初中数学定义、定理(大全)
初中数学定义、定理汇总

1.1有理数 1.1.1有理数的定义:整数和分数的统称。 1.1.2有理数的分类: (1)分为整数和分数。而整数分为正整数、零和负整数 ;分数分为正分数和负分数。 (2)分为正有理数、零和负有理数。而正有理数分为正整数和正分数;负有理数分为负整数和负分 数。 1.1.3数轴 1.1.3.1数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。 1.1.3.2数轴的三要素:①原点②正方向③单位长度 1.1.3.3每个有理数都能用数轴上的点表示 1.1.4相反数 1.1.4.1相反数的定义:只有符号不同的两个数就做互为相反数(注:0的相反数为0 1.1.4.2相反数的意义:离原点距离相等的两个点所表示的两个数互为相反数 1.1.4.3相反数的判别 (1)若 ,则 、 互为相反数 (2)若两个数的绝对值相等,且符号相反,则这两个数互为相反数。 1.1.5倒数 1.1.5.1倒数的定义:若两个数的乘积等于1,则这两个数互为倒数。(若ab=1 ,则 a、b互为倒数) 注:零没有倒数。 1.1.6绝对值 1.1.6.1绝对值的定义:在数轴上,表示一个数到原点的距离(a的绝对值记作∣a∣) 1.1.6.2绝对值的性质:∣a∣≥0 1.1.7有理数大小的比较 1.1.7.1正数大于0,负数小于0 1.1.7.2正数大于负数 1.1.7.3两个正数,绝对值大的这个数就大,绝对值小的这个数就小;两个负数,绝对值大的这个数 就小,绝对值小的这个数就大。 1.1.7.4作差法:两个有理数相减。若大于0,则被减数大;若等于0,则两个数相等;若小于0,则 减数大。 1.1.7.5作商法:两个有理数相除(除数或分母不为0)。若大于1,则被除数大;若等于1,则两个 数相等;若小于1,则除数大。 1.1.8有理数的加法 1.1.8.1运算法则:①符号相同的两个数相加,取相同的符号,并把绝对值相加②绝对值不相等的异 号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值(互为相反数的两个 数相加等于0)③任何有理数加0仍等于这个数。 1.1.8.2加法交换律在有理数加法中仍然适用,即: a+b=b+a 1.1.8.3加法结合律在有理数加法中仍然适用,即: a+(b+c)=(a+b)+c 1.1.9有理数的减法 1.1.9.1运算法则:减去一个数等于加上这个数的相反数 1.1.9.2有理数减法—转化→有理数加法 1.1.10有理数的乘法 1.1.10.1运算法则:①两个数相乘,同号得正,异号得负,并把绝对值相乘(口诀:正正得正,负 负得正,正负的负,负正的负)②任何有理数乘0仍等于0③多个不等于0的有理数相乘时,积的符号 由负因式的个数决定:当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。 1.1.10.2乘法交换律在有理数乘法中仍然适用,即 1.1.10.3乘法结合律在有理数乘法中仍然适用,即
初中数学定理公式定律大全

初中数学定理公式定律大全1.代数定理-同号两数相乘为正,异号两数相乘为负。
-分配率:a×(b+c)=a×b+a×c。
-同底数幂相除,指数相减:(a^m)÷(a^n)=a^(m-n)。
-幂的乘法:(a^m)×(a^n)=a^(m+n)。
2.平方根公式-设a≥0,则√a×√a=a。
-若a≥0,则√(a^2)=a。
3.线性方程- 设a ≠ 0,方程 ax + b = 0 的解是 x = -b/a。
- 形如 ax + b = cx + d 的一次方程,有唯一解 x = (d - b)/(a -c)。
4.角度定理-外角和定理:一个三角形的外角等于它的两个不相邻内角的和。
-三角形内角和定理:一个三角形的内角之和等于180°。
-同位角定理:如果两条直线被一条截线分成两个内交角和两个外交角,则这两个内交角互为同位角,两个外交角互为同位角。
5.平行线和三角形定理-同位角、内错角定理:当两条直线被一条截线分成两个内交角和两个外交角时,同位角相等,内错角相等。
-平行线截割定理:当两条平行线被一条截线截断时,同位角相等,内错角相等。
-三角形内角和定理:一个三角形的内角之和等于180°。
-等腰三角形定理:两边相等的三角形中,两个对应的内角也相等。
6.几何定理-直角三角形定理:一个三角形中,如果一些角是直角,则它是直角三角形。
-直角边定理:在直角三角形中,斜边的平方等于各直角边的平方和。
-勾股定理:在直角三角形中,斜边的平方等于两个直角边的平方和。
-相似三角形定理:如果两个三角形的对应角相等,则这两个三角形相似。
-正方形的对角线垂直定理:正方形的对角线互相垂直且相等。
7.百分数与比例-百分数换分数:将百分数转化为分数,百分数除以100即可得到对应的分数。
-百分数的四则运算:百分数的加减乘除运算,先转化为分数进行计算,最后再转化为百分数。
-比例:设a:b=c:d,称a和b为比例的两个项,c和d为比例的两个对应项。
初一数学丨数学重要的定义、定理、公式、方法整理

