计算机图形图像实验一

合集下载

计算机图形学实验报告

计算机图形学实验报告

计算机图形学实验报告学号:姓名:班级:计算机 2班指导老师:何太军2010.6.19实验一、Windows 图形程序设计基础1、实验目的1)学习理解Win32 应用程序设计的基本知识(SDK 编程);2)掌握Win32 应用程序的基本结构(消息循环与消息处理等); 3)学习使用VC++编写Win32 Application 的方法。

4)学习MFC 类库的概念与结构;5)学习使用VC++编写Win32 应用的方法(单文档、多文档、对话框);6)学习使用MFC 的图形编程。

2、实验内容1)使用WindowsAPI 编写一个简单的Win32 程序,调用绘图API 函数绘制若干图形。

(可选任务)2 )使用MFC AppWizard 建立一个SDI 程序,窗口内显示"Hello,Thisis my first SDI Application"。

(必选任务)3)利用MFC AppWizard(exe)建立一个SDI 程序,在文档视口内绘制基本图形(直线、圆、椭圆、矩形、多边形、曲线、圆弧、椭圆弧、填充、文字等),练习图形属性的编程(修改线型、线宽、颜色、填充样式、文字样式等)。

定义图形数据结构Point\Line\Circle 等保存一些简单图形数据(在文档类中),并在视图类OnDraw 中绘制。

3、实验过程1)使用MFC AppWizard(exe)建立一个SDI 程序,选择单文档;2)在View类的OnDraw()函数中添加图形绘制代码,说出字符串“Hello,Thisis my first SDI Application”,另外实现各种颜色、各种边框的线、圆、方形、多边形以及圆弧的绘制;3)在类视图中添加图形数据point_pp,pp_circle的类,保存简单图形数据,通过在OnDraw()函数中调用,实现线、圆的绘制。

4、实验结果正确地在指定位置显示了"Hello,This is my first SDI Application"字符串,成功绘制了圆,椭圆,方形,多边形以及曲线圆弧、椭圆弧,同时按指定属性改绘了圆、方形和直线。

图形图像处理实验

图形图像处理实验
G=[1 1 1 1。1 1 -1 -1。1 -1 -1 1。1 -1 1 -1]。
W=(1/16>*G*f*G
实验结果:
W =
3.1875 0.0625 -0.8125 0.0625
0.0625 -0.0625 0.0625 -0.0625
0.1875 0.0625 -0.8125 0.0625
0.0625 -0.0625 0.0625 -0.0625
C1=dct2(I>。
C2=fftshift(C1>。
subplot(122>。imshow(log(abs(C2>>+1,[0 10]>。
实验结果:
原始图像 DCT系数
3.3 已知二维数字图像矩阵f,求此图像的二维DWT,并反求f。
f=[2 5 5 2。3 3 3 3。3 3 3 3。2 5 5 1]。
len=28。
theta=14。
PSF=fspecial('motion' , len , theta>。
wnr1 = deconvwnr(blurred,PSF>。 %维娜滤波复原图像
figure, imshow(wnr1>。
------------- %读入有噪声模糊图像并命名为blurrednoisy
reg2=deconvreg(Edged,PSF,NP*1.2>。
subplot(2,2,2>, imshow(reg2>。 %大NP
subplot(1,2,1>,imshow(J>。
N=numel(J>。
pr = imhist(J>/N。
kБайду номын сангаас0:255。

《计算机图形学》实验指导书

《计算机图形学》实验指导书

计算机图形学实验指导书袁科计算机技术实验中心目录实验一实现DDA、中点画线算法和Bresenham画线算法 (24)实验二实现Bezier曲线 (25)实验三实现B样条曲线 (26)实验四实现多边形填充的边界标志算法 (27)实验五实现裁剪多边形的Cohen-Sutherland算法 (28)实验六二维图形的基本几何变换 (30)实验七画图软件的编制 (31)实验一实现DDA、中点画线算法和Bresenham画线算法【实验目的】1、掌握直线的多种生成算法;2、掌握二维图形显示原理。

【实验环境】VC++6.0/ BC【实验性质及学时】验证性实验,2学时,必做实验【实验内容】利用任意的一个实验环境,编制源程序,分别实现直线的三种生成算法,即数字微分法(DDA)、中点画线法以及Bresenham画线算法。

【实验原理】1、数字微分法(Digital Differential Analyzer,DDA)算法思想:基于直线的微分方程来生成直线。

ε=1/max(|△x|,|△y|)max(|△x|,|△y|)=|△x|,即|k|≤1 的情况:max(|△x|,|△y|)=|△y|,此时|k|≥1:2、中点画线法算法思想:每次在最大位移方向上走一步,另一方向是否走步取决于误差项的判断。

3、Bresenham画线算法算法思想:其基本思想同中点算法一样,即每次在最大位移方向上走一步,而另一个方向是否走步取决于误差项的判断。

【实验要求】1.上交源程序;2.上交实验报告,实验报告内容如下:(1) 实验名称(2) 实验目的(3) 算法实现的设计方法及程序流程图(4) 程序结果分析【分析与思考】(1) 上述所阐述的三个算法,其基本算法只能适用于直线的斜率(|K|<=1) 的情形,如何将上述算法进行推广,使其能够处理任意斜率的直线?(2) 计算机显示屏幕的坐标圆心在哪里,与我们平时的习惯有什么差异,如何协调二者?实验二 实现Bezier 曲线【实验目的】1、掌握Bezier 曲线的定义;2、能编程实现N 次Bezier 曲线的绘制与显示。

计算机图形学实验报告

计算机图形学实验报告

计算机图形学实验二维填充图的生成1. 图元填充利用多种图元填充的方法绘制一面五星红旗。

方法有: 扫描转换多边形的逐点判断法(编码算法), 扫描线算法, 区域填充的扫描线算法, 自创的向内复制边法。

1.1说明:1.1.1 宏定义和类型定义:#define max 400#define pi 3.14159265#define STACK_INIT_SIZE 100#define STACKINCREMENT 10#define false 0#define true 1#define ok 1#define error 0#define infeasible -1#define overflow -2typedef int Status;typedef int bool;typedef struct {int y,xLeft,xRight;}SElemType;typedef struct{SElemType *base;SElemType *top;int stacksize;}SqStack;typedef struct Edge{int ymax;float x,deltax;struct Edge *nextEdge;}Edge;Edge *EL[max];typedef struct{float x,y;}point;Status SetStackEmpty(SqStack *s){s->base=(SElemType *)malloc(STACK_INIT_SIZE*sizeof(SElemType));if(!s->base) return overflow;s->top=s->base;s->stacksize=STACK_INIT_SIZE;return ok;}Status PushStack(SqStack *s,SElemType e){if(s->top-s->base>=s->stacksize){s->base=(SElemType*)(s->base,(s->stacksize+STACKINCREMENT)*sizeof(SElemType));if(!s->base) return error;s->top=s->base+s->stacksize;s->stacksize+=STACKINCREMENT;}*s->top++=e;return ok;}Status PopStack(SqStack *s,SElemType *e){ if(s->top==s->base) return error;*e=*(--s->top);return ok;}Status IsStackEmpty(SqStack *s){if(s->base==s->top) return true;else return false;}1.1.2其他由于要填充五角星, 我们就要得到五角星的十个顶点。

