概率论A复习资料
概率论期末复习知识点
知识点第一章 随机事件与概率本章重点:随机事件的概率计算. 1.**事件的关系及运算 (1) (或).(2) 和事件: ;(简记为).(3) 积事件: ,(简记为或).(4) 互不相容:若事件A 和B 不能同时发生,即 (5) 对立事件: .(6) 差事件:若事件A 发生且事件B 不发生,记作(或) .(7) 德摩根(De Morgan )法则:对任意事件A 和B 有, .2. **古典概率的定义 古典概型:.几何概率·3.**概率的性质 (1) .(2) (有限可加性) 设n 个事件两两互不相容,则有.(3).(4) 若事件A ,B 满足,则有A B ⊂B A ⊃A B ⋃12n A A A ⋃⋃⋃1nii A =AB 12nA A A ⋂⋂⋂12nA A A 1nii A =AB φ=A A B -AB A B A B ⋃=⋂A B A B ⋂=⋂()A n A P A n ==Ω中所含样本点的个数中所含样本点的个数()A P A =的长度(或面积、体积)样本空间的的长度(或面积、体积)()0P φ=1,2,,nA A A 121()()nn i i P A A A P A =⋃⋃⋃=∑()1()P A P A =-A B ⊂,.(5) .(6) (加法公式) 对于任意两个事件A ,B ,有.对于任意n 个事件,有.4.**条件概率与乘法公式.乘法公式:.5.*随机事件的相互独立性事件A 与B 相互独立的充分必要条件一:,事件A 与B 相互独立的充分必要条件二:.对于任意n 个事件相互独立性定义如下:对任意一个,任意的,若事件总满足,则称事件相互独立.这里实际上包含了个等式.6.*贝努里概型与二项概率设在每次试验中,随机事件A发生的概率,则在n 次重复独立试验中.,事件A恰发生次的概率为,7.**全概率公式与贝叶斯公式 贝叶斯公式:()()()P B A P B P A -=-()()P A P B ≤()1P A ≤()()()()P A B P A P B P AB ⋃=+-1,2,,nA A A 111111()()()()(1)()nnn i i i j i j k n i i j ni j k ni P A P A P A A P A A A P A A -=≤<≤≤<<≤==-+-+-∑∑∑()(|)()P AB P A B P B =()()(|)()(|)P AB P A P B A P B P A B ==()()()P AB P A P B =(|)()P A B P A =1,2,,n A A A 2,,k n =11k i i n≤<<≤1,2,,nA A A 11()()()k k i i i i P A A P A P A =1,2,,nA A A 21nn --()(01)P A p p =<<k ()(1),0,1,,k n k n n P k p p k nk -⎛⎫=-= ⎪⎝⎭如果事件两两互不相容,且,,,则.第二章 一维随机变量及其分布本章重点:离散型和连续性随机变量的分布及其概率计算.概率论主要研究随机变量的统计规律,也称这个统计规律为随机变量的分布. 1.**离散型随机变量及其分布律分布律也可用下列表格形式表示:2.*概率函数的性质 (1),(2).3.*常用离散型随机变量的分布(1) 0—1分布,它的概率函数为,其中,或1,.(2) 二项分布,它的概率函数为,其中,,.(4)** 泊松分布,它的概率函数为1,2,,nA A A 1ni i A ==Ω()0i P A >1,2,,i n =1()(|)(|),1,2,,()(|)k k k niii P A P B A P A B k nP A P B A ===∑(),1,2,,,.i i p P X a i n ===n a np 0i p ≥1,2,,,;i n =11ii p∞==∑(1,)B p 1()(1)i i P X i p p -==-0i =01p <<(,)B n p ()(1)i n in P X i p p i -⎛⎫==- ⎪⎝⎭0,1,2,,i n =01p <<()P λ,其中,,..4.*二维离散型随机变量及联合概率二维离散型随机变量的分布可用下列联合概率函数来表示:其中,.5.*二维离散型随机变量的边缘概率 设为二维离散型随机变量,为其联合概率(),称概率为随机变量的边缘分布律,记为并有,称概率为随机变量Y 的边缘分布率,记为,并有=.6.随机变量的相互独立性 .设为二维离散型随机变量,与相互独立的充分必要条件为多维随机变量的相互独立性可类似定义.即多维离散型随机变量的独立性有与二维相应的结论.7.*随机变量函数的分布设是一个随机变量,是一个已知函数,是随机变量的函数,它也是一个随机变量.对离散型随机变量,下面来求这个新的随机变量的分布.设离散型随机变量的概率函数为则随机变量函数的概率函数可由下表求得()!iP X i e i λλ-==0,1,2,,,i n =0λ>(,)X Y (,),,1,2,,i j ij P X a Y b p i j ====0,,1,2,,1ij ijijp i j p≥==∑∑(,)X Y ijp ,1,2,i j =()(1,2,)i P X a i ==X ip .(),1,2,i i ij jp P X a p i ====∑()(1,2,)j P Y b j ==.jp .jp (),1,2,j ij iP Y b p j ===∑(,)X Y X Y ,,1,2,.ij i j p p p i j ==对一切X ()g x ()Y g X =X X Y X n a np Y g =但要注意,若的值中有相等的,则应把那些相等的值分别合并,同时把对应的概率相加.第三章 连续型随机变量及其分布本章重点:一维及二维随机变量的分布及其概率计算,边缘分布和独立性计算. 1.*分布函数随机变量的分布可以用其分布函数来表示,.2.分布函数的性质 (1) (2);由已知随机变量的分布函数,可算得落在任意区间内的概率 .3.联合分布函数二维随机变量的联合分布函数. 4.联合分布函数的性质 (1) ;(2),;(3).5.**连续型随机变量及其概率密度设随机变量的分布函数为,如果存在一个非负函数,使得对于任一实数,有()n g a ()i g a ip ()F x 0()1;F x ≤≤()0,()1lim lim x x F x F x →-∞→+∞==X ()F x X (,]a b (,)X Y 0(,)1F x y ≤≤(,)0,(,)0lim lim x y F x y F x y →-∞→-∞==(,)0,(,)1lim lim x x y y F x y F x y →-∞→+∞→-∞→+∞==121222211211(,)(,)(,)(,)(,)P x X x y Y y F x y F x y F x y F x y <≤<≤=--+X ()F x ()f x x ()()F x P X x =<()()()P a X b F b F a ≤<=-(,)(,)F x y P X x Y x =<<成立,则称X 为连续型随机变量,函数称为连续型随机变量的概率密度. 6.**概率密度及连续型随机变量的性质 (1) (2);(3);(4)设为连续型随机变量,则对任意一个实数c ,; (5) 设是连续型随机变量的概率密度,则有=.7.**常用的连续型随机变量的分布 (1) 均匀分布,它的概率密度为其中,.(2) 指数分布,它的概率密度为其中,.(3) 正态分布,它的概率密度为,其中,,当时,称为标准正态分布,它的概率密度为,标准正态分布的分布函数记作,即()()xF x f x dx-∞=⎰()f x X ()f x ()0;f x ≥()1f x dx +∞-∞=⎰()()F x f x '=X ()0P X c ==()f x X ()()()()P a X b P a X b P a X b P a X b <<=≤<=≤≤=<≤()baf x dx⎰(,)R a b 1,;()0,a x b f x b a⎧<<⎪=-⎨⎪⎩其余.)a b -∞<<<+∞()E λ,0;()0,x e x f x λλ-⎧>=⎨⎩其余.0λ>2(,)N μσ22()2(),x f x x μσ--=-∞<<+∞,0μσ-∞<<+∞>0,1μσ==(0,1)N 22(),x f x x -=-∞<<+∞()x Φ,当出时,可查表得到;当时,可由下面性质得到.设,则有;.8.**二维连续型随机变量及联合概率密度对于二维随机变量(X ,Y)的分布函数,如果存在一个二元非负函数,使得对于任意一对实数有成立,则为二维连续型随机变量,为二维连续型随机变量的联合概率密度. 9.**二维连续型随机变量及联合概率密度的性质 (1) ;(2);’(3) 在的连续点处有;(4) 设为二维连续型随机变量,则对平面上任一区域有.10,**二维连续型随机变量的边缘概率密度设为二维连续型随机变量的联合概率密度,则的边缘概率密度为;的边缘概率密度为22()t xx dt -Φ=⎰0x ≥()x Φ0x <()x Φ()1()x x Φ-=-Φ2~(,)X N μσ()()x F x μσ-=Φ()()()b a P a X b μμσσ--<≤=Φ-Φ(,)F x y (,)f x y (,)x y (,)(,)xyF x y f s t dtds-∞-∞=⎰⎰(,)X Y (,)f x y (,)0,,f x y x y ≥-∞<<+∞(,)1f x y dxdy +∞+∞-∞-∞=⎰⎰(,)f x y 2(,)(,)F x y f x y x y ∂=∂∂(,)X Y D ((,))(,)DP X Y D f x y dxdy∈=⎰⎰(,)X Y (,)f x y X ()(,)X f x f x y dy+∞-∞=⎰Y.11.常用的二维连续型随机变量 (1) 均匀分布如果在二维平面上某个区域G 上服从均匀分布,则它的联合概率密度为(2) 二维正态分布如果的联合概率密度则称服从二维正态分布,并记为.如果,则,,即二维正态分布的边缘分布还是正态分布. 12.**随机变量的相互独立性 .,那么,称随机变量与相互独立.设为二维连续型随机变量,则与相互独立的充分必要条件为如果.那么,与相互独立的充分必要条件是.第四章 随机变量的数字特征本章重点:随机变量的期望。
概率统计A复习提纲完整ppt
• 两个随机变量的简单函数的分布的计算; P86T22,36
(离散型:和、差、最大最小值;连续型:和)
• 随机变量的期望、方差、相关系数的计算; P110T2,6,7,9,22,29,32,35
• 总体参数的矩估计、最大似然估计、区间估计;P169T2,4(1),11,12,16
• 单一正态总体参数的假设检验;
答疑安排:周一至周五
--- 期末考试试题中,将会有一定数量的直接考查概念理解的题目。
可参考大作业中的部分客观题。
3
2. 领会、掌握如下基本结论或原理: • 随机事件的基本运算,概率的基本性质基本运算公式;
(包括古典求概公式)
• 随机变量分布的基本性质,五种常用的分布及其特点; • 二维随机变量的联合分布、边缘分布、条件分布三者的关系; • 两个独立的连续性随机变量的和的概率密度的计算公式; • 期望、方差及相关系数的基本性质,常用分布的数字特征值; • 一般总体的样本均值与方差的分布,正态总体的常用抽样分布,
单单一一正 正态态总总体体•参参随数数的的机假假设设变检检验验量;;的联合分布、条件分布、相互独立;边缘分布; •数学期望,方差,相关系数,矩; 二维随机变量的分布的基本性质的相关应用;
备择假设,显著性检验,两类易犯的错误,拒绝域,检验统计量;
历随年机考 变题量,随•机校简变园量网单的精分品随布课,程机分“样布概的率本论与分,数位理点统统;计计”量,样本矩,样本方差,抽样分布;
P24T2,3,6,14,19,30
两简个单随 随机机变样量本•的,估简统单计计函量数,量的样分本,布矩无的,计样偏算本;方估差,计抽样,分布有;效估计,置信区间,枢轴量;
二维随机变量的联合分布、边缘分布、条件分布三者的关系;
概率论期末考试题型、知识点和公式复习
概率论期末复习知识点第一章(A 卷 20 分, B 卷 22 分) 2. 二维连续型随机向量的联合概率密度、性质1. 事件的表式及其应用2. 事件的关系与运算3. 二维连续型随机向量的分布函数3. 概率性质及其应用4. 均匀分布4. 古典概型5. 二维正态分布5. 条件概率6. 边缘概率密度6. 全概率公式7. 随机变量的独立性7. 贝叶斯公式8. 二维随机向量的相关概率计算:O联合概率密度8. 事件的独立性重点重点:条件概率,全概率公式,贝叶斯公式O边缘概率密度第二章(A 卷 22 分, B 卷 20 分)O随机变量的独立性1. 离散型随机变量的概率分布第四章(A 卷 21 分, B 卷 26 分)2. 两点分布 1. 离散型随机变量的期望3. 二项分布 2. 连续型随机变量的期望4. 泊松分布 3. 随机变量函数的期望5. 概率密度函数及其性质 4. 方差6. 连续型随机变量的分布函数 5. 方差的性质7. 均匀分布 6. 协方差、协方差的性质8. 指数分布7. 相关系数O数学期望(随机变量及函数的数学期望)9. 标准正态分布、正态分布重点:O方差(离散型随机变量的方差)10. 随机变量相关的概率计算11. 离散型随机变量函数的概率分布O协方差和相关系数重点:O正态分布,二项分布第五章(A 卷 14 分, B 卷 12 分)O离散型随机变量及函数的概率分布1. 雪比切夫不等式的应用第三章(A卷23分,B卷20分)1. 离散型随机向量联合概率分布及分布函数2. 棣莫弗——拉普拉斯中心极限定理的应用重点:棣莫弗 ----- 拉普拉斯中心极限定理概率论期末公式复习对偶律:厂B AB , AB A B ; 概率的性质 1. P (? )=0;2. A,A,…,A n 两两互斥时: RAU AU …U A)= P (A)+…+P (A),3. P(A) 1P(A)( A 是 A 不发生)(D)4. 若 AB 则有:P (A ) w P( B ), P (AB = P (A ),RBA )=RB- RA> , RAU E )= R E ).5.P(A B) P(A) P(B) P(AB)(D), P ( B A )=P ( B )- P (AB )。
