概率论复习重点与习题
概率初步例题和知识点总结
概率初步例题和知识点总结一、概率的定义在一定条件下,重复进行试验,如果随着试验次数的增加,事件 A 发生的频率稳定在某个常数 p 附近,那么这个常数 p 就叫做事件 A 的概率,记作 P(A) = p。
概率是对随机事件发生可能性大小的度量。
例如,抛一枚均匀的硬币,正面朝上和反面朝上的概率都是 05。
二、概率的基本性质1、0 ≤ P(A) ≤ 1:任何事件的概率都在 0 到 1 之间,0 表示不可能发生,1 表示必然发生。
2、P(Ω) = 1:必然事件的概率为 1,其中Ω 表示样本空间,即所有可能结果的集合。
3、 P(∅)= 0:不可能事件的概率为 0,∅表示空集。
4、如果事件 A 与事件 B 互斥(即 A 和 B 不能同时发生),那么P(A∪B) = P(A) + P(B)。
三、古典概型古典概型是一种最简单的概率模型,具有以下两个特点:1、试验中所有可能出现的基本事件只有有限个。
2、每个基本事件出现的可能性相等。
古典概型的概率计算公式为:P(A) = A 包含的基本事件个数/基本事件的总数。
例如,一个盒子里有 3 个红球和 2 个白球,从中随机取出一个球,求取出红球的概率。
基本事件的总数为 5(3 个红球+ 2 个白球),取出红球包含的基本事件个数为 3,所以取出红球的概率为 3/5。
四、例题解析例 1:掷一枚质地均匀的骰子,求点数为奇数的概率。
解:掷一枚骰子,出现的点数有 1、2、3、4、5、6 共 6 种可能,其中奇数有 1、3、5 共 3 种。
所以点数为奇数的概率为 3/6 = 1/2。
例 2:从 1、2、3、4 这 4 个数字中,任意取出两个数字,求取出的两个数字都是奇数的概率。
解:从4 个数字中任意取出两个数字,共有6 种可能的结果:(1,2)、(1,3)、(1,4)、(2,3)、(2,4)、(3,4)。
其中两个数字都是奇数的结果有(1,3),共 1 种。
所以取出的两个数字都是奇数的概率为 1/6。
概率论期末考试题型、知识点和公式复习
概率论期末复习知识点第一章(A 卷 20 分, B 卷 22 分) 2. 二维连续型随机向量的联合概率密度、性质1. 事件的表式及其应用2. 事件的关系与运算3. 二维连续型随机向量的分布函数3. 概率性质及其应用4. 均匀分布4. 古典概型5. 二维正态分布5. 条件概率6. 边缘概率密度6. 全概率公式7. 随机变量的独立性7. 贝叶斯公式8. 二维随机向量的相关概率计算:O联合概率密度8. 事件的独立性重点重点:条件概率,全概率公式,贝叶斯公式O边缘概率密度第二章(A 卷 22 分, B 卷 20 分)O随机变量的独立性1. 离散型随机变量的概率分布第四章(A 卷 21 分, B 卷 26 分)2. 两点分布 1. 离散型随机变量的期望3. 二项分布 2. 连续型随机变量的期望4. 泊松分布 3. 随机变量函数的期望5. 概率密度函数及其性质 4. 方差6. 连续型随机变量的分布函数 5. 方差的性质7. 均匀分布 6. 协方差、协方差的性质8. 指数分布7. 相关系数O数学期望(随机变量及函数的数学期望)9. 标准正态分布、正态分布重点:O方差(离散型随机变量的方差)10. 随机变量相关的概率计算11. 离散型随机变量函数的概率分布O协方差和相关系数重点:O正态分布,二项分布第五章(A 卷 14 分, B 卷 12 分)O离散型随机变量及函数的概率分布1. 雪比切夫不等式的应用第三章(A卷23分,B卷20分)1. 离散型随机向量联合概率分布及分布函数2. 棣莫弗——拉普拉斯中心极限定理的应用重点:棣莫弗 ----- 拉普拉斯中心极限定理概率论期末公式复习对偶律:厂B AB , AB A B ; 概率的性质 1. P (? )=0;2. A,A,…,A n 两两互斥时: RAU AU …U A)= P (A)+…+P (A),3. P(A) 1P(A)( A 是 A 不发生)(D)4. 若 AB 则有:P (A ) w P( B ), P (AB = P (A ),RBA )=RB- RA> , RAU E )= R E ).5.P(A B) P(A) P(B) P(AB)(D), P ( B A )=P ( B )- P (AB )。
《概率论与数理统计》习题及答案
概率论与数理统计 第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。
2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。
3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率为 。
4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。
5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。
6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。
7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。
8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。
9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率为 。
10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A{}Y X B >=,则=)|(A B P 。
11、设B A ,是两事件,则B A ,的差事件为 。
12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。
13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。
14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。
15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。
16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。
17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。
概率论与数理统计重点总结及例题解析
概率论与数理统计重点总结及例题解析一:全概率公式和贝叶斯公式例:某厂由甲、乙、丙三个车间生产同一种产品,它们的产量之比为3:2:1,各车间产品的不合格率依次为8%,9%, 12% 。
现从该厂产品中任意抽取一件,求:(1)取到不合格产品的概率;(2)若取到的是不合格品,求它是由甲车间生产的概率。
(同步45页三、1)解:设A1,A2,A3分别表示产品由甲、乙、丙车间生产,B表示产品不合格,则A1,A2,A3为一个完备事件组。
P(A1)=1/2, P(A2)=1/3, P(A3)=1/6,P(B| A1)=0。
08,P(B| A2)=0。
09,P(B| A3)=0。
12.由全概率公式P(B) = P(A1)P(B| A1)+ P(A2)P(B| A2)+ P(A3)P(B| A3) = 0.09由贝叶斯公式:P(A1| B)=P(A1B)/P(B) = 4/9练习:市场上出售的某种商品由三个厂家同时供货,其供应量第一厂家为第二厂家的2倍,第二、三两厂家相等,而且第一、二、三厂家的次品率依次为2%,2%,4%。
