概率论复习资料(1)

合集下载

概率论与数理统计考研复习资料

概率论与数理统计考研复习资料

概率论与数理统计复习第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现.样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件. 二. 事件间的关系和运算1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.2.A ∪B(和事件)事件A 与B 至少有一个发生.3. A ∩B=AB(积事件)事件A 与B 同时发生.4. A -B(差事件)事件A 发生而B 不发生.5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B . 运算规则 交换律 结合律 分配律 德•摩根律B A B A = B A B A =三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率.(1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),P(A 1∪A 2∪…)=P( A 1)+P(A 2)+…2.性质(1) P(Φ) = 0 , 注意: A 为不可能事件 P(A)=0 .(2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ⊂B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) .(4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n()()()()+∑+∑-∑=≤<<≤≤<≤=nk j i k j i nj i j i ni i n A A A P A A P A P A A A P 11121…+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0).P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,有全概率公式 P(A)=()()i ni i B A P B P∑=1当P(A)>0, P(B i )>0时,有贝叶斯公式P (B i |A)=()()()()()()∑==ni i i i i i B A P B P B A P B P A P AB P 1. 六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件.(1)两个事件A,B 相互独立⇔ P(B)= P (B|A) .(2)若A 与B ,A 与B ,A 与B, ,A 与B 中有一对相互独立,则另外三对也相互独立.2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立.3.n 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()kkii i i i i A P A P A P A A A P 2121=,则称这n 个事件A 1,A 2,…,A n相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2). (3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1). 二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为: (1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX kk P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1) (3))X~π(λ)参数为λ的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (λ>0) 三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数). 2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(xx dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 .3.三种重要的连续型随机变量的分布 (1)X ~U (a,b) 区间(a,b)上的均匀分布⎩⎨⎧=-0)(1a b x f其它b x a << . (2)X 服从参数为θ的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 (θ>0). (3)X~N (μ,σ2)参数为μ,σ的正态分布222)(21)(σμσπ--=x ex f -∞<x<∞, σ>0. 特别, μ=0, σ2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数⎰=Φ∞--xt dt e x 2221)(π, Φ(-x)=1-Φ(x) .若X ~N ((μ,σ2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z α}= P{Z<-z α}= P{|Z|>z α/2}= α,则点z α,-z α, ±z α/ 2分别称为标准正态分布的上,下,双侧α分位点. 注意:Φ(zα)=1-α , z 1- α= -z α.四.随机变量X 的函数Y= g (X)的分布 1.若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律. 2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法: (1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f ky X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为()()()()⎩⎨⎧'=0y h y h f y f X Y其它βα<<y其中h(y)是g(x)的反函数 , α= min (g (-∞),g (∞)) β= max (g (-∞),g (∞)) .如果f (x)在有限区间[a,b]以外等于零,则 α= min (g (a),g (b)) β= max (g (a),g (b)) .第三章 二维随机变量及其概率分布 一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数. 2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ∞)=0, F(-∞,y)=0, F(-∞,-∞)=0, F(∞,∞)=1 .(3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) . (4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质(1)非负性 0≤p i j ≤1 .(2)归一性∑∑=i jij p 1 .3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y ,有F(x,y)=⎰⎰∞-∞-yxdudv v u f ),(则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度. 2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-d x d y y x f .(3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2(4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<∞}= F (x , ∞) . (X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<∞, Y ≤y}= F (∞,y)2.二维离散型随机变量(X,Y) 关于X 的边缘分布律 P{X= x i }=∑∞=1j ij p = p i·( i =1,2,…) 归一性11=∑∞=∙i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p·j( j =1,2,…) 归一性11=∑∞=∙j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dyy f Y五.相互独立的随机变量1.定义 若对一切实数x,y ,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j= p i ··p ·j( i ,j =1,2,…)对一切x i ,y j成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X(x)f Y(y)对(X,Y)所有可能取值(x,y)都成立.六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称 P{X=x i |Y=y j }为在Y= y j 条件下随机变量X 的条件分布律. 同样,对于固定的i,若P{X=x i }>0,则称,}{},{jj i j j i p p y Y P y Y x X P ∙=====P{Y=y j |X=x i }为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量 连续型随机变量分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X)∑∞=1i i i p x (级数绝对收敛)⎰∞∞-dx x xf )((积分绝对收敛)方差D(X)=E{[X-E(X)]2}[]∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛) 函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差σ(X)=√D(X) .二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2D(X) . 2.X,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0 ⇔P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X)1.X~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p)2.X~ b (n,p) (0<p<1) n p n p (1- p)3.X~ π(λ) λ λ4.X~ U(a,b) (a+b)/2 (b-a) 2/12 5.X 服从参数为θ的指数分布 θ θ2 6.X~ N (μ,σ2) μ σ2 四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,… 随机变量X 的k 阶中心矩E {[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l}第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i i XX n S 12211 样本标准差S样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==n i ki k X X n B 1)(1( k=1,2,…),}{},{∙=====i j i i j i p p x X P y Y x X P二.抽样分布 即统计量的分布 1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n .特别,若X~ N (μ,σ2 ) ,则X ~ N (μ, σ2/n) .2.χ2分布 (1)定义 若X ~N (0,1) ,则Y =∑=ni i X 12~ χ2(n)自由度为n 的χ2分布.(2)性质 ①若Y~ χ2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ χ2(n 1) Y 2~ χ2(n 2) ,则Y 1+Y 2~ χ2(n 1 + n 2).③若X~ N (μ,σ2 ), 则22)1(σS n -~ χ2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ χ2(n),0< α <1 ,则满足αχχχχαααα=<>=<=>--))}(())({()}({)}({22/122/212n Y n Y P n Y P n Y P的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为χ2分布的上、下、双侧α分位点. 3. t 分布(1)定义 若X~N (0,1),Y~ χ2(n),且X,Y 相互独立,则t=nY X~t(n)自由度为n 的t 分布. (2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (μ,σ2 )时, nS X μ-~ t (n-1) .③两个正态总体相互独立的样本 样本均值 样本方差X~ N (μ1,σ12 ) 且σ12=σ22=σ2 X 1 ,X 2 ,…,X n1 X S 12Y~ N (μ2,σ22 ) Y 1 ,Y 2 ,…,Y n2Y S22则212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w(3)分位点 若t ~ t (n) ,0 < α<1 , 则满足αααα=>=-<=>)}({)}({)}({2/n t t P n t t P n t t P的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧α分位点.注意: t 1- α (n) = - t α (n).4.F 分布 (1)定义 若U~χ2(n 1), V~ χ2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③)22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< α <1,则满足)},({)},({21121n n F F P n n F F P αα-<=>ααα=<>=-))},(()),({(212/1212/n n F F n n F F P的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧α分位点. 注意:.).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数θ1, θ2,…, θk .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμ 解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k μμμθθμμμθθμμμθθ ,以样本矩A l 取代总体矩μ l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A θθθθθθ,若代入样本值则得到矩估计值. 2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p (x, θ1, θ2,…, θk ),称样本X 1 ,X 2 ,…,Xn的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθ 为似然函数.取使似然函数达到最大值的∧∧∧kθθθ,,,21 ,称为参数θ1, θ2,…,θk 的最大似然估计值,代入样本得到最大似然估计量.若L(θ1, θ2,…, θk )关于θ1, θ2,…, θk 可微,则一般可由 似然方程组0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=θ,则估计量∧θ称为参数θ的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=μk =E(X k ),即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩μk 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= θ, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效. (3)一致性(相合性) 若n →∞时,θθP →∧,则称估计量∧θ是参数θ的相合估计量.文 - 汉语汉字 编辑词条文,wen ,从玄从爻。

概率论笔记1

概率论笔记1

概率复习重点归纳 一、随机事件与概率 重点难点: 重点:概率的定义与性质,条件概率与概率的乘法公式,事件之间的关系与运算,全概率公式与贝叶斯公式 难点:随机事件的概率,乘法公式、全概率公式、Bayes 公式以及对贝努利概型的事件的概率的计算 常考题型: (1)事件关系与概率的性质 (2)古典概型与几何概型 (3)乘法公式和条件概率公式 (4)全概率公式和Bayes 公式 (5)事件的独立性 (6)贝努利概型 概念辨析1,互不相容(互斥)事件同逆(对立)事件互不相容事件:AB =Φ 逆事件:,A B AB ⋃=Ω=Φ事件互逆指的是非此即彼,即事件之一必定发生;而不相容仅指不能同时发生,但是是可以同时不发生的。

2,独立与互不相容(互斥)对事件A 及B ,若P(A)P(B)>0,且P(AB)=P(A)P(B),则称事件A 及B 互相独立;事件独立同事件互斥是两套不同的概念,不能进行比较;须知独立性针对的是事件概率存在上面的等式关系;而互斥是指事件的不可同时发生,两者之间不存在必然关系。

3、条件概率同乘积概率P(AB)是在样本空间Ω内,事件AB 的概率,而P(A | B)是在试验中增加了新条件B 发生 后的缩减的样本空间B Ω中计算事件A 的概率。

虽然A 、B 都发生,但两者是不同的,一般说来,当A 、B 同时发生时,常用P(AB),而在有包含关系或明确的主从关系时,用P(A | B) .例:袋中有9 个白球1 个红球,作不放回抽样,每次任取一球,取2 次,求:(1)第二次才取到白球的概率;( 2)第一次取到的是白球的条件下,第二次取到白球的概率.问题(1)求的就是一个乘积事件概率的问题,而问题(2)求的就是一个条件概率的问题.4、全概率公式同贝叶斯公式 全概率公式:要求事件A 的概率(通常直接不太好求),将其分成几个比较容易计算的概率之和。