《概率论》总复习提纲
ang 《概率论与数理统计》总复习提纲第一块 随机事件及其概率内 容 提 要基本内容:随机事件与样本空间,事件的关系与运算,概率的概念和基本性质,古典概率,几何概率,条件概率,与条件概率有关的三个公式,事件的独立性,贝努里试验.1、随机试验、样本空间与随机事件(1)随机试验:具有以下三个特点的试验称为随机试验,记为E .1) 试验可在相同的条件下重复进行;2) 每次试验的结果具有多种可能性,但试验之前可确知试验的所有可能结果;3) 每次试验前不能确定哪一个结果会出现.(2)样本空间:随机试验E 的所有可能结果组成的集合称为E 的样本空间ω记为Ω;试验的每一个可能结果,即Ω中的元素,称为样本点,记为w .(3)随机事件:在一定条件下,可能出现也可能不出现的事件称为随机事件,简称事件;也可表述为事件就是样本空间的子集,必然事件(记为Ω)和不可能事件(记为Φ).2、事件的关系与运算(1)包含关系与相等:“事件A 发生必导致B 发生”,记为B A ⊂或A B ⊃;B A B A ⊂⇔=且A B ⊂.(2)互不相容性:φ=AB ;B A 、互为对立事件Ω=⋃⇔B A 且Φ=AB .(3)独立性:(1)设A B 、为事件,若有)()()(B P A P AB P =,则称事件A 与B 相互独立. 等价于:若)|()(A B P B P =(0)(>A P ).(2)多个事件的独立:设n A A A ,,,21 是n 个事件,如果对任意的)1(n k k ≤<,任意的n i i i k ≤<<<≤ 211,具有等式)()()()(2121k k i i i i i i A P A P A P A A A P =,称n 个事件n A A A ,,,21 相互独立.3、事件的运算(1)和事件(并):“事件A 与B 至少有一个发生”,记为B A ⋃.(2)积事件(交):“ 事件A 与B 同时发生”,记为B A ⋂或AB .(3) 差事件、对立事件(余事件):“事件发生A 而B 不发生”,记为A B -称为A 与B 的差事件;B B =-Ω称为B 的对立事件;易知:B A B A =-.4、事件的运算法则1) 交换律:A B B A ⋃=⋃,BA AB =;2) 结合律:C B A C B A ⋃⋃=⋃⋃)()(,)()(BC A C AB =;3) 分配律:BC AC C B A ⋃=⋃)(,))(()(C B C A C AB ⋃⋃=⋃;4) 对偶(De Morgan)律:B A B A =⋃,B A AB ⋃=,可推广k k k k k k k k A A A A ==,5、概率的概念 (1)概率的公理化定义:(了解)ΩΩ设是一个样本空间,为的某些子集组成F ()A P A ∀∈的一个事件域.,定义在上的一个集值函数满足:F.F1()0;P A ≥)非负性:2()1;P Ω=)规范性:123,,A A )可列可加性:设是可列个互不相容事件,则11()()n n n n P A P A ∞∞===∑().P A A 则称为事件的概率(2)频率的定义:(了解)事件A 在n 次重复试验中出现A n 次,则比值n n A称为事件A 在n 次重复试验中出现的频率,记为)(A f n ,即n n A f An =)(.(3)概率的统计定义:(了解)频率具有稳定性,即()n k f A n=随n 的增大越来越靠近某个常数p ,称p 为事件A 的(统计)概率.在实际问题中,当n 很大时,取()().n P A p f A =≈(4)古典概率(有限等可能型): 若试验的基本结果数为有限个,且每个事件发生的可能性相等,则(试验对应古典概型)事件A 发生的概率为: n A k n k A A P )()(==中样本点总数中所含样本点数Ω=.(5)几何概率(无限等可能型):(了解)若试验基本结果数无限,随机点落在某区域g 的概率与区域g 的测度(长度、面积、体积等)成正比,而与其位置及形状无关,则(试验对应几何概型),“在区域Ω中随机地取一点落在区域A 中”这一事件A 发生的概率为:()A P A Ω的测度=的测度.(6)主观概率:(了解)人们根据经验对该事件发生的可能性所给出的个人信念.6、概率的基本性质(1)不可能事件概率为零: ()0P Φ=.(2)有限可加性:设n A A A ,,,21 是n 个两两互不相容的事件,即i jA A =Φ,(i j ≠)n j i ,2,1,,=,则有)(21n A A A P ⋃⋃⋃ =)(1A P +)()(2n A P A P ++ .(3)单调不减性:若事件,()()B A P B P A ⊃≥则,且()()()P B A P B P A -=-.(4) 互逆性:()1()P A P A =-且()1P A ≤.(5) 加法公式:对任意两事件B A 、,有=⋃)(B A P )()(B P A P +-)(AB P ;此性质可推广到任意n 个事件n A A A ,,,21 的情形.(6)可分性:对任意两事件B A 、,有)()()(B A P AB P A P +=,且()()()P A B P A P B ⋃≤+7、条件概率与乘法公式(1)条件概率:设B A 、是两个事件,若()0,P A >则)()()|(A P AB P A B P =称为事件A 发生的条件下事件B 发生的条件概率.(2)乘法公式:设()0,()0,P A P B >>则)|()()|()()(B A P B P A B P A P AB P ==.称为事件B A 、的概率乘法公式.其可推广成有即个的情形,详见书上第16页,其主要的意义在说明了前面的事件对后面的事件发生的概率产生影响.8、全概率公式与贝叶斯(Bayes)公式(1)全概率公式:设n A A A ,,,21 是Ω的一个划分,且0)(>i A P ,),,2,1(n i =,则对任何事件B ∈F.,有 ∑=n i i i A B P A P B P 1)|()()(=称为全概率公式.应用背景:若影响某一事件(“结果”)发生有几种不同的情况(“原因”),那么计算结果的概率就要用全概率公式, 相当于其是由原因计算结果.(2)贝叶斯(Bayes)公式:设n A A A ,,,21 是Ω的一个划分,且0)(>i A P ),,2,1(n i =,则对任何事件B ∈F.,有),,1(,)|()()|()()|(1n j A B P A P A B P A P B A P ni ii j j j ==∑= 称为贝叶斯公式或逆概率公式.应用背景:若影响某一事件(“结果”)发生有几种不同的情况(“原因”),那么若告诉你结果已发生,那么要计算某一种情况(“原因”)发生的概率时,就要用到贝叶斯公式,相当其主要的应用是要由结果计算原因.9、贝努里(Bernoulli)概型(1)只有两个可能结果的试验称为贝努里试验,常记为E .E 也叫做“成功—失败”试验,“成功”的概率常用)(A P p =表示,其中A =“成功”.(2)把E 重复独立地进行n 次,所得的试验称为n 重贝努里试验,记为nE .(3)把E 重复独立地进行可列多次,所得的试验称为可列重贝努里试验,记为∞E .以上三种贝努里试验统称为贝努里概型.(4)n E 中成功k 次的概率是:)0(,)1(n k q p C p p C k n k k n k n k k n ≤≤=---其中1(01)p q p +=≤≤.疑 难 分 析1、必然事件与不可能事件必然事件是在一定条件下必然发生的事件,不可能事件指的是在一定条件下必然不发生的事件.它们都不具有随机性,是确定性的现象,但为研究的方便,把它们看作特殊的随机事件.2、互逆事件与互斥(不相容)事件如果两个事件A 与B 必有一个事件发生,且至多有一个事件发生,则A 、B 为互逆事件;如果两个事件A 与B 不能同时发生,则A 、B 为互斥事件.因而,互逆必定互斥,互斥未必互逆.区别两者的关键是:当样本空间只有两个事件时,两事件才可能互逆,而互斥适用与多个事件的情形.作为互斥事件在一次试验中两者可以都不发生,而互逆事件必发生一个且只发生一个.3、两事件独立与两事件互斥两事件A 、B 独立,则A 与B 中任一个事件的发生与另一个事件的发生无关,这时)()()(B P A P AB P =生,这两事件的发生是有影响的,这时0)(,=Φ=AB P AB .可以用图形作一直观 解释.在图1.1左边的正方形中,图1.1)(21)(,41)(B P A P AB P ===,表示样本空间中两事件的独立关系,而在右边的正方形中,0)(=AB P ,表示样本空间中两事件的互斥关系.4、条件概率)|(B A P 与积事件概率)(AB P)(AB P 是在样本空间Ω内,事件AB 的概率,而)|(B A P 是在试验E 增加了新条件B 发生后的缩减的样本空间B Ω中计算事件A 的概率.虽然A 、B 都发生,但两者是不同的,一般说来,当A 、B 同时发生时,常用)(AB P ,而在有包含关系或明确的主从关系时,用)|(B A P .如袋中有9个白球1个红球,作不放回抽样,每次任取一球,取2次,求:(1)第二次才取到白球的概率;(2)第一次取到的是白球的条件下,第二次取到白球的概率.问题(1)求的就是一个积事件概率的问题,而问题(2)求的就是一个条件概率的问题.5、全概率公式与贝叶斯(Bayes)公式当所求的事件概率为许多因素引发的某种结果,而该结果又不能简单地看作这诸多事件之和时,可考虑用全概率公式,在对样本空间进行划分时,一定要注意它必须满足的两个条件.贝叶斯公式用于试验结果已知,追查是何种原因(情况、条件)下引发的概率.第二块 随机变量及其分布内 容 提 要基本内容:随机变量,随机变量的分布的概念及其性质,离散型随机变量的概率分布,连续型随机变量的概率分布,常见随机变量的分布,随机变量函数的分布.1、随机变量设Ω是随机试验的样本空间,如果对于试验的每一个可能结果Ω∈ω,都有唯一的实数)(ωX 与之对应,则称)(ωX 为定义在Ω上的随机变量,简记为X .随机变量通常用大写字母Z Y X 、、等表示.根据其取值的情形可以分成为⎧⎪⎨⎪⎩离散型随机变量(可能取值至多可列)随机变量连续型随机变量(可能取值充满某个区间)奇异型随机变量2、离散型随机变量及其分布列如果随机变量X 只能取有限个或可列个可能值,则称X 为离散型随机变量.如果X 的一切可能值为 ,,21x x ,并且X 取k x 的概率为k p ,则称),3,2,1}({ ===k x X P p k k 为离散型随机变量X 的概率函数(概率分布或分布律).也称分布列,常记为1212n n x x x p p p ⎛⎫ ⎪⎝⎭ 其中1,0=≥∑i i i p p .常见的离散型随机变量的分布有:(1)两点分布(0-1分布):记为(1,)((1,))X b p B p ,分布列为10,1,0,)1(}{1<<=-==-p k p p k X P k k 或 01~X q p ⎛⎫ ⎪⎝⎭(2)二项分布:记为(,)((,))X b n p B n p ,概率函数10,,,1,0,)1(}{<<=-==-p n k p p C k X P k n k k n (3)泊松分布,记为()(())X P πλλ,概率函数0,,1,0,!}{>===-λλλ k k e k X P k泊松定理: 设0>λ是一常数,n 是任意正整数,设λ=nnp ,则对于任一固定的非负整数k ,有!)1(lim k e p p C k k n n k n k n n λλ--∞→=-.根据泊松定理可得,当n 很大(大于50)且p 很小(一般是小于0.05)时,二项分布可以用泊松分布近似代替,即!)1(k e p p C k k n k k n λλ--≈-,其中np =λ3、分布函数及其性质 分布函数的定义:设X 为随机变量,x 为任意实数,函数)}({)(+∞<<-∞≤=x x X P x F称为随机变量X 的分布函数.分布函数完整地描述了随机变量取值的统计规律性,具有以下性质:(1)有界性: )(1)(0+∞<<-∞≤≤x x F ; (2)单调性: 如果21x x <,则)()(21x F x F ≤;(3)右连续: 即)()0(x F x F =+;(4)极限性: 1)(lim ,0)(lim ==+∞→-∞→x F x F x x ;(5)完美性: )()(}{}{}{121221x F x F x X P x X P x X x P -=≤-≤=≤<.4、连续型随机变量及其分布如果对于随机变量X 的分布函数)(x F ,存在非负函数()p x ,使对于任一实数x ,有()()xF x p t dt -∞=⎰,则称X 为连续型随机变量.函数()p x 称为X 的概率密度函数,简称为概率密度.概率密度函数具有以下性质:(1)()0p x ≥; (2)()1p x dx +∞-∞=⎰; (3)2112{}()x x P x X x p t dt <≤=⎰; (4)0}{1==x X P ;(5)如果()p x 在x 处连续,则()()F x p x '=.