若在市场上随机购买一件商品为次品,问该件商品是第一厂家生产的概率是多少?(同步49页三、1)【0.4 】练习:设两箱内装有同种零件,第一箱装50件,有10件一等品,第二箱装30件,有18件一等品,先从两箱中任挑一箱,再从此箱中前后不放回地任取2个零件,求:(同步29页三、5)(1)取出的零件是一等品的概率;(2)在先取的是一等品的条件下,后取的仍是一等品的条件概率. 解:设事件i A ={从第i 箱取的零件},i B ={第i 次取的零件是一等品} (1)P (1B )=P(1A )P (1B |1A )+P (2A )P(1B |2A )=52301821501021=+(2)P (1B 2B )=194.02121230218250210=+C C C C ,则P (2B |1B )=)()(121B P B B P = 0.485二、连续型随机变量的综合题 例:设随机变量X 的概率密度函数为⎩⎨⎧<<=others x x x f 020)(λ 求:(1)常数λ;(2)EX ;(3)P{1〈X<3};(4)X 的分布函数F (x)(同步47页三、2)解:(1)由⎰⎰==∞+∞-201)(xdx dx x f λ得到λ=1/2 (2)3421)(22===⎰⎰∞+∞-dx x dx x xf EX (3)⎰⎰===<<31214321)(}31{xdx dx x f x P (4)当x<0时,⎰∞-==xdt x F 00)(当0≤x<2时,⎰⎰⎰∞-∞-=+==xxx tdt dx dt t f x F 00241210)()(当x ≥2时,F(x )=1故201()02412x F x x x x <⎧⎪⎪=≤<⎨⎪≥⎪⎩练习:已知随机变量X 的密度函数为⎩⎨⎧≤≤+=others x b ax x f 010)(且E (X)=7/12。
公共课必考概率论单项知识点精讲及习题解析
公共课必考概率论单项知识点精讲及习题解析随着社会科技的飞速发展,人们对于数字化技术所带来的便利逐渐熟悉并接受,然而,这一便利的背后是大量的数学理论支撑,而概率论则是其中一个重要的分支。
在2023年的公共课考试中,概率论将成为必考内容之一。
本文将对概率论的单项知识点进行深入解析,同时提供相应的习题解析,以期对广大考生有所帮助。
一、概率基本概念概率是指某个事件发生的可能性。
在日常生活中,人们经常会涉及到概率的概念,比如抽奖、投资等。
而在概率论中,我们通常将一个问题转化成一个数学模型,通过数学方法进行分析和求解。
1、样本空间和事件样本空间是指一个试验中所有可能出现的结果的集合。
例如,一次掷骰子的样本空间为{1, 2, 3, 4, 5, 6}。
事件是指样本空间中的一个或多个元素所组成的集合。
例如,掷骰子出现的点数为偶数,这个事件可以表示为{2, 4, 6}。
2、事件的概率事件的概率是指该事件发生的可能性大小。
通常用P(A)表示事件A的概率,计算公式为:P(A) = 事件A发生的次数 / 总试验次数即,事件A发生的次数除以总试验次数,其中总试验次数指的是在相同的条件下,试验重复进行的次数。
二、概率的性质1、非负性对于任何事件A来说,其概率P(A)都是非负数,即P(A)≥0。
2、规范性对于样本空间Ω中的所有事件A,有0≤P(A)≤1。
3、完备性对于样本空间Ω来说,必有P(Ω)=1。
4、可减性对于任何事件A、B来说,有P(A∪B) = P(A)+P(B)-P(A∩B)。
其中,A∪B表示事件A和事件B的并集,即事件A或B发生的情况;A∩B表示事件A和事件B的交集,即事件A和B同时发生的情况。
三、条件概率条件概率是指在已知事件B发生的条件下,事件A发生的概率。
通常用P(A|B)表示事件A在事件B发生的条件下发生的概率,计算公式为:P(A|B) = P(A∩B) / P(B)其中,P(A∩B)表示事件A和B同时发生的概率,P(B)表示事件B 发生的概率。
《概率论与数理统计》综合复习资料全
《概率论与数理统计》综合复习资料一、填空题1、一个盒子中有10 个球,其中有 3 个红球, 2 个黑球, 5 个白球,从中取球两次,每次取一个(无放回),则:第二次取到黑球的概率为;取到的两只球至少有一个黑球的概率为。
2、 X 的概率密度为 f ( x)1 e x2 2 x 1(x) ,则DX。
3、已知随机变量X ~N(1,1),Y~N(3,1) 且 X 与Y 相互独立,设随机变量Z 2X Y 5,则EX;DX。
4、已知随机变量X 的分布列为X-102P k0.40.2p则: EX=;DX =。
5、设X与Y独立同分布,且X~N(2,22) ,则D( 3X2Y) =。
6、设对于事件A、B、 C有 P(A)P(B)1,P(ABC)1P(C),412P( AB) P( BC )P(AC)1。
,则 A 、 B、 C 都不发生的概率为87、批产品中一、二、三等品各占60% 、30%、 10%,从中任取一件,结果不是三等品,则取到的是二等品的概率为。
8、相互独立,且概率分布分别为1,1 y 3f (x)e ( x 1)x) ;( y)(,其它则:E(X Y)=;E(2X3 2 )=。
Y9 、已知工厂A、 B 生产产品的次品率分别为2%和1%,现从由A、 B 工厂分别占30%和70%的一批产品中随机抽取一件,发现是次品,则该产品是 B 工厂的概率为。
10、设X、Y的概率分布分别为, 1 x 54e4 y,y01/ 4( x);( y),,其它0y0则: E(X 2Y) =;(X 2 4 ) =。
E Y二、选择题1、设X 和 Y 相互独立,且分别服从N(1,22) 和N (1,1),则。
A .P{ X Y 1}1/ 2B.P{ X Y0}1/ 2C .P{ X Y0}1/ 2D.P{ X Y 1}1/ 22、已知P( A)0.4,P(B)0.6,P(B | A)0.5 ,则P( A B)。
A .1B.0.7C .0.8D .0.53、设某人进行射击,每次击中的概率为1/3,今独立重复射击10 次,则恰好击中 3 次的概率为。
概率论复习重点与习题
10)掌握正态分布及其性质:理解一般正态分布函
数与标准正态分布函数的关系,会查表求概率,正 态变量的线性变换仍然是正态变量.
m , : X ~ N
2
f x
1
2
e
x m 2
2 2
< x <
X ~ N 0, 1 :
x
1 2 e
x2 2
1)理解总体、简单随机样本、统计量、样本均值、 样本方差及样本矩的概念. 1 n 样本均值 X X i , n i 1 n n 1 1 2 2 2 2 样本方差 S [ X n X ] ( X X ) i i n 1 i 1 n 1 i 1 1 n 样本k 阶原点矩 Ak X i k k 1,2, n i 1 1 n 样本k 阶中心矩 Bk ( X i X ) k k 1,2, n i 1
(7)若随机事件 A 与 B 相互独立,则
A 与 B、A 与 B 、A 与 B 也相互独立.
(8)若
A1 , A2 ,An 是相互独立的事件,则
P ( A1 A2 An )
1 P ( A1 A2 An ) 1 P ( A1 ) P ( A2 ) P ( An )
A A , A A
2)掌握概率的定义及性质,会求常用的古典概型 中的 概率; ,则 (1) 若A1 , A2 ,是两两互不相容事件 P ( A1 A2 ) P ( A1) P ( A2 )
(2) 若A1 , A2 ,, An 是两两互不相容事件 ,则 P ( A1An )
7)掌握泊松分布;
P{X k }
k
概率论重点和题型整合