在分析问题的过程中,A 可视为B1∪B2∪B3∪…∪Bn 的子事件,或者把Bi 看成A 发生的原因,A 是结果,而及较易求出,从而可由“因”求出“果”。

概率论知识点总结 (1)

概率论知识点总结 (1)

概率论知识点总结 (1)概率论总结名目一、前五章总结第一章随机事件和概率 (1)第二章随机变量及其分布 (5)第三章多维随机变量及其分布 (10)第四章随机变量的数字特征 (13)第五章极限定理 (18)二、学习概率论这门课的心得体味 (20)一、前五章总结第一章随机事件和概率第一节:1.、将一切具有下面三个特点:(1)可重复性(2)多结果性(3)别确定性的试验或观看称为随机试验,简称为试验,常用E表示。

在一次试验中,也许浮现也也许别浮现的情况(结果)称为随机事件,简称为事件。

不会事件:在试验中不会浮现的情况,记为Ф。

必定事件:在试验中必定浮现的情况,记为S或Ω。

2、我们把随机试验的每个基本结果称为样本点,记作e 或ω. 全体样本点的集合称为样本空间. 样本空间用S或Ω表示. 一具随机事件算是样本空间的一具子集。

基本领件—单点集,复合事件—多点集一具随机事件发生,当且仅当该事件所包含的一具样本点浮现。

事件间的关系及运算,算是集合间的关系和运算。

3、定义:事件的包含与相等若事件A发生必定导致事件B发生,则称B包含A,记为B?A或A?B。

若A?B且A?B则称事件A与事件B相等,记为A=B。

定义:和事件“事件A与事件B至少有一具发生”是一事件,称此事件为事件A与事件B 的和事件。

记为A∪B。

用集合表示为: A∪B={e|e∈A,或e∈B}。

定义:积事件称事件“事件A与事件B都发生”为A与B的积事件,记为A ∩B或AB,用集合表示为AB={e|e∈A且e∈B}。

定义:差事件称“事件A发生而事件B别发生,这一事件为事件A与事件B的差事件,记为A-B,用集合表示为 A-B={e|e∈A,e?B} 。

定义:互别相容事件或互斥事件假如A,B两事件别能并且发生,即AB=Φ,则称事件A与事件B是互别相容事件或互斥事件。

定义6:逆事件/对立事件称事件“A 别发生”为事件A 的逆事件,记为ā 。

A 与ā满脚:A ∪ā= S,且A ā=Φ。

概率论与数理统计复习资料

概率论与数理统计复习资料

自考04183概率论与数理统计(经管类)笔记-自考概率论与数理统§1.1 随机事件1.随机现象:确定现象:太阳从东方升起,重感冒会发烧等;不确定现象:随机现象:相同条件下掷骰子出现的点数:在装有红、白球的口袋里摸某种球出现的可能性等;其他不确定现象:在某人群中找到的一个人是否漂亮等。

结论:随机现象是不确定现象之一。

2.随机试验和样本空间随机试验举例:E1:抛一枚硬币,观察正面H、反面T出现的情况。

E2:掷一枚骰子,观察出现的点数。

E3:记录110报警台一天接到的报警次数。

E4:在一批灯泡中任意抽取一个,测试它的寿命。

E5:记录某物理量(长度、直径等)的测量误差。

E6:在区间[0,1]上任取一点,记录它的坐标。

随机试验的特点:①试验的可重复性;②全部结果的可知性;③一次试验结果的随机性,满足这些条件的试验称为随机试验,简称试验。

样本空间:试验中出现的每一个不可分的结果,称为一个样本点,记作。

所有样本点的集合称为样本空间,记作。

举例:掷骰子:={1,2,3,4,5,6},=1,2,3,4,5,6;非样本点:“大于2点”,“小于4点”等。

3.随机事件:样本空间的子集,称为随机事件,简称事件,用A,B,C,…表示。

只包含一个样本点的单点子集{}称为基本事件。

必然事件:一定发生的事件,记作不可能事件:永远不能发生的事件,记作4.随机事件的关系和运算由于随机事件是样本空间的子集,所以,随机事件及其运算自然可以用集合的有关运算来处理,并且可以用表示集合的文氏图来直观描述。

(1)事件的包含和相等包含:设A,B为二事件,若A发生必然导致B发生,则称事件B包含事件A,或事A包含于事件B,记作,或。

性质:例:掷骰子,A:“出现3点”,B:“出现奇数点”,则。

注:与集合包含的区别。

相等:若且,则称事件A与事件B相等,记作A=B。

(2)和事件概念:称事件“A与B至少有一个发生”为事件A与事件B的和事件,或称为事件A与事件B的并,记作或A+B。

概率论与数理统计(经管类)复习要点 第1章 随机事件与概率

概率论与数理统计(经管类)复习要点 第1章 随机事件与概率

第一章随机事件与概率1. 从发生的必然性角度区分,现象分为确定性现象和随机现象。

随机现象:在一定条件下,可能出现这样的结果,也可能出现那样的结果,预先无法断言。

统计规律性:在大量重复试验或观察中所呈现的固有规律性。

概率论与数理统计就是研究和揭示随机现象统计规律的一门数学学科,随机现象是概率论与数理统计的主要对象。

(1)概率论:从数量上研究随机现象的统计规律性的科学。

(2)数理统计:从应用角度研究处理随机性数据,建立有效的统计方法,进行统计推理。

2. (1)试验的可重复性——可在相同条件下重复进行;(2)一次试验结果的随机性——一次试验之前无法确定具体是哪种结果出现,但能确定所有的可能结果;(3)全部试验结果的可知性——所有可能的结果是预先可知的。

在概率论中,将具有上述三个特点的试验成为随机试验,简称试验,记作E。

样本点:试验的每一个可能出现的结果称为一个样本点,记为ω。

样本空间:试验的所有可能结果所组成的集合称为试验E的样本空间,记为Ω。

3. 在一次试验中可能出现也可能不出现的事件,统称为随机事件,记作A,B,C或A1,A2,…随机事件:样本空间Ω的任意一个子集称, 简称“事件”,记作A、B、C等。

事件发生:在一次试验中,当这一子集中的一个样本点出现时。

基本事件:样本空间Ω仅包含一个样本点ω的单点子集{ω}。

两个特殊事件:必然事件Ω、不可能事件φ样本空间Ω包含所有的样本点,它是Ω自身的子集,在每次试验中它总是发生,称为必然事件。

空集φ不包含任何样本点,它也作为样本空间Ω的子集,在每次试验中都不发生,称为不可能事件。

4. 随机事件的关系与运算(1)事件的包含与相等设A,B为两个事件,若A发生必然导致B发生,则称事件B包含A,或称事件A包含在B中,记作B⊃A,A⊂B。

①φ⊂A⊂Ω②若A⊂B且B⊂A,则称A与B相等,记作A=B。

事实上,A和B在意义上表示同一事件,或者说A和B 是同一事件的不同表述。

(2)和事件称事件“A,B中至少有一个发生”为事件A与事件B的和事件,也称为A与B的并,记作A∪B或A+B。

(完整版)自考概率论与数理统计复习资料要点总结

(完整版)自考概率论与数理统计复习资料要点总结

i《概率论与数理统计》复习提要(1) 0 P(A) 1 ( 2)P( ) 1(1) 定义:若 P(B) 0,则 P(A| B)P(AB)P(B)(2)乘法公式:P(AB) P(B)P(A| B)若B 1, B 2, B n 为完备事件组,P(B i )0,则有n(3)全概率公式: P(A) P(B i )P(A| B i )i 1(4)Bayes 公式: P(B k | A)P(Bk)P(A|B k)P(B i )P(A|BJi 17.事件的独立性:A, B 独立 P( AB) P(A)P(B)(注意独立性的应用)第二章随机变量与概率分布1 •离散随机变量:取有限或可列个值,P(X x i ) p i 满足(1) p i 0 , (2) p i =11.事件的关系 AB A B AB A B AAB2.运算规则(1)A B BA ABBA(2) (AB) CA (BC)(AB)C A(BC)(3) (AB)C (AC) (BC) (AB) C (A C)(B(4) AB ABABAB第一章随机事件与概率3•概率P(A)满足的三条公理及性质: C)(4) P() 0 (5) P(A) 1 P(A)(6) P(A B) P(A) P(AB) ,若 A B , 则P(BA) P(B) P(A) ,P(A) P(B)(7) P(A B) P(A) P(B) P(AB)(8) P(ABC) P(A) P(B) P(C)P(AB)P(AC) P(BC)P(ABC)n(3)对互不相容的事件 A l , A 2, , A n ,有P( A k )k 1k 1(n 可以取)4. 古典概型:基本事件有限且等可能5. 几何概率6. 条件概率P(A k )(3)对任意D R, P(X D) p:X i D2.连续随机变量:具有概率密度函数f (x),满足(1) f (x) 0, f(x)dx 1 ;b(2) P(a X b) f (x)dx ; ( 3)对任意a R,P(X a) 0a4.分布函数F(x) P(X x),具有以下性质(1)F( ) 0, F( ) 1 ; (2)单调非降;(3)右连续;(4)P(a X b) F(b) F(a),特别P(X a) 1 F(a);(5)对离散随机变量,F(x) P i ;i:为x(6)对连续随机变量,F(x) x'f(t)dt为连续函数,且在f (x)连续点上,F (x) f (x)5.正态分布的概率计算以(x)记标准正态分布N (0,1)的分布函数,则有(1)(0) 0.5 ; (2)(2 x x) 1 (x) ; (3)若X ~ N(,),则F(x) ((4)以u记标准正态分布N(0,1)的上侧分位数,则P(X u ) 1 (u )6.随机变量的函数Y g(X)(1)离散时,求Y的值,将相同的概率相加;(2)X连续,g(x)在X的取值范围内严格单调,且有一阶连续导数,则f Y(y) f x(g 1(y)) |(g 1(y))' |单调,先求分布函数,再求导。