常用连续型随机变量的分布:(1)均匀分布:记为),(~b a U X ,概率密度为1,,()0,a x b p x b a ⎧≤≤⎪=-⎨⎪⎩其它分布函数为⎪⎩⎪⎨⎧>≤≤--<=b x bx a a b a x a x x F ,1,,0)(性质:若a c d b <<<,则().d c P c X d b a -<<=- (2)指数分布:记为()X Exp θ,概率密度为/1,0,()0,x e x p x θθ-⎧>⎪=⎨⎪⎩其他, 分布函数为/1,0,()0,x e x F x θ-⎧->=⎨⎩其他. 无记忆性质:对于任意,0,s t >有{|}{}P X s t X s P X t >+>=>.(3)正态分布:记为),(~2σμN X ,概率密度为2()2(),x p x X μσ--=-∞<<+∞,相应的分布函数为 ⎰∞---=x x dt e x F 22)(21)(σμπ当1,0==σμ时,即)1,0(~N X 时,称X 服从标准正态分布.这时分别用)(x ϕ和)(x Φ表示X 的密度函数和分布函数,即⎰∞---=Φ=x t x dt e x e x 222221)(,21)(ππϕ 性质:① 若2(,)X N μσ,则其密度函数关于x μ=对称,从而1()()2P X P X μμ>=<=. ② )(1)(x x Φ-=-Φ.③ 若2(,)X N μσ,则(0,1)X N μσ-,即一般正态分布),(~2σμN X 的分布函数)(x F 与标准正态分布的分布函数)(x Φ有关系:)()(σμ-Φ=x x F .5、随机变量函数的分布 (1)离散型随机变量函数的分布设X 为离散型随机变量,其分布列为(表2-2):表2-2则)(X g Y =任为离散型随机变量,其分布列为(表2-3):表2-3i y 有相同值时,要合并为一项,对应的概率相加.(2)连续型随机变量函数的分布设X 为离散型随机变量,概率密度为()X p x ,则)(X g Y =的概率密度有两种方法可求.1)定理法:若)(x g y =在X 的取值区间内有连续导数)(x g ',且)(x g 单调时,)(X g Y =是连续型随机变量,其概率密度为⎩⎨⎧<<'=其它,0,)()]([)(βαy y h y h f y f XY .其中)()}.(),(max{)},(),(min{y h g g g g +∞-∞=+∞-∞=βα是)(x g 的反函数. 2)分布函数法:先求)(X g Y =的分布函数∑⎰∆=≤=≤=k y xY k dxx fy X g P y Y P y F )()(})({}{)(然后求 ()[()]Y Y p y F y '=. 结论:若2(,)X N μσ,则22(0)(,)aX b a N a b a μσ+≠+.疑 难 分 析1、随机变量与普通函数随机变量是定义在随机试验的样本空间Ω上,对试验的每一个可能结果Ω∈ω,都有唯一的实数)(ωX 与之对应.从定义可知:普通函数的取值是按一定法则给定的,而随机变量的取值是由统计规律性给出的,具有随机性;又普通函数的定义域是一个区间,而随机变量的定义域是样本空间. 2、分布函数)(x F 的连续性定义左连续或右连续只是一种习惯.有的书籍定义分布函数)(x F 左连续,但大多数书籍定义分布函数)(xF为右连续. 左连续与右连续的区别在于计算)(xF时,xX=点的概率是否计算在内.对于连续型随机变量,由于}{1==xXP,故定义左连续或右连续没有什么区别;对于离散型随机变量,由于}{1≠=xXP,则定义左连续或右连续时)(xF值就不相同,这时,就要注意对)(xF定义左连续还是右连续.第三块 多维随机变量及其分布内 容 提 要基本内容:多维随机变量及其分布函数 二维离散型随机变量的联合分布列,二维连续型随机变量的联合分布函数和联合密度函数,边际分布,随机变量的独立性和不相关性,常用多维随机变量,随机向量函数的分布.1、二维随机变量及其联合分布函数 12(),(),,()(,,),n X X X F P ωωωΩ如果随机变量定义在同一概率空间上则称12(),(),,()n X X X X ωωωω=()(为n 维(n 元)随机变量或随机向量.n 当=2时,称为二维随机变量,常记为(,).X Y 联合分布函数的定义: 设12(),(),,()n XX X X n ωωωω=()()是维随机变量,,nx R n ∀∈则称元函数121122(,,,),,,)n n n F x x x P X x X x X x =≤≤≤(为随机向量12(),(),,()n X X X X ωωωω=()(的联合分布函数2,,n =特别时称为二维联合分布函数即(,)(,)F x y P X x Y y =≤≤二维联合分布函数具有以下基本性质:(1)单调性: ),(y x F 是变量x 或y 的非减函数; (2)有界性: 1),(0≤≤y x F ;(3)极限性:1),(0),(0),(0),(=+∞+∞=-∞-∞=-∞=-∞F F x F y F , , ,,但注意(,)(),(,)()Y X F y F y F x F x +∞=+∞=,其中()X F x 与()Y F y 分别表示X 与Y 的分布函数.(4)连续性: ),(y x F 关于x 右连续,关于y 也右连续;(5)非负性: 对任意点),(),,(2211y x y x ,若2121,y y x x <<,则0),(),(),(),(11211222≥+--y x F y x F y x F y x F .上式表示随机点),(Y X 落在区域],[2121y Y y x X x ≤<≤<内的概率为:},{2121y Y y x X x P ≤<≤<.2、二维离散型随机变量及其联合分布列如果二维随机变量),(Y X 所有可能取值是有限对或可列对,则称),(Y X 为二维离散型随机变量.设),(Y X 为二维离散型随机变量,它的所有可能取值为,2,1,),,(=j i y x j i 将),2,1,(},{ ====j i p y Y x X P ij j i 或表3.1称为),(Y X 的联合分布列.表3.1联合分布列具有下列性质:(1)≥ij p ;(2)111=∑∑∞=∞=i j ijp.3、二维连续型随机变量及其概率密度函数如果存在一个非负函数),(y x p ,使得二维随机变量),(Y X 的分布函数),(y x F 对任意实数y x ,有⎰⎰∞-∞-=xydydx y x p y x F ),(),(,则称),(Y X 是二维连续型随机变量,称),(y x p 为),(Y X 的联合密度函数(或概率密度函数).联合密度函数具有下列性质:(1)非负性 对一切实数y x ,,有0),(≥y x p ; (2)规范性1),(=⎰⎰+∞∞-+∞∞-dy dx y x p ;(3)在任意平面域D 上,),(Y X 取值的概率⎰⎰=∈Ddxdyy x p D Y X P ),(}),{(;(4)如果),(y x p 在),(y x 处连续,则),(),(2y x p y x y x F =∂∂∂.常用连续型随机变量的分布:(1) 设D 是平面上的一个有界区域,其面积为A .若二维随机变量(,)X Y 的联合概率密度为1,(,),(,)0,x y D f x y A ⎧∈⎪=⎨⎪⎩其它,则称(,)X Y 服从区域D 上的二维均匀分布.(2) 二元正态分布:其密度函数不要求背,具体的请见课本P67. 4、二维随机变量的边缘分布设),(Y X 为二维随机变量,则称},{)(+∞<<-∞≤=Y x X P x F X },{)(y Y X P y F Y ≤+∞<<-∞=分别为),(Y X 关于X 和关于Y 的边缘(边际)分布函数.当),(Y X 为离散型随机变量,则称),2,1(),2,1(1.1. ====∑∑∞=∞=j p p i p p i ij j j ij i 分别为),(Y X 关于X 和关于Y 的边缘分布列.当),(Y X 为连续型随机变量,则称⎰⎰+∞∞-+∞∞-==dxy x p y p dy y x p x p Y X ),()(,),()( 分别为),(Y X 关于X 和关于Y 的边缘密度函数. 性质:221212(,)(,,,,)X Y N μμσσρ,则211(,)XN μσ,222(,)Y N μσ.5、随机变量的独立性设),(y x F 及)()(y F x F Y X 、分别是),(Y X 的联合分布函数及边缘分布函数.如果对任何实数y x ,有)()(),(y F x F y x F Y X ⋅=则称随机变量X 与Y 相互独立.设),(Y X 为二维离散型随机变量,X 与Y 相互独立的充要条件是),2,1,(.. ==j i p p p j i ij .设),(Y X 为二维连续型随机变量,X 与Y 相互独立的充要条件是对几乎一切实数y x ,,有)()(),(y p x p y x p Y X =.性质:221212(,)(,,,,)X Y N μμσσρ,则0X Y ρ=⇔与相互独立.6、两个随机变量函数的分布设二维随机变量),(Y X 的联合概率密度函数为),(y x p ,),(Y X Z ϕ=是Y X ,的函数,则Z 的分布函数为dxdyy x p z F zy x Z ⎰⎰≤=),(),()(ϕ.对于一般的函数ϕ,求()Z F z 通过分布函数的方法,如第三章,习题29就是使用这种方法.但对于以下的几个,更加常用的是公式的方法. 若),(Y X 为连续型随机变量,概率密度函数为),(y x p .(1)Y X Z +=的分布:dyy y z p dx x z x p z p Z ⎰⎰+∞∞-+∞∞--=-=),(),()(.特别地,若X 与Y 相互独立,则()()()()().Z X Y X Y p z p x p z x dx p z y p y dy +∞+∞-∞-∞=-=-⎰⎰(2)Z X Y =-的分布:()(,).Z p z p z y y dy +∞-∞=+⎰特别地,若X 与Y 相互独立,则()()().Z X Y p z p z y p y dy +∞-∞=+⎰(3)Z XY =的分布:1()(,).||Z zp z p x dx x x+∞-∞=⎰特别地,若X 与Y 相互独立,则1()()().||Z X Y zp z p x p dx x x+∞-∞=⎰(4)Y XZ =的分布若),(Y X 为连续型随机变量,概率密度函数为),(y x p ,则Z 的概率函数为:⎰+∞∞-=dyy yz p y z p Z ),()(.性质:①若(,),(,),(,)X b n p Y b m p X Y X Y b n m p ++且与相互独立,则.②若1212(),()().XY X Y X Y πλπλπλλ++且与相互独立,则③若221122(,),(,)XN YN μσμσ,且X 与Y 相互独立的,则22221212(,).X bY cN a b c a b μμσσ+++++a7.最大值与最小值的分布 1,,n X X n 设是相互独立的个随机变量,则1()()(max(,,))Y n F y P Y y P X X y =≤=≤1()ni i F y ==∏1()()(min(,,))Y n F y P Y y P X X y =≤=≤11(1())n i i F y ==--∏其中的()i F y 表示的是随机变量i X 的分布函数.疑 难 分 析1、事件},{y Y x X ≤≤表示事件}{x X ≤与}{y Y ≤的积事件,为什么},{y Y x X P ≤≤不一定等于}{}{y Y P x X P ≤⋅≤?如同仅当事件B A 、相互独立时,才有)()()(B P A P AB P ⋅=一样,这里},{y Y x X P ≤≤依乘法原理}|{}{},{x X y Y P x X P y Y x X P ≤≤⋅≤=≤≤.只有事件}{x X P ≤与}{y Y P ≤相互独立时,才有}{}{},{y Y P x X P y Y x X P ≤⋅≤=≤≤,因为}{}|{y Y P x X y Y P ≤=≤≤.2、二维随机变量),(Y X 的联合分布、边缘分布及条件分布之间存在什么样的关系?由边缘分布与条件分布的定义与公式知,联合分布唯一确定边缘分布,因而也唯一确定条件分布.反之,边缘分布与条件分布都不能唯一确定联合分布.但由)|()(),(|x y p x p y x p X Y X ⋅=知,一个条件分布和它对应的边缘分布,能唯一确定联合分布.但是,如果Y X 、相互独立,则}{}{},{y Y P x X P y Y x X P ≤⋅≤=≤≤,即)()(),(y F x F y x F Y X ⋅=.说明当Y X 、独立时,边缘分布也唯一确定联合分布,从而条件分布也唯一确定联合分布.3、两个随机变量相互独立的概念与两个事件相互独立是否相同?为什么?两个随机变量Y X 、相互独立,是指组成二维随机变量),(Y X 的两个分量Y X 、中一个分量的取值不受另一个分量取值的影响,满足}{}{},{y Y P x X P y Y x X P ≤⋅≤=≤≤.而两个事件的独立性,是指一个事件的发生不受另一个事件发生的影响,故有)()()(B P A P AB P ⋅=.两者可以说不是一个问题.但是,组成二维随机变量),(Y X 的两个分量Y X 、是同一试验E 的样本空间上的两个一维随机变量,而B A 、也是一个试验1E 的样本空间的两个事件.因此,若把“x X ≤”、“y Y ≤”看作两个事件,那么两者的意义近乎一致,从而独立性的定义几乎是相同的.