概率论与数理统计考点归纳第一章1.1样本空间(P2),互不相容与互斥的概念(P4)1.2概率的性质:性质4和性质6(P10)1.3古典概型(简单的)1.4全概率公式和贝叶斯公式(P21-22考大题)1.5相互独立的公式(P24)第二章2.1不考2.2—2.4考填空和选择2.5考大题第三章3.1例4(P65-66考大题),二维均匀分布(P66-67) 3.2定义2和定义4(P72,P74)3.3卷积公式(P81)第四章4.1,4.2期望,方差的性质(可能考证明题)常见分布的期望,方差(书上96-97页例1,2,3,4,和99页例7,8的结论,特别是泊松分布和指数分布)4.3协方差的性质:P103第④⑥个相关系数的性质:P105第(3)个4.4中心极限定理(P113考大题)第五章5.1统计量(P127)5.2定义1,2,3,卡方分布的期望和方差,t分布(可能考证明题)5.3定理1,2,3(P139)第六章6.1评价估计量的三条标准(P150)6.2矩估计法,最大似然估计法(考大题)6.3不考6.4记住4个置信区间(P168-170,4.1,4.2,4.3,4.4)第七章7.1,7.2假设检验的两类错误(P181填空,选择),假设检验的一般步骤(考大题)概率论与数理统计重点内容1、古典概型中相关概率的计算;2、条件概率;乘法公式;全概率公式(应用题);贝叶斯公式(应用题);3、如何由概率分布或者密度函数求分布函数?或者由分布函数求概率分布或密度函数?4、如何求期望?5、如何求方差?6、如何求协方差和相关系数?7、中心极限定理的应用(应用题);8、点估计的常用方法:矩估计法和最大似然估计,尤其要注意最大似然估计法;9、假设检验;10、随机变量函数的分布函数的求法。
上述相关概念的定义,相关性质,计算公式及如何运用解决应用题等必须掌握好。
其它没有列为重点内容的也可能出现在填空题或者选择题中,但是正常情况比例不高。
概率论复习题及答案
概率论与数理统计复习题一.事件及其概率1. 设A, B, C 为三个事件,试写出下列事件的表达式:(1) A, B, C 都不发生;(2) A, B, C 不都发生;(3) A, B, C 至少有一个发生;(4) A, B, C 至多有一个发生。
解:(1) ABC A B C(2) ABC A B C(3) A B C(4) BC AC AB2. 设A , B 为两相互独立的随机事件, P( A)0.4 , P(B) 0.6 ,求P( A B), P( A B ), P( A | B) 。
解:P( A B) P( A) P(B) P( AB ) P( A) P(B) P( A)P( B) 0.76 ;P( A B) P( AB ) P( A)P( B) 0.16, P( A | B) P(A) 0.4 。
3. 设A, B 互斥,P(A) 0.5 ,P(A B) 0.9 ,求P( B ), P( A B) 。
解:P(B) P(A B) P( A) 0.4, P( A B) P( A) 0.5 。
4. 设P( A) 0.5, P(B) 0.6, P( A | B) 0.5,求P( A B), P( AB) 。
解:P( AB ) P( B)P( A | B) 0.3, P( A B) P( A) P( B) P( AB) 0.8,P( AB ) P( A B) P(A) P( AB ) 0.2 。
5. 设A, B, C 独立且P( A) 0.9, P( B) 0.8, P(C ) 0.7, 求P( A B C) 。
解:P( A B C) 1 P( A B C ) 1 P( ABC ) 1 P( A)P(B) P(C) 0.994 。
6. 袋中有4 个黄球,6 个白球,在袋中任取两球,求(1) 取到两个黄球的概率;(2) 取到一个黄球、一个白球的概率。
解:(1) P2 1 14 ;(2) P 4 6C 8。
概率论期末总复习必考题型
复习重点题目第一章p13例2、p14例5、习题一20、25第二章p34 例7、8;习题二15、24。
第三章p58 例2、例5、p61 例5、p63 例1、习题三5。
第四章习题四13、14、15、16。
第七章P139 例4、P148 例2、习题七P157 1、P159 13。
第八章例4、例5、习题八3、6。
例 1.5.2 设袋中装有r 只红球,t 只白球,每次自袋中任取一只球,观察其颜色然后放回,并再放入 a 只与所取出的那只球同色的球,若在袋中连续取球 4 次,试求第一、二次取到红球且第三、四次取到白球的概率。
解以A i(i 1,2,3,4)表示事件“第i次取到红球”,则A3, A4 分别表示事件“第三、四次取到白球” 。
所求概率为:P( A1 A2 A3 A4 ) P(A4 | A1 A2 A3)P( A3 | A1A2 )P( A2 |A1)P(A1)t a t r a rr t 3a r t 2a r t a r t例 1.5.4 八支枪中,有三支未经试射校正,五支已经试射校正。
校正过的枪射击时,中靶的概率为0.8,未校正的枪射击时,中靶的概率为0.3,今从8 支枪中任取一支射击中靶。
问所用这枪是校正过的概率是多少?解设事件8 8 10 45A ={射击中靶}B 1={ 任取一枪是校正过的 }, B 2 ={任取一枪是未校正过的 }, B 1, B 2构成完备事件组 ,则 P(B 1) 5/8,P(B 2) 3/8,P(A |B 1) 0.8,P(A|B 2) 0.3, 故所求概率为P(B 1 | A) P(B 1)P(A|B 1)/[P(B 1)P(A|B 1) P(B 2)P(A|B 2)] 40/49 0.816习题一、20.已知在 10 只晶体管中有 2 只次品,在其中取两次,每次任取一 只,作不放回抽样。
求下列事件的概率: (1)两只都是正品; (2)两只都是次品;(3)一只是正品,一只是次品; (4)第二次取出的是次品。
概率论知识点整理及习题答案
概率论知识点整理及习题答案概率论知识点整理及习题答案第一章随机事件与概率1.对立事件与互不相容事件有何联系与区别?它们的联系与区别是:(1)两事件对立(互逆),必定互不相容(互斥),但互不相容未必对立。
(2)互不相容的概念适用于多个事件,但对立的概念仅适用于两个事件。
(3)两个事件互不相容只表示两个事件不能同时发生,即至多只能发生其中一个,但可以都不发生。
而两个事件对立则表明它们有且仅有一个发生,即肯定了至少有一个发生。
特别地,=A、AU= 、AI=φ。
2.两事件相互独立与两事件互不相容有何联系与区别?两事件相互独立与两事件互不相容没有必然的联系。
我们所说的两个事件A、B相互独立,其实质是事件A是否发生不影响事件B发生的概率。
而说两个事件A、B互不相容,则是指事件A发生必然导致事件B不发生,或事件B发生必然导致事件A不发生,即AB=φ,这就是说事件A是否发生对事件B发生的概率有影响。
3.随机事件与样本空间、样本点有何联系?所谓样本空间是指:随机试验的所有基本事件组成的集合,常用来记。
其中基本事件也称为样本点。
而随机事件可看作是有样本空间中具有某种特性的样本点组成的集合。
通常称这类事件为复合事件;只有一个样本点组成的集合称为基本事件。
在每次试验中,一定发生的事件叫做必然事件,记作。
而一定不发生的事件叫做不可能事件,记作φ。
为了以后讨论问题方便,通常将必然事件和不可能事件看成是特殊的随机事件。
这是由于事件的性质随着试验条件的变化而变化,即:无论是必然事件、随机事件还是不可能事件,都是相对“一定条件”而言的。
条件发生变化,事件的性质也发生变化。
例如:抛掷两颗骰子,“出现的点数之和为3点”及“出现的点数之和大于33点”,则是不可能事件了;而“出现的点数之和大于3点”则是必然事件了。
而样本空间中的样本点是由试验目的所确定的。
例如:(1)={3,4,5,L,18}。
(2)将一颗骰子连续抛掷三次,观察六点出现的次数,其样本空间为 ={0,1,2,3}。
概率论与数理统计总复习知识点归纳
D( X ) E( X 2 ) E 2 ( X ), Cov( X ,Y ) E( XY ) EXEY
XY Cov( X ,Y ) / D( X )D(Y )
⑴ E(aX+b)=aE(X)+b,D(aX+b)=a2D(X)
⑵ E(∑iλi Xi)=∑i λi E(Xi)
(3) D(λ1X±λ2Y)=λ12D(X)+λ22D(Y) ±2λ1λ2Cov(X,Y)
0.587
法二 用Bayes公式:
P (C) = 0.1, P(C ) 0.9;
P (D/C) = 0.3*0.8+0.7*0.2,
P(D / C ) 0.3*0.2.