概率论与数理统计 期末复习1

概率论与数理统计 期末复习1

概率论与数理统计 期末复习(一)第二章 随机变量及其分布一、了解离散性随机变量及其概率分布:特征:可列无穷多 二、熟练掌握三种常用离散性随机变量的分布律(0-1)分布 、 二项分布、 泊松分布(泊松定理的应用) (知道:期望方差)【例1-1】某种型号器件的寿命X(以小时计)具有概率密度()⎪⎩⎪⎨⎧>=,其他00100,10002x x x f现有一大批此种器件(设备损坏与否相互独立),任取5只,问其中至少有2只寿命大于1500小时的概率.【例1-2】设顾客在某银行窗口等待服务的时间X(min)服从指数分布,其概率密度为()⎪⎩⎪⎨⎧>=-,其他00,515/x ex f x X 某顾客在窗口等待服务,若超过10min ,他就离开,他一个月要到银行5次,以Y 表示一个月内他未等到服务而从窗口离开的次数,写出Y 的分布律,并求出{}1≥Y P .【例1-3】设有80台同类型设备,各台工作是相互独立的,发生故障的概率都是0.01,且一台设备的故障能由一个人处理.考虑两种配备维修工人的方法,其一是由4人维护,每人维护20台;其二是由3人共同维护80台.试比较这两种方法在设备发生故障时不能及时维修的概率的大小.【例2-1】一电话总机每分钟收到呼唤的次数服从参数为4的泊松分布,求某一分钟内呼唤次数大于2的概率.【例2-2】保险公司在一天内承保了5000张相同年龄,为期一年的寿险保单,每人一份.在合同有效期内若投保人死亡,则公司需赔付3万元. 设在一年内,该年龄段的死亡率为0.0015,且各个投保人是否死亡相互独立. 求该公司对于这批投保人的赔付金额总数不超过30万元的概率.三、熟练掌握连续型随机变量分布函数的概念,以及概率密度和随机变量分布函数的关系要点: {}x X P x F ≤=)(;⎰=∞-xdt t f x F )()(,若)(x F 在x 点连续,则有)()('x f x F =; 概率密度的性质:⎰=≥∞∞-1)(,0)(dx x f x f 满足这两个条件的函数才可以认为是概率密度;四、熟练掌握三种连续型随机变量的分布 均匀分布、指数分布、正态分布(知道:概率密度、分布函数、期望方差) 【例3-1】设随机变量X 的分布函数为:⎪⎩⎪⎨⎧≥<≤<=e x e x x x x F X ,11,ln 1,0)((1) 求{}{}⎭⎬⎫⎩⎨⎧<<≤<<252,30,2X P X P X P ;(2) 求概率密度)(x f X .【例3-2】设随机变量X 的概率密度为:()⎪⎩⎪⎨⎧<≤-<≤=其他,,,021210x x x x x f求X 的分布函数.【例3-3】设()()x g x f ,都是概率密度函数,求证:()()()()10,1≤≤-+=αααx g x f x h 是一个概率密度函数.【例4-1】设K 在(0,5)服从均匀分布,求关于x 的方程:02442=+++K Kx x有实数根的概率.【例4-2】(记住正态分布引理) 设随机变量()22,3~N X :(1) 求{}52≤<X P ;(2) 试确定常数c,使得{}{}c X P c X P ≤=>;(3) 试确定常数d 的最小值,使得{}9.0≥>d X P .【例4-3】设顾客在某银行窗口等待服务的时间X(min)服从指数分布,其概率密度为()⎪⎩⎪⎨⎧>=-,其他00,515/x ex f x X 某顾客在窗口等待服务,若超过10min ,他就离开,他一个月要到银行5次,以Y 表示一个月内他未等到服务而从窗口离开的次数,写出Y 的分布律,并求出{}1≥Y P .五、求随机变量的函数分布的两种方法: (1)直接法:{}{})]'())[(?()())(?()()(111y g y g x f y f y g x F y x g P y Y P y F X Y X Y ---=⇒=≤=≤=(2)定理法:P52 定理直接套公式(套公式要注意在x 的定义域上)(x g y =必须是严格单调!)【例5-1】设)1,0(~N X (1) 求X e Y =的概率密度;(2) 求122+=X Y 的概率密度; (3) 求X Y =的概率密度.【例5-2】设随机变量X 的概率密度为()⎪⎩⎪⎨⎧>=-,其他00,x e x f x 求2X Y =的概率密度.【练习】1. 某人进行射击,设每次射击的命中率为0.02,独立射击400次,试估计他至少击中2次的概率.2. 设()λπ~X ,且{}{}21===X P X P ,求{}4=X P .3. 设()λπ~X ,其分布律为{},...2,1,0,!===-k k e k X P kλλ,试确定k 的值,使得{}k X P =最大.4. 设()p n b X ,~,其分布律为{}10.,...,2,1,0,)1(<<=-==-p n k p p C k X P k n kk n ,试确定k 的值,使得{}k X P =最大.5. 设连续型随机变量X 的分布函数为: ()()+∞<<∞-+=x x B A x F arctan(1) 求B A ,的值;(2) 求X 的概率密度()x f .6. 设连续型随机变量X 的概率密度为:()⎩⎨⎧<<+=其他,010,x b ax x f且8521=⎭⎬⎫⎩⎨⎧>X P ,(1) 求b a ,的值;(2) 求⎭⎬⎫⎩⎨⎧≤<2141x P ;(3) 求随机变量X 的分布函数()x F .7. 对某地区考生抽样调查的结果表明,考生的数学成绩(百分制)近似服从()2,72σN ,其中σ未知,已知96分以上的考生占总数的2.3%.试求考生的数学成绩介于60分与84分之间的概率.8. 设321,,X X X 是随机变量,且()()()232213,5~,2,0~,1,0~N X N X N X ,{}22≤≤-=x P P j ,(j=1,2,3),则( )(13-8)(A) 321P P P >> (B) 312P P P >> (C) 213P P P >> (D) 231P P P >>9. (13-14)设随机变量Y 服从参数为1的指数分布,a 为常数且大于零,则{}a Y a Y P >+≤1的值为.10. (11-8)设()()x F x F 21,为2个分布函数,其相对应的概率密度为()()x f x f 21,,其都是连续函数,则下列选项中必为概率密度的是( )(A) ()()x f x f 21 (B) ()()x F x f 122 (C) ()()x F x f 21 (D) ()()()()x F x f x F x f 1221+11. (10-8)设()x f 1为标准正态分布的概率密度,()x f 2为[-1,3]上均匀分布的概率密度,若()()())0,0(0,0,21>>⎩⎨⎧>≤=b a x x bf x x af x f 为概率密度,则b a ,应该满足( )(A) 432=+b a (B) 423=+b a (C) 1=+b a (D) 2=+b a12. (06-14)设随机变量X 服从正态分布()2111,σμN ,随机变量Y 服从正态分布()2222,σμN ,且{}{}1121<-><-μμY P X P ,则下列结论成立的是( )(A) 21σσ< (B) 21σσ> (C) 21μμ< (D) 21μμ>13. (02-21)设随机变量X 的概率密度为: ()⎪⎩⎪⎨⎧≤≤=其他,00,2cos 21πx x x f 对X 独立地重复观察4次,用Y 表示观察值大于3π的次数,求2Y 的数学期望.14. 设随机变量),(~σμN X ,求证:随机变量)0,(≠+=a b a b aX Y 为常数,也服从正态分布 ()2','~σμN Y ,并指出2','σμ的值.15. 设随机变量X 在区间()10,服从均匀分布. (1) 求X e Y =的概率密度;(2) 求X Y ln 2-=的概率密度.。

概率论与数理统计复习资料

概率论与数理统计复习资料
3 2 X1 X 2 5 5
ˆ ( B) 2
1 3 X 1 X 4 4
2
ˆ (C ) 3
1 ˆ4 ( X1 X 2 ) ( D) 2
5、假设检验问题中,第一类错误是指 (A)原假设 H 0 为真,经检验后接受 H 0 (B)原假设 H 0 为真,经检验后拒绝 H 0 (C)原假设 H 0 为伪,经检验后接受 H 0 (D)原假设 H 0 为伪,经检验后拒绝 H 0
解: 因为, 2 未知,所以 的 95%的置信区间为
S S ( X t0.025 (8) , X t0.025 (8) ) n n 用 n 9, x 57.5, s 8.3, t0.025 (8) 2.306 代 入 得
的 95%的置信区间为 (51.12, 63.88)
2
x 2334
当 H 0成立时,统计量
11.25 9 对于 0.05 ,查表得分位数,u0.025 1.96 ,因此这一
W {| u | 1.96}
u
X 2350
~ N (0.1),
假设检验问题的拒绝域为
由 x 2334, 得 2334 2350 U 4.24 1.96 11.25 3
5、设总体 X ~ N ( , 2 ) , X 1 , X 2 为来自总体 X 的样本,
1 1 1 2 ˆ 则估计量 1 X 1 X 2 ,ˆ 2 X 1 X 2 中是 的无 2 3 3 3
偏估计量的为 .
6、设总体 X ~ N ( , 2 ) , X1 , X 2 , X 3 是来自总体 X 的样本,
t0.05 (35) 1.6896 ,
t0.05 (36) 1.6883 , t0.025 (35) 2.0301 , t0.025 (36) 2.028