初一数学丨数学重要的定义、定理、公式、方法整理有理数1.1正数与负数正数:大于0的数叫正数。
(根据需要,有时在正数前面也加上“+”)负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。
与正数具有相反意义。
0既不是正数也不是负数。
0是正数和负数的分界,是唯一的中性数。
1.2有理数1、有理数:整数和分数统称有理数。
2、数轴:通常用一条直线上的点表示数,这条直线叫数轴;所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
3、相反数:只有符号不同的两个数叫做互为相反数。
4、绝对值:数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
1.3有理数的加减法有理数加法法则:1、同号两数相加,取相同的符号,并把绝对值相加。
2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
3、一个数同0相加,仍得这个数4、加法交换律:a+b=b+a5、加法结合律:a+b+c=a+(b+c)=(a+c)+b有理数减法法则:减去一个数,等于加这个数的相反数。
1.4有理数的乘除法1、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;乘法交换律:a*b=b*a结合律:a*b*c=a*(b*c)分配律:a(b+c)=ab+ac2、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。
1.5有理数的乘方1、求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。
在a的n次方中,a叫做底数,n叫做指数。
负数的奇次幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数,0的任何次幂都是0。
2、有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
初中数学全部定义定理公式

初中数学全部定义定理公式初中数学全部定义定理公式1 过两点有且只有一条直线过两点有且只有一条直线2 两点之间线段最短两点之间线段最短3 同角或等角的补角相等同角或等角的补角相等4 同角或等角的余角相等同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理平行公理 经过直线外一点,有且只有一条直线与这条直线平行经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行同位角相等,两直线平行10 内错角相等,两直线平行内错角相等,两直线平行11 同旁内角互补,两直线平行同旁内角互补,两直线平行12两直线平行,同位角相等两直线平行,同位角相等13 两直线平行,内错角相等两直线平行,内错角相等14 两直线平行,同旁内角互补两直线平行,同旁内角互补 15 定理定理 三角形两边的和大于第三边三角形两边的和大于第三边16 推论推论 三角形两边的差小于第三边三角形两边的差小于第三边17 三角形内角和定理三角形内角和定理 三角形三个内角的和等于180180°°18 推论1 直角三角形的两个锐角互余直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等全等三角形的对应边、对应角相等22边角边公理边角边公理(SAS) (SAS) 有两边和它们的夹角对应相等的两个三角形全等有两边和它们的夹角对应相等的两个三角形全等23 角边角公理角边角公理( ASA)( ASA)有两角和它们的夹边对应相等的两个三角形全等有两角和它们的夹边对应相等的两个三角形全等有两角和它们的夹边对应相等的两个三角形全等 24 推论推论(AAS) (AAS) 有两角和其中一角的对边对应相等的两个三角形全等有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理边边边公理(SSS) (SSS) 有三边对应相等的两个三角形全等有三边对应相等的两个三角形全等26 斜边、直角边公理斜边、直角边公理(HL) (HL) 有斜边和一条直角边对应相等的两个直角三角形全等有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的性质定理 等腰三角形的两个底角相等等腰三角形的两个底角相等 ( (即等边对等角)即等边对等角)即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于6060°°34 等腰三角形的判定定理等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)角对等边)35 推论1 三个角都相等的三角形是等边三角形三个角都相等的三角形是等边三角形36 推论推论 2 2 