C
C
于是有
D
P(C / D)
P(C ) P(D / C )
P(C) P(D / C) P(C ) P(D / C )
i 1
i 1
i 1
例3 已知X~ f(x),求Y= -X2的概率密度。 解 用分布函数法。
y<0 时,FY(y) = P(Y≤y) = P(-X2 ≤y) P(X y) P(X y)
FX ( y ) [1 FX ( y )] y≥0 时, FY(y) = P(Y≤y) =1
于是Y的概率密度为
fY ( y) fX (
y)
1 2
( y)1/ 2
fX
(
y ) 1 ( y)1/2 2
1 2
(
y)1/ 2[
fX
(
y) fX (
y )] , y 0
fY (y) 0 , y 0
例4 设二维随机变量(X,Y )的联合密度函数为:
f
( x,
y)
概率论复习重点与习题48页PPT
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
概率论复பைடு நூலகம்重点与习题
41、俯仰终宇宙,不乐复何如。 42、夏日长抱饥,寒夜无被眠。 43、不戚戚于贫贱,不汲汲于富贵。 44、欲言无予和,挥杯劝孤影。 45、盛年不重来,一日难再晨。及时 当勉励 ,岁月 不待人 。
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
概率论与数理统计例题和知识点总结
概率论与数理统计例题和知识点总结概率论与数理统计是一门研究随机现象统计规律的学科,它在自然科学、工程技术、经济管理、社会科学等众多领域都有着广泛的应用。
下面将通过一些例题来帮助大家理解和掌握这门学科的重要知识点。
一、随机事件与概率随机事件是指在一定条件下,可能出现也可能不出现的事件。
概率则是衡量随机事件发生可能性大小的数值。
例 1:抛掷一枚均匀的硬币,求正面朝上的概率。
解:因为硬币只有正反两面,且质地均匀,所以正面朝上的概率为1/2。
知识点:古典概型中,事件 A 的概率 P(A) = A 包含的基本事件数/基本事件总数。
例 2:一个袋子里有 5 个红球和 3 个白球,从中随机取出一个球,求取出红球的概率。
解:袋子里一共有 8 个球,其中 5 个是红球,所以取出红球的概率为 5/8。
知识点:概率的性质:0 ≤ P(A) ≤ 1;P(Ω) = 1,P(∅)= 0。
二、条件概率与乘法公式条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。
例 3:已知在某疾病的检测中,阳性结果中真正患病的概率为 09,而总体人群中患病的概率为 001。
如果一个人的检测结果为阳性,求他真正患病的概率。
解:设 A 表示患病,B 表示检测结果为阳性。
则 P(A) = 001,P(B|A) = 09,P(B|A')= 1 P(B|A) = 01。
根据全概率公式:P(B) =P(A)×P(B|A) + P(A')×P(B|A')= 001×09 +099×01 ≈ 0108。
再根据贝叶斯公式:P(A|B) = P(A)×P(B|A) / P(B) = 001×09 /0108 ≈ 0083。
知识点:条件概率公式:P(B|A) = P(AB) / P(A);乘法公式:P(AB) = P(A)×P(B|A)。
三、独立性如果两个事件的发生与否互不影响,那么称它们是相互独立的事件。
概率论复习重点与习题共48页文档
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人才能 所向披 靡。
大学概率论与数理统计必过复习资料及试题解析(绝对好用)汇总
《概率论与数理统计》复习提要第一章随机事件与概率1.事件的关系 2.运算规则(1)(2)(3)(4)3.概率满足的三条公理及性质:(1)(2)(3)对互不相容的事件,有(可以取)(4)(5)(6),若,则,(7)(8) 4.古典概型:基本事件有限且等可能5.几何概率 6.条件概率(1)定义:若,则(2)乘法公式:若为完备事件组,,则有(3)全概率公式:(4) Bayes公式: 7.事件的独立性:独立(注意独立性的应用)第二章随机变量与概率分布 1.离散随机变量:取有限或可列个值,满足(1),(2)(3)对任意, 2.连续随机变量:具有概率密度函数,满足(1)(2);(3)对任意,4.分布函数,具有以下性质(1);(2)单调非降;(3)右连续;(4),特别;(5)对离散随机变量,;(6)为连续函数,且在连续点上, 5.正态分布的概率计算以记标准正态分布的分布函数,则有(1);(2);(3)若,则;(4)以记标准正态分布的上侧分位数,则 6.随机变量的函数(1)离散时,求的值,将相同的概率相加;(2)连续,在的取值范围内严格单调,且有一阶连续导数,,若不单调,先求分布函数,再求导。
第三章随机向量1.二维离散随机向量,联合分布列,边缘分布,有(1);(2 (3), 2.二维连续随机向量,联合密度,边缘密度,有(1);(2)(4)(3);,3.二维均匀分布,其中为的面积 4.二维正态分布且; 5.二维随机向量的分布函数有(1)关于单调非降;(2)关于右连续;(3);(4),,;(5);(6)对二维连续随机向量, 6.随机变量的独立性独立(1)离散时独立(2)连续时独立(3)二维正态分布独立,且7.随机变量的函数分布(1)和的分布的密度(2)最大最小分布第四章随机变量的数字特征 1.期望 (1) 离散时 (2) 连续时,;,; (3) 二维时, (4);(5);(6);(7)独立时, 2.方差(1)方差,标准差(2);(3);(4)独立时, 3.协方差(1);;;(2)(3);(4)时,称不相关,独立不相关,反之不成立,但正态时等价;(5)4.相关系数;有, 5.阶原点矩,阶中心矩第五章大数定律与中心极限定理 1.Chebyshev不等式 2.大数定律3.中心极限定理(1)设随机变量独立同分布,或,或或,(2)设是次独立重复试验中发生的次数,,则对任意,或理解为若,则第六章样本及抽样分布 1.总体、样本(1)简单随机样本:即独立同分布于总体的分布(注意样本分布的求法);(2)样本数字特征:样本均值(,);样本方差)样本标准样本阶原点矩,样本阶中心矩 2.统计量:样本的函数且不包含任何未知数 3.三个常用分布(注意它们的密度函数形状及分位点定义)(1)分布,其中标准正态分布,若且独立,则;(2)分布,其中且独立;(3)分布,其中性质 4.正态总体的抽样分布(1);(2 ;(3 且与独立;(4);,(5)(6)第七章参数估计 1.矩估计:(1)根据参数个数求总体的矩;(2)令总体的矩等于样本的矩;(3)解方程求出矩估计 2.极大似然估计:(1)写出极大似然函数;(2)求对数极大似然函数(3)求导数或偏导数;(4)令导数或偏导数为0,解出极大似然估计(如无解回到(1)直接求最大值,一般为min或max) 3.估计量的评选原则,则为无偏;(2) 有效性:两个无偏估计中方差小的有效; (1)无偏性:若《概率论与数理统计》期末试题(2)与解答一、填空题(每小题3分,共15分) 1.设事件仅发生一个的概率为0.3,且,则生的概率为 2.设随机变量服从泊松分布,且,则______.3.设随机变量在区间上服从均匀分布,则随机变量在区间密度为4.设随机变量相互独立,且均服从参数为的指数分布,_________,5.设总体的概率密度为是来自的样本,则未知参数的极大似然估计量为解:1.即所以 .2.由知即解得,故 . 3.设的分布函数为的分布函数为,密度为则因为,所以,即故另解在上函数严格单调,反函数为所以4.,故 .5.似然函数为解似然方程得的极大似然估计为二、单项选择题(每小题3分,共15分) 1.设为三个事件,且相互独立,则以下结论中不正确的是(A)若,则与也独立. (B)若,则(C)若,则与也独立. 与也独立(D)若,则与也独立.() 2.设随机变量的分布函数为,则的值为(A).(B)(C). (D). ()3.设随机变量和不相关,则下列结论中正确的是(A)与独立. (B)(C). (D). () 4.设离散型随机变量和的联合概率分布为若独立,则的值为(A). (A). . ()(C)(D) 5.