第四块 随机变量的数字特征内 容 提 要基本内容:随机变量的数学期望和方差、标准差及其性质,随机变量函数的数学期望,原点矩和中心矩,协方差和相关系数及其性质.1、随机变量的数学期望设离散型随机变量X 的分布列为 ,2,1,}{===k p x X P k k ,如果级数∑∞=1k kk p x 绝对收敛,则称级数的和为随机变量X 的数学期望.设连续型随机变量X 的密度函数为)(x p ,如果广义积分⎰+∞∞-dxx xp )(绝对收敛,则称此积分值⎰+∞∞-=dxx xp X E )()(为随机变量X 的数学期望.数学期望有如下性质:(1)设C 是常数,则C C E =)(; (2)设C 是常数,则)()(X CE CX E =;(3)若21X X 、是随机变量,则)()()(2121X E X E X X E +=+; 对任意n 个随机变量n X X X ,,,21 ,有)()()()(2121n n X E X E X E X X X E +++=+++ ;(4)若21X X 、相互独立,则)()()(2121X E X E X X E =; 对任意n 个相互独立的随机变量n X X X ,,,21 ,有)()()()(2121n n X E X E X E X X X E =.2、随机变量函数的数学期望(1)设离散型随机变量X 的分布律为,2,1,}{===k p x X P k k ,则X 的函数)(X g Y =的数学期望为2,1,)()]([1==∑∞=k p x g x g E k k k ,式中级数绝对收敛.设连续型随机变量X 的密度函数为)(x p ,则X 的函数)(X g Y =的数学期望为⎰+∞∞-=dxx p x g x g E )()()]([,式中积分绝对收敛.(2)若二维离散型随机变量(,)X Y 的联合分布列为3、随机变量的方差设X 是一个随机变量,则})]({[)()(2X E X E X Var X D -==称为X 的方差.)()(X X D σ=称为X 的标准差或均方差.计算方差也常用公式22)]([)()(X E X E X D -=. 方差具有如下性质:(1)设C 是常数,则0)(=C D ;(2)设C 是常数,则)()(2X D C CX D =; (3)22()()()2(())(())D aX bY a D X b D Y abE X E X Y E Y ±=+±--=22()()2cov(,)a D X b D Y ab X Y +±=22()()2a D X b D Y ab ρ+±. 特别地,若X Y 与相互独立,则22()()()D aX bY a D X b D Y ±=+.更加一般地,对任意n 个相互独立的随机变量n X X X ,,,21 ,有)()()()(2121n n X D X D X D X X X D +++=+++ ;(4)0)(=X D 的充要条件是:存在常数C ,使))((1}{X E C C X P ===. 4、几种常见分布的数学期望与方差:(1)~(1,),.(),()(1)X B p E X p D X p p ==-; (2))1()(,)().,(~p np X D np X E p n B X -==; (3)~().(),()X P E X D X λλλ==;(4)12/)()(,2/)()().,(~2a b X D b a X E b a U X -=+=; (5)()XExp θ,则2(),()E X D X θθ==;(6)22)(,)().,(~σμσμ==XDXENX.6、协方差与相关系数随机变量),(YX的协方差为)]}()][({[),cov(YEYXEXEYX--=.它是1+1阶混合中心矩,有计算公式:)()()(),cov(YEXEXYEYX-=.随机变量),(YX的相关系数为DYDXYXXY),cov(=ρ.相关系数具有如下性质:(1)1≤XYρ;(2)⇔=1XYρ存在常数ba,,使}{baXYP+==1,即X与Y以概率1线性相关;(3)若YX,独立,则0=XYρ,即YX,不相关.反之,不一定成立.(4)(Schwarz inequality) 设(X,Y)是二维随机变量,若X与Y的方差都存在,则2[(,)]Cov X Y DX DY≤⋅疑难分析1、随机变量的数字特征在概率论中有什么意义?知道一个随机变量的分布函数,就掌握了这个随机变量的统计规律性.但求得一个随机变量的分布函数是不容易的,而且往往也没有这个必要.随机变量的数字特征则比较简单易求,也能满足我们研究分析具体问题的需要,所以在概率论中很多的应用,同时也刻画了随机变量的某些特征,有重要的实际意义.例如,数学期望反映了随机变量取值的平均值,表现为具体问题中的平均长度、平均时间、平均成绩、期望利润、期望成本等;方差反映了随机变量取值的波动程度;偏态系数、峰态系数则反映了随机变量取值的对称性和集中性.因此,在不同的问题上考察不同的数字特征,可以简单而切实地解决我们面临的实际问题.2、在数学期望定义中为什么要求级数和广义积分绝对收敛?首先,数学期望是一个有限值;其次,数学期望反映随机变量取值的平均值.因此,对级数和广义积分来说,绝对收敛保证了值的存在,且对级数来说,又与项的次序无关,从而更便于运算求值.而由于连续型随机变量可以离散化,从而广义积分与无穷级数有同样的意义.要求级数和广义积分绝对收敛是为了保证数学期望的存在与求出.3、相关系数XY ρ反映了随机变量X 和Y 之间的什么关系?相关系数XY ρ是用随机变量X 和Y 的协方差和标准差来定义的,它反映了随机变量X 和Y 之间的相关程度.当1=XY ρ时,称X 与Y 依概率1线性相关;当0=XY ρ时,称X 与Y 不相关;当10<<XY ρ时,又分为强相关与弱相关.4、两个随机变量X 与Y 相互独立和不相关是一种什么样的关系?(1)若X 、Y 相互独立,则X 、Y 不相关.因为X 、Y 独立,则)()()(Y E X E XY E =,故0)()()(),cov(=--=Y E X E XY E Y X ,从而0=XY ρ,所以X 、Y 不相关.(2)若X 、Y 不相关,则X 、Y 不一定独立.如:⎩⎨⎧≤+=.,0,1,/1),(22 其它 y x y x p π 因为0)()(==Y E X E ,4/1)()(==Y D X D 0,0),cov(==XY Y X ρ,知X 、Y 不相关.但π/12)(2x x p X -=,π/12)(2y y p Y -=,)()(),(Y p x p y x p y X ≠,知X 、Y 不独立.(3)若X 、Y 相关,则X 、Y 一定不独立.可由反证法说明.(4)若X 、Y 不相关,则X 、Y 不一定不相关.因为X 、Y 不独立,)()()(Y E X E XY E ≠,但若0)()()(===XY E Y E X E 时,可以有0=XY ρ,从而可以有X 、Y 不相关.但是,也有特殊情况,如),(Y X 服从二维正态分布时,X 、Y 不相关与X 、Y 独立是等价的.第五块 大数定律和中心极限定理内 容 提 要基本内容:切比雪夫(Chebyshev )不等式,切比雪夫大数定律,伯努里(Bernoulli )大数定律,辛钦(Khinchine )大数定律,棣莫弗-拉普拉斯(De Moivre-Laplace )定理,列维-林维德伯格(Levy-Lindberg)定理.1、切贝雪夫不等式设随机变量X 的数学期望μ=)(X E ,方差2)(σ=X D ,则对任意正数ε,有不等式 22}{εσεμ≤≥-X P 或221}{εσεμ-><-X P 成立.2、大数定律(了解)(1)贝努利大数定律:设A n 是n 次重复独立试验中事件A 发生的次数,p 是事件A 在一次试验中发生的概率,则对于任意给定的0>ε,有1}|{|lim =<-∞→εp n n P A n .贝努利大数定理给出了当n 很大时,A 发生的频率/A n n 依概率收敛于A 的概率,证明了频率的稳定性.(2)辛钦大数定律:设 ,,,,21n X X X 相互独立,服从同一分布的随机变量序列,且()k E X μ=(1,2,k =),则对任意给定的0>ε,有11lim {||} 1.nk n k P X n με→∞=-<=∑3、中心极限定律(1)林德贝格-勒维中心极限定理:设 ,,,,21n X X X 是独立同分布的随机变量序列,有有限的数学期望和方差,μ=)(i X E ,),2,1(0)(2 =≠=i X D i σ.则对任意实数x ,随机变量σμσμn n X n X Y n i i n i i n ∑∑==-=-=11)(的分布函数)(x F n 满足⎰∞--∞→∞→=≤=x t n n n n dt e x Y P x F 2/221}{lim )(lim π.(2)李雅普诺夫定理:(了解)设 ,,,,21n X X X 是不同分布且相互独立的随机变量,它们分别有数学期望和方差:i i X E μ=)(,),2,1(0)(2 =≠=i X D i i σ.记 ∑==n i i nB 122σ,若存在正数δ,,使得当∞→n 时,有0}{1122→-∑=++n i i i n X E B δδμ, 则随机变量n n i i n i i n i i n i i n i i n B X X D X E X Z ∑∑∑∑∑=====-=-=11111)()(μ的分布函数)(x F n 对于任意的x ,满足⎰∑∑∞--==∞→∞→=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-=x t n n i i n i i n n n dt e x B X x F 2/11221lim )(lim πμ.当n 很大时,),(~),1,0(~12.1.∑∑==n i n i n i i n B N X N Z μ.(3)德莫佛—拉普拉斯定理:设随机变量),2,1( =n n η服从参数为)10(,<<p p n 的二项分布,则对于任意的x ,恒有 ⎰∞--∞→=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--x t n n dt e x p np np P 2/221)1(lim πη.疑 难 分 析1、依概率收敛的意义是什么?依概率收敛即依概率1收敛.随机变量序列}{n x 依概率收敛于a ,说明对于任给的0>ε,当n 很大时,事件“ε<-a x n ”的概率接近于 1.但正因为是概率,所以不排除小概率事件“ε<-a x n ”发生.依概率收敛是不确定现象中关于收敛的一种说法.2、大数定律在概率论中有何意义?大数定律给出了在试验次数很大时频率和平均值的稳定性.从理论上肯定了用算术平均值代替均值,用频率代替概率的合理性,它既验证了概率论中一些假设的合理性,又为数理统计中用样本推断总体提供了理论依据.所以说,大数定律是概率论中最重要的基本定律.3、中心极限定理有何实际意义?许多随机变量本身并不属于正态分布,但它们的极限分布是正态分布.中心极限定理阐明了在什么条件下,原来不属于正态分布的一些随机变量其总和分布渐进地服从正态分布.为我们利用正态分布来解决这类随机变量的问题提供了理论依据.4、大数定律与中心极限定理有何异同?相同点:都是通过极限理论来研究概率问题,研究对象都是随机变量序列,解决的都是概率论中的基本问题,因而在概率论中有重要意义.不同点:大数定律研究当 时,概率或平均值的极限,而中心极限定理则研究随机变量总和的分布的极限.例 题 解 析【例3】一本书共有100万个印刷符号.排版时每个符号被排错的概率为0.0001,校对时每个排版错误被改正的概率为0.9,求校对后错误不多于15个的概率.分析:根据题意构造一个独立同分布的随机变量序列,具有有限的数学期望和方差,然后建立一个标准化的随机变量,应用中心极限定理求得结果.解:设随机变量⎩⎨⎧=.,0,1 其它 错个印刷符号校对后仍印 第n X n 则)1(≥n X n 是独立同分布随机变量序列,有5101.00001.0}1{-=⨯===n X P p .作)10(,61==∑=n X Y n k K n ,nY 为校对后错误总数.按中心极限定理(德—拉定理),有 )58.1(]))101(1010/[5(15}15{553Φ≈-Φ=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-≤-=≤--npq np npq np Y P Y P n n9495.0=.。
概率论复习知识点总结
C1,C2,…,Cn为n个任意常数,则
i 1
Ci Xi ~ N ( Ci i ,
i 1
n
n
i 1
2 C i i ) 2
n
作业:二、2;三、17
第3章要点
八、二维连续型随机变量函数的分布
(最大值与最小值分布)设X1,X2,…,Xn是相互独立 的 n 个随机变量,若 Y=max(X1, X2, … , Xn), Z=min(X1, X2, … , Xn), 试在以下情况下求Y和Z的分布
第4章要点
三、重要分布的期望和方差 分布 0-1分布 二项分布 B(n,p) 泊松分布 P() 均匀分布 U(a,b) 指数分布 Exp() 正态分布 N(,2)
参数
0 p1
n 1, 0 p1
数学期望
方差
p(1 p)
np (1 p )
p
np
0
(a b) 2
(b a )2 12
离散型随机变量的数学期望 E ( X ) x i pi
i 1
连续型随机变量的数学期望 E ( X )
随机变量函数的数学期望
E (Y ) E[ g( X )]
xf ( x )dx
g( x
k 1
k
) pk
g( x ) f ( x )dx
第4章要点