大学概率论与数理统计必过复习资料及试题解析(绝对好用)汇总

大学概率论与数理统计必过复习资料及试题解析(绝对好用)汇总

《概率论与数理统计》复习提要第一章随机事件与概率1.事件的关系 2.运算规则(1)(2)(3)(4)3.概率满足的三条公理及性质:(1)(2)(3)对互不相容的事件,有(可以取)(4)(5)(6),若,则,(7)(8) 4.古典概型:基本事件有限且等可能5.几何概率 6.条件概率(1)定义:若,则(2)乘法公式:若为完备事件组,,则有(3)全概率公式:(4) Bayes公式: 7.事件的独立性:独立(注意独立性的应用)第二章随机变量与概率分布 1.离散随机变量:取有限或可列个值,满足(1),(2)(3)对任意, 2.连续随机变量:具有概率密度函数,满足(1)(2);(3)对任意,4.分布函数,具有以下性质(1);(2)单调非降;(3)右连续;(4),特别;(5)对离散随机变量,;(6)为连续函数,且在连续点上, 5.正态分布的概率计算以记标准正态分布的分布函数,则有(1);(2);(3)若,则;(4)以记标准正态分布的上侧分位数,则 6.随机变量的函数(1)离散时,求的值,将相同的概率相加;(2)连续,在的取值范围内严格单调,且有一阶连续导数,,若不单调,先求分布函数,再求导。

第三章随机向量1.二维离散随机向量,联合分布列,边缘分布,有(1);(2 (3), 2.二维连续随机向量,联合密度,边缘密度,有(1);(2)(4)(3);,3.二维均匀分布,其中为的面积 4.二维正态分布且; 5.二维随机向量的分布函数有(1)关于单调非降;(2)关于右连续;(3);(4),,;(5);(6)对二维连续随机向量, 6.随机变量的独立性独立(1)离散时独立(2)连续时独立(3)二维正态分布独立,且7.随机变量的函数分布(1)和的分布的密度(2)最大最小分布第四章随机变量的数字特征 1.期望 (1) 离散时 (2) 连续时,;,; (3) 二维时, (4);(5);(6);(7)独立时, 2.方差(1)方差,标准差(2);(3);(4)独立时, 3.协方差(1);;;(2)(3);(4)时,称不相关,独立不相关,反之不成立,但正态时等价;(5)4.相关系数;有, 5.阶原点矩,阶中心矩第五章大数定律与中心极限定理 1.Chebyshev不等式 2.大数定律3.中心极限定理(1)设随机变量独立同分布,或,或或,(2)设是次独立重复试验中发生的次数,,则对任意,或理解为若,则第六章样本及抽样分布 1.总体、样本(1)简单随机样本:即独立同分布于总体的分布(注意样本分布的求法);(2)样本数字特征:样本均值(,);样本方差)样本标准样本阶原点矩,样本阶中心矩 2.统计量:样本的函数且不包含任何未知数 3.三个常用分布(注意它们的密度函数形状及分位点定义)(1)分布,其中标准正态分布,若且独立,则;(2)分布,其中且独立;(3)分布,其中性质 4.正态总体的抽样分布(1);(2 ;(3 且与独立;(4);,(5)(6)第七章参数估计 1.矩估计:(1)根据参数个数求总体的矩;(2)令总体的矩等于样本的矩;(3)解方程求出矩估计 2.极大似然估计:(1)写出极大似然函数;(2)求对数极大似然函数(3)求导数或偏导数;(4)令导数或偏导数为0,解出极大似然估计(如无解回到(1)直接求最大值,一般为min或max) 3.估计量的评选原则,则为无偏;(2) 有效性:两个无偏估计中方差小的有效; (1)无偏性:若《概率论与数理统计》期末试题(2)与解答一、填空题(每小题3分,共15分) 1.设事件仅发生一个的概率为0.3,且,则生的概率为 2.设随机变量服从泊松分布,且,则______.3.设随机变量在区间上服从均匀分布,则随机变量在区间密度为4.设随机变量相互独立,且均服从参数为的指数分布,_________,5.设总体的概率密度为是来自的样本,则未知参数的极大似然估计量为解:1.即所以 .2.由知即解得,故 . 3.设的分布函数为的分布函数为,密度为则因为,所以,即故另解在上函数严格单调,反函数为所以4.,故 .5.似然函数为解似然方程得的极大似然估计为二、单项选择题(每小题3分,共15分) 1.设为三个事件,且相互独立,则以下结论中不正确的是(A)若,则与也独立. (B)若,则(C)若,则与也独立. 与也独立(D)若,则与也独立.() 2.设随机变量的分布函数为,则的值为(A).(B)(C). (D). ()3.设随机变量和不相关,则下列结论中正确的是(A)与独立. (B)(C). (D). () 4.设离散型随机变量和的联合概率分布为若独立,则的值为(A). (A). . ()(C)(D) 5.设总体的数学期望为为来自的样本,则下列结论中正确的是(A)X1是的无偏估计量. (B)X1是的极大似然估计量. (C)X1是的相合(一致)估计量. (D)X1不是的估计量.()解:1.因为概率为1的事件和概率为0的事件与任何事件独立,所以(A),(B),(C)都是正确的,只能选(D)事实上由图可见A与C不独立2.所以 3.由不相关的等价条件知应选(B). 4.若独立则有应选(A). 2 , 9 故应选(A) 5.,所以X1是的无偏估计,应选(A). 三、(7分)已知一批产品中90% 0.05,一个次品被误认为是合格品的概率为0.02,求(1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率. 解:设‘任取一产品,经检验认为是合格品’ ‘任取一产品确是合格品’则(1)(2) .四、(12分)从学校乘汽车到火车站的途中有3 件是相互独立的,并且概率都是2/5. 设为途中遇到红灯的次数,求的分布列、分布函数、数学期望和方差. 解:的概率分布为即的分布函数为五、(10分)设二维随机变量在区域匀分布. 求(1)关于的边缘概率密度;(2)的分布函数与概率密(1)的概率密度为(2)利用公式其中当或时时故的概率密度为的分布函数为或利用分布函数法六、(10分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标和纵坐标互独立,且均服从分布. 求(1)命中环形区域的概率;(2)命中点到目标中心距离1);(2). 七、(11分)设某机器生产的零件长度(单位:cm),今抽取容量为16 样本,测得样本均值,样本方差. (1)求的置信度为0.95 区间;(2)检验假设(显著性水平为0.05). (附注)解:(1)的置信度为下的置信区间为所以的置信度为0.95的置信区间为(9.7868,10.2132)(2)的拒绝域为,因为,所以接受《概率论与数理统计》期末试题(3)与解答一、填空题(每小题3分,共15分)(1)设事件与相互独立,事件与互不相容,事件与互不相容,,,则事件、、中仅发生或仅概率为(2)甲盒中有2个白球和3个黑球,乙盒中有3个白球和2个黑球,今从每个盒中各取个球,发现它们是同一颜色的,则这颜色是黑色的概率为(3)设随机变量的概率密度为现对察,用表示观察值不大于0.5的次数,则___________. (4)设二维离散型随机变量的分布列为若,则(5)设是总体的样本,是样本方差,若,(注:, , , )解:(1)因为与不相容,与不相容,所以,故同理 . . (2)设‘四个球是同一颜色的’,‘四个球都是白球’,‘四个球都是黑球’则 . 所求概率为所以(3)其中,,(4)的分布为这是因为,由得,故(5)即,亦即 . 二、单项选择题(每小题3分,共15分)(1)设、、为三个事件,且,则有(A)(B)(C)(D)(2)设随机变量的概率密度为且,则在下列各组数中应取(A)(B)(C).(D)(3)设随机变量与相互独立,其概率分布分别为则有())(A)(B)(C)(D)()(4)对任意随机变量,若存在,则等于(A)(B)(C)(D)()(5)设为正态总体的一个样本,表示样本均值,则的置信度为的置信区间为(B)(C)()(D)解(1)由知,故(A)应选C. (2)即时故当应选(3)应选(4)应选(5)因为方差已知,所以的置信区间为应选D. 三、(8分)装有10件某产品(其中一等品5件,二等品3件,三等品2件)的箱子中丢失一件产品,但不知是几等品,今从箱中任取2件产品,结果都是一等品,求丢失的也是一等品的概率。

T218概率论与数理统计复习资料ch1-11大数定律及中心极限定理

T218概率论与数理统计复习资料ch1-11大数定律及中心极限定理


~ n np
近似地
N (0,1)
np(1 p
B(16,0.36)和N(5.76,3.6864)的对比:
0.25
b(16,0.36)和 N(5.76,3.6864)
0.2
0.15
0.1
0.05
0
0
2
4
6
8
10
12
14
16
B(25,0.36)和N(9,5.76)的对比:
B(300,0.25)和N(75,56.25)的对比:
P{a n b}
(b np ) (a np )
(120 120) (100 120)
npq
npq
48
48
(0) (2.887) 0.5 1 0.9981 0.4981
(2) 设至少要供给这个车间 r 千瓦电才能以99.9%的概
率保证这个车间正常生产。由题意有 P{ X r} 0.999
t2
e 2 dt
2
(以下的注解是拉普拉斯定理的实质,要领会)
定理表明:正态分布是二项分布的极限分布,即:
若 n ~ B(n, p) 当n很大,0<p<1是一个定值时 (或者说,np(1-p)也不太小时),二项变量 n
的分布近似正态分布 N(np,np(1-p)).也就是:
近似地
n ~ N (np, np(1 p))
n
定理条件,随即变量之和 X k,当n很大时,就近 k 1
似服从正态分布,这就是为什么正态分布在概率论
中所占的重要地位的一个基本原因.
德莫佛-拉普拉斯定理
ห้องสมุดไป่ตู้
(De Moivre--Laplace)

复习题二概率论(1)

复习题二概率论(1)