设总体的数学期望为为来自的样本,则下列结论中正确的是(A)X1是的无偏估计量. (B)X1是的极大似然估计量. (C)X1是的相合(一致)估计量. (D)X1不是的估计量.()解:1.因为概率为1的事件和概率为0的事件与任何事件独立,所以(A),(B),(C)都是正确的,只能选(D)事实上由图可见A与C不独立2.所以 3.由不相关的等价条件知应选(B). 4.若独立则有应选(A). 2 , 9 故应选(A) 5.,所以X1是的无偏估计,应选(A). 三、(7分)已知一批产品中90% 0.05,一个次品被误认为是合格品的概率为0.02,求(1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率. 解:设‘任取一产品,经检验认为是合格品’ ‘任取一产品确是合格品’则(1)(2) .四、(12分)从学校乘汽车到火车站的途中有3 件是相互独立的,并且概率都是2/5. 设为途中遇到红灯的次数,求的分布列、分布函数、数学期望和方差. 解:的概率分布为即的分布函数为五、(10分)设二维随机变量在区域匀分布. 求(1)关于的边缘概率密度;(2)的分布函数与概率密(1)的概率密度为(2)利用公式其中当或时时故的概率密度为的分布函数为或利用分布函数法六、(10分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标和纵坐标互独立,且均服从分布. 求(1)命中环形区域的概率;(2)命中点到目标中心距离1);(2). 七、(11分)设某机器生产的零件长度(单位:cm),今抽取容量为16 样本,测得样本均值,样本方差. (1)求的置信度为0.95 区间;(2)检验假设(显著性水平为0.05). (附注)解:(1)的置信度为下的置信区间为所以的置信度为0.95的置信区间为(9.7868,10.2132)(2)的拒绝域为,因为,所以接受《概率论与数理统计》期末试题(3)与解答一、填空题(每小题3分,共15分)(1)设事件与相互独立,事件与互不相容,事件与互不相容,,,则事件、、中仅发生或仅概率为(2)甲盒中有2个白球和3个黑球,乙盒中有3个白球和2个黑球,今从每个盒中各取个球,发现它们是同一颜色的,则这颜色是黑色的概率为(3)设随机变量的概率密度为现对察,用表示观察值不大于0.5的次数,则___________. (4)设二维离散型随机变量的分布列为若,则(5)设是总体的样本,是样本方差,若,(注:, , , )解:(1)因为与不相容,与不相容,所以,故同理 . . (2)设‘四个球是同一颜色的’,‘四个球都是白球’,‘四个球都是黑球’则 . 所求概率为所以(3)其中,,(4)的分布为这是因为,由得,故(5)即,亦即 . 二、单项选择题(每小题3分,共15分)(1)设、、为三个事件,且,则有(A)(B)(C)(D)(2)设随机变量的概率密度为且,则在下列各组数中应取(A)(B)(C).(D)(3)设随机变量与相互独立,其概率分布分别为则有())(A)(B)(C)(D)()(4)对任意随机变量,若存在,则等于(A)(B)(C)(D)()(5)设为正态总体的一个样本,表示样本均值,则的置信度为的置信区间为(B)(C)()(D)解(1)由知,故(A)应选C. (2)即时故当应选(3)应选(4)应选(5)因为方差已知,所以的置信区间为应选D. 三、(8分)装有10件某产品(其中一等品5件,二等品3件,三等品2件)的箱子中丢失一件产品,但不知是几等品,今从箱中任取2件产品,结果都是一等品,求丢失的也是一等品的概率。
《概率论》总复习题3及参考答案
《概率论》总复习题(3)及参考答案一、填空题(1) 设事件A 与B 相互独立,事件B 与C 互不相容,事件A 与C 互不相容,且()()0.5P A P B ==,()0.2P C =,则事件A 、B 、C 中仅C 发生或仅C 不发生的概率为___________.(2) 甲盒中有2个白球和3个黑球,乙盒中有3个白球和2个黑球,今从每个盒中各取2个球,发现它们是同一颜色的,则这颜色是黑色的概率为___________. (3) 设随机变量X 的概率密度为2,01,()0,x x f x <<⎧=⎨⎩其它, 现对X 进行四次独立重复观察,用Y 表示观察值不大于0.5的次数,则2EY =___________. (4) 设二维离散型随机变量(,)X Y 的分布列为(,)(1,0)(1,1)(2,0)(2,1)0.40.2X Y P a b若0.8EXY =,则Cov(,)X Y =____________.(5) 设1217,,,X X X L 是总体(,4)N μ的样本,2S 是样本方差,若2()0.01P S a >=,则a =____________.(注:20.01(17)33.4χ=, 20.005(17)35.7χ=, 20.01(16)32.0χ=, 20.005(16)34.2χ=)解:(1)()()()P ABC ABC P ABC P ABC +=+因为 A 与C 不相容,B 与C 不相容,所以,A C B C ⊃⊃,故ABC C = 同理 ABC AB =.()()()0.20.50.50.45P ABC ABC P C P AB +=+=+×=. (2)设A =‘四个球是同一颜色的’,1B =‘四个球都是白球’,2B =‘四个球都是黑球’ 则 12A B B =+. 所求概率为 22212()()(|)()()()P AB P B P B A P A P B P B ==+22223322122222555533(),()100100C C C C P B P B C C C C =⋅==⋅= 所以 21(|)2P B A =.(3)~(4,),Y B p其中 10.52201(0.5)24p P X xdx x=≤===∫, 113341,44444EY DY =×==××=,2215()144EY DY EY =+=+=. (4)(,)X Y 的分布为这是因为 0.4a b +=,由0.8EXY = 得 0.220.8b += 0.1,0.3a b ∴==0.620.4 1.4EX =+×=,0.5EY =故 cov(,)0.80.70.1X Y EXY EXEY =−=−=.(5)2216(){4}0.014S P S a P a >=>=即 20.01(16)4a χ=,亦即 432a = 8a ∴=.二、单项选择题(1)设A 、B 、C 为三个事件,()0P AB >且(|)1P C AB =,则有 (A )()()() 1.P C P A P B ≤+− (B )()().P C P A B ≤U(C )()()() 1.P C P A P B ≥+− (D )()().P C P A B ≥U ( ) (2)设随机变量X 的概率密度为2(2)4(),x f x x +−=−∞<<∞且~(0,1)Y aX b N =+,则在下列各组数中应取(A )1/2, 1.a b == (B )/2,a b ==(C )1/2,1a b ==−. (D )/2,a b == ( )(3)设随机变量X 与Y 相互独立,其概率分布分别为010.40.6XP010.40.6Y P则有(A )()0.P X Y == (B )()0.5.P X Y ==(C )()0.52.P X Y == (D )() 1.P X Y == ( ) (4)对任意随机变量X ,若EX 存在,则[()]E E EX 等于(A )0. (B ).X (C ).EX (D )3().EX ( ) 解 (1)由(|)1P C AB =知()()P ABC P AB =,故()()P C P AB ≥ ()()()()()()()1P C P AB P A P B P A B P A P B ≥=+−≥+−U 应选C.(2)22(2)4()x f x +−==即~(2,)X N −故当a b ===时 ~(0,1)Y aX b N =+ 应选B.(3)()(0,0)(1,1)P X Y P X Y P X Y ====+== 0.40.40.60.60.52=×+×= 应选C.(4)[()]E E EX EX = 应选C.三、有10件某产品(其中一等品5件,二等品3件,三等品2件)的箱子中丢失一件产品,但不知是几等品,今从箱中任取2件产品,结果都 是一等品,求丢失的也是一等品的概率。