计算机图形学基础实验指导书

计算机图形学基础实验指导书

计算机图形学基础实验指导书目录实验一直线的生成 ............................................................... -..2.-实验二圆弧及椭圆弧的生成........................................................ -..3 -实验三多边形的区域填充 ......................................................... - (4)-实验四二维几何变换 ............................................................. -..5.-实验五裁剪算法 ................................................................. -..6.-实验六三维图形变换 ............................................................. -..7.-实验七BEZIER 曲线生成......................................................... -..8.-实验八交互式绘图技术实现........................................................ -..10-实验一直线的生成一、实验目的掌握几种直线生成算法的比较,特别是Bresenham 直线生成算法二、实验环境实验设备:计算机实验使用的语言: C 或Visual C++ 、OpenGL三、实验内容用不同的生成算法在屏幕上绘制出直线的图形,对不同的算法可设置不同的线形或颜色表示区别。

四、实验步骤直线Bresenham 生成算法思想如下1)画点(x i, y i), dx=x2-x i, dy=y2-y i,计算误差初值P i=2dy-dx , i=1;2)求直线下一点位置x i+i=x i+i 如果P i>0,贝U y i+i=y i+i,否则y i+i=y i;3)画点(x i+i ,y i+i );4)求下一个误差P i+i 点,如果P i>0,贝U P i+i=P i+2dy-2dx,否则P i+i=P i+2dy;i=i+i ,如果i<dx+i 则转步骤2,否则结束操作。

《计算机图形学》实验报告

《计算机图形学》实验报告

实验报告模板《计算机图形学》实验报告一、实验目的及要求1.实习三维图形的坐标系之间的变换;2.三维图形几何变换;3.掌握三维图形的坐标系之间的变换算法及三维图形几何变换的原理和实现;4.实现二维图形的基本变换(平移、旋转、缩放、错切、对称、复合等);5.实现三维图形的基本变换(平移、旋转、缩放、复合等);二、理论基础在齐次坐标理论下,二维图形几何变换矩阵可用下式表示:⎪⎪⎪⎭⎫⎝⎛===ifchebgdaTnkxx kk2,1,0,)(ϕ平移变换:[x* y* 1] =[x y 1] *0000001ts⎛⎫⎪⎪⎪⎝⎭=[t*x s*y 1]比例变换:[x* y* 1]=[x y 1] *1000101m n⎛⎫⎪⎪⎪⎝⎭=[m+x n+y 1]旋转变换:在平面上的二维图形饶原点逆时针旋转Ө角,变换矩阵为[x* y* 1]=[x y 1] *cos sin0sin cos0001θθθθ⎛⎫⎪- ⎪⎪⎝⎭= [x*cosө-y*sinө]复合变换:以上各种变换矩阵都是以原点为参照点,当以任意参照点进行变换的时候,我们就要用到复合变换矩阵。

三维变换类似于二维,在画图时,把三维坐标转换为二维即可。

三、算法设计与分析二维变换:#define dx 50#define dy 100void CCGWithVCView::OnTransScale() //平移(50,100){// TODO: Add your command handler code here// AfxMessageBox(_T("Please Insert The Move Change Code!")) ;int m[4][2]={{100,50},{50,100},{150,100},{100,50}};int i;int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<3;i++){a[0]=m[i][0];a[1]=m[i][1];b[0]=m[i+1][0];b[1]=m[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for(i=0;i<3;i++){a[0]=m[i][0]+dx;a[1]=m[i][1]+dy;b[0]=m[i+1][0]+dx;b[1]=m[i+1][1]+dy;DDALine(a,b, RGB(0, 200, 255), pDC);}}#define h 0.1745#include<math.h>void CCGWithVCView::OnTransRotate() //旋转{// TODO: Add your command handler code here// AfxMessageBox(_T("Please Insert The Rotate Change Code!")) ;int m[4][2]={{100,50},{50,100},{150,100},{100,50}};int i;int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<3;i++){a[0]=m[i][0];a[1]=m[i][1];b[0]=m[i+1][0];b[1]=m[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for(i=0;i<3;i++){a[0]=m[i][0]*cos(h)-m[i][1]*sin(h);a[1]=m[i][1]*cos(h)+m[i][0]*sin(h);b[0]=m[i+1][0]*cos(h)-m[i+1][1]*sin(h);b[1]=m[i+1][1]*cos(h)+m[i+1][0]*sin(h);DDALine(a,b, RGB(0, 200, 255), pDC);}}#define k 2;#define f 2.5void CCGWithVCView::OnTransMove() //缩放{// TODO: Add your command handler code here//AfxMessageBox(_T("Please Insert The Scale Change Code!")) ;int m[4][2]={{100,50},{50,100},{150,100},{100,50}};int i;int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<3;i++){a[0]=m[i][0];a[1]=m[i][1];b[0]=m[i+1][0];b[1]=m[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for(i=0;i<3;i++){a[0]=m[i][0]*k;a[1]=m[i][1]*f;b[0]=m[i+1][0]*k;b[1]=m[i+1][1]*f;DDALine(a,b, RGB(0, 200, 255), pDC);}}#define n 2#define d 0void CCGWithVCView::OnTransOther(){// TODO: Add your command handler code here//AfxMessageBox(_T("Please Insert The Other Change Code!")) ;int m[4][2]={{100,50},{50,100},{150,100},{100,50}};int i;int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<3;i++){a[0]=m[i][0];a[1]=m[i][1];b[0]=m[i+1][0];b[1]=m[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for(i=0;i<3;i++){a[0]=m[i][0]+n*m[i][1];a[1]=m[i][1]+d*m[i][0];b[0]=m[i+1][0]+n*m[i+1][1];b[1]=m[i+1][1]+d*m[i+1][0];DDALine(a,b, RGB(0, 200, 255), pDC);}}三维变换:#include<math.h>#define dx 100#define dy 100#define dz 0void CCGWithVCView::OnTransScale() //平移(50,100){// TODO: Add your command handler code here// AfxMessageBox(_T("Please Insert The Move Change Code!")) ;int i;int p2d[6][2];int p3d[6][3]={{400,300,0},{300,400,0},{300,300,10},{275,300,0},{400,300,0},{300,300,10}};for( i=0;i<6;i++){p2d[i][0]=p3d[i][1]-p3d[i][0]/sqrt(2);p2d[i][1]=p3d[i][2]+p3d[i][0]/sqrt(2);}int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<5;i++){a[0]=p2d[i][0];a[1]=p2d[i][1];b[0]=p2d[i+1][0];b[1]=p2d[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for( i=0;i<6;i++){p2d[i][0]=p3d[i][1]+dy-p3d[i][0]+dx/sqrt(2);p2d[i][1]=p3d[i][2]+dz+p3d[i][0]+dx/sqrt(2);}for(i=0;i<5;i++){a[0]=p2d[i][0];a[1]=p2d[i][1];b[0]=p2d[i+1][0];b[1]=p2d[i+1][1];DDALine(a,b, RGB(0, 0, 255), pDC);}}#define k 0.1745void CCGWithVCView::OnTransRotate() //旋转{// TODO: Add your command handler code here// AfxMessageBox(_T("Please Insert The Rotate Change Code!")) ;int i;int p2d[6][2];int p3d[6][3]={{400,300,0},{300,400,0},{300,300,10},{275,300,0},{400,300,0},{300,300,10}};for( i=0;i<6;i++){p2d[i][0]=p3d[i][1]-p3d[i][0]/sqrt(2);p2d[i][1]=p3d[i][2]+p3d[i][0]/sqrt(2);}int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<5;i++){a[0]=p2d[i][0];a[1]=p2d[i][1];b[0]=p2d[i+1][0];b[1]=p2d[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for( i=0;i<6;i++){p2d[i][0]=p3d[i][1]*cos(k)-p3d[i][2]*sin(k)-p3d[i][0]/sqrt(2);p2d[i][1]=p3d[i][2]*cos(k)+p3d[i][1]*sin(k)+p3d[i][0]/sqrt(2);}for(i=0;i<5;i++){a[0]=p2d[i][0];a[1]=p2d[i][1];b[0]=p2d[i+1][0];b[1]=p2d[i+1][1];DDALine(a,b, RGB(0, 0, 255), pDC);}}四、程序调试及结果的分析二维:三维:五、实验心得及建议在实验过程中,尽管过程中任由许多不会的地方,而且有待于今后的提高和改进,但我加深了对书本上知识的理解与掌握,同时也学到了很多书本上没有东西,并积累了一些宝贵的经验,这对我以后的学习与工作是不无裨益的。