有一个角等于有一个角等于6060°的等腰三角形是等边三角形°的等腰三角形是等边三角形°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于3030°那么它所对的直角边等于斜边的一半°那么它所对的直角边等于斜边的一半°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半直角三角形斜边上的中线等于斜边上的一半39 定理定理 线段垂直平分线上的点和这条线段两个端点的距离相等线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形关于某条直线对称的两个图形是全等形43 定理定理 2 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称线对称46勾股定理勾股定理直角三角形两直角边a 、b 的平方和、等于斜边c 的平方,即a^2+b^2=c^2 47勾股定理的逆定理勾股定理的逆定理如果三角形的三边长a 、b 、c 有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形是直角三角形48定理定理 四边形的内角和等于360360°°49四边形的外角和等于360360°°50多边形内角和定理多边形内角和定理 n n 边形的内角的和等于(边形的内角的和等于(n-2n-2n-2)×)×)×180180180°°51推论推论 任意多边的外角和等于360360°° 52平行四边形性质定理1 平行四边形的对角相等平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等平行四边形的对边相等54推论推论 夹在两条平行线间的平行线段相等夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积菱形面积==对角线乘积的一半,即S=S=((a ×b )÷)÷2 267菱形判定定理1 四边都相等的四边形是菱形四边都相等的四边形是菱形 68菱形判定定理2 对角线互相垂直的平行四边形是菱形对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,正方形的两条对角线相等,并且互相垂直平分,并且互相垂直平分,并且互相垂直平分,每条对角线平分一组对每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73逆定理逆定理 如果两个图形的对应点连线都经过某一点,并且被这一如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形性质定理 等腰梯形在同一底上的两个角相等等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等等腰梯形的两条对角线相等76等腰梯形判定定理等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形在同一底上的两个角相等的梯形是等腰梯形 77对角线相等的梯形是等腰梯形对角线相等的梯形是等腰梯形78平行线等分线段定理平行线等分线段定理 如果一组平行线在一条直线上截得的线段如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第经过三角形一边的中点与另一边平行的直线,必平分第三边三边 81 三角形中位线定理三角形中位线定理 三角形的中位线平行于第三边,并且等于它三角形的中位线平行于第三边,并且等于它的一半的一半82 梯形中位线定理梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的梯形的中位线平行于两底,并且等于两底和的一半一半 L= L=(a+b a+b)÷)÷)÷2 S=L 2 S=L×h 83 (1)比例的基本性质比例的基本性质比例的基本性质 如果a:b=c:d,a:b=c:d,那么那么ad=bc如果ad=bc,ad=bc,那么那么a:b=c:d84 (2)合比性质合比性质合比性质 如果a /b=c b=c//d,d,那么那么那么(a (a (a±±b)b)//b=(c b=(c±±d)d)//d85 (3)等比性质等比性质等比性质 如果a /b=c b=c//d=d=……=m =m//n(b+d+n(b+d+……+n +n≠≠0),0),那么那么那么(a+c+(a+c+……+m)+m)//(b+d+(b+d+……+n)=a +n)=a//b86 平行线分线段成比例定理平行线分线段成比例定理 三条平行线截两条直线,所得的对应三条平行线截两条直线,所得的对应线段成比例线段成比例 87 推论推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例,所得的对应线段成比例 88 定理定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例边对应成比例90 