《概率》知识点总结+典型例题+练习(含答案)
概率考纲要求1.了解随机现象和概率的统计定义,理解必然事件和不可能事件的意义.2.知道概率的性质,理解古典概率模型的含义,掌握求古典概型的方法,并会求古典概型的概率.3.知道互斥事件,会用概率加法公式求互斥事件的概率.4.认识n 次独立重复实验模型,并记住n 次独立重复实验中恰好发生k 次的概率公式,并会简单应用.5.了解随机变量、离散型随机变量及其概率分布;能写出简单的离散型随机变量的概率分布.6.了解二项分布,能写出简单的二项分布. 知识点一:随机事件的概率 1.随机事件的相关概念随机现象:在相同条件下具有多种可能结果,而事先又无法确定会出现哪种结果的现象称为随机现象.随机试验:研究随机现象所进行的观察和试验称为随机试验.随机事件:随机试验的结果称为随机事件,简称事件,常用大写字母A ,B ,C 等来表示. 必然事件:在一定条件下,必然发生的事件称为必然事件,用Ω来表示. 不可能事件:在一定条件下,不可能发生的事件称为不可能事件,用∅来表示. 基本事件:在随机试验中不能再分的最简单的随机事件称为基本事件. 复合事件:可以用基本事件来描述的随机事件称为复合事件. 2.频率与概率频数:设在n 次重复试验中,事件发A 生了m 次(0 ≤m ≤n ),m 称为事件A 的频数. 频率:事件A 的频数在试验的总次数中所占的比例mn,称为事件A 发生的频率. 事件A 发生的概率:当试验次数充分大时,如果事件发A 生的频率mn总稳定在某个常数附近,那么就把这个常数叫做事件A 发生的概率,记作)(A P . 事件A 发生的概率的性质:(1)对于必然事件Ω,()1=P Ω; (2)对于不可能事件∅,0)(=∅P ; (3)0≤P (A )≤1. 知识点2: 古典概型 1. 古典概型:(1)定义:如果一个随机试验的基本事件只有有限个,并且各个基本事件发生的可能性都相等,那么称这个随机试验属于古典概型.特征:试验的所有可能结果的个数是有限的;每个结果出现的机会均等.(2)在古典概型中,若试验共包含有n 个基本事件,并且每一个事件发生的可能性都相同,事件A 包含m 个基本事件,那么事件A 发生的概率()m P A n =2.互斥事件:(1)定义:在随机试验中,不可能同时发生的两个事件称为互斥事件或互不相容事件 (2)和事件:在随机试验中,若事件C 发生意味着事件A 与事件B 中至少有一个发生,则把事件C 称为事件A 与事件B 的和事件,记作C AB =(3)互斥事件的概率加法公式:互斥的事件A 和事件B 中至少有一个发生的概率()()()P A B P A P B =+知识点3:离散型随机变量及其分布 1.随机变量的概念如果随机试验的结果可以用一个变量的取值来表示,这个变量的取值带有随机性,并且取这些值的概率是确定的,那么这个变量叫做随机变量,通常用小写希腊字母ξ、η等表示,或用大写英文字母,,,X Y Z 等表示. 2.离散型随机变量的概念如果随机变量的所有可能取值可以一一列出,则这种随机变量称为离散型随机变量. 3.离散型随机变量的概率分布(1)离散型随机变量的概率分布的定义离散型随机变量ξ的所有可能取值1x ,2x ,3x …,i x …与其对应的概率(x )i i P p ξ==(i =1,2,3,…)所有组成的表叫做随机变量ξ的概率分布(分布列). 离散型随机变量概率分布的性质. ① 0(1,2,3,)i p i =≥;②1231i p p p p +++⋅⋅⋅++⋅⋅⋅=.(2)计算离散型随机变量的概率分布的主要步骤为 ①写出随机变量的所有取值;②计算出各个取值对应的随机事件的概率; ③列出表格.注意验证0(1,2,3,)i p i =≥以及121i p p p ++⋅⋅⋅++⋅⋅⋅=.知识点4:二项分布 1.n 次独立重复实验定义:在相同条件下,重复进行n 次试验,如果每次试验的结果与其他各次试验的结果无关,那么这n 次重复试验叫做n 次独立重复试验. 2.n 次伯努利实验定义:在n 次独立重复试验中,如果每次试验的可能结果只有两个,且它们相互对立,即只考虑两个事件A 和A ,并且在每次试验中事件A 发生的概率都相同,这样的n 次独立重复试验叫做n 次伯努利试验. 3.伯努利公式如果在每次试验中事件A 发生的概率()P A p =,事件A 不发生的概率()1P A p =-,那么在n 次伯努利试验中,事件A 恰好发生k 次的概率为k n k k n n p p k P --=)1(C )((其中0,1,2,,k n =⋅⋅⋅).4.二项分布如果在一次试验中某事件A 发生的概率的p ,随机变量ξ为n 次独立试验中事件发A 生的次数,那么随机变量ξ的概率分布为其中n k p ,,2,1,0,10 =<<我们将这种形式的随机变量ξ的概率分布叫做二项分布.称随机变量ξ服从参数为n 、p 的二项分布,记为(,)B n p ξ.二项分布是以伯努利试验为背景的重要分布. 题型一 基本概念例1 一口袋中有10个小球,其中有8个白球、2个黑球,从中任取3个小球,有以下事件:①3个都是白球. ②至少有一个是黑球. ③3个都是黑球. ④至少有一个白球.其中随机事件是 ;必然事件是 ;不可能事件是 . 分析:本题考察定义的理解及“至少”的含义. 随机事件有①②; 必然事件有④; 不可能事件有③. 解答:①②,④,③ 题型二 古典概型例2 同时抛掷两颗骰子,则所得点数之和为7的概率为 .分析:本题考查古典概型,试验发生包含的事件是抛掷两颗骰子,共有6⨯6=36种结果,满足条件的事件是点数之和为7,可以列举出所有的事件:(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)共有6种结果,根据古典概型概率公式得到61=P . 解答:61. 题型三 互斥事件例3 某地区年降水量在50~100mm 范围内的概率为0.21,在100~150mm 范围内的概率为0.22,则年降水量在50~155mm ,范围内的概率为多少? 分析:应用互斥事件的概率加法公式 解答:0.43题型四 独立重复试验及概率例4 一枚硬币连续抛掷3次,恰好有两次正面向上的概率为( ).A.18B.38C.12 D.23分析:设事件A ={正面向上},则()P A =12,抛掷3次相当于做3次独立重复试验,恰好有两次正面向上的概率为2123113(2)228P C ξ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭. 解答:B .题型五 离散型随机变量的概率分布例5 从含有8个正品、2个次品的产品中,不放回地抽取3次,每次抽取一个,用ξ表示抽到次品的次数,求: (1) ξ的概率分布.(2) 至多有一次抽到次品的概率.解答:(1)随机变量ξ的所有可能取值为0,1,2,且383107(0)15C P C ξ===, 1228310715C C P C ξ=(=1)=, 21283101(2)15C C P C ξ===. 所以ξ的概率分布为(2)至多有一次抽到次品的概率为715+715=1415. 题型六 二项分布例6 在人寿保险中,设一个投保人能活到65岁的概率为0.6,求三个投保人中活到65岁的人数ξ的概率分布.解答:记A ={一个投保人能活到65岁},则A ={一个投保人活不到65岁}.于是()0.6,()10.60.4P A P A ==-=.且随机变量(3,0.6)B ξ.因此0333(0)0.6(10.6)0.064P C =⋅⋅-=, 11233(1)0.6(10.6)0.288P C =⋅⋅-=,22133(2)0.6(10.6)0.432P C =⋅⋅-=,33033(3)0.6(10.6)0.216P C =⋅⋅-=.所以,三个投保人中能活到65岁的人数ξ的概率分布为一、选择题1.在10张奖券中,有1张一等奖,2张二等奖,从中任意抽取1张,则中一等奖的概率为( ). A.310 B.15 C.110 D.132.甲乙两人进行一次射击,甲击中目标的概率为0.7,乙击中的概率为0.2,那么甲乙两人都没击中的概率为( ).A. 0.24 B .0.56 C. 0.06 D. 0.863.某人从一副不含大小王扑克牌中(52张)任意取一张出来,他抽到黑桃或是红桃的概率为( ).A. 0B.152 C. 1352 D. 124.