关于图形图像处理实训报告总结【九篇】

关于图形图像处理实训报告总结【九篇】

关于图形图像处理实训报告总结【九篇】实训报告总结:图形图像处理实训图形图像处理实训是计算机科学与技术专业的基础课程之一。

通过本次实训课程,我深入了解了图形图像处理的基本概念、方法和技术,并通过实际操作来提升了自己的实践能力。

下面是对本次实训的九篇报告总结:1. 实验一:图像读取与显示本次实验主要是学习如何读取和显示图像,以及使用Matplotlib库进行图像展示。

通过实验,我掌握了图像读取和显示的基本方法,并学会了基本的图像处理操作。

2. 实验二:图像的灰度变换实验二主要是学习图像的灰度变换,包括线性变换和非线性变换。

我学会了如何使用不同的灰度变换函数来调整图像的亮度和对比度,进一步提升图像的质量。

3. 实验三:图像的空间域滤波本次实验主要是学习图像的空间域滤波技术,包括均值滤波、中值滤波和高斯滤波等。

通过实验,我掌握了不同滤波方法的原理和实现方式,并学会了如何选择合适的滤波方法来降噪和模糊图像。

4. 实验四:图像的频域滤波实验四主要是学习图像的频域滤波技术,包括傅里叶变换和频域滤波等。

通过实验,我了解了傅里叶变换的原理和应用,并学会了如何使用频域滤波来实现图像的锐化和平滑。

5. 实验五:图像的形态学处理本次实验主要是学习图像的形态学处理技术,包括腐蚀、膨胀、开运算和闭运算等。

通过实验,我学会了如何使用形态学操作来改变图像的形状和结构,进一步改善图像的质量。

6. 实验六:图像的边缘检测实验六主要是学习图像的边缘检测技术,包括Sobel算子、Laplacian算子和Canny算子等。

通过实验,我了解了不同边缘检测方法的原理和应用,并学会了如何使用边缘检测来提取图像的轮廓和特征。

7. 实验七:图像的分割与聚类本次实验主要是学习图像的分割与聚类技术,包括阈值分割、区域生长和K均值聚类等。

通过实验,我掌握了不同分割与聚类方法的原理和应用,并学会了如何使用分割与聚类来识别和分析图像中的目标和区域。

8. 实验八:图像的特征提取与描述子实验八主要是学习图像的特征提取和描述子技术,包括尺度不变特征变换(SIFT)和方向梯度直方图(HOG)等。

计算机图形学实验报告

计算机图形学实验报告

实验结果与结论
• 在本次实验中,我们成功地实现了复杂场景的渲染,得到了具有较高真实感和视觉效果的图像。通过对比 实验前后的效果,我们发现光线追踪和着色器的运用对于提高渲染质量和效率具有重要作用。同时,我们 也发现场景图的构建和渲染脚本的编写对于实现复杂场景的渲染至关重要。此次实验不仅提高了我们对计 算机图形学原理的理解和实践能力,也为我们后续深入研究渲染引擎的实现提供了宝贵经验。
2. 通过属性设置和变换操作,实现了对图形的定 制和调整,加深了对图形属性的理解。
4. 实验的不足之处:由于时间限制,实验只涉及 了基本图形的绘制和变换,未涉及更复杂的图形 处理算法和技术,如光照、纹理映射等。需要在 后续实验中进一步学习和探索。
02
实验二:实现动画效果
实验目的
掌握动画的基本原 理和实现方法
04
实验四:渲染复杂场景
实验目的
掌握渲染复杂场景的基本流程和方法 理解光线追踪和着色器在渲染过程中的作用
熟悉渲染引擎的实现原理和技巧 提高解决实际问题的能力
实验步骤
• 准备场景文件 • 使用3D建模软件(如Blender)创建或导入场景模型,导出为常用的3D格式(如.obj或.fbx)。 • 导入场景文件 • 在渲染引擎(如Unity或Unreal Engine)中导入准备好的场景文件。 • 构建场景图 • 根据场景的层次结构和光照需求,构建场景图(Scene Graph)。 • 设置光照和材质属性 • 为场景中的物体设置光照和材质属性(如漫反射、镜面反射、透明度等)。 • 编写渲染脚本 • 使用编程语言(如C或JavaScript)编写渲染脚本,控制场景中物体的渲染顺序和逻辑。 • 运行渲染程序 • 运行渲染程序,观察渲染结果。根据效果调整光照、材质和渲染逻辑。 • 导出渲染图像 • 将渲染结果导出为图像文件(如JPEG或PNG),进行后续分析和展示。

《计算机图形学》课内实验报告(实验一)