定理定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(两角对应相等,两三角形相似(ASA ASA ASA))92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(两边对应成比例且夹角相等,两三角形相似(SAS SAS SAS))94 判定定理3 三边对应成比例,两三角形相似(三边对应成比例,两三角形相似(SSS SSS SSS))95 定理定理 如果一个直角三角形的斜边和一条直角边与另一个直角三如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比相似三角形周长的比等于相似比 98 性质定理3 相似三角形面积的比等于相似比的平方相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值于它的余角的正切值101圆是定点的距离等于定长的点的集合圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆径的圆 106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线离相等的一条直线109定理定理 不在同一直线上的三点确定一个圆。
最全面的初中数学概念-定义-公式大全

初中数学定义定理公式总结一、基本知识㈠、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。
正数大于0,负数小于0,正数大于负数。
绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。
两个负数比较大小,绝对值大的反而小。
有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。
②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
初中数学公式定理大全

初中数学公式定理大全
一、比例
1、比例定义:两个量的比值称为比例。
2、反比例定理:如果两个数中,一个数的倒数与另一个数成正比,则称这两个数成反比。
3、比例的乘法定理:如果两个比例的乘积等于1,则称这两个比例互相等数。
4、比例的加法定理:若两个比例的和为1,则称这两个比例是相等数。
5、三比例定理:若有三个比例a:b:c,他们的和为1,那么
a+b:b+c:c+a=1
二、平行线定理
1、平行线定义:两条直线不相交,且均与同一平行线相平行,则称这两条直线相平行。
2、平行线分割叉定理:若有两条平行线与另一直线相交,则这两条射线所成的四边形的面积是相等的。
3、垂直平分线定理:若有一条直线与另一条直线相垂直,则这二条直线的中垂线所成的四边形的面积是相等的。
4、向量平分定理:若有两条向量,它们的和所成的新向量与该向量成反比,则称这两条向量相平分。
三、三角形定理
1、三角形定义:三点不共线时,连接这三点构成的图形称为三角形。
2、勾股定理:在直角三角形中,斜边的平方等于两条直角边的平方和。
3、相似三角形定理:若两个三角形的各边按比例相等,则称这两个
三角形是相似的。
4、三角形的中线定理:在直角三角形中。
初中数学所有公式定义性质定理

初中数学所有公式定义性质定理初中数学是学生接触的第一门高等数学课程,其中涵盖了许多重要的公式,定义,性质和定理。
这些数学概念和结果将帮助学生发展数学思维,提高解决问题的能力。
本文将介绍常见的初中数学公式、定义、性质和定理,帮助学生更好地理解和应用数学知识。
一、数学公式1.一次方程求解公式一次方程是形如ax+b=0的方程,其中a和b是实数且a≠0。
一次方程的求解公式为x=-b/a。
2.二次方程求根公式二次方程是形如ax²+bx+c=0的方程,其中a、b和c是实数且a≠0。
求根公式为x=(-b±√(b²-4ac))/2a。
3.相似三角形比例公式对于两个相似三角形,它们对应边的比例相等。
设两个相似三角形的对应边长度分别为a、b、c和x、y、z,则有a/x=b/y=c/z。
4.正弦定理正弦定理适用于任意三角形ABC,其中a、b和c是对应的边长,A、B和C是对应的角度。
定理表述为a/sinA=b/sinB=c/sinC。
5.余弦定理余弦定理适用于任意三角形ABC,其中a、b和c是对应的边长,A、B和C是对应的角度。
定理表述为c²=a²+b²-2abcosC。
6.圆的周长公式二、数学定义1.有理数有理数是可以表示为两个整数的比值的数。
有理数包括整数、分数和小数。
2.无理数无理数是不能表示为有理数的小数。
例如,π和√2都是无理数。
3.等差数列等差数列是指数列中相邻两个数之差都相等的数列。
公差是等差数列中相邻两个数之差的值。
4.等比数列等比数列是指数列中相邻两个数之比都相等的数列。
公比是等比数列中相邻两个数之比的值。
5.直角三角形直角三角形是其中一个角为90度的三角形。
直角三角形的斜边是两条直角边的最长边。
三、数学性质1.乘法交换和结合律乘法满足交换律和结合律,即对于任意实数a、b和c,有a*b=b*a,(a*b)*c=a*(b*c)。