复习题一一、填空题(每题3分,共15分) 1、已知()0.6P A B ⋃=,()0.4P A =,若A 与B 互斥,则()P B = . 若A 与B 独立,则()P B = .2、设随机变量~(,)X B n p ,()6,() 3.6E X D X ==,则n= .3、设随机变量X 和Y 独立,且~(1,1),~(0,2)X N Y U ,令231Z X Y =-+,则()___E Z =,=)(Z D4、设随机变量X 的期望为2,方差为4,则根据切比雪夫不等式有估计{}24P X -≥≤ .5、设1,n X X ⋅⋅⋅是来自正态总体X 2~(,)N μσ的样本,2X S 和分别为其样本平均值和样本方差,则2=_____,S =_______X 。

当2σ未知时,μ的置信度为1α-的置信区间为二、单项选择题(每题3分,共15分)1、设,X Y 为相互独立的两随机变量,则下列错误的是( ) A .(X-Y)=E(X)-E(Y)EB .D(X-Y)=D(X)+D(Y)C .(XY)=E(X)E(Y)ED .D(XY)=D(X)D(Y)2、设2~(4,2)X N ,{}{}P X c P X c ≤=>,则c =( ) A .0 B .2 C .3 D .43、~(2,1)X N ,2~(1)Y n χ-,且,X Y 相互独立,令Z =,则有( )A .~(0,1)Z NB . ~(1)Z t n -C .2~()Z n χD . ~()Z t n 4、设12,X X 是来自总体(,1)N μ的样本,则下列估计量中无偏估计量为( )A .^1122153X X μ=+ B .^1121344X X μ=+C .^1121133X X μ=+D .^1121123X X μ=+5、设二维随机变量),(Y X 服从(1,2,3,1,0)N -,则下列结论错误的是( )A .~(1,3)X NB . X 与Y 相互独立C .0),cov(=Y XD .~(3,2)X Y N - 三、计算题(每题7分,共70分)1、某工厂有甲、乙、丙三个车间生产同一种灯管,产量依次占全厂的40%,35%,25%。