书包里有中文书5本,英文书3本,从中任集抽取2本,则都抽到中文书的概率是( ). A.15 B.25 C.12 D.5145.一个口袋中有5个红球,7个白球,每次取出一个,有放回取三次,观察球的颜色属于( ).A.重复试验B.古典概型C. 3次独立重复试验概率模型D.以上都不是 6.同时抛掷三枚硬币,三枚出现相同一面的概率为( ).A12 B 14 C 16 D 187.某品牌种子的发芽率是0.8,在试验的5粒种子中恰有4粒发芽的概率是( ). A.410.8(10.8)- B.140.8(10.8)-C.41450.8(10.8)C -D.44150.8(10.8)C -8.下列变量中不是随机变量的是( ). A. 射手射击一次的环数 B. 在一个标准大气压下100时会沸腾 C. 城市夏季出现的暴雨次数 D. 某班期末考试数学及格人数9.若从标有3,4,5,6,7的5张卡片中任取3张,取得奇数的个数为ξ,则随机变量ξ的可能取值的个数是( ).A .0 B. 1 C. 2 D .3 10.已知离散型随机变量ξ的概率分布为则n 的值为( ).A .0.31 B. 0.25 C. 0.26 D. 0.2 二、判断题:1. 某人参加射击比赛,一次射击命中的环数为(奇数环)是随机事件( )2. 在重复进行同一试验时,随着试验总次数的增加,事件A 发生的频率一般会越来越接近概率. ( )3. 任一事件A ,其发生的概率为()P A ,则有0≤P (A )≤1 . ( )4. 必然事件的概率为0.( )5. 袋子里有3颗红球6颗白球,从中任取一颗是白球的概率是13.( ) 6. 盒内装有大小相同的3个白球1个黑球,从中摸出2个球,则两个球全是白球的概率是12. ( )7. 同时抛掷3枚硬币,三枚出现相同一面的概率是18. ( )8. 同宿舍8人抓阄决定谁负责周一值日是随机试验.( )9. 运动员进行射击训练,考察一次射击命中的环数,命中2环的概率是110. ()10. 甲、乙两台机床,它们因故障停机的概率分别为0.01和0.02,则这两台机床同时因故障停机的概率为0.03. ( )三、填空题1.在10件产品中有3件次品,若从中任取2件,被抽到的次品数用ξ表示,则2ξ=表示的随机事件为.2.盒中有3个白色的球和5个红色的球,任取出一个球,取出的是红色的概率为.3.10件产品中有2件次品,任取3件,设取出的3件产品中所含正品数为随机变量ξ,则ξ的可能取值为.4.从甲、乙、丙3人中,任选2人参加社会实践,甲被选中的概率为.5.某气象站天气预报的准确率为0.8,一周中播报准确的次数为ξ,则2ξ=的概率为.(用式子表示)四、解答1.口袋里装有3个黑球与2个白球,任取3个球,求取到的白球的个数ξ的概率分布.2.口袋里装有4个黑球与1个白球,每次任取1个球,有放回地取3次,求所取过的3个球中恰有两个黑球的概率.高考链接1.(2014年) 已知离散型随机变量ξ的概率分布为则(1)Pξ==( ).A .0.24 B. 0.28 C.0.48 D.0.522.(2019年) 一口袋里装有4个白球和4个红球现在从中任取3个球,则取到既有白球又有红球的概率 .3.(2018年) 若将一枚硬币抛3次,则至少出现一次正面的概率为 .4.(2016年) 从1,2,3,4,5中任选3个数字组成一个无重复数字的三位数,则这个三位数是偶数的概率为 .5.(2017年) 取一个正方形及其外接圆,在圆内随机取一点,该点取自正方形内的概率为.积石成山1.某单选题要求从A 、B 、C 、D 四个选项中,选择一个正确答案,假设考生不会,随机地选择了一个答案,则他答对此题的概率是().A.1B.12C.13D.142. 某乐队有11名乐师,其中男乐师7人,现该乐队要选出一名指挥,则选出的指挥为女乐师的概率为().A.711B14C.47D.4113. 已知A 、B 是互斥事件,若1()5P A=,1()2P A B+=,则()P B的值是().A .45B.710C.310D.1104. 袋中装有3个黑球和2个白球一次取出两个球,恰好是黑白球各一个的概率().A. 15B.310C.25D.355. 5人站成一排照相,其中甲乙二人相邻的概率为().A. 25B.35C.15D.146. 一个箱子中有6个除了颜色之外完全一样的球,其中2个是红色的,4个是黑色的,那么在里面随机拿出一个是红色的概率是多少?().A. 12B.13C.14D.167. 掷一枚质地均匀且六面上分别有1,2,3,4,5,6点的骰子,则向上一面点数大于4的概率为().A. 12B.13C.23D.148. 抛掷一枚质地均匀的骰子,则向上一面出现偶数点概率是().A.12B.13C.16D.19.把一枚均匀的硬币连抛5次,得到5次国徽向上的概率为().A. 132B.532C.316D.313210.一副扑克牌去掉大小王,任意抽出一张不是黑桃的概率为().A. 14B .13C.12D.34概率答案一、选择题二、判断题三、填空题1.{任抽2件,有2件次品}.2. 58解析:151858CpC==.3. 1,2,3.4. 23解析:枚举法:选派方法有(甲,乙),(甲,丙),(乙,丙)共3种,其中甲被选中有2种,故所求概率为 23P =.5. 22570.8(10.8)C ⨯⨯-解析:设A ={播报一次,准确},则()0.8P A =,所以2257(2)0.8(10.8)P C ξ==⨯⨯-四、解答题1. 分析:任取3球属于古典概型,服从的分布为离散型随机变量的概率分布. 解:随机变量ξ的所有可能取值为0,1,2,则3032351(0)10C C P C ξ===, 2132353(1)5C C P C ξ===, 1232353(2)10C C P C ξ===. 所以概率分布为2. 分析:本题为有放回的抽取,是伯努利试验,服从二项分布. 解:设所取过的3个球中含有黑球的个数为随机变量ξ,则43,5B ξ⎛⎫⎪⎝⎭,于是 21234148(2)55125P C ξ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭ .高考链接1.B2.67解析:古典概率模型,则从中任意取3个球,取到既有白球又有红球的概率为122144443867C C C C C +=.3.78解析:试验发生包含的事件是将一枚硬币抛掷三次,共有328=(种)结果,满足条件的事件的对立事件是三枚硬币都是反面,有1种结果,则至少一次正面向上的概率是17188-=.4.25解析:从1,2,3,4,5这5个数字中任取3个数字组成没有重复的三位数,基本事件总数3560n P ==,这个三位数是偶数包含的基本事件个数122424m C P ==,∴这个三位数是偶数的概率为242605mPn===.5. 2π解析:设正方形的边长为11S=正方形,∴222Sππ⎛=⨯=⎝⎭外接圆∴该点取自正方形内部的概率为122Pππ==.积石成山。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n
n
X , Y 不相关 ⇔ EXY = EXEY .
2)会求随机变量函数的数学期望; )会求随机变量函数的数学期望; 是连续函数, 设 Y =g( X ), g( x ) 是连续函数,
则 EY = ∑ pk g( xk )
∞
EY = ∫ g( x) f ( x)dx
则 EZ = ∑g( xi , y j ) pij
+∞
−∞
∫
f X ( x) fY (z − x)dx
−∞
∫
f X (z − y) fY ( y)dy
(3)极值分布
F(n ) ( x ) = P {X (n ) ≤ x} = Π Fi ( x )
n
F(1) ( x ) = P {X (1) ≤ x} = 1 − Π1[1 − Fi ( x ) ] i=
P{X = k} = C p (1− p)
k n k
n−k
( k = 0,1,L n ) ,
7)掌握泊松分布; )掌握泊松分布;
P{X = k} =
λ
k
k!
e−λ
( k = 0,1, 2,L)
8)掌握均匀分布: )掌握均匀分布
X ~ U [a , b]
1 a≤ x≤b f (x) = b − a 0 其它
P{( X,Y) ∈G} = ∫∫ f ( x, y)dxdy.