《计算机图形学》课内实验报告(实验一)
PFNGLGETINFOLOGARBPROC glGetInfoLogARB;
PFNGLUNIFORM1FARBPROC glUniform1fARB;
PFNGLGETUNIFORMLOCATIONARBPROC glGetUniformLocationARB;
#ifndef __APPLE__
PFNGLSECONDARYCOLOR3FPROC glSecondaryColor3f;
{
GLbyte infoLog[MAX_INFO_LOG_SIZE];
glGetInfoLogARB(progObj, MAX_INFO_LOG_SIZE, NULL, infoLog);
fprintf(stderr, "Error in program linkage!\n");
fprintf(stderr, "Info log: %s\n", infoLog);
// Demonstrates high-level shaders
// Program by Benjamin Lipchak
#include "../../Common/OpenGLSB.h" // System and OpenGL Stuff
#include "../../Common/GLTools.h" // System and OpenGL Stuff
// Initially set the blink parameter to 1 (no flicker)
if (flickerLocation != -1)
glUniform1fARB(flickerLocation,1.0f);
// Program object has changed, so we should revalidate

计算机绘图(Solidworks)实验报告

计算机绘图(Solidworks)实验报告

计算机绘图实验报告班级:0810901姓名:蔡育群学号:2009212409指导老师: 张开碧,李敏,禄盛实验一SolidWorks 入门一、实验目的及要求熟悉 SolidWorks 工作环境,通过图形绘制掌握基准面的概念及 SolidWorks 作图流程。

二、实验内容(一)“手镯”绘制(二)“斜板”绘制三、实验步骤(一)“手镯”绘制1. 选择前视基准面,以原点为圆心,绘制手镯路径草图并标注尺寸Φ60;2. 选择上视基准面,绘制手镯轮廓草图并标注尺寸Φ6;按下“ctrl”键同时单击选择Φ6 圆心和Φ60 轮廓,添加几何关系“穿透”。

3. 为便于观测将视图以等轴测方向显示;4. 扫描生成手镯;5. 设置实体颜色及材质。

(二)“斜板”绘制6. 选择前视基准面;7. 绘制中心线;(草图绘制实体--->中心线)8. 绘制Φ35,Φ60 两圆并且标注两圆中心距尺寸 100;(草图绘制实体--->圆;标注尺寸--->智能尺寸)9. 绘制直线;添加相切几何关系;(草图绘制实体--->直线)10. 添加相切几何关系;(按下 ctrl 键,在右侧激活的属性栏中单击需要添加的几何关系)11. 裁直线;(草图绘制工具--->裁剪,选择裁剪到最近端选项)12. 镜像直线;(草图绘制工具--->镜像,正确选择镜像点和要镜像的实体)13. 裁剪圆弧;(草图绘制工具--->裁剪,选择裁剪到最近端选项)414. 删除直径尺寸;标注半径尺寸;(选中直径尺寸后按下 delete 键删除;标注尺寸---> 智能尺寸)15. 拉伸生成斜板四、实验心得与思考solidworks是一款很好的画图软件,跟我以前接触到的autocad不一样的是,solidworks 是直接根据草图画三维的图像的,这一点比autocad有趣的多些.实验二草图绘制一、实验目的及要求熟练掌握草图绘制工具的操作方法;掌握尺寸的标注、修改方法;掌握几何关系的添加、删除、修改方法;二、实验内容(一)“烛台草图”绘制(二)“壳体”绘制三、实验步骤(一)“烛台”绘制先打开solidworks,然后画好草图,然后标注尺寸;画中心线;然后退出草图,旋转草图;(二)“壳体”绘制先画好草图,然后标注好相应的尺寸,标注尺寸的时候要注意,千万不要过定义;然后退出草图,拉伸草图;四、实验心得与思考1. 草图的构成:草图中包含的三方面信息为形状、几何关系、尺寸标注。

计算机图形学实验报告

计算机图形学实验报告

计算机图形学实验报告计算机图形学实验报告引言计算机图形学是研究计算机生成和处理图像的学科,它在现代科技和娱乐产业中扮演着重要的角色。

本实验报告旨在总结和分享我在计算机图形学实验中的经验和收获。

一、实验背景计算机图形学实验是计算机科学与技术专业的一门重要课程,通过实践操作和编程,学生可以深入了解图形学的基本原理和算法。

本次实验主要涉及三维图形的建模、渲染和动画。

二、实验内容1. 三维图形建模在实验中,我们学习了三维图形的表示和建模方法。

通过使用OpenGL或其他图形库,我们可以创建基本的几何体,如立方体、球体和圆柱体,并进行变换操作,如平移、旋转和缩放。

这些基本操作为后续的图形处理和渲染打下了基础。

2. 光照和着色光照和着色是图形学中重要的概念。

我们学习了不同的光照模型,如环境光、漫反射和镜面反射,并了解了如何在三维场景中模拟光照效果。

通过设置材质属性和光源参数,我们可以实现逼真的光照效果,使物体看起来更加真实。

3. 纹理映射纹理映射是一种将二维图像映射到三维物体表面的技术。

通过将纹理图像与物体的顶点坐标相对应,我们可以实现更加细致的渲染效果。

在实验中,我们学习了纹理坐标的计算和纹理映射的应用,使物体表面呈现出具有纹理和细节的效果。

4. 动画和交互动画和交互是计算机图形学的重要应用领域。

在实验中,我们学习了基本的动画原理和算法,如关键帧动画和插值技术。

通过设置动画参数和交互控制,我们可以实现物体的平滑移动和变形效果,提升用户体验。

三、实验过程在实验过程中,我们首先熟悉了图形库的使用和基本的编程技巧。

然后,我们按照实验指导书的要求,逐步完成了三维图形建模、光照和着色、纹理映射以及动画和交互等任务。

在实验过程中,我们遇到了许多挑战和问题,但通过不断的尝试和调试,最终成功实现了预期的效果。

四、实验结果通过实验,我们成功实现了三维图形的建模、渲染和动画效果。

我们可以通过键盘和鼠标控制物体的移动和变形,同时观察到真实的光照效果和纹理映射效果。

计算机图形学划线实验报告

计算机图形学划线实验报告

计算机图形学划线实验报告《计算机图形学》实验报告实验⼀直线、圆(弧)⽣成算法⼀、实验⽬的及要求1. 了解光栅图形显⽰器的⼯作原理和特点;2. 学习C/VC环境下的基本绘图⽅法;3. 实践与巩固直线的基本⽣成算法。

4. 掌握直线扫描转换算法的原理及实现;5. 学习圆(弧)的基本⽣成算法;6. 实践圆(弧)的基本⽣成算法;7. 掌握圆弧扫描转换算法的原理及实现;⼆、理论基础1、有关直线⽣成算法有DDA(数值微分)、中点画线线算法、Bresenham⽣成算法数值微分法先算出直线的斜率,然后从起点开始,确定最佳逼近于直线的y坐标。

假设起点的坐标为整数。

让x递增1,y相应递增k。

中点划线算法中若直线在x⽅向增加⼀个单位,y的增量只能在0、1之间。

假设当前像素点已经确定,下⼀像素点就只可能有两种情况,将这两点的中点带⼊直线⽅程中,通过中点在直线的上、下⽅来判断下⼀点的坐标。

Bresenham算法是通过各⾏、各列像素中⼼构造⼀组虚拟⽹络格线,按直线从起点到中点的顺序计算直线与各垂直⽹格线的交点,然后确定该列像素中与此交点最近的像素。

2、有关画圆的算法圆的扫描转换(中点画圆法)、Bresenham画圆算法圆的扫描转换算法同中点画线类似,将圆分为8份,先讨论圆的第⼀象限上半部分,从(0,R)点顺时针确定最佳逼近于该圆弧的像素序列。