第1章要点
一、事件间关系和运算
子事件 A⊂B A发生必然导致B发生
事件相等 A=B
互不相容(互斥) A∩B=
A、B中其中一个发生另一个也发生
A、B不同时发生
对立(互逆) A∩B=, A∪B=Ω
概率论与数理统计要点复习
概率论与数理统计 复习资料第一章随机事件与概率1.事件的关系 φφ=Ω-⋃⊂AB A B A AB B A B A(1) 包含:若事件A 发生,一定导致事件B 发生,那么,称事件B 包含事件A ,记作A B ⊂(或B A ⊃).(2) 相等:若两事件A 与B 相互包含,即A B ⊃且B A ⊃,那么,称事件A 与B 相等,记作A B =. (3) 和事件:“事件A 与事件B 中至少有一个发生”这一事件称为A 与B 的和事件,记作A B ⋃;“n 个事件1,2,,n A A A 中至少有一事件发生”这一事件称为1,2,,n A A A 的和,记作12n A A A ⋃⋃⋃(简记为1ni i A=).(4) 积事件:“事件A 与事件B 同时发生”这一事件称为A 与B 的积事件,记作A B ⋂(简记为AB );“n 个事件1,2,,n A A A 同时发生”这一事件称为1,2,,n A A A 的积事件,记作12n A A A ⋂⋂⋂(简记为12n A A A 或1nii A =).(5) 互不相容:若事件A 和B 不能同时发生,即AB φ=,那么称事件A 与B 互不相容(或互斥),若n 个事件1,2,,n A A A 中任意两个事件不能同时发生,即i j A A φ=(1≤i<j ≤几),那么,称事件 1,2,,n A A A 互不相容.(6) 对立事件:若事件A 和B 互不相容、且它们中必有一事件发生,即AB φ=且A B ⋃=Ω,那么,称A 与B 是对立的.事件A 的对立事件(或逆事件)记作A . (7) 差事件:若事件A 发生且事件B 不发生,那么,称这个事件为事件A 与B 的差事件,记作A B -(或AB ) .2.运算规则 (1)交换律:BA AB A B B A =⋃=⋃(2)结合律:)()( )()(BC A C AB C B A C B A =⋃⋃=⋃⋃ (3)分配律))(()( )()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃ (4)德摩根(De Morgan )法则:B A AB B A B A ⋃==⋃3.概率)(A P 满足的三条公理及性质: (1)1)(0≤≤A P (2)1)(=ΩP(3)对互不相容的事件n A A A ,,,21 ,有∑===nk kn k kA P A P 11)()((n 可以取∞)(4) 0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤ (7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃ 4.古典概型:基本事件有限且等可能5.几何概率: 如果随机试验的样本空间是一个区域(可以是直线上的区间、平面或空间中的区域),且样本空间中每个试验结果的出现具有等可能性,那么规定事件A的概率为()A P A =的长度(或面积、体积)样本空间的的长度(或面积、体积)·6.条件概率(1) 定义:若0)(>B P ,则)()()|(B P AB P B A P =(2) 乘法公式:)|()()(B A P B P AB P = 若n B B B ,,21为完备事件组,0)(>i B P ,则有 (3) 全概率公式: ∑==ni iiB A P B P A P 1)|()()((4) Bayes 公式: ∑==ni iik k k B A P B P B A P B P A B P 1)|()()|()()|((5)贝努里概型与二项概率设在每次试验中,随机事件A发生的概率()(01)P A p p =<<,则在n 次重复独立试验中.,事件A恰发生k 次的概率为()(1),0,1,,k n k n n P k p p k nk -⎛⎫=-= ⎪⎝⎭,7.事件的独立性: B A ,独立)()()(B P A P AB P =⇔ (注意独立性的应用)下列四个命题是等价的:(i) 事件A 与B 相互独立; (ii) 事件A 与B 相互独立; (iii) 事件A 与B 相互独立;(iv) 事件A 与B 相互独立.8、思考题1.一个人在口袋里放2盒火柴,每盒n 支,每次抽烟时从口袋中随机拿出一盒(即每次每盒有同等机会被拿到)并用掉一支,到某次他迟早会发现:取出的那一盒已空了.问:“这时另一盒中恰好有m 支火柴”的概率是多少?2.设一个居民区有n 个人,设有一个邮局,开c 个窗口,设每个窗口都办理所有业务.c 太小,经常排长队;c 太大又不经济.现设在每一指定时刻,这n 个人中每一个是否在邮局是独立的,每个人在邮局的概率是p .设计要求:“在每一时刻每窗口排队人数(包括正在被服务的那个人)不超过m ”这个事件的概率要不小于a (例如,0.8,0.9.95a o =或),问至少须设多少窗口? 3.设机器正常时,生产合格品的概率为95%,当机器有故障时,生产合格品的概率为50%,而机器无故障的概率为95%.某天上班时,工人生产的第一件产品是合格品,问能以多大的把握判断该机器是正常的?第二章 随机变量与概率分布1. 离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑iip=1(3)对任意R D ⊂,∑∈=∈Dx i ii pD X P :)(2. 连续随机变量:具有概率密度函数)(x f ,满足(1)1)(,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b X a P )()(;(3)对任意R a ∈,0)(==a X P 3. 几个常用随机变量名称与记号分布列或密度数学期望 方差0—1分布 两点分布 ),1(p B p X P ==)1(,p q X P -===1)0(p pq二项式分布),(p n Bn k q p C k X P kn k k n ,2,1,0,)(===-,np npq泊松分布)(λP,2,1,0,!)(===-k k ek X P kλλλλ 几何分布)(p G,2,1 ,)(1===-k p qk X P kp12p q均匀分布),(b a Ub x a a b x f ≤≤-= ,1)(,2ba + 12)(2a b - 指数分布)(λE 0 ,)(≥=-x e x f x λλλ121λ 正态分布),(2σμN222)(21)(σμσπ--=x ex fμ2σ标准正态分布的分布函数记作()x Φ,即()x Φ221()2t xx e dtπ--∞Φ=⎰,当出0x ≥时,()x Φ可查表得到;当0x <时,()x Φ可由下面性质得到()1()x x Φ-=-Φ.设2~(,)X N μσ,则有()()x F x μσ-=Φ; ()()()b a P a X b μμσσ--<≤=Φ-Φ.4. 分布函数 )()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续; (4))()()(a F b F b X a P -=≤<,特别)(1)(a F a X P -=>; 特别的 ()()(0)P X a F a F a ==-- (5)对离散随机变量,∑≤=xx i ii px F :)(;(6)对连续随机变量,⎰∞-=xdt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F = 5. 正态分布的概率计算 以)(x Φ记标准正态分布)1,0(N 的分布函数,则有 (1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则)()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u X P Φ-==> 6. 随机变量的函数 )(X g Y =(1)离散时,求Y 的值,将相同的概率相加;(2)X 连续,)(x g 在X 的取值范围内严格单调,且有一阶连续导数,则|))((|))(()('11y g y g f y f X Y --=,若不单调,先求分布函数,再求导。
概率论与数理统计(A)期末复习资料
《概率论与数理统计(A )》期末复习资料一、选择题:1.设A ,B 为两个任意事件,那么与事件B A B A B A ++相等的事件是().(A) AB (B) B A + (C) A (D) B2.设B A ,为两个随机事件,若0)(=AB P ,则( ).(A)A 和B 两事件互不相容(互斥); (B)AB 是不可能事件; (C)AB 未必是不可能事件; (D)0)(=A P 或0)(=B P . 3.如果0)(=AB P ,则( ).(A))()(A P B A P =-; (B)A 与B 不相容; (C)A 与B 不相容; (D))()()(B P A P B A P -=-. 4.如果1)()(=+B P A P ,则( ).(A)1)(=⋃B A P ; (B)0)(=⋂B A P ; (C))()(B A P B A P ⋂=⋂; (D))()(B A P B A P ⋃=⋂. 5.设A 和B 相互独立,则下列结论错误的是( ).(A)B ,A 独立; (B)B ,A 独立; (C))()()(B P A P B A P =; (D)φ=AB .6.设B A ⊂且相互独立,则( ).(A)0)(=A P ; (B)1)(0)(==B P A P 或; (C)1)(=A P ; (D)上述都不对. 7.设随机变量~(2,)X B p ,若()159X P ≥=,则p =( ). (A)32; (B)21; (C)31; (D)2719.8.设随机变量X 概率分布为,,2,1)1()( =+==k k k ak X P ,则a 为( ).(A)0; (B)1; (C)2; (D)3.9.设随机变量X 服从泊松分布,且(1)(2)P X P X ===,则λ=( ). (A)2; (B)1; (C)4; (D)0.5.10.若)(x f 与)(x F 分别为连续型随机变量X 的密度函数与分布函数,则等式( )成立.(A) X a P <(≤⎰∞+∞-=x x F b d )() (B) X a P <(≤⎰=bax x F b d )()(C) X a P <(≤⎰=b ax x f b d )() (D) X a P <(≤⎰∞+∞-=x x f b d )()11.设随机变量),(~2σμN X ,且022=++X x x 无实根的概率为0.5,=μ( ). (A)-1; (B)0; (C)1; (D)2.12.随机变量),(Y X 的联合概率密度为⎩⎨⎧<<<<=其他,0,20,20,),(y x cx y x f ,则c 为( ).(A)0.25; (B)1; (C)2; (D)4.13.设随机变量Y X ,相互独立,它们的密度函数分别为⎩⎨⎧≤>=-000x ,;x ,e )x (f x X ,⎩⎨⎧≤>=-00022y ,;y ,e )y (f y Y ,则=>)Y X (P ( ).(A)31; (B)21; (C)32; (D)43.14.设X ~)4,2(N 且b aX +~)1,0(N ,则( ). (A)22-==b a ,; (B)12-=-=b a ,; (C)121==b a ,; (D)121-==b a ,.15.设)1(~P X ,)2(~P Y ,且X 与Y 相互独立,则~Y X +( ). (A) (1,2)b (B) (3)P (C) (1.5)P(D) (2,1)b16.设随机变量)6.0,20(~b X ,)6.0,10(~b Y ,且X 与Y 相互独立,则~Y X +( ). (A) (10,0.6)b (B) (20,0.6)b (C) b(30,0.6) (D) (18)P17.设),(~p n b X 且6 3.6EX DX ==,,则有()(A) 100.6n p ==, (B) 200.3n p ==,(C) 150.4n p ==, (D) 120.5n p ==, 18.设12,,n X X X 是取自正态总体X ~)1,0(N 的样本,2,S X 分别是样本均值和样本方差,则下列结论正确的是( ).(A)X ~)1,0(N ; (B)X n ~)1,0(N ; (C)S X /~)1(-n t ; (D)∑=ni i X 12~)(2n χ.19.设n X X X 21,是取自正态总体X ~),(2σμN 的样本(2>n ), 2,S X 分别是样本均值和样本方差,则下列结论正确的是( ).(A)1--n SX μ~)1(-n t ; (B)22)(S X n μ-~)1,1(-n F ; (C)22σS ~)1(2-n χ; (D)122X X -~),(2σμN .20.设12,,,n X X X 为来自正态总体2(,)N μσ的一个样本,2211(())1ni i S X X n ==--∑ X 分别为样本方差和样本均值,则下面结论中不正确的是( ). (A)2~(,)X N n σμ ;(B)22()E S σ=; (C)22()1nE S n σ=-; (D)222(1)/~(1)n S n σχ--. 21.已知随机变量X 与Y 相互独立,且2~(40)X χ,2~(80)Y χ,则~/2Y X ().(A)2(40)χ (B) (20,40)F (C) (40,80)F (D) 2(80)χ22.