G
3)掌握二维均匀分布的定义及性质; )掌握二维均匀分布的定义及性质;
A
G D
1 f ( x, y ) = A 0
( x, y ) ∈ D ( x, y ) ∉ D
y
B P{( X,Y) ∈G} = ∫∫ f ( x, y)dxdy = . A G
x
( 2)
∫
∞
−∞
−∞
f ( x )dx = 1;
x2 x1
(3) P{x1 < X ≤ x2 } = F( x2 ) − F( x1 ) = ∫ f ( x)dx;
(4) F ′( x ) = f ( x ).
5)理解贝努里试验,掌握两点分布及其概率背景; )理解贝努里试验,掌握两点分布及其概率背景; X ~ b ( 1, p ), 6)掌握二项分布的概率背景,即会把实际问题中 )掌握二项分布的概率背景, 服从二项分布的随机变量构设出来, 服从二项分布的随机变量构设出来,运用有关公式 求概率. 求概率 若 X 表示 重贝努里试验中成功出现的次数, 表示n重贝努里试验中成功出现的次数 重贝努里试验中成功出现的次数, 则 X ~ b ( n , p ),
4)会求边缘分布率和边缘概率密度; )会求边缘分布率和边缘概率密度;
B
x
pi. = P{ = xi } = ∑ pij X
p. j = P{ = y j } = ∑ pij Y
i j
∫ f ( x, y )dy +∞ fY ( y) = ∫ f ( x, y)dx
−∞
f X (x ) =
+∞
−∞
Y X x1
i =1
主要参考习题 P84:2,9,15,18,22,36
第四章主要内容及要求: 第四章主要内容及要求:
1)熟练掌握期望定义和性质; )熟练掌握期望定义和性质;
EX = ∑xk pk
i =1
∞
EX = ∫ xf ( x)dx
−∞
∞
E ( ∑ a i X i ) = ∑ a i EX i
i =1 i =1
µ X ~ N ( , σ ):
2
f (x ) =
1 2π σ
−
(x − µ )2
2σ 2
e
(− ∞ < x < +∞ )
X ~ N(0 1) : ,
ϕ (x ) =
1 2π e
x2 − 2
(− ∞ < x < +∞ )
Φ ( − x ) = 1 − Φ (x )
σ b- µ a−µ P{a < X < b} = Φ( ) −Φ( ).
n
i =1
7)掌握正态分布的性质: )掌握正态分布的性质:
相互独立, 如果随机变量 X 1, X 2, L, X n 相互独立,
X i ~ N µ i, σ
n
(
2 i
)
令: Z = ∑ai Xi,
n n 2 2 则 Z ~ N ∑ai µi, ∑ai σ i i =1 i=1
(6) P(B − A) = P(B) − P( AB)
3)熟练运用条件概率的定义,乘法公式,全概公 )熟练运用条件概率的定义,乘法公式, 事件的独立性及性质求概率. 式,事件的独立性及性质求概率 P( AB) (1) P(AB) = ; P(B)
(2) P( AB) = P( A)P(B A);
主要参考习题 P25:3,5,9,14,19,24,30,36
第二章主要内容及要求: 第二章主要内容及要求:
1)掌握随机变量分布函数的定义及性质: )掌握随机变量分布函数的定义及性质
F( x) = P{X ≤ x}
F (x) 是一个单调不减右连续的函数;0 ≤ F( x) ≤ 1; 是一个单调不减右连续的函数; 单调不减右连续的函数
n k=1
(3) P(B) = ∑P( Ak )P(B Ak );
P( A )P(B | A ) P( A B) k k k = (4) P( A | B) = , k n P(B) ∑ P( Aj )P(B | Aj ) j =1
(5) P( AB) = P( A) P(B).
P ( AB ) = P ( A)P (B ) (6) P (BC ) = P (B )P (C ) A ,B,C 相互独立 P ( AC ) = P ( A)P (C ) P( ABC) = P( A)P(B)P(C)
A ⊂ B, A U B,
A I B = AB , A− B = A− AB = AB, A I B = ∅ , − A I B = ∅; A U B = S .
U A α = I Aα , I A α = U A α α α α α
α α α α
2)掌握概率的定义及性质,会求常用的古典概型 )掌握概率的定义及性质, 概率; 中的 概率; ,则 是两两互不相容事件 (1) 若 1 , A2 ,L A P( A U A2 UL = P( A ) + P( A2) +L ) 1 1
6)会求二维随机变量函数的分布: )会求二维随机变量函数的分布: (1)一般情形
再求随机变量函数 Z = g ( X , Y )的密度函数 ′ f Z (z ) = F Z (z ),
(2)和的分布
先求随机变量函数 Z = g ( X, Y )的分布函=
+∞
f Z (z) =
2 2
不相关, 若 X,Y 不相关, D(aX + bY) = a DX + b DY. 则
2 2
4)掌握契比雪夫不等式 )
P {| X − EX |≥ ε } ≤ DX / ε 2 ;
5)熟记两点分布、二项分布、泊松分布、均匀分布、 )熟记两点分布、二项分布、泊松分布、均匀分布、 正态分布、指数分布的期望值和方差值. 正态分布、指数分布的期望值和方差值 6)掌握协方差和相关系数的定义,不相关的定义及 )掌握协方差和相关系数的定义, 独立与不相关的关系; 独立与不相关的关系; COV( X, Y ) = E( X – EX )( Y-EY ) = E XY –EX EY
i , j=1
k=1 ∞
X 若 Z = g(∞ ,Y)
EZ =
∞ ∞
−∞
−∞ −∞
∫ ∫ g(x, y) f (x, y)dxdy
3)熟练掌握方差的定义和性质; )熟练掌握方差的定义和性质;
DX = E( X − EX)2 = EX 2 − (EX )2
D( cX ) = c 2 DX
D(aX + bY ) = a DX + b DY + 2abE ( X − EX )(Y − EY ) = a 2 DX + b 2 DY + 2abCOV ( X , Y )
X
P
⑴
x1 p1
x2 p2
L , xn L , pn
L L
对任意的自然数 n,有 p n ≥ 0; ,
⑵
∑p
n
n
= 1.
3)会求离散型随机变量的分布函数; )会求离散型随机变量的分布函数; X -1 pk 1
4
2
1 2
3
1 4
1
1 1 , x ≤ −1 4 4 -1 0 3 F( x) = , - 1 < x ≤ 2 4 1, 2 < x ≤ 3
(2) 若 1 , A2 ,L, An是两两互不相容事件 ,则 A P( A U A2 ULU An) 1 = P( A ) + P( A2) +L+ P( An) 1
(3) A ⊂ B ⇒ P(B − A) = P(B) − P( A)
(4) P( A) = 1 − P( A) (5) P( AU B) = P( A) + P(B) − P( AB)
《概率论与数理统计》课程总结 概率论与数理统计》 第一章主要内容及要求: 第一章主要内容及要求:
1)熟练掌握事件的关系与运算法则:包含、交、 )熟练掌握事件的关系与运算法则:包含、 并、差、互不相容、对立等关系和德摩根定律.会 互不相容、对立等关系和德摩根定律 会 用事件的关系表示随机事件. 用事件的关系表示随机事件
FX ( x) = P{X ≤ x} = Φ(