之后通过对称画出全部圆。

Bresenham画圆算法考虑圆在第⼀象限上的点,每确定⼀像素,则下⼀像素有三种可能,通过判断右下⽅的像素与圆的位置关系再分为三种情况,之后通过这三个点与圆的距离远近确定最佳逼近像素。

三、算法设计与分析1、数值微分法int x0=0,y0=0,x1=800,y1=400; //数值微分法,|k|<=1float dx,dy,k,x,y;dx=x1-x0;dy=y1-y0;k=dy/dx;y=y0;for(x=x0;x<=x1;x++){pDC->SetPixel(x,int(y+0.5),color);y=y+k;}该程序中每⼀步的x、y值是⽤前⼀步的值加上⼀个增量来获得的。

图形图像处理实验报告范本

图形图像处理实验报告范本

2012-2013学年第一学期《现代教育技术》实验报告
学院闽江学院系:系专业:年级:
姓名:学号:_ 报告退发:(订正、重做)实验日期:201 年月日交报告日期:201 年月日
指导教师签字:成绩:
实验一图像图形处理
一、实验目的
1、掌握影像处理的基本方法
2、熟悉各种工具、命令、对话框和调色板的使用
3、掌握精确选取复杂选区的方式、方法和技巧
4、掌握利用photoshop进行图像合成以及利用图层样式进行素材制作的方法。

二、实验内容
1、利用各种工具制作一课件封面图。

2、利用图层样式制作一按钮。

三、实验器材
1、计算机
2、photoshop等软件
四、实验步骤
内容1:利用各种工具制作一课件封面图
内容2:利用图层样式制作一按钮
五、实验心得与体会
1。

计算机图形学实验Bresenham算法

计算机图形学实验Bresenham算法
二、实验思想
根据理想直线的斜率k,除垂线外(k=±∞)将直线划分为k>1、0≤k≤1、-1≤k<0和k<-1四种情况。当0≤k≤1时或-1≤k<0时,x方向为主位移方向;当k>1时或k<-1时,y方向为主位移方向。对于|k|=∞的垂线,可以直接画出。
具体算法:
1.确定主位移方向。在主位移方向上每次加1,另一个方向上加不加1,取决于中点误差项。
if(y0>y1)
{
double tx=x0;
double ty=y0;
x0=x1;y0=y1;
x1=tx;
y1=ty;
}
x=x0;y=y0;
d=1-0.5*k;
for(y=y0;y<=y1;y++)
{
dc.SetPixel(ROUND(x),ROUND(y),rgb);
if(d>=0)
{
x++;
d+=1-k;
}
else
d+=1;
}
}
if(k<-1)
{
if(y0<y1)
{
double tx=x0;
double ty=y0;
x0=x1;y0=y1;
x1=tx;
y1=ty;;
for(y=y0;y>y1;y--)
{
dc.SetPixel(ROUND(x),ROUND(y),rgb);
if(d>0)
{
y--;
d-=1+k;
}
else
d-=k;
}
}
if(fabs(x0-x1)<1e-6)
{
if(y0>y1){
double tx=x0;

计算机图形学实验一

计算机图形学实验一

计算机图形学实验一文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]实验一二维基本图元的生成与填充实验目的1.了解并掌握二维基本图元的生成算法与填充算法。

2.实现直线生成的DDA算法、中点算法和Bresenham算法。

3.实现圆和椭圆生成的DDA和中点算法, 对几种算法的优缺点有感性认识。

二.实验内容和要求1.选择自己熟悉的任何编程语言, 建议使用VC++。

2.创建良好的用户界面,包括菜单,参数输入区域和图形显示区域。

3.实现生成直线的DDA算法、中点算法和Bresenham算法。

4.实现圆弧生成的中点算法。

5.实现多边形生成的常用算法, 如扫描线算法,边缘填充算法。

6.实现一般连通区域的基于扫描线的种子填充算法。

7.将生成算法以菜单或按钮形式集成到用户界面上。

8.直线与圆的坐标参数可以用鼠标或键盘输入。

6. 可以实现任何情形的直线和圆的生成。

实验报告1.用户界面的设计思想和框图。

2.各种实现算法的算法思想。

3.算法验证例子。

4.上交源程序。

直线生成程序设计的步骤如下:为编程实现上述算法,本程序利用最基本的绘制元素(如点、直线等),绘制图形。

如图1-1所示,为程序运行主界面,通过选择菜单及下拉菜单的各功能项分别完成各种对应算法的图形绘制。

图1-1 基本图形生成的程序运行界面2.创建工程名称为“基本图形的生成”单文档应用程序框架(1)启动VC,选择“文件”|“新建”菜单命令,并在弹出的新建对话框中单击“工程”标签。

(2)选择MFC AppWizard(exe),在“工程名称”编辑框中输入 “基本图形的生成”作为工程名称,单击“确定”按钮,出现Step 1对话框。

(3)选择“单个文档”选项,单击“下一个”按钮,出现Step 2对话框。

(4)接受默认选项,单击“下一个”按钮,在出现的Step 3~Step 5对话框中,接受默认选项,单击“下一个”按钮。

(5)在Step 6对话框中单击“完成”按钮,即完成“基本图形的生成”应用程序的所有选项,随后出现工程信息对话框(记录以上步骤各选项选择情况),如图1-2所示,单击“确定”按钮,完成应用程序框架的创建。

计算机图形学报告

计算机图形学报告

沈阳航空航天大学计算机图形学实验报告班级:34140102学号:20130 姓名:成绩:指导教师:实验一:OpenGL绘制球体线框图1.实验目的:本实验要求熟悉OpenGL基本图元函数的使用。

通过使用OpenGL及GLUT库在Visual C++环境下编写图形绘制程序掌握图形绘制的一般框架,从而为进一步做综合性的图形绘制实验奠定基础2.实验要求:编写一个程序,在窗口中显示一个旋转的球体线框,利用光标键可启动图形旋转切换视点。

3.实验过程:先配置环境,把相关文件放到相应的文件夹C:\Program Files\Microsoft Visual Studio\VC98\Include\GL C:\WINDOWS\system32 C:\Program Files\Microsoft Visual Studio\VC98\Lib建一个新工程,比照pdf敲代码再通过VC++进行编译4.实验结果:程序运行后,弹出窗口,使用光标键可使球体旋转。