2.加法交换和结合律加法满足交换律和结合律,即对于任意实数a、b和c,有a+b=b+a,(a+b)+c=a+(b+c)。
初中数学定义、定理及性质全集

1、直线的性质:两点确定一条直线。
2、两点的所有连线中,线段最短。
(即两点之间,线段最短。
)3、余角定义:如果两个角的和等于90̊,就说这两个角互为余角。
性质:等角的余角相等。
【补角定义、性质略】4、垂线的性质(1):过一点有且只有一条直线与已知直线垂直。
(2):垂线段最短。
5、平行公理(1):经过直线外一点,有且只有一条直线与这条直线平行。
(2):如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
6、平行线的判定:(1)同位角相等,两直线平行。
(2)内错角相等,两直线平行。
(3)同旁内角互补,两直线平行。
7、平行线的性质:(1)两直线平行,同位角相等。
(2)、(3)略。
8、几个距离:(1)两点之间的距离。
(2)点到直线的距离。
(3)两条平行线的距离。
9、几种图形变换:平移、旋转、轴对称。
10、三角形三边关系定理:三角形两边的和大于第三边。
11、三角形的内角和定理:三角形的内角和等于180º。
多边形的内角和等于(n-2)・180°;多边形的外角和等于360º;12、三角形的外角定理:(1)三角形的一个外角等于与它不相邻的两个内角的和。
(2)三角形的一个外角大于与它不相邻的任何一个内角。
13、全等三角形的性质:全等三角形的对应边相等、对应角相等。
全等三角形的判定:SSS 、SAS 、ASA 、AAS 、HL(Rt∆专用)。
14、角平分线的性质:角平分线上的点到角的两边的距离相等。
角平分线的判定:到角的两边距离相等的点在角的平分线上。
15、线段垂直平分线的性质:线段垂直平分线上的点到这条线段两个端点的距离相等。
判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
16、等腰三角形的性质:(1)等边对等角。
(2)等腰三角形顶角的平分线、底边上的中线、底边上的高相互重合。
判定:等角对等边。
17、等边三角形的性质:等边三角形的三个内角都相等,并且每个都等于60°;判定:(1)三个角都相等的三角形是等边三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一篇数与代数第一节数与式一、实数1.实数的分类:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:- 3, ,0.231,0.737373…, , 等;无限不环循小数叫做无理数. 如:π, ,0.1010010001…(两个1之间依次多1个0)等.有理数和无理数统称为实数.2.数轴:规定了原点、正方向和单位长度的直线叫数轴。
实数和数轴上的点一一对应。
3.绝对值:在数轴上表示数a的点到原点的距离叫数a的绝对值,记作∣a∣。
正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
如:丨- _丨= ;丨3.14-π丨=π-3.14.4.相反数:符号不同、绝对值相等的两个数,叫做互为相反数。
a的相反数是-a,0的相反数是0。
5.有效数字:一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0. 6.科学记数法:把一个数写成a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法. 如:407000=4.07×105,0.000043=4.3×10-5.7.大小比较:正数大于0,负数小于0,两个负数,绝对值大的反而小。
8.数的乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂。
9.平方根:一般地,如果一个数x的平方等于a,即x2=a那么这个数a就叫做x的平方根(也叫做二次方根式)。
一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.10.开平方:求一个数a的平方根的运算,叫做开平方.11.算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根,0的算术平方根是0.12.立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(也叫做三次方根),正数的立方根是正数;负数的立方根是负数;0的立方根是0.13.开立方:求一个数a的立方根的运算叫做开立方.14.平方根易错点:(1)平方根与算术平方根不分,如 64的平方根为士8,易丢掉-8,而求为64的算术平方根;(2)的平方根是士,误认为平方根为士 2,应知道=2.15.二次根式:(1)定义:___________________________________________________叫做二次根式.16.二次根式的化简:17.