概率论与数理统计第一章期末复习

概率论与数理统计第一章期末复习

概率论与数理统计第一章期末复习(一)随机事件1.随机现象定义1在一定的条件下,并不总是出现相同结果的现象称为随机现象.定义2只有一个结果的现象称为确定性现象.2.样本空间定义3一个试验如果满足下述条件:(1)试验可以在相同的情形下重复进行;(2)试验的所有可能结果是明确可知的,并且不止一个;(3)每次试验总是恰好出现这些可能结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.就称这样的试验是一个随机试验,记作E.定义4随机试验E的所有可能结果组成的集合称为E的样本空间,记作Ω.样本空间的元素,即E的每个结果,称为样本点,记作ω.3.随机事件定义5随机试验的某些样本点的集合称为随机事件,简称事件,常用大写英文字母A,B,C,…表示.定义6由样本空间Ω中的单个元素组成的子集称为基本事件.而样本空间Ω的最大子集(即Ω本身)称为必然事件,样本空间Ω的最小子集(即空集∅)称为不可能事件.4.事件的关系与运算下面的讨论总是假设在同一个样本空间Ω中进行.1)包含关系⊂如果属于A的样本点必属于B,则称A包含于B或称B包含A,记作A B ⊃.用概率的语言说:事件A发生必然导致事件B发生.或B A对任一事件A,必有∅Ω⊂A.⊂2)相等关系如果属于A的样本点必属于B,且属于B的样本点必属于A,即BA⊂且=.AB⊂,则称事件A与B相等,记作A B3)互不相容(互斥)如果A 与B 没有相同的样本点,则称A 与B 互不相容(互斥).即事件A 与事件B 不可能同时发生.4)两事件的和事件“事件A 与B 中至少有一个发生”,这样的一个事件称作事件A 与B 的和(或并),记作B A .5)两事件的积事件“事件A 与B 同时发生”,这样的一个事件称作事件A 与B 的积(或交),记作B A (或AB ).6)两事件的差事件“事件A 发生而B 不发生”,这样的事件称为事件A 对B 的差,记作A B -.7)对立事件或逆事件若=AB ∅且Ω=B A ,则称A 与B 为对立事件或互为逆事件,事件A 的对立事件记作A .【例1】设A 、B 、C 是Ω中的随机事件,则(1)事件{A 发生且B 与C 至少有一个发生}可表示为:)(C B A ;(2)事件{A 与B 发生而C 不发生}可表示为:C AB ;(3)事件{A 、B 、C 中至少有两个发生}可表示为:BC AC AB ;(4)事件{A 、B 、C 中至多有两个发生}可表示为:ABC ;(5)事件{A 、B 、C 中不多于一个发生}可表示为:AB BC AC ;(6)事件{A 、B 、C 中恰有一个发生}可表示为:ABC ABC ABC .【例2】关系()成立,则事件A 与B 为对立事件.A .=AB ∅B .Ω=B AC .=AB ∅,Ω=B AD .=AB ∅,Ω≠B A 【解析】由对立事件的概念可知选项C 正确.【例3】甲、乙两人谈判,设事件A ,B 分别表示甲、乙无诚意,则B A 表示()A .两人都无诚意B .两人都有诚意C .两人至少有一人无诚意D .两人至少有一人有诚意【解析】由题可知A 与B 分别表示甲、乙有诚意,则B A 表示甲、乙两人至少有一人有诚意,故选项D 正确.5.事件的运算性质(1)交换律:A B B A =,BA AB =;(2)结合律:C B A C B A )()(=,)()(BC A C AB =;(3)分配律:()()()A B C AB AC = ,()()()A B C A C B C = ;(4)对偶律:B A B A = ,B A AB =.一些有用的等式:A A A = ,A Ω=Ω ,A A ∅= AA A =,A A Ω=,A ∅=∅A B A AB AB -=-=,A B A B A =【例4】化简下列各式:(1)))((B A B A ;(2)))((C B B A ;(3)))((B A B A B A .【解】(1) A B B A B A B A ==)())((ØA =;(2)AC B C A B C B B A ==)())((;(3)))(())((B A B B A B A B A B A =AB AB A A B A A === )(.(二)随机事件的概率1.概率的公理化定义定义1设E 是随机试验,Ω是它的样本空间.对于E 的每一事件A 赋予一个实数,记为)(A P ,称为事件A 的概率,如果集合函数)(⋅P 满足下列条件:(1)非负性0)(≥A P ,对Ω∈A ;(2)规范性()1P Ω=;(3)可列可加性若=j i A A ∅,j i ≠, ,2,1,=j i ,有∑+∞=+∞==11)()(i i i i A P A P .2.概率的性质性质1不可能事件的概率为0,即()0P ∅=.性质2概率具有有限可加性,即若=j i A A ∅(n j i ≤<≤1),则∑===ni i n i i A P A P 11)()( .性质3对任一随机事件A ,有()1()P A P A =-.性质4若A B ⊂,则)()()(B P A P B A P -=-.推论若A B ⊂,则)()(B P A P ≥.性质5对任意的两个事件A ,B ,有)()()(AB P A P B A P -=-.性质6对任意的两个事件A ,B ,有()()()()P A B P A P B P AB =+- .对任意三个事件A ,B ,C ,有)()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++= .推论对任意的两个事件A ,B ,有)()()(B P A P B A P +≤ .【例1】设A 与B 互不相容,且0)(>A P ,0)(>B P ,则下列结论正确的是()A .A 与B 为对立事件B .A 与B 互不相容C .)()()(B P A P B A P -=-D .)()(A P B A P =-【解析】因为A 与B 互不相容,所以AB =∅,0)(=AB P ,故选项A :互不相容不一定对立,故选项A 错误;选项B :互不相容不一定对立,故B A 不一定等于Ω,所以B A B A =不一定等于∅,即A 与B 不一定互不相容,故选项B 错误;选项C :)()()()(A P AB P A P B A P =-=-,故选项C 错误,进而选项D 正确.【例2】已知B A ⊂,3.0)(=A P ,5.0)(=B P ,求(A P ,)(AB P ,)(B A P 和)(B A P .【解】(1)7.0)(1)(=-=A P A P ;(2)∵B A ⊂,∴A AB =,则3.0)()(==A P AB P ;(3)2.0)()()()(=-=-=AB P B P A B P B A P ;(4))(1()(B A P B A P B A P -==5.0)]()()([1=-+-=AB P B P A P .【注】事件的概率的计算常常需要结合对偶律,应用性质3.【例3】已知事件A ,B ,B A 的概率分别是0.4,0.3,0.6,求(B A P .【解】)()()()(AB P B P A P B A P -+= )(3.04.06.0AB P -+=所以1.0)(=AB P ,则3.0)()()((=-=-=AB P A P B A P B A P .【例4】已知41)()()(===C P B P A P ,0)(=AB P ,161)()(==BC P AC P .求:(1)A ,B ,C 中至少发生一个的概率;(2)A ,B ,C 都不发生的概率.【解】(1)因为0)(=AB P ,且AB ABC ⊂,所以由概率的单调性知0)(=ABC P ;再由加法公式,得A ,B ,C 中至少发生一个的概率为)()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++= 8516243=-=.(2)因为{A ,B ,C 都不发生}的对立事件为{A ,B ,C 中至少发生一个},所以A ,B ,C 都不发生的概率为83851(=-=C B A P .3.古典概型定义2若随机试验E 具有下述特征:(1)样本空间的元素(即样本点)只有有限个,不妨设为n 个,并记它们为12,,,n ωωω .(2)每个样本点出现的可能性相等(等可能性),即有12()()()n P P P ωωω=== .则称这种等可能性的概率模型为古典概型.对任意一个随机事件Ω∈A ,有nk A A P =Ω=中所有样本点的个数所含有样本点的个数事件)(.【例5】袋中有大小相同的4个白球,3个黑球,从中任取3个至少有2个白球的概率为.【解析】袋中共有7个球,从中任取3个,共有37C 中取法,即样本空间Ω中共有37C 个样本点.取出的3个球中至少有2个白球,分为2个白球1个黑球和3个白球两种情况.当取出的3个球中有2个白球1个黑球时,共有1324C C 中取法;当取出的3个球中有3个白球时,共有0334C C 中取法.记=A {从中任取3个至少有2个白球},则事件A 中共有03341324C C C C +个样本点.因此3522)(3703341324=+=C C C C C A P .(三)条件概率1.条件概率定义1设A 与B 是样本空间Ω中的两个事件,若0)(>B P ,则称)()()(B P AB P B A P =为“在事件B 发生条件下事件A 发生的条件概率”,简称条件概率.【例1】已知31)()(==B P A P ,61)(=B A P ,求(B A P .【解】∵61)()()(==B P AB P B A P ,∴181)(=AB P ,)(1)()()()(B P B A P B P B A P B A P -== )(1)]()()([1B P AB P B P A P --+-=127=.【注】条件概率的计算通常与概率的性质结合使用.【技巧】在计算过程中,只要有概率的性质可以用,就一直用概率的性质计算,直到没有概率的性质可用时,对得到的式子进行化简整理,代入已知数据计算.2.乘法公式定理1(乘法公式)(1)若0)(>B P ,则)()()(B A P B P AB P =.(2)若0)(121>-n A A A P ,则)()()()()(12121312121-=n n n A A A A P A A A P A A P A P A A A P .【例2】一批零件共100个,次品率为10%,每次从其中任取一个零件,取出的零件不再放回,求第三次才取得合格品的概率.【解】设=i A {第i 次取得合格品},3,2,1=i .由题意知,所求概率为)(321A A A P ,易知10010)(1=A P ,999)(12=A A P ,9890)(213=A A A P .由此得)()()()(213121321A A A P A A P A P A A A P =0083.0989099910010≈⋅⋅=.3.全概率公式定义2设Ω为试验E 的样本空间,1B ,2B ,…,n B 为E 的一组事件.如果=j i B B ∅,j i ≠,n j i ,,2,1, =且Ω=n B B B 21,则称1B ,2B ,…,n B 为样本空间Ω的一个划分.定理2(全概率公式)设1B ,2B ,…,n B 为样本空间Ω的一个划分,若0)(>i B P ,n i ,,2,1 =,则对任一事件A 有)()()(1i ni i B A P B P A P ∑==.4.贝叶斯公式定理3(贝叶斯公式)设1B ,2B ,…,n B 为样本空间Ω的一个划分,若0)(>A P ,0)(>i B P ,n i ,,2,1 =,则∑==n i j j i i i B A P B P B A P B P A B P 1)()()()()(,n i ,,2,1 =.【例3】一批同型号的零件由编号为Ⅰ、Ⅱ、Ⅲ的三台机器共同生产,各台机器生产的零件占这批零件的比例分别为35%、40%和25%,各台机器生产的零件的次品率分别为3%、2%和1%.(1)求该批零件的次品率;(2)现从该批零件中抽到一颗次品,试问这颗零件由Ⅰ号机器生产的概率是多少?【解】设=A {零件是次品},=1B {零件由Ⅰ号机器生产},=2B {零件由Ⅱ号机器生产},=3B {零件由Ⅲ号机器生产},则由题设知35.0)(1=B P ,4.0)(2=B P ,25.0)(3=B P ,03.0)(1=B A P ,02.0)(2=B A P ,01.0)(3=B A P .(1)题目要求的是)(A P ,由全概率公式,得∑==31)()()(i i i B A P B P A P 021.0=.(2)题目要求的是)(1A B P ,由贝叶斯公式,得21)|()()|()()(31111==∑=i i i B A P B P B A P B P A B P .【例4】有甲、乙、丙三厂同时生产某种产品.甲、乙、丙三厂的产量之比为1:1:3,次品率分别为4%,3%,2%.(1)若从一批产品中随机抽出一件,求这件产品为次品的概率.(2)若产品的售后部门接到一名顾客投诉,说其购买的产品为次品,请问哪个厂最该为此事负责,为什么?【解】设=A {产品为次品},=1B {产品由甲厂生产},=2B {产品由乙厂生产},=3B {产品由丙厂生产},则由题设知,2.0)(1=B P ,2.0)(2=B P ,6.0)(3=B P ,04.0)(1=B A P ,03.0)(2=B A P ,02.0)(3=B A P .(1)题目要求的是)(A P ,由全概率公式,得∑==31)()()(i i i B A P B P A P 026.0=.(2)由贝叶斯公式,得134)|()()|()()(31111==∑=i i i B A P B P B A P B P A B P ,133)|()()|()()(31222==∑=i i i B A P B P B A P B P A B P ,136)|()()|()()(31333==∑=i i i B A P B P B A P B P A B P .所以在产品为次品的情况下,产品来自丙厂的可能性最大,丙厂最该负责.【注】全概率公式与贝叶斯公式通常一起考试.(四)独立性1.两个事件的独立性定义1若)()()(B P A P AB P =成立,则称事件A 与事件B 相互独立,简称A 与B 独立.否则称A 与B 不独立或相依.定理1若事件A 与B 独立,则A 与B 独立;A 与B 独立;A 与B 独立.【例1】甲、乙两人彼此独立的向同一个目标射击,甲击中目标的概率为0.9,乙击中目标的概率为0.8,求目标被击中的概率.【解】设=A {甲击中目标},=B {乙击中目标},则=B A {目标被击中}.则)()()()(AB P B P A P B A P -+= )()()()(B P A P B P A P -+=98.0=.【例2】若事件A 与B 相互独立,8.0)(=A P ,6.0)(=B P ,求:)(B A P 和)|(B A A P .【解】∵A 与B 相互独立,∴)()()()(AB P B P A P B A P -+= )()()()(B P A P B P A P -+=92.0=.)())(()|(B A P B A A P B A A P =)()()()()(B A P B P A P B A P B A P ==13.0=.【例3】设)()(B A P B A P =,证明:A 与B 相互独立.【证】因为)()(B A P B A P =,所以有)(1)()()(1)()()()()(B P AB P A P B P B A P B P B A P B P AB P --=--==,即有)]()()[()](1)[(AB P A P B P B P AB P -=-,整理得)()()(B P A P AB P =,所以A 与B 相互独立.2.多个事件的相互独立性定义2设A ,B ,C 是三个事件,若有⎪⎩⎪⎨⎧===)()()()()()()()()(C P B P BC P C P A P AC P B P A P AB P (1)第11页共11页则称A ,B ,C 两两独立.若还有)()()()(C P B P A P ABC P =,(2)则称A ,B ,C 相互独立.注意:只有(1)式与(2)式同时成立,事件A ,B ,C 才相互独立.(1)式成立不能保证(2)式成立;反过来,(2)式成立也不能保证(1)式成立.定义3设有n 个事件1A ,2A ,…,n A ,对任意的n k j i ≤<<<≤ 1,若以下等式均成立⎪⎪⎩⎪⎪⎨⎧===)()()()()()()()()()()(2121n n k j i k j i j i j i A P A P A P A A A P A P A P A P A A A P A P A P A A P 则称此n 个事件1A ,2A ,…,n A 相互独立.定理2如果n (2≥n )个事件1A ,2A ,…,n A 相互独立,则其中任何m (n m ≤≤1)个事件换成相应的对立事件,形成的n 个新的事件仍相互独立.【例4】三人独立地去破译一份密码,已知各人能译出的概率分别为51,31,41,问三人中至少有一人能将此密码译出的概率是多少?【解】设A ,B ,C 分别表示三人独立译出密码,则51)(=A P ,31)(=B P ,41)(=C P ,且A ,B ,C 相互独立,有方法1:)()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++= )()()()()()()()()()()()(C P B P A P C P B P C P A P B P A P C P B P A P +---++=6.0=.方法2:)(1)(C B A P C B A P -=(1C B A P -=()()(1C P B P A P -=53411)(311)(511(1=----=.。

大学概率论与数理统计复习资料

大学概率论与数理统计复习资料

第一章 随机事件及其概率知识点:概率的性质 事件运算 古典概率事件的独立性 条件概率 全概率与贝叶斯公式常用公式)()()()()()2(加法定理AB P B P A P B A P -+= ),,()()(2111有限可加性两两互斥设n ni i ni i A A A A P A P ∑===),(0)()()()()(互不相容时独立时与B A AB P B A B P A P AB P ==)()()()()5(AB P A P B A P B A P -==-)()()()()(时当A B B P A P B A P B A P ⊂-==-))0(,,()()/()()()6(211>Ω=∑=i n ni i i A P A A A A B P A P B P 且的一个划分为其中全概率公式 ),,()](1[1)(2111相互独立时n ni i n i i A A A A P A P ∏==--=)/()()/()()()4(B A P B P A B P A P AB P ==)(/)()/()3(A P AB P A B P =)()/()()/()()/()7(1逆概率公式∑==ni iii i i A B P A P A B P A P B A P )(/)()(/)()1(S L A L A P nr A P ==应用举例1、已知事件满足,且,则( ,A B ()(B A P AB P =6.0)(=A P =)(B P )。

2、已知事件相互独立,,则,A B ,)(k A P =6.0)(,2.0)(==B A P B P ()。

=k 3、已知事件互不相容,( ,A B ,3.0)(=A P ==)(,5.0)(B A P B P 则)。

4、若 ()。

,3.0)(=A P ===)(,5.0)(,4.0)(B A B P B A P B P 5、是三个随机事件,,事件与的关系,,A B C C B ⊂()A C B - A 是( )。