设n X X X ,,,21 是来自正态总体N (,)μσ2的样本,则( )是μ无偏估计.(A) 321X X X ++ (B) 321525252X X X ++ (C) 321515151X X X ++ (D) 321535151X X X ++23.对正态总体),(2σμN 的假设检验问题中,Z 检验解决的问题是( ). (A) 已知方差,检验均值 (B) 未知方差,检验均值(C) 已知均值,检验方差 (D) 未知均值,检验方差24.对来自正态总体X N ~(,)μσ2(μ未知)的一个样本X X X 123,,,则下列各式中( )不是统计量.(A)1X (B) μ+X(C)221σX (D)1X μ25.设n X X X ,,,21 是正态总体),(~2σμN X (2σ已知)的一个样本,按给定的显著性水平α检验0H :0μμ=(已知);1H :0μμ≠时,判断是否接受0H 与( )有关.(A) 样本值,显著水平α (B) 样本值,样本容量(C) 样本容量n ,显著水平α (D) 样本值,样本容量n ,显著水平α 26.在对单正态总体N (,)μσ2的假设检验问题中,T 检验法解决的问题是( ). (A) 已知方差,检验均值 (B) 未知方差,检验均值 (C) 已知均值,检验方差 (D) 未知均值,检验方差 27.假设检验时,若增大样本容量,则犯两类错误的概率( ). (A) 有可能都增大 (B) 有可能都减小(C) 有可能都不变 (D) 一定一个增大,一个减小二、填空题:1.设B A ,是两个事件,且=)(B A P 1,则=-)(A B P .2.设()0.7P A =,()0.3P A B -=,则()AB P = ,()B A P = .3.设事件B A ,和B A ⋃的概率分别为0.2,0.3和0.4,则=)(A B P _______.4.设B A ,是两个随机事件,()0.4()0.3P A P B ==,,若B A ,相互独立,则()P A B ⋃= ,则()P B A = .5.三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,则飞机被击中的概率为 .6.设甲、乙两人投篮命中率分别为0.7和0.8,每人投篮3次,则有人投中的概率为 .7.从0,1,2,,9这10个数字中任意选出3个不同的数字,则3个数字中不含0或5的概率为 .8.某工厂一个班组共有男工9人,女工5人,现在要选出3个代表,则选的3 个代表中至少有1个女工的概率为 .9.设随机变量X 服从参数为λ的泊松分布,且()2D X =,则(1)p X ==________. 10.设随机变量),(N ~X 42,则~X Y 22-=. 11.设随机变量Y 在]5,0[上服从均匀分布,则关于x 的一元二次方程02442=+++Y xY x 有实根的概率为 .12.设)(1x F 与)(2x F 分别是任意两个随机变量分布函数,令=)(x F)()(21x bF x aF +,则下列各组数中使)(x F 为某随机变量的分布函数的有 =a , =b .13.已知连续随机变量X 的分布函数为1,0()0,0x e x F x x λ--≥=<⎧⎨⎩,0λ>,则其密度函数为 ,(2)P x ≤= ;已知随机变量X 的密度函数⎩⎨⎧≤≤=其它 , 010,2)(x x x f 则:)5.15.0(<<X p = .14.设随机变量X 分布律为令,12+=X Y 则随机变量X 分布律为 ;=)(Y E _________.15.若二维随机变量(,)X Y 具有分布律:则(21)P Y X ===________. 16.设随机变量X 分布列如下表则E (X )=________,D (X )=________.17.两独立随机变量X Y 和都服从正态分布,且()()~3,4~2,9X N Y N ,,则()D X Y +=________;又两个相互独立的随机变量~(3),V ~P(2)U E ,则(22)D U V ++=________.18.设X 服从[-1,2]上的均匀分布,令⎩⎨⎧<-≥=,01,01X X Y ,,则=)(Y E ,=)(Y D .19.设相互独立的随机变量X ,Y 均服从参数为5的指数分布,则当0,0x y >>时,(,)X Y 的概率密度(,)f x y =________.20.设总体)1,0(~N X ,1210,,,X X X 是来自总体X 的样本,则~X .21.设总体2~(0,)X N σ,921,X X X 为总体的一个样本,则)(9196521X X X X X X ++++++= 分布为 .22.设),(21n X X X 是取自参数为λ泊松分布的样本,则统计量i ni X Y ∑==1服从分布.23.设12n X X X ,,,为来自总体X 的样本,且~(0,1)X N ,则统计量21~nii X=∑ .24.设12,,,n X X X 是来自总体)1,0(~N X 的简单随机样本,则21()ni i X X =-∑服从的分布为 .25.设n X X X 21,是来自正态总体X ~N (μ,2σ)的样本,即它们是独立同分布,则~X ,~)1(22σS n - .26.在单边假设检验中,原假设为0H :μ≤0μ,则其备择假设为1H :_______________.27.设总体X 服从正态分布2(,)N μσ,其中2σ未知,12,,n X X X 为其样本.若假设检验问题为0010:,:,H H μμμμ=≠则采用的检验统计量表达式应为_______________.三、计算题1.一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率.2.有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求: (1)两粒都发芽的概率;(2)至少有一粒发芽的概率;(3)恰有一粒发芽的概率.3.某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求: (1)在下雨条件下下雪的概率;(2)这天下雨或下雪的概率.4.已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).5.某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.6.甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率.7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)?8.有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险.在一年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求: (1)保险公司亏本的概率;(2)保险公司获利分别不少于10000元、20000元的概率.9.设某种仪器内装有三只同样的电子管,电子管使用寿命X 的密度函数为f (x )=⎪⎩⎪⎨⎧<≥.100,0,100,1002x x x求:(1)在开始150小时内没有电子管损坏的概率;(2)在这段时间内有一只电子管损坏的概率; (3)F (x ).10.某教科书出版了2000册,因装订等原因造成错误的概率为0.001,试求在这2000册书中恰有5册错误的概率.11.由某机器生产的螺栓长度(cm )~(10.05,0.062)X N ,规定长度在10.050.12±内为合格品,求一螺栓为不合格品的概率..12.设一工厂生产的电子管寿命X (小时)服从正态分布),160(2δN ,若要求{}8.0200120≥≤<X P ,允许δ最大不超过多少?13.设X ~N (3,22),(1)求P {2<X ≤5},P {4<X ≤10},P {|X |>2},P {X >3}; (2)确定c 使P {X >c }=P {X ≤c }.14.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律.(2)求(X ,Y )的边缘分布律; (3)求W =X +Y 的分布律.16.设随机变量(X ,Y )的概率密度为()⎩⎨⎧<<<<--=.,0,42,20),6(,其他y x y x k y x f (1)确定常数k ;(2)求P {X <1,Y <3}; (3)求P {X <1.5}; (4)求P {X +Y ≤4}.17.设二维随机变量(X ,Y )的联合分布函数为()⎩⎨⎧>>--=--.,0,0,0),e 1)(e 1(,24其他y x y x F y x求(X ,Y )的联合分布密度.18.设随机变量X 的概率密度为()⎪⎩⎪⎨⎧≤≤-<≤-+=.,0,10 ,1,01 ,1其他x x x x x f求)()(X D X E ,.19.设随机变量X 的概率密度为()⎪⎩⎪⎨⎧≤≤-<≤=.,0,21,2,10,其他x x x x x f求)()(X D X E ,.20.设随机变量(X ,Y )的概率密度为()⎩⎨⎧<<<<=.,0,0,10,,其他x y x k y x f 试确定常数k ,并求)(XY E .21.设X ,Y 是相互独立的随机变量,其概率密度分别为()⎩⎨⎧≤≤=;,0,10,2其他x x x f X ()(5)e ,5,0,.y Y y f y --⎧>=⎨⎩其他 求E (XY ).22.设总体X 服从二项分布b (n ,p ),n 已知,X 1,X 2,…,X n 为来自X 的样本,求参数p 的矩估计.23.设总体X 的密度函数()2(x )2,,f x e x R μμ--=∈X 1,X 2,…,X n 为其样本,试求参数μ的矩估计. 24.设12,,,n x x x 为来自正态总体2~N(,)X μδ的一个样本的X1,X2, (X)观测值,试求总体未知参数2,μδ的极大似然估计.25.设总体X 的密度函数为⎩⎨⎧<<=-.,0,10,),(1其他x x x f θθθn X X X 21,为其样本,求θ 的极大似然估计.26.某车间生产的螺钉,其直径2~N(,)X μδ,由过去的经验知道2δ=0.06,今随机抽取6枚,测得其长度(单位mm )如下:14.7 15.0 14.8 14.9 15.1 15.2 求μ的置信概率为0.95的置信区间.27.来自正态总体2~N(,)X μδ的一个样本为X 1,X 2,…,X n ,并且2μδ未知,已知,求μ的置信概率为1α-的置信区间.28.在正常状态下,某种牌子的香烟一支平均1.1克,若从这种香烟堆中任取36支作为样本;测得样本均值为1.008(克),样本方差2s =0.1(2g ).问这堆香烟是否处于正常状态.已知香烟(支)的重量(克)近似服从正态分布(取α=0.05).。
概率论知识点整理及习题答案
概率论知识点整理及习题答案概率论知识点整理及习题答案第一章随机事件与概率1.对立事件与互不相容事件有何联系与区别?它们的联系与区别是:(1)两事件对立(互逆),必定互不相容(互斥),但互不相容未必对立。
(2)互不相容的概念适用于多个事件,但对立的概念仅适用于两个事件。
(3)两个事件互不相容只表示两个事件不能同时发生,即至多只能发生其中一个,但可以都不发生。
而两个事件对立则表明它们有且仅有一个发生,即肯定了至少有一个发生。
特别地,=A、AU= 、AI=φ。
2.两事件相互独立与两事件互不相容有何联系与区别?两事件相互独立与两事件互不相容没有必然的联系。
我们所说的两个事件A、B相互独立,其实质是事件A是否发生不影响事件B发生的概率。
而说两个事件A、B互不相容,则是指事件A发生必然导致事件B不发生,或事件B发生必然导致事件A不发生,即AB=φ,这就是说事件A是否发生对事件B发生的概率有影响。
3.随机事件与样本空间、样本点有何联系?所谓样本空间是指:随机试验的所有基本事件组成的集合,常用来记。
其中基本事件也称为样本点。
而随机事件可看作是有样本空间中具有某种特性的样本点组成的集合。
通常称这类事件为复合事件;只有一个样本点组成的集合称为基本事件。
在每次试验中,一定发生的事件叫做必然事件,记作。
而一定不发生的事件叫做不可能事件,记作φ。
为了以后讨论问题方便,通常将必然事件和不可能事件看成是特殊的随机事件。
这是由于事件的性质随着试验条件的变化而变化,即:无论是必然事件、随机事件还是不可能事件,都是相对“一定条件”而言的。
条件发生变化,事件的性质也发生变化。
例如:抛掷两颗骰子,“出现的点数之和为3点”及“出现的点数之和大于33点”,则是不可能事件了;而“出现的点数之和大于3点”则是必然事件了。
而样本空间中的样本点是由试验目的所确定的。
例如:(1)={3,4,5,L,18}。
(2)将一颗骰子连续抛掷三次,观察六点出现的次数,其样本空间为 ={0,1,2,3}。
概率论与数理统计总复习知识点归纳
D( X ) E( X 2 ) E 2 ( X ), Cov( X ,Y ) E( XY ) EXEY
XY Cov( X ,Y ) / D( X )D(Y )
⑴ E(aX+b)=aE(X)+b,D(aX+b)=a2D(X)
⑵ E(∑iλi Xi)=∑i λi E(Xi)
(3) D(λ1X±λ2Y)=λ12D(X)+λ22D(Y) ±2λ1λ2Cov(X,Y)
0.587
法二 用Bayes公式:
P (C) = 0.1, P(C ) 0.9;
P (D/C) = 0.3*0.8+0.7*0.2,
P(D / C ) 0.3*0.2.