最简二次根式应满足的条件:(1)被开方数的因式是整式或整数;(2)被开方数中不含有能开得尽的因数或因式.18.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.19.二次根式的乘法、除法公式20..二次根式运算注意事项:(1)二次根式相加减,先把各根式化为最简二次根式,再合并同类二次根式,防止:①该化简的没化简;②不该合并的合并;③化简不正确;④合并出错.(2)二次根式的乘法除法常用乘法公式或除法公式来简化计算,运算结果一定写成最简二次根式或整式.21.有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数.22.有理数减法法则:减去一个数,等于加上这个数的相反数.23.有理数乘法法则:两个有理数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘,积仍为0.24.有理数除法法则:两个有理数相除,同号得正,异号得负,并把绝对值相除;0除以任何非0的数都得0;除以一个数等于乘以这个数的倒数.25.有理数的混合运算法则:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的.26.有理数的运算律:加法交换律:为任意有理数)加法结合律:(a+ b)+c=a+(b+c)(a, b,c为任意有理数)二.代数式:(1)用运算符号把数和表示数的字母连接而成的式子叫做代数式。
单独一个数或一个字母也是代数式。
(2)同类项:是指所含字母相同,并且相同字母的指数也相同的项。
合并同类项的法则:系数相加作系数,字母和字母的指数不变。
三.整式1.幂的运算性质:①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即(m、n为正整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0,m、n为正整数,m>n);③幂的乘方法则:幂的乘方,底数不变,指数相乘,即(n为正整数);④零指数:(a≠0);⑤负整数指数:(a≠0,n为正整数);2.整式的乘除法:①几个单项式相乘除,系数与系数相乘除,同底数的幂结合起来相乘除.②单项式乘以多项式,用单项式乘以多项式的每一个项.③多项式乘以多项式,用一个多_项式的每一项分别乘以另一个多项式的每一项.④多项式除以单项式,将多项式的每一项分别除以这个单项式.⑤平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即;⑥完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即3.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.4.分解因式的方法:⑴提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.⑵运用公式法:公式;5.分解因式的步骤:分解因式时,首先考虑是否有公因式,如果有公因式,一定先提取公团式,然后再考虑是否能用公式法分解.6.分解因式时常见的思维误区:⑴提公因式时,其公团式应找字母指数最低的,而不是以首项为准.⑵提取公因式时,若有一项被全部提出,括号内的项“ 1”易漏掉.⑶分解不彻底,如保留中括号形式,还能继续分解等四.分式1.分式:整式A除以整式B,可以表示成的形式,如果除式B中含有字母,那么称为分式.注:(1)若B≠0,则有意义;(2)若B=0,则无意义;(2)若A=0且B≠0,则=02.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.3.约分:把一个分式的分子和分母的公团式约去,这种变形称为分式的约分.4.通分:根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.5.分式的加减法法则:(1)同分母的分式相加减,分母不变,把分子相加减;(2)异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算.6.分式的乘除法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.7.通分注意事项:(1)通分的关键是确定最简公分母,最简公分母应为各分母系救的最小公倍数与所有相同因式的最高次幂的积;(2)易把通分与去分母混淆,本是通分,却成了去分母,把分式中的分母丢掉.8.分式的混合运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的.9.对于化简求值的题型要注意解题格式,要先化简,第二节方程与不等式一、一元一次方程1.方程:含有未知数的等式叫方程.2.一元一次方程:只含有一个未知数,并且未知数的指数是1(次)系数不为0,这样的方程叫一元一次方程.一般形式:ax+b=0(a≠0)3.解一元一次方程的一般步骤及注意事项:二、二元一次方程(组)1.