代码:include <windows.h>#include <math.h>#include <gl/gl.h>#include <gl/glu.h>#include <gl/glaux.h>void init();void CALLBACK reshapae(GLsizei w,GLsizei h);void CALLBACK display();GLfloat s, h;//回调函数,绘制窗口时调用void CALLBACK display(){//清空窗口设置背景为白色glClearColor(1, 1, 1, 1);glClear(GL_COLOR_BUFFER_BIT);//取景变换glLoadIdentity();gluLookAt(5, 5, h, s, 0, 0, 0, 1, 0);//glRotatef(30,1,1,0);//设置前景色为黑色glColor3f(0,0,0);//绘图开始,两条水平平行线GLfloat RAD = 3.1415926/180;GLfloat x, y, z, r;int i, j;for(i = 0; i < 180; i+=5){glBegin(GL_LINE_LOOP);r = 2 * sin(i * RAD);z = 2 * cos(i * RAD);for(j = 0; j <= 360; j+=10){x = r * cos(j * RAD);y = r * sin(j * RAD);glVertex3f(x, y, z);}glEnd();}for(j = 0; j < 360; j+=10){glBegin(GL_LINE_LOOP);for(i = 0;i <=180; i+=5){r = 2 * sin(i * RAD);z = 2 * cos(i * RAD);x = r * cos(j * RAD);y = r * sin(j * RAD);glVertex3f(x, y, z);}glEnd();}//清空帧缓存glFlush();}//OpenGL初始化,设置颜色为单一着色模式void init(){glShadeModel(GL_FLAT);s = 0;h = 5;}//回调函数,窗口初始化和大小改变时,调用此函数void CALLBACK reshape(GLsizei w,GLsizei h){//设置当前矩阵为投影变换矩阵glMatrixMode(GL_PROJECTION);//设置投影变换glLoadIdentity();gluPerspective(30, 1, -3, 3);//设置当前矩阵为模式变换矩阵glMatrixMode(GL_MODELVIEW);//设置视区变换glViewport(0, 0, w, h);}void CALLBACK Left(){s+=0.1;}void CALLBACK Right(){s-=0.1;}void CALLBACK Up(){h-=0.1;}void CALLBACK Down(){h+=0.1;}void main(){//设置OpenGL的显示模式:单缓存、RGB模式auxInitDisplayMode(AUX_SINGLE|AUX_RGB);//设置窗口位置、大小和标题auxInitPosition(0, 0, 300, 300);auxInitWindow("OpenGL Demo");init();//设置回调函数auxKeyFunc(AUX_LEFT,Left);auxKeyFunc(AUX_RIGHT,Right);auxKeyFunc(AUX_UP,Up);auxKeyFunc(AUX_DOWN,Down);auxReshapeFunc(reshape);auxMainLoop(display);}5.实验心得:对vc下opengl的配置还是花费了很多时间,通过本次试验,熟悉了OpenGL基本图元函数的使用,通过使用OpenGL及GLUT库在Visual C++环境下编写图形绘制程序掌握图形绘制的一般框架,从而为进一步做综合性的图形绘制实验奠定基础。

计算机图形学实验(全)

计算机图形学实验(全)

计算机图形学实验(全)实验1 直线的绘制实验目的1、通过实验,进一步理解和掌握DDA和Bresenham算法;2、掌握以上算法生成直线段的基本过程;3、通过编程,会在TC环境下完成用DDA或中点算法实现直线段的绘制。

实验环境计算机、Turbo C或其他C语言程序设计环境实验学时2学时,必做实验。

实验内容用DDA算法或Besenham算法实现斜率k在0和1之间的直线段的绘制。

实验步骤1、算法、原理清晰,有详细的设计步骤;2、依据算法、步骤或程序流程图,用C语言编写源程序;3、编辑源程序并进行调试;4、进行运行测试,并结合情况进行调整;5、对运行结果进行保存与分析;6、把源程序以文件的形式提交;7、按格式书写实验报告。

实验代码:DDA:# include abs(dy))epsl=abs(dx);elseepsl=abs(dy);xIncre=(float)dx/(float)epsl;yIncre=(float)dy/(float)epsl;for(k=0;k#includevoid BresenhamLine(int x0,int y0,int x1,int y1,int color) {int x,y,dx,dy,e;dx=x1-x0;dy=y1-y0;e=-dx;x=x0;y=y0;while(x0){y++;e=e-2*dx;}}}main(){int gdriver ,gmode ; gdriver = DETECT;initgraph( BresenhamLine(0, 0 , 120, 200,5 );getch ( );closegraph ( );}实验2 圆和椭圆的绘制实验目的1、通过实验,进一步理解和掌握中点算法;2、掌握以上算法生成椭圆或圆的基本过程;3、通过编程,会在TC环境下完成用中点算法实现椭圆或圆的绘制。

实验环境计算机、Turbo C或其他C语言程序设计环境实验学时2学时,必做实验。

计算机图形学实验报告

计算机图形学实验报告

计算机图形学实验报告一、实验目的本次计算机图形学实验旨在深入了解和掌握计算机图形学的基本原理、算法和技术,通过实际操作和编程实现,提高对图形生成、处理和显示的能力,培养解决实际图形问题的思维和实践能力。

二、实验环境本次实验使用的编程语言为 Python,借助了相关的图形库如Pygame 或 matplotlib 等。

开发环境为 PyCharm 或 Jupyter Notebook。

三、实验内容(一)二维图形的绘制1、直线的绘制使用 DDA(Digital Differential Analyzer)算法或 Bresenham 算法实现直线的绘制。

通过给定直线的起点和终点坐标,在屏幕或图像上绘制出直线。

比较两种算法的效率和准确性,分析其优缺点。

2、圆的绘制采用中点画圆算法或 Bresenham 画圆算法绘制圆。

给定圆心坐标和半径,生成圆的图形。

研究不同半径大小对绘制效果和计算复杂度的影响。

(二)图形的填充1、多边形填充实现扫描线填充算法,对任意多边形进行填充。

处理多边形的顶点排序、交点计算和填充颜色的设置。

测试不同形状和复杂度的多边形填充效果。

2、图案填充设计自定义的填充图案,如纹理、条纹等,并将其应用于图形填充。

探索如何通过改变填充图案的参数来实现不同的视觉效果。

(三)图形的变换1、平移、旋转和缩放对已绘制的图形(如矩形、三角形等)进行平移、旋转和缩放操作。

通过矩阵运算实现这些变换。

观察变换前后图形的位置、形状和方向的变化。

2、组合变换将多个变换组合应用于图形,如先旋转再平移,或先缩放再旋转等。

分析组合变换的顺序对最终图形效果的影响。

(四)三维图形的表示与绘制1、三维坐标变换学习三维空间中的平移、旋转和缩放变换矩阵,并将其应用于三维点的坐标变换。

理解如何将三维坐标映射到二维屏幕上显示。

2、简单三维图形绘制尝试绘制简单的三维图形,如立方体、球体等,使用线框模型或表面模型。

探讨不同的绘制方法和视角对三维图形显示的影响。

计算机图形学实验报告

计算机图形学实验报告

实验一:二维图形的绘制和变换一、实验目的掌握基本的图形学算法,熟悉VC下图形学的编程,初步了解并使用OpenGL 绘制图形。

二、实验内容二维图形的绘制和变换,绘制包括直线、三角形、矩形,变换包括平移、旋转、缩放。

三、实验原理二维图形的绘制和变换:在图形系统中,矩阵是实现变换的标准方法。

平移变换、旋转变换和缩放变换的矩阵表示形式如下。

平移变换:P’=P+T。

旋转变换:P’=R*P。

缩放变换:P’=S*P。

引入齐次坐标后,平移、旋转和缩放变换的矩阵表示形式如下所示。

(1)平移变换:[1 0 0][x’, y’, 1] = [x, y, 1] [0 1 0][tx ty 1](2)旋转变换:[cosɵsinɵ0][x’, y’, 1] = [x, y, 1] [-sinɵcosɵ0][0 0 1](3)缩放变换:[s x0 0][x’, y’, 1] = [x, y, 1] [0 s y0][0 0 1]四、实验代码及结果1.编写对一个三角形分别实现平移、缩放、旋转等变化的源码及效果图。