C
C
于是有
D
P(C / D)
P(C ) P(D / C )
P(C) P(D / C) P(C ) P(D / C )
i 1
i 1
i 1
例3 已知X~ f(x),求Y= -X2的概率密度。 解 用分布函数法。
y<0 时,FY(y) = P(Y≤y) = P(-X2 ≤y) P(X y) P(X y)
FX ( y ) [1 FX ( y )] y≥0 时, FY(y) = P(Y≤y) =1
于是Y的概率密度为
fY ( y) fX (
y)
1 2
( y)1/ 2
fX
(
y ) 1 ( y)1/2 2
1 2
(
y)1/ 2[
fX
(
y) fX (
y )] , y 0
fY (y) 0 , y 0
例4 设二维随机变量(X,Y )的联合密度函数为:
f
( x,
y)
概率论复习提纲范文
概率论复习提纲范文概率论是一门研究随机事件发生的可能性的数学分析方法。
它在各个领域中都有广泛的应用,包括统计学、经济学、物理学等。
本文将为您提供概率论的复习提纲,包括概率基本原理、随机变量与概率分布、大数定律与中心极限定理等重要内容。
一、概率基本原理1.随机试验和样本空间a.随机试验的定义和特点b.样本空间的概念和表示方法2.概率的定义和性质a.概率的基本定义和公理b.集合的概率运算法则c.条件概率和乘法公式d.全概率公式和贝叶斯公式二、随机变量与概率分布1.随机变量的定义和分类a.随机变量的基本定义b.随机变量的分类:离散和连续随机变量2.离散随机变量a.概率质量函数的定义和性质b.分布函数的定义和性质c.数学期望和方差的计算3.连续随机变量a.概率密度函数的定义和性质b.分布函数的定义和性质c.数学期望和方差的计算4.常见概率分布a.伯努利分布和二项分布b.泊松分布和指数分布c.正态分布和标准正态分布三、大数定律与中心极限定理1.大数定律a.辛钦大数定律的概念和证明b.切比雪夫大数定律的概念和证明2.中心极限定理a.中心极限定理的基本概念和特点b.林德贝格-莱维中心极限定理的概念和证明c.中心极限定理的应用四、统计推断与参数估计1.统计推断的基本概念a.参数估计和假设检验b.置信区间和假设检验法则2.参数估计a.点估计的基本概念和性质b.最大似然估计和矩估计3.假设检验a.原假设和备择假设的概念b.显著性水平和拒绝域的确定c.正态总体均值的参数检验五、贝叶斯统计与贝叶斯估计1.贝叶斯统计的基本概念a.条件概率和贝叶斯定理b.先验概率和后验概率2.贝叶斯估计a.贝叶斯估计的基本原理和方法b.贝叶斯估计的优点和应用六、随机过程与马尔可夫链1.随机过程的定义和特点a.随机过程的基本定义b.随机过程的分类和性质2.马尔可夫链a.马尔可夫链的基本定义和性质b.平稳分布和转移概率矩阵的计算c.马尔可夫链的应用以上是概率论的复习提纲,主要包括概率基本原理、随机变量与概率分布、大数定律与中心极限定理、统计推断与参数估计、贝叶斯统计与贝叶斯估计、随机过程与马尔可夫链等重要内容。
概率论总复习知识总结
contents
目录
• 概率论概述 • 随机变量及其分布 • 随机变量的数字特征 • 大数定律与中心极限定理 • 参数估计与假设检验 • 贝叶斯统计推断 • 概率论的应用
01 概率论概述
概率论的基本概念
01
02
03
04
概率
描述随机事件发生的可能性大 小。
随机试验
具有随机性结果的试验。
对于连续型随机变量,数学期望的计算公式为$E(X) = int x f(x) dx$,其中$f(x)$是随机变量$X$的概率 密度函数。
方差与协方差
方差的定义
方差是用来衡量随机变量取值分散程度的量,计算公式为 $D(X) = E[(X - E(X))^2]$。
方差的性质
方差具有非负性、可加性、可乘性和变换不变性等性质。
在贝叶斯决策理论中,决策者需要先对各种可能的结果赋予主观概率,然后根据 这些结果的价值和发生的概率计算期望值,最后选择期望值最大的方案作为最优 决策。
贝叶斯网络与推理
贝叶斯网络是一种基于概率的图形模型,用于表示随机变量 之间的条件独立关系。它由一组节点和有向边组成,节点代 表随机变量,边代表变量之间的概率依赖关系。
协方差的定义
协方差是用来衡量两个随机变量同时取值的分散程度和它 们之间的相关程度的量,计算公式为$Cov(X, Y) = E[(X E(X))(Y - E(Y))]$。
协方差的性质
协方差具有非负性、可加性、可乘性和变换不变性等性质 。
矩与特征函数
矩的定义
矩是用来描述随机变量取值分布特征 的量,包括数学期望、方差、偏度和 峰度等。
样本空间
随机试验所有可能结果的集合 。
事件
概率论复习提纲48页PPT
1.随机试验、样本空间、样本点 2.随机事件、基本事件、必然事件、不可能事件
例如:抛一枚硬币3次,观察出现正面H和 反面T的情况,写出该试验的样本空间. 3.事件间的关系和事件的运算 包含 ()、和事件()、积事件 ()、差事件 事件A与事件B的差事件: A B A B A A .
P10 例1, 例2 ;P12 例4
(三)条件概率
1. 条件概率的定义 设A、B是两事件且P(A)>0,称P(B|A)=P(AB)/P(A) 为在事件A发生的条件下事件B发生的概率.
2. 乘法定理 设A、B是两事件且P(A)>0,则有 P(AB)= P(B|A) ·P(A).
推 设 A 1 ,A 广 2 , ,A n 为 n 个 , n 2 , 事件 且 P ( A 1 A 2 A n 1 ) 0 ,则有 P ( A 1 A 2 A n ) P ( A n A 1 A 2 A n 1 ) P ( A n 1 A 1 A 2 A n 2 ) P ( A 2 A 1 ) P ( A 1 ).
概率论复习提纲
16、人民应该为法律而战斗,就像为 了城墙 而战斗 一样。 ——赫 拉克利 特 17、人类对于不公正的行为加以指责 ,并非 因为他 们愿意 做出这 种行为 ,而是 惟恐自 己会成 为这种 行为的 牺牲者 。—— 柏拉图 18、制定法律法令,就是为了不让强 者做什 么事都 横行霸 道。— —奥维 德 19、法律是社会的习惯和思想的结晶 。—— 托·伍·威尔逊 20、人们嘴上挂着的法律,其真实含 义是财 富。— —爱献 生
P {Xk} k n p k1 p n k k 0 ,1 , ,n (3)泊松分布:X~π()
P{Xk}ke, k0,1,2, ,
概率论复习
例 一个大学毕业生给四家单位各发出一份 求职信,假定这些单位彼此独立,通知他去 面试的概率分别是 1/2,1/3,1/4,1/5。问这 个学生至少有一次面试机会的概率是多大?
解. 分析:考虑对立事件,一次面试机会都 没有的概率是
1/2×2/3×3/4×4/5 = 1/5,
所以至少有一次面试的概率是 4/5。
x 2, 3,
1,
x 3.
0, x 1,
1 , 1 x 2,
4 3
,
2 x 3,
4
1, x 3.
由 F(x) P{X x},
得 P{X 1} F(1) 1 ,
2
24
P{3 X 5} F(5) F(3) 3 1 1 ,
2
2 2 2 44 2
P{2 X 3} F(3) F(2) P{X 2} 1 3 1 3. 42 4
0
0
第三章 多维随机变量及其分布
PX Y 1
y
f x, ydxdy
x y1 1
12 dx e 3x4 ydy
0 1 x
12 dx e 3x4 ydy
1
0
x+y=1
1
O
4e 3 3e 4
1
x
边缘分布函数
定义 设 F ( x, y) 为随机变量( X ,Y ) 的分布函数, 则 F( x, y) P{X x,Y y} . 令 y , 称 P{X x} P{X x,Y } F( x,) 为随机变量( X ,Y ) 关于X的边缘分布函数. 记为 FX ( x) F ( x,). 同理令 x ,
FY ( y) F (, y) P{ X ,Y y} P{Y y}
为随机变量 ( X,Y )关于Y 的边缘分布函数.
概率论复习资料大全
P(X k)Cnk pk (1 p)nk , k 0,1,, n
称r.v X服从参数为n和p的二项分布,记作 X ~ b(n,p)
9
4.泊松分布
定义:设随机变量X所有可能取的值为0 , 1 , 2 , … , 且概率分布为:
P( X k) e k , k0,1,2,,
称的钟形曲线.
特点是“两头小,中间大,左右对称”.
正态分布表
15
9.连续型随机变量函数的分布
定理 设 r.v X具有概率密度 f(x), x , 又设g(x)处处可导,且恒有g(x) 0(或 g(x) 0) 则Y=g(X)是连续型r.v,其概率密度为
fY
(
y)
计算方差的一个简化公式 D(X)=E(X2)-[E(X)]2
26
6.方差的性质
1. 设C是常数,则D(C)=0; 2. 若C是常数X是随机变量,则D(CX)=C2 D(X);
3. 设X与Y 是两个随机变量,则有 D(X+Y)= D(X)+D(Y) + 2E{(X-E(X))(Y-E(Y))}. 特别,若X与Y 相互独立,则有 D(X+Y)= D(X)+D(Y)
p
B(n,p)
π()
P( X k) Cnk pk (1 p)nk k 0,1,2,,n
np
P( X k) ke
k!
k 0,1,2,
23
分布
概率密度
期望
区间(a,b)上的 均匀分布
f
(
x)
b
1
a
,
0,
a x b, 其它
《概率论总复习》课件
常见问题解答二:条件概率与独立性的关系?
总结词
条件概率与独立性是概率论中的重要概念,它们之间 存在密切的联系。
详细描述
条件概率是指在某个已知事件发生的条件下,另一个 事件发生的概率。而独立性则是指两个事件之间没有 相互影响,一个事件的发生不影响另一个事件的发生 。在条件概率中,如果两个事件在给定条件下是独立 的,那么它们同时发生的概率等于各自发生的概率的 乘积。因此,条件概率和独立性之间存在密切的联系 ,理解它们的概念和关系有助于更好地掌握概率论中 的相关内容。
04
概率论的应用
统计学中的概率论应用
统计推断
概率论为统计学提供了理论基 础,用于估计未知参数、检验 假设和进行预测。
随机抽样
概率论确保了随机抽样的公正 性和代表性,使得样本数据能 够反映总体特征。
统计决策
基于概率论的决策分析方法, 如贝叶斯决策和风险分析,帮 助决策者做出最优选择。
计算机科学中的概率论应用
100%
离散型随机变量的分布
离散型随机变量的分布通常由概 率质量函数或概率分布函数描述 。
80%
连续型随机变量的分布
连续型随机变量的分布由概率密 度函数描述,其总概率为1,即 ∫−∞∞f(x)dxF(x)=∫−∞∞f(x)dxF (x)=∫−∞∞f(x)dxF(x)=1。
02
概率论中的重要定理
贝叶斯定理
01
02
03
04
贝叶斯定理是概率论中的基本 定理之一,它提供了在已知某 些条件下,对概率进行更新和 推理的方法。
贝叶斯定理是概率论中的基本 定理之一,它提供了在已知某 些条件下,对概率进行更新和 推理的方法。
贝叶斯定理是概率论中的基本 定理之一,它提供了在已知某 些条件下,对概率进行更新和 推理的方法。
SUES概率论与数理统计A复习纲要
SUES概率论与数理统计A复习纲要概率论与数理统计复习纲要第⼀部分:知识点学好⽤好数学的关键是概念清楚,正确使⽤公式和法则,把握基本的解题思路和⽅法。
以下的知识点是基本的,请你结合课本认真复习、总结。
1.随机试验,样本点,样本空间,随机事件。
P1-P22.⼦事件,和事件,积事件,差事件,逆事件。
⼀组事件两两互不相容。
P3-P4 3.和、差、积、逆的运算及其交换律、结合律、分配率、对偶律。
P3-P4 4.概率的⾮负性、规范性、可加性;逆事件的概率,加法公式。
P7-P8 5.等可能概型的概念,等可能概型的概率计算公式。
P9-P10 6.条件概率的意义,条件概率的定义式,乘法定理。
P15-P177.全概率公式,贝叶斯公式。
什么情况下⽤全概率公式,什么情况下⽤贝叶斯公式?P18-P19 8.多个事件相互独⽴。
P22-P249.n 重贝努利试验的概念,概率()n P k 的计算公式。
P27 10.怎样⽤随机变量表⽰随机事件?P4-P511.离散型随机变量的分布律及其性质。
三种常⽤分布:(01),(,),().X X B n p X πλ-Poisson 定理(⽤Poisson 分布近似⼆项分布,条件、近似等式)。
P34-P3812.随机变量的分布函数()F x 的定义,基本性质。
P40 13.怎样利⽤分布函数()F x 求以下随机事件的概率?{},{},{},{}x a a x b x a x a ≤<≤>=.P4114.怎样由离散型随机变量X 的分布律求X 的分布函数()F x ?P4115.连续型随机变量的分布函数()F x 与概率密度函数()f x 之间是什么关系?已知其中⼀个,怎样求出另⼀个?P43-P46 16.连续型随机变量的概率密度函数()f x 都有哪些性质?怎样利⽤概率密度函数()f x 求以下随机事件的概率?{},{},{}x a a x b x a ≤<≤>.{}?P x a == P44-P4617.连续型随机变量的三种常⽤分布:2(,),(),(,).X U a b X E X N λµσ P47-P5018.怎样将⼀般正态分布的概率计算转化并通过标准正态分布来计算?请写出转化公式。
上海大学 计算机 概率论与数理统计A 复习提纲
F ( x, y ) 是 x 或 y 的单调不减函数,
对任意固定的 y , F (−∞, y) = 0 ; 对任意固定的 x , F ( x,−∞)
=0
F(−∞,−∞) = 0, F ( +∞ ,+∞ ) = 1 ;
(3) F ( x, y ) 关于 x (或 y )是右连续的; (4) P{x1 < X ≤ x2 , y1 < Y ≤ y2} = F(x2 , y2 ) − F(x2 , y1 ) + F(x1, y1) − F(x2 , y1 ) 二、 二维离散型随机变量及其分布律