概率论与数理统计第1-3章复习资料

概率论与数理统计第1-3章复习资料

其中λ = n P 例2:在例1的试验中,求: (1)A=“点数和为奇数的概率”; (2)B=“点数不同的概率” 例3:某产品40件,其中有次品3件。现从其中任取3件, 求下列事件的概率: (1)A=“3件中恰有2件次品”;(111/9880) (2)B=“ 3件中至少有1件次品”(633/2964)
xi R , i 1 , , n , n 元函数
F ( x1 ,, xn ) P( X 1 x1 ,, X n xn ) ( 是 X 1 ,, X n ) 的分布函数。
(1)’
注:r, v 取值的规律称 r, v 的分布,分布函数是描 述 r, v 的概分布的主要方法之一。 (二)分布函数的性质: 一维:1、有界性:0 F ( X ) 1
m 4、由公式 P( A) 进行计算 n
(二)几何概型 所求概率为: P(A)=[A所包含的区域度量] / [样本空间的度量] (三)条件概率及其全概率公式 1、条件概率:若P(B) >0,则
P( A B) P( AB) P( B)
2、全概率公式 如果B1,…,Bn为一完备事件组,即满足: (1) B1,…,Bn两两不相容i=1, …,n;
例4:一盒装有10只晶体管,其中有4只次品,6只正品,随 机地抽取 1只测试,直到4只次品晶体管都找到。求最后 一只次品晶体管在下列情况发现的概率: (1)A=“在第 5 次测试发现”。(2/105) (2)B=“在第10次测试发现”。(2/5) 例5:将编号1,2,3的三本书任意地排列在书架上,求事件 A=“至少有一本书自左到右的排列顺序号与它的编号相同” 的概率。 例6:五个乒乓球,其中三个旧球,二个新球,每次取一个, 共取两次,以有放回和无放回两种方式求下列事件的概率: (1)A=“两次都取到新球”; (2)B=“第一次取到新球,第二次取到旧球”; (3)C=“至少有一次取到新球”。

《概率论与数理统计》总复习资料

《概率论与数理统计》总复习资料

《概率论与数理统计》总复习资料概率论部分1.古典概型中计算概率用到的基本的计数方法。

例1:袋中有4个白球,5个黑球,6个红球,从中任意取出9个球,求取出的9个球中有1个白球、3个黑球、5个红球的概率.解:设B ={取出的9个球中有1个白球、3个黑球、5个红球}样本空间的样本点总数:915C n ==5005事件B 包含的样本点:563514C C C r ==240,则P (B )=240/5005=0.048例2:在0~9十个整数中任取四个,能排成一个四位偶数的概率是多少?解:考虑次序.基本事件总数为:410A =5040,设B ={能排成一个四位偶数}。

若允许千位数为0,此时个位数可在0、2、4、6、8这五个数字中任选其一,共有5种选法;其余三位数则在余下的九个数字中任选,有39A 种选法;从而共有539A =2520个。

其中,千位数为0的“四位偶数”有多少个?此时个位数只能在2、4、6、8这四个数字中任选其一,有4种选法;十位数与百位数在余下的八个数字中任选两个,有28A 种选法;从而共有428A =224个。

因此410283945)(A A A B P -==2296/5040=0.4562.概率的基本性质、条件概率、加法、乘法公式的应用;掌握事件独立性的概念及性质。

例1:事件A 与B 相互独立,且P (A )=0.5,P (B )=0.6,求:P (AB ),P (A -B ),P (A B )解:P (AB )=P (A )P (B )=0.3,P (A -B )=P (A )-P (AB )=0.2,P (A B )=P (A )+P (B )-P (AB )=0.8例2:若P (A )=0.4,P (B )=0.7,P (AB )=0.3,求:P (A -B ),P (A B ),)|(B A P ,)|(B A P ,)|(B A P 解:P (A -B )=0.1,P (A B )=0.8,)|(B A P =)()(B P AB P =3/7,)|(B A P =)()()()()(B P AB P B P B P B A P -==4/7,|(B A P =)(1)()()(B P B A P B P B A P -==2/33.准确地选择和运用全概率公式与贝叶斯公式。

第一章 概率论基础(1)

第一章  概率论基础(1)

频率 fi
m1 m2 n1 n2
ms
ns
稳定在某个值 附近
概率的统计定义
在相同条件下对试验E重复进行n次,其中事 件A出现m次。当试验次数n充分大时,事件
A出现的频率fn(A)=m/n的稳定值,称为事件
A的概率,记为P(A).
P=P (A) ≈fn(A)=m/n
频率和概率 有什么关系?
1.频率取决于试验,而概率是先于试验而客观 存在的。
第一章 概率论基础
§1.1
随机试验
为了研究随机现象内部的规律性,就 要对研究对象进行观察试验,即随机试验, 简称试验。常用字母E表示。
试 1. 试验可以在相同条件下重复进行
验 的 特 点
2. 每次试验的可能结果不只一个,且 试验之前不能肯定会出现哪一个结果 3. 试验可能出现的结果可以预知
寿命试验 测试在同一工艺条件下生产 出的灯泡的寿命.
n
n
P( i 1
Ai
)
i 1
P( Ai )
P( Ai Aj )
1i jn
P( Ai Aj Ak ) ... (1)n1P( A1A2...An )
1i jk n
条件概率
定义: 设A、B是随机试验E的两个随机事件, 且P(A)>0,则称
P(B | A) P( AB) P( A)
为已知事件A发生条件下,事件B发生的条件 概率。
统计一天中进入某商店的顾客 人数.
随机事件
在随机试验中可能发生也可能不发生的事 情称为随机事件,简称事件.
事 基本事件 (试验中不可再分解的事件)


(两个或多个基本事件就 构
类 复合事件 成一个复合事件)

《概率论与数理统计》复习资料

《概率论与数理统计》复习资料

复习题(一)单项选择题1、抛掷一枚硬币,观察其出现的是正面还是反面,并将事件A定义为:事件A=出现正面,这一事件的概率记为P(A)。

则概率P(A)=1/2的含义是( C )A.抛掷多次硬币,恰好有一半结果正面朝上B.抛掷两次硬币,恰好有一次结果正面朝上C.抛掷多次硬币,出现正面朝上的次数接近一半D2、抛3枚硬币,用0表示反面,1表示正面,则其样本空间可以表示为(A ).A、{000,001,010,100,011,101,110,111}B、{000,001,010,100,011,101,110,111,101}C、{000,001,010,011,101,110,111}D、3、掷1颗骰子,并考察其结果。

其点数为1点的概率为()(A)1; (B) 1/6;4、掷2()(A)1/6; (B) 1/12;5、指出下面关于n重贝奴利试验的陈述中,哪一个是错误的()(A)一次试验只有两个可能结果,即“成功”和“失败”(B)每次试验成功的概率p都是相同的(C)试验是相互独立的(D)在n次试验中,“成功”的次数对应一个连续型随机变量6、一部文集,按顺序排放在书架的同层上,则各卷自左到右卷号恰好为1;2;3;4顺序的概率等于()(A)1/8; (B) 1/12;(C) 1/16; (D) 1/24.7、下列分布中,不是离散型随机变量概率分布的是(D ).A、0-1分布B、二项分布C8、设X是参数为n=4和p=0.5的二项随机变量,则P(X<2)=()。

(A)0.3125 (B)0.2125 (C)0.6875 (D)0.78759、若掷一枚骰子,考虑两个事件:A={骰子的点数为奇数};B={骰子的点数大于等于4}。

