX的图象是经过原点的一条直线。
③在一次函数中,当K〈0,B〈O,则经234象限;当K〈0,B〉0时,则经124象限;当K〉0,B〈0时,则经134象限;当K〉0,B〉0时,则经123象限。
④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少。
㈡空间与图形A、图形的认识1、点,线,面点,线,面:①图形是由点,线,面构成的。
②面与面相交得线,线与线相交得点。
③点动成线,线动成面,面动成体。
展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。
②N棱柱就是底面图形有N条边的棱柱。
截一个几何体:用一个平面去截一个图形,截出的面叫做截面。
视图:主视图,左视图,俯视图。
多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。
弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。
②圆可以分割成若干个扇形。