1 2πσ1σ 2 1− ρ
2
e
2 ⎡⎛ x−µ ⎞2 ( x−µ1 )( y−µ2 ) ⎛ y−µ2 ⎞ ⎤ 1 ⎢⎜ ⎥ ⎟ −2ρ +⎜ − ⎟ ⎥ ⎜ σ ⎟ 2 ⎢⎜ σ ⎟ σ σ 1 1 2 2 ⎠ ⎝ ⎠ ⎝ 2 1−ρ ⎣ ⎦
1
(−∞ < x < +∞,−∞ < y < +∞)
10
2、 0 ≤ F ( x) ≤ 1 , 且
x − > −∞
lim F ( x ) = 0, lim F ( x ) = 1 ;
x − > +∞
3、 F ( x) 是右连m F (u ) = F( x ) 。
例如:设连续型随机变量 X 的分布函数为
⎧0 ⎪ F ( x) = ⎨ x 2 ⎪1 ⎩ x<0 0 ≤ x <1 x ≥1
记作
x<a
X ~ U (a, b)
⎧ 0 ⎪x − a F ( x) = ⎨ ⎪b − a ⎩ 1
a≤ x<b x≥b
6
《概率论与数理统计》复习资料要点总结
《概率论与数理统计》复习提要第一章随机事件与概率1.事件的关系φφ=Ω-⋃⊂AB A B A AB B A B A 2.运算规则(1)BAAB A B B A =⋃=⋃ (2))()( )()(BC A C AB C B A C B A =⋃⋃=⋃⋃(3)))(()( )()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃(4)BA AB B A B A ⋃==⋃ 3.概率)(A P 满足的三条公理及性质:(1)1)(0≤≤A P (2)1)(=ΩP (3)对互不相容的事件n A A A ,,,21 ,有∑===nk kn k kA P A P 11)()( (n 可以取∞)(4)0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤(7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃4.古典概型:基本事件有限且等可能5.几何概率6.条件概率(1)定义:若0)(>B P ,则)()()|(B P AB P B A P =(2)乘法公式:)|()()(B A P B P AB P =若n B B B ,,21为完备事件组,0)(>i B P ,则有(3)全概率公式:∑==ni iiB A P B P A P 1)|()()((4)Bayes 公式:∑==ni iik k k B A P B P B A P B P A B P 1)|()()|()()|(7.事件的独立性:B A ,独立)()()(B P A P AB P =⇔(注意独立性的应用)第二章随机变量与概率分布1.离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑iip=1(3)对任意R D ⊂,∑∈=∈Dx i ii pD X P :)(2.连续随机变量:具有概率密度函数)(x f ,满足(1)1)(,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b X a P )()(;(3)对任意R a ∈,0)(==a X P 3.几个常用随机变量名称与记号分布列或密度数学期望方差两点分布),1(p B p X P ==)1(,pq X P -===1)0(p pq 二项式分布),(p n B n k q p C k X P kn k k n ,2,1,0,)(===-,npnpqPoisson 分布)(λP,2,1,0,!)(===-k k e k X P kλλλλ几何分布)(p G,2,1 ,)(1===-k p qk X P k p 12p q 均匀分布),(b a U b x a a b x f ≤≤-= ,1)(,2b a +12)(2a b -指数分布)(λE 0,)(≥=-x e x f x λλλ121λ正态分布),(2σμN 222)(21)(σμσπ--=x ex f μ2σ4.分布函数)()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续;(4))()()(a F b F b X a P -=≤<,特别)(1)(a F a X P -=>;(5)对离散随机变量,∑≤=xx i ii px F :)(;(6)对连续随机变量,⎰∞-=xdt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F =5.正态分布的概率计算以)(x Φ记标准正态分布)1,0(N 的分布函数,则有(1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u X P Φ-==>6.随机变量的函数)(X g Y =(1)离散时,求Y 的值,将相同的概率相加;(2)X 连续,)(x g 在X 的取值范围内严格单调,且有一阶连续导数,则|))((|))(()('11y g y g f y f X Y --=,若不单调,先求分布函数,再求导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、 二维离散型随机变量的条件分布
P{Y = y j | X = xi } = P{ X = xi , Y = y j } P( X = xi ) = pij pi•
P{X = xi ,Y = yj } pij P{X = xi | Y = yj }= = P(Y = yj ) p• j
11
2、 二维连续型随机变量的条件分布
P( A) = P( AB) + P( AB ) ;
P( A) = 1 − P( A )
P( A B ) = P( A U B) = 1 − P( A U B) ;
P( A U B ) = P( AB) = 1 − P( AB) ;
P( AB U A B) = P( A) + P( B) + kP( AB)
P{ X = k } = C nk p k (1 − p ) n − k k = 0,1,2,3, L , n
(3) 泊松分布
P{ X = k} =
λk e − λ
k!
k = 0,1, 2, L
4、离散型随机变量的分布律的求法 注意确定随机变量的取值范围
5
四、 连续型随机变量及其概率密度 1、连续型随机变量的定义 连续型随机变量的分布函数是连续函数。 2、概率密度的性质 ( 1) ( 2) ( 3)
k Ca C bn − k p1 = n Ca +b
k k n−k Cn a b p2 = ( a + b) n
例 2: 袋中有 a 只白球, b 只红球, k 个人依次在袋 中取一只球, (1)作放回抽样; (2)作不放回抽样, 求第 i (i = 1,2,3L , k ) 人取到白球的概率( k ≤ a + b ) 。 a p ( B ) = 答案: 都为 (ZU 书 P16) a+b
1 2πσ1σ 2 1− ρ
2
e
2 x−µ 2 ( x−µ1 )( y−µ2 ) y−µ2 1 −2ρ − + σ 2 σ σ σ 1 1 2 2 2 1−ρ
1
(−∞ < x < +∞,−∞ < y < +∞)
10
第一章
Hale Waihona Puke 概率论的基本概念一、概率的定义,和由此推得的概率性质:
( 1) ( 2) ( 3) ( 4) ( 5) ( 6) ( 7) ( 8)
P ( A U B ) = P ( A) + P ( B ) − P ( AB ) ;
当 A,B 不相容时, P( A U B) = P( A) + P( B) ; P( A − B) = P( AB ) = P( A) − P( AB) ; 当 B ⊂ A 时, P ( A − B ) = P ( A) − P ( B )
其中 θ > 0
1 − e − x / θ F ( x) = 0
x>0 其它
( 3)
正态分布
− ( x− µ )2
1 2 e 2σ − ∞ < x < +∞ 2π σ 当 µ = 0, σ = 1 时,称 X 服从标准正态分布 f ( x) =
2 定理 1 若 X ~ N ( µ , σ ) ,则 Z =
三、条件概率、全概率公式和贝叶斯(Bayes)公式 (重点 重点) 重点 条件概率符合概率定义中的三个条件: (1) 非负性 :对于每一事件 B ,都有 P ( B | A) ≥ 0 ; (2) 规范性: P( S | A) = 1 ; (3) 可列可加性: 设 B1 , B2 , B3 ,L 是两两互不相容的 事件,则有
k =1
4
∞
2、离散型随机变量的分布函数 F ( x) =
xk ≤ x
∑p
k
要注意如何由分布函数求分布律, 以及由分布律求分 布函数
0 0 .1 F ( x ) = 0 .4 例如: 例如 0 .8 1 x < −2 −2≤ x<0 0≤ x <1 1≤ x < 3 x≥3
3、三种常见的连续型随机变量 ( 1) 均匀分布
1 a< x<b f ( x) = b − a 其它 0
记作
x<a
X ~ U (a, b)
0 x − a F ( x) = b − a 1
a≤ x<b x≥b
6
( 2)
指数分布
1 −x /θ e f ( x) = θ 0 x>0 其它
y +∞ FY ( y ) = F (+∞, y ) = ∫ ∫ f (u, v)du dv −∞ −∞
f X ( x) = ∫
+∞
−∞
f ( x, y ) dy
f Y ( y) = ∫
+∞
−∞
f ( x, y )dx
注意:边缘概率密度的 六、 条件分布
x (或 y )
的取值范围
X −µ
σ
~ N (0,1) 。
2 若 X ~ N ( µ , σ ) ,求 P{a < X ≤ b}
P{ X > zα } = α ,称 zα 为标准正态分布的 上 α 分位
点。
五、 随机变量的函数的分布 1、 首先确定新的随机变量的取值范围; 2、 根据给定的函数关系式,确立新的随机变量与 原来的随机变量的分布函数的关系。
pij ≥ 0 ,
∑∑ p
i =0 j = 0
∞
∞
ij
=1
8
三、 二维连续型随机变量及其概率密度 对于二维随机变量(X,Y)的分布函数 F ( x, y ) ,如果存 在非负函数 f ( x, y ) 使得
F ( x, y ) = ∫
x −∞ −∞ y
∫
f (u, v)dudv
则称(X,Y)是二维连续型随机变量,称函数 f ( x, y ) 为 二维型随机变量(X,Y)的概率密度 (或称为随机变量 X 和 Y 的联合概率密度) 。 ( 1) f ( x , y ) ≥ 0 ; ( 2)
∫ ∫
+∞ +∞
−∞ −∞
f ( x, y ) = 1 ;
(3) 设 G 是 xOy 平面上的区域,点(X,Y)落在 G 内的概率为
P{( X , Y ) ∈ G} = ∫∫ f ( x, y )dxdy
G
(4) 若 f ( x, y ) 在点 ( x, y ) 连续,则有
∂ 2 F ( x, y) = f ( x, y) ∂x∂y
P (U Bi | A) = ∑ P( Bi | A)
i =1 i =1 ∞ ∞
2
P( A) = P( A | B1 ) P( B1 ) + P( A | B2 ) P( B2 ) + L + P( A | Bn ) P( Bn )
P( Bi | A) =
P( A | Bi ) P( Bi )
∑ P( A | B
f ( x) ≥ 0 ;
∫
+∞
−∞
f ( x)dx = 1 ;
对于任意实数 x1 , x 2 ( x1 ≤ x 2 ) ,
P{ x1 < x ≤ x 2 } = F ( x 2 ) − F ( x1 ) =
∫
x2
x1
f ( x ) dx ;
( 4)
' 若 f ( x ) 在点 x 处连续,则有 F ( x ) = f ( x ) .
k =1
n
k
) P ( Bk )
四、事件的独立性 事件的独立性与不相容性 相互独立与两两独立的区别
0 < P ( A) < 1 ,若 P{B | A} = P{B | A} ,则 A,B 独立;
反之也成立;
P ( A) > 0 ,若 A, B 相互独立,则 P ( B | A) = P ( B ) ,反
f ( x, y ) f Y | X ( y | x) = f X ( x)
FY | X ( y | x ) = P{Y ≤ y | X = x} = ∫
y −∞
f ( x, y ) dy f Y ( x)
f X |Y ( x | y ) =
f ( x, y ) fY ( y)
y −∞
FX |Y ( x | y ) = P{ X ≤ x | Y = y} = ∫
如何由概率密度求分布函数?(难点)
9
4 xy 0 ≤ x ≤ 1,0 ≤ y ≤ 1 = f ( x , y ) 例如: 已知 , 例如 其它 0
求 F ( x, y ) 。
0 x2 y2 F ( x, y ) = x 2 y2 1
x < 0或 y < 0 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 0 ≤ x ≤ 1, y > 1 x > 1, 0 ≤ y ≤ 1 x > 1, y > 1
(答案: k=-2)
例如: 当 k 为何值时,有 例如
二、古典概型(难点 难点) 难点 例 1: 设袋中有 a 只白球, b 只红球,按下列两种方 式,从中随机地抽取 n 只球,求其中恰有 k ( k ≤ a ) 只 白球的概率。 (1)不放回抽样; (2)放回抽样。
1
答案: (1)不放回抽样 (2)放回抽样
Z = g( X )
F ( z ) = P{Z ≤ z} = P{g ( X ) ≤ z}
7
第三章
多维随机变量及其分布
一、 二维随机变量分布函数的定义与性质
F ( x, y ) = P{( X ≤ x) I (Y ≤ y )}记成P{ X ≤ x, Y ≤ y}