实验核心代码void display(void){glClear (GL_COLOR_BUFFER_BIT);glColor3f (1.0, 1.0, 1.0);glLoadIdentity ();glColor3f (1.0, 1.0, 1.0);glTranslatef(-100.0,-50.0,1.0);draw_triangle ();glLoadIdentity ();glTranslatef (0.0, 100.0, 1.0);draw_triangle ();glLoadIdentity ();glRotatef (90.0, 0.0, 0.0, 1.0);draw_triangle ();glLoadIdentity ();glScalef (0.5, 0.5, 1.0);draw_triangle ();glFlush ();}2. 实现如图功能#include<windows.h>#include <GL/glut.h>#include <stdlib.h>void init(void){glClearColor (0.0, 0.0, 0.0, 0.0);glShadeModel (GL_SMOOTH); }void draw_triangle(void){glShadeModel(GL_SMOOTH);glColor3f(0.2,0.7,0.30);glBegin (GL_TRIANGLES);//画出三角形,为混合色填充方式glVertex2f(50.0, 25.0);glColor3f(0.4,0.5,0.60);glVertex2f(150.0, 25.0);glColor3f(0.9,0.7,0.8);glVertex2f(100.0, 100.0);glEnd();}void display(void){glClear (GL_COLOR_BUFFER_BIT);glColor3f (1.0, 1.0, 1.0);glLoadIdentity ();glColor3f (1.0, 1.0, 1.0);glTranslatef(-100.0,-50.0,1.0);draw_triangle ();glLoadIdentity ();glTranslatef (0.0, 100.0, 1.0);glRotatef (90.0, 0.0, 0.0, 1.0);glScalef (0.5, 0.5, 1.0);draw_triangle ();//经过三种变换后画出图形glFlush ();}void reshape (int w, int h){glViewport (0, 0, (GLsizei) w, (GLsizei) h);glMatrixMode (GL_PROJECTION);glLoadIdentity ();if (w <= h)gluOrtho2D (-200.0, 250.0, -100.0*(GLfloat)h/(GLfloat)w,200.0*(GLfloat)h/(GLfloat)w);//调整裁剪窗口elsegluOrtho2D (-200.0*(GLfloat)w/(GLfloat)h,250.0*(GLfloat)w/(GLfloat)h, -50.0, 200.0);glMatrixMode(GL_MODELVIEW);int main(int argc, char** argv){glutInit(&argc, argv);glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);glutInitWindowSize (600, 600);glutInitWindowPosition (100, 100);glutCreateWindow (argv[0]);init ();glutDisplayFunc(display);glutReshapeFunc(reshape);glutMainLoop();return 0;}实验二:使用中点扫描算法绘制直线和圆一、实验目的掌握基本的图形学算法,熟悉VC下图形学的编程,初步了解并使用OpenGL 绘制图形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

位图的读取与显示物联一班谢鑫1231. 实验目的通过位图文件的解析,进一步理解位图文件的格式;熟悉Windows环境下图片的显示方式。

2. 实验内容在Windows环境下,通过解析位图文件的格式,读入位图并进行显示,不能使用Windows中已有的API(如LoadImage函数)读取位图文件,即自己实现LoadImage函数的功能:LoadImage(NULL, “lenna.bmp”, IMAGE_BITMAP, 0, 0, LR_LOADFROMFILE)三、实验原理及步骤:基本知识:BMP位图文件格式BMP位图文件中主要由4部分内容组成:1、文件头BITMAPFILEHEADER为一STRUCTURE:typedef struct tagBITMAPFILEHEADER {WORD bfType;//文件类型,必须为“BM”或0x424dDWORD bfSize;//文件大小WORD bfReserved1;//保留WORD bfReserved2;//保留DWORD bfOffBits;//从文件头到实际位图数据的偏移字节数} BITMAPFILEHEADER, FAR *LPBITMAPFILEHEADER, *PBITMAPFILEHEADER;2、位图信息头BITMAPINFOHEADER,定义如下:typedef struct tagBITMAPINFOHEADER{DWORD biSize;//structure sizeLONG biWidth;//image widthLONG biHeight;//image heightWORD biPlanes;//value is 1WORD biBitCount;//color bitsDWORD biCompression;//compression or notDWORD biSizeImage;//Image size=width*height( 其中width必须为4的倍数。

LONG biXPelsPerMeter;//LONG biYPelsPerMeter;DWORD biClrUsed;//DWORD biClrImportant;} BITMAPINFOHEADER, FAR *LPBITMAPINFOHEADER, *PBITMAPINFOHEADER;3、调色板typedef struct tagRGBQUAD {BYTE rgbBlue;BYTE rgbGreen;BYTE rgbRed;BYTE rgbReserved;} RGBQUAD;用于存放图像的颜色。

4、图像的实际数据。

对于2色图,用1位表示像素的值。

对于16色图,用4位表示像素的值。

对于256色图,一个字节刚好表示1个像素。

对于用到调色板的位图,图像数据就是该像素颜色在调色板中索引值,对于真彩色,不用调色板,三个字节的数据分别代表图像的B、G、R。

实验步骤:1、生成一名为Gsm的基于MFC的应用程序框架:选择file菜单new选项,在打开的窗口中选择project选项,选中MFC AppWizard(exe)。