二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程.2.二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.3.二元一次方程组的解:二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解.4.二元一次方程组的解法.(1)代人消元法:解方程组的基本思路是“消元”一把“二元”变为“一元”,主要步骤是,将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代人另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代人消元法,简称代人法.(2)加减消元法:通过方程两边分别相加(减)消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法.三、分式方程1.分式方程:分母中含有未知数的方程叫做分式方程.2.解分式方程的步骤:①去分母,化为整式方程;②解整式方程;③验根;④下结论.3.分式方程的增根问题:⑴增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根l增根;⑵验根:因为解分式方程可能出现增根,所以解分式方程必须验根.四、一元二次方程1.一元二次方程:只含有一个未知数,未知数的最高次数是2,且系数不为 0,这样的方程叫一元二次方程.一般形式:ax2+bx+c=0(a≠0)2.一元二次方程的解法:⑴配方法:配方法是一种以配方为手段,以开平方为基础的一种解一元二次方程的方法.用配方法解一元二次方程:ax2+bx+c=0(k≠0)的一般步骤是:①化二次项系数为1,即方程两边同除以二次项系数;②移项,即使方程的左边为二次项和一次项,右边为常数项;③配方,即方程两边都加上一次项系数的绝对值一半的平方;④化原方程为(x+m)2=n的形式;⑤如果n≥0就可以用两边开平方来求出方程的解;如果n=<0,则原方程无解.⑵公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是(b2-4ac≥0)⑶因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.它的理论根据是两个因式中至少要有一个等于0,因式分解法的步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.3.一元二次方程的注意事项:⑴在一元二次方程的一般形式中要注意,强调a≠0.因当a=0时,不含有二次项,即不是一元二次方程.如关于x的方程(k2-1)x2+2kx+1=0中,当k=±1时就是一元一次方程了.⑵应用求根公式解一元二次方程时应注意:①化方程为一元二次方程的一般形式;②确定a、b、c的值;③求出b2-4ac的值;④若b2-4ac≥0,则代人求根公式,求出x1 ,x2.若b2-4a<0,则方程无解.⑶方程两边绝不能随便约去含有未知数的代数式.如-2(x+4)2=3(x+4)中,不能随便约去(x+4)⑷注意解一元二次方程时一般不使用配方法(除特别要求外)但又必须熟练掌握,解一元二次方程的一般顺序是:开平方法→因式分解法→公式法.五、一元一次不等式(组)1.不等式:用不等号(“<”“≤”“>”“≥”)表示不等关系的式子.2.不等式的基本性质:()不等式的两边都加上(或减去)同一个整式,不等号的方向不变.(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.3.不等式的解:能使不等式成立的未知数的值,叫做不等式的解.4.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集.5.解不等式:求不等式解集的过程叫做解不等式.6.一元一次不等式:只含有一个未知数,并且未知数的最高次数是1,系数不为零的不等式叫做一元一次不等式.7.解一元一次不等式易错点:(1)不等式两边部乘以(或除以)同一个负数时,不等号的方向要改变,这是同学们经常忽略的地方,一定要注意;(2)在不等式两边不能同时乘以0.8解一元一次不等式的步骤:①去分母,②去话号,③移项,④合并同类项,⑤系数化为1 9.求不等式的正整数解,可负整数解等特解,可先求出这个不等式的所有解,再从中找出所需特解.10.一元一次不等式组:关于同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.11.一元一次不等式组的解集:一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集.12.解不等式组:求不等式组解集的过程,叫做解不等式组.13.不等式组的分类及解集(a<b).14.解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集(2)利用数轴或口诀求出这些解集的公共部分,即这个不等式的解。