并在project name输入Gsm ,选择存放project 的位置。

如下图所示。

选择确定,进入下一步。

选择single document,并在最后CdipView 类的基类中选择CscrollView,使应用程序视图具有滚动条。

2、在应用程序中加入具体的函数和变量。

在Class View中选择CGsmView单击右键选择添加成员变量,加入下列变量:public:int m_x;HBITMAP m_Bmp;LPVOID m_ColorList;LPBYTE m_Image;LPBITMAPINFOHEADER m_DibHead;enum allocate {None, crtallocate, heapallocate};allocate m_nBmpallocate;allocate m_nImageallocate;DWORD m_ImageSize;int m_nPalette;HANDLE m_hFile;HANDLE m_hMap;LPVOID m_lpvFile;HPALETTE m_hPalette;HGLOBAL m_hGlob;在Class View中选择CGsmView单击右键选择添加成员函数,把下列函数加入到C++View类中void SetPaletteSize(int nBitCount);void Clear();BOOL ReadFile(CFile *pFile);BOOL SetPalette();BOOL GetPalette();BOOL DibToDC(CDC* pDC,CSize size);BOOL MemToDib(LPVOID lmem);CSize GetDibSize();3、把对应函数代码拷贝到新的函数中;void CGsmView::SetPaletteSize(int nBitCount){if(m_DibHead->biSize != sizeof(BITMAPINFOHEADER)) {throw new CException;}m_ImageSize = m_DibHead->biSizeImage;if(m_ImageSize == 0) {DWORD dwBytes = ((DWORD) m_DibHead->biWidth *m_DibHead->biBitCount) / 32;if(((DWORD) m_DibHead->biWidth * m_DibHead->biBitCount) % 32){dwBytes++;}dwBytes *= 4;m_ImageSize = dwBytes * m_DibHead->biHeight;}m_ColorList = (LPBYTE) m_DibHead + sizeof(BITMAPINFOHEADER);if((m_DibHead == NULL) || (m_DibHead->biClrUsed == 0)) { switch(nBitCount) {case 1:m_nPalette = 2;break;case 4:m_nPalette = 16;break;case 8:m_nPalette = 256;break;case 16:case 24:case 32:m_nPalette = 0;break;default:ASSERT(FALSE);}}else {m_nPalette = m_DibHead->biClrUsed;}ASSERT((m_nPalette >= 0) && (m_nPalette <= 256));}void CGsmView::Clear(){if(m_hFile == NULL) return;::UnmapViewOfFile(m_lpvFile);::CloseHandle(m_hMap);::CloseHandle(m_hFile);m_hFile = NULL;if(m_nBmpallocate == crtallocate) {delete [] m_DibHead;}else if(m_nBmpallocate == heapallocate) {::GlobalUnlock(m_hGlob);::GlobalFree(m_hGlob);}if(m_nImageallocate == crtallocate) delete [] m_Image;if(m_hPalette != NULL) ::DeleteObject(m_hPalette);if(m_Bmp != NULL) ::DeleteObject(m_Bmp);m_nBmpallocate = m_nImageallocate = None;m_hGlob = NULL;m_DibHead = NULL;m_Image = NULL;m_ColorList = NULL;m_nPalette = 0;m_ImageSize = 0;m_lpvFile = NULL;m_hMap = NULL;m_hFile = NULL;m_Bmp = NULL;m_hPalette = NULL;}BOOL CGsmView::ReadFile(CFile *pFile){int nCount, nSize;BITMAPFILEHEADER bmfh;Clear();try {nCount = pFile->Read((LPVOID) &bmfh, sizeof(BITMAPFILEHEADER));if(nCount != sizeof(BITMAPFILEHEADER)) {throw new CException;}if(bmfh.bfType != 0x4d42) {throw new CException;}nSize = bmfh.bfOffBits - sizeof(BITMAPFILEHEADER);m_DibHead = (LPBITMAPINFOHEADER) new char[nSize];m_nBmpallocate = m_nImageallocate = crtallocate;nCount = pFile->Read(m_DibHead, nSize);SetPaletteSize(m_DibHead->biBitCount);GetPalette();m_Image = (LPBYTE) new char[m_ImageSize];nCount = pFile->Read(m_Image, m_ImageSize);}catch(CException* tmpc) {AfxMessageBox("文件读取错误");tmpc->Delete();return FALSE;}return TRUE;}BOOL CGsmView::SetPalette(){if(m_nPalette!=0)return FALSE;CClientDC dc(this);CDC *pDC=&dc;m_hPalette=::CreateHalftonePalette(pDC->GetSafeHdc());return TRUE;}BOOL CGsmView::GetPalette(){if(m_nPalette==0)return FALSE;if(m_hPalette!=NULL)::DeleteObject(m_hPalette);LPLOGPALETTE pTempPalette=(LPLOGPALETTE) new char[2*sizeof(WORD)+ m_nPalette*sizeof(PALETTEENTRY)]; pTempPalette->palVersion=0x30;pTempPalette->palNumEntries=m_nPalette;LPRGBQUAD pRGBQuad=(LPRGBQUAD)m_ColorList;for(int i=0;i<m_nPalette;i++){pTempPalette->palPalEntry[i].peRed=pRGBQuad->rgbRed;pTempPalette->palPalEntry[i].peGreen=pRGBQuad->rgbGreen;pTempPalette->palPalEntry[i].peBlue=pRGBQuad->rgbBlue;pTempPalette->palPalEntry[i].peFlags=0;pRGBQuad++;}m_hPalette=::CreatePalette(pTempPalette);delete pTempPalette;return TRUE;}BOOL CGsmView::DibToDC(CDC *pDC, CSize size){if(m_DibHead==NULL)return FALSE;if(m_hPalette!=NULL){HDC hdc=pDC->GetSafeHdc();::SelectPalette(hdc,m_hPalette,TRUE);}pDC->SetStretchBltMode(COLORONCOLOR);::StretchDIBits(pDC->GetSafeHdc(),0,0,size.cx,size.cy,0,0,m_DibHead->biWidth,m_DibHead->biHeight,m_Image,(LPBITMAPINFO)m_DibHead,DIB_RGB_COLORS,SRCCOPY);return TRUE;}BOOL CGsmView::MemToDib(LPVOID lmem){Clear();m_DibHead=(LPBITMAPINFOHEADER)lmem;SetPaletteSize(m_DibHead->biBitCount);m_Image=(LPBYTE)m_ColorList+sizeof(RGBQUAD)*m_nPalette;GetPalette();return TRUE;}CSize CGsmView::GetDibSize(){if(m_DibHead==NULL)return CSize(0,0);return CSize((int)m_DibHead->biWidth,(int)m_DibHead->biHeight); }4、编译检验没有出现错误;5、在程序资源中创建位图条为默认;6、修改OnInitialUpdate函数中的代码;void CGsmView::OnInitialUpdate(){CScrollView::OnInitialUpdate();m_x=25;CSize MaxSize(24000,32000);CSize MinSize(MaxSize.cx/100,MaxSize.cy/100);SetScrollSizes(MM_HIMETRIC,MaxSize,MaxSize,MinSize);LPVOID lFirstBMP=(LPVOID)::LoadResource(NULL,::FindResource(NULL,MAKEINTRESOURCE(IDB_BITMAP1),RT_BITMAP));MemToDib(lFirstBMP);}7、修改OnDraw函数中的代码;void CGsmView::OnDraw(CDC* pDC){CGsmDoc* pDoc = GetDocument();ASSERT_VALID(pDoc);BeginWaitCursor();CSize DibSize = GetDibSize();DibSize.cx *= m_x;DibSize.cy *= -m_x;DibToDC(pDC, DibSize);EndWaitCursor();}8、建立打开文件的消息响应函数在Menu中打开菜单编辑窗口,单击“文件”,在下拉菜单中选中“打开”,右键单击,在弹出菜单中选择“类向导”并打开。

相关文档
最新文档