则条件概率P(A|B)=()。

(A)1/3(B)1/6(C)1/2(D)1/410、推销员向客户推销某种产品成功的概率为0.3。

他在一天中共向5名客户进行了推销,则成功谈成客户数不超过2人的概率大约为()。

概率论与数理统计要点复习

概率论与数理统计要点复习

概率论与数理统计 复习资料第一章随机事件与概率1.事件的关系 φφ=Ω-⋃⊂AB A B A AB B A B A(1) 包含:若事件A 发生,一定导致事件B 发生,那么,称事件B 包含事件A ,记作A B ⊂(或B A ⊃). (2) 相等:若两事件A 与B 相互包含,即A B ⊃且B A ⊃,那么,称事件A 与B 相等,记作A B =. (3) 和事件:“事件A 与事件B 中至少有一个发生”这一事件称为A 与B 的和事件,记作A B ⋃;“n 个事件1,2,,nA A A 中至少有一事件发生”这一事件称为1,2,,nA A A 的和,记作12n A A A ⋃⋃⋃(简记为1nii A =). (4) 积事件:“事件A 与事件B 同时发生”这一事件称为A 与B 的积事件,记作A B ⋂(简记为AB );“n 个事件1,2,,nA A A 同时发生”这一事件称为1,2,,nA A A 的积事件,记作12n A A A ⋂⋂⋂(简记为12n A A A 或1nii A =).(5) 互不相容:若事件A 和B 不能同时发生,即AB φ=,那么称事件A 与B互不相容(或互斥),若n 个事件1,2,,nA A A 中任意两个事件不能同时发生,即i j A A φ=(1≤i<j ≤几),那么,称事件 1,2,,n A A A 互不相容. (6) 对立事件:若事件A 和B 互不相容、且它们中必有一事件发生,即AB φ=且A B ⋃=Ω,那么,称A 与B 是对立的.事件A 的对立事件(或逆事件)记作A . (7) 差事件:若事件A 发生且事件B 不发生,那么,称这个事件为事件A 与B 的差事件,记作A B -(或AB ) .2.运算规则 (1)交换律:BA AB A B B A =⋃=⋃(2)结合律:)()( )()(BC A C AB C B A C B A =⋃⋃=⋃⋃ (3)分配律))(()( )()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃ (4)德摩根(De Morgan )法则:B A AB B A B A ⋃==⋃3.概率)(A P 满足的三条公理及性质: (1)1)(0≤≤A P (2)1)(=ΩP(3)对互不相容的事件n A A A ,,,21 ,有∑===nk kn k kA P A P 11)()((n 可以取∞)(4) 0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤ (7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃ 4.古典概型:基本事件有限且等可能5.几何概率: 如果随机试验的样本空间是一个区域(可以是直线上的区间、平面或空间中的区域),且样本空间中每个试验结果的出现具有等可能性,那么规定事件A的概率为()A P A =的长度(或面积、体积)样本空间的的长度(或面积、体积)·6.条件概率(1) 定义:若0)(>B P ,则)()()|(B P AB P B A P =(2) 乘法公式:)|()()(B A P B P AB P = 若n B B B ,,21为完备事件组,0)(>i B P ,则有 (3) 全概率公式: ∑==ni iiB A P B P A P 1)|()()((4) Bayes 公式: ∑==ni iik k k B A P B P B A P B P A B P 1)|()()|()()|((5)贝努里概型与二项概率设在每次试验中,随机事件A发生的概率()(01)P A p p =<<,则在n 次重复独立试验中.,事件A恰发生k 次的概率为()(1),0,1,,k n k n n P k p p k nk -⎛⎫=-= ⎪⎝⎭,7.事件的独立性: B A ,独立)()()(B P A P AB P =⇔ (注意独立性的应用)下列四个命题是等价的:(i) 事件A 与B 相互独立; (ii) 事件A 与B 相互独立; (iii) 事件A 与B 相互独立;(iv) 事件A 与B 相互独立.8、思考题1.一个人在口袋里放2盒火柴,每盒n 支,每次抽烟时从口袋中随机拿出一盒(即每次每盒有同等机会被拿到)并用掉一支,到某次他迟早会发现:取出的那一盒已空了.问:“这时另一盒中恰好有m 支火柴”的概率是多少?2.设一个居民区有n 个人,设有一个邮局,开c 个窗口,设每个窗口都办理所有业务.c 太小,经常排长队;c 太大又不经济.现设在每一指定时刻,这n 个人中每一个是否在邮局是独立的,每个人在邮局的概率是p .设计要求:“在每一时刻每窗口排队人数(包括正在被服务的那个人)不超过m ”这个事件的概率要不小于a (例如,0.8,0.9.95a o =或),问至少须设多少窗口? 3.设机器正常时,生产合格品的概率为95%,当机器有故障时,生产合格品的概率为50%,而机器无故障的概率为95%.某天上班时,工人生产的第一件产品是合格品,问能以多大的把握判断该机器是正常的?第二章 随机变量与概率分布1. 离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑iip=1(3)对任意R D ⊂,∑∈=∈Dx i ii pD X P :)(2. 连续随机变量:具有概率密度函数)(x f ,满足(1)1)(,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b X a P )()(;(3)对任意R a ∈,0)(==a X P标准正态分布的分布函数记作,即()x Φ22()t xx dt-Φ=⎰,当出0x ≥时,()x Φ可查表得到;当0x <时,()x Φ可由下面性质得到()1()x x Φ-=-Φ.设2~(,)X N μσ,则有()()x F x μσ-=Φ;()()()b a P a X b μμσσ--<≤=Φ-Φ.4. 分布函数 )()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续; (4))()()(a F b F b X a P -=≤<,特别)(1)(a F a X P -=>; 特别的 ()()(0)P X a F a F a ==-- (5)对离散随机变量,∑≤=xx i ii px F :)(;(6)对连续随机变量,⎰∞-=xdt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F =5. 正态分布的概率计算 以)(x Φ记标准正态分布)1,0(N 的分布函数,则有 (1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则)()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u X P Φ-==> 6. 随机变量的函数 )(X g Y =(1)离散时,求Y 的值,将相同的概率相加;(2)X 连续,)(x g 在X 的取值围严格单调,且有一阶连续导数,则|))((|))(()('11y g y g f y f X Y --=,若不单调,先求分布函数,再求导。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、一袋中有十个质地、形状相同且编号分别为1、2、…、10的球.今从袋中任意取出三个球并记录球上的号码,求(1)最小号码为5的概率,(2)最大号码为5的概率,(3)一个号码为5,另外两个号码一个大于5,一个小于5的概率。

解:}5{1最小号码为=A }5{2最大号码为=A }555{3,一个小于,一个大于一个号码为=A1) 所求概率121)(31025111==C C C A p ; 2)所求概率201)(31024112==C C C A p ; 3)所求概率61)(3101415113==C C C C A p2、在1500个产品中有400个次品,1100个正品.任取200个,求(1)恰好有90个次品的概率;(2)至少有两个次品的概率。

解:设}90{个次品恰好有=A , }{至少有两个次品=B(1)所求概率 2001500110110090400)(C C C A p =;(2)所求概率 200150********140020011001)(C C C C B p +-=。

3、将一枚骰子重复掷n 次,试求掷出的最大点数为5的概率。

解:设}5{最大点数为=A , n 次掷出的点数≤5,有n5种不同结果,而n 次掷出的点数≤4,有n4种不同结果。

所以n 次掷出的最大点数为5,有nn 45-种不同结果。

故所求概率nn A p 645)(4-=4、若A ,B 互不相容,则()0)();()(=+=B A P B P A P B A P Y ;)]()([1)(1)B A ()B A (B P A P B A P P P +-=-==Y Y 。

若A ,B 相互独立,());()(1)(1)(B P A P B A P B A P B A P ⋅-=-==I I Y)()()(B P A P B A P ⋅=;)()()B A (B P A P P ⋅=。

5、设A 、B 为两个事件,P(B)=0.5,P(A-B)=0.3。

求()B A P I .解:2.0]3.05.0[1)]()([1)(1)B A (=+-=-+-=-=B A P B P B A P P Y 6、设A ,B 是两个事件,61)|(,31)()(===B A P B P A P ,求)|(B A P 解:127)(1)()()(1)(1)(1)()()|(=-+--=--==B P AB P B P A P B P B A P B P B A P B A P Y7、A 、B 为两个事件且P(A)=1/2,P(B)=1/2,证明P(AB)=()BA P I。

证明:P(A B ))]()()([1)(1)(=-+-=⋃-=AB P B P A P B A P B A P8、有甲、乙、丙三门火炮同时独立地向某目标射击,命中率分别为0.2,0.3,0.5,求(1)至少有一门火炮命中目标的概率;(2)恰有一门火炮命中目标的概率。

解:设事件A,B,C 分别表示甲、乙、丙火炮命中目标(1)72.05.07.08.01)()()(1)(1)(=⋅⋅-=-=-=C P B P A P C B A P C B A P Y Y (2))()()()(C B A P C B A P C B A P C B A C B A C B A P ++=Y Y47.0)()()()()()()()()(=++=C P B P A P C P B P A P C P B P A P9、射手对目标独立射击5发,单发命中概率为0.6,求 (1)恰好命中两发的概率;(2)至少命中一发的概率.解一:设事件A=“恰好命中两发”,B=“至少命中一发”()2304.04.06.03225==C A P ;98976.0)6.01(1)(5=--=B P解二:设X 为射击5发的命中发数,则)6.0,5(~B X ,所求概率为:(1)2304.04.06.0}2{3225===C XP ;(2)98976.0)6.01(1)1(5=--=≥X P10、设连续型随机变量X 的分布函数为⎩⎨⎧≤>+=-00)(x x Be A x F x λ,其中0>λ是常数。

求(1)参数A ,B ,(2)}3{},2{>≤X P X P (3)X 的概率密度解:(1)1)(=+∞F ,得A=1。

由X 为连续型的随机变量,则)(x F 在0=x 连续。

由于F (0)=0。

则0=+B A ,则1-=B ,(2)λ21)2()2(--==≤eF X P ;λ3)3(1)3(-=-=>e F X P (3)X 的概率密度⎩⎨⎧≤>='=-0;00;)()(x x e x F x f xλλ 11、已知X的概率密度为⎩⎨⎧<<+=其它010)21()(x x A x f ,求:(1) 求常数A; (2)}5.0{>X P ;(3)求F(x)解: (1)由⎰∞∞-=1)(dx x f ,即⎰=+11)21(dx x A 。

解得21=A(2)⎰⎰=+==>+∞15.05.085)21(21)()5.0(dx x dx x f X P (3)⎰∞-=xdt t f x F )()(当0<x 时,00)(==⎰∞-xdtx F当10<≤x 时,32)21(210)(2x x dt t dt x F x+=++=⎰⎰∞-当1≥x 时,10)21(210)(1100=+++=⎰⎰⎰∞-xdt dt t dt x F故 ⎪⎪⎩⎪⎪⎨⎧≥<≤+<=1;110;220;0)(2x x x xx x F12、设X ~N(0,1).求b 使:(1)P{|X|<b}=0.05. (2)P{X>b}=0.05. (3)P{X<b}=0.05. 解:(1)由05.0)(=<b X P ,则05.0)(=<<-b X b P ,即05.0)()(=-Φ-Φb b , 05.01)(2=-Φb则525.0)(=Φb ,查表得:065.0=b(2)由05.0)(=>b X P ,则95.0)(=≤b X P ,即 95.0)(=Φb ,查表得:645.1=b (3)由05.0)(=<b X P ,即05.0)(=Φb则95.0)(=-Φb ,查表得645.1=-b ,则645.1-=b13、设X ~ )3,1(2N , (1) 求P(1<X<4);(2) 求b ,使P(|X-1|<b)=0.95解:(1) )0()1()311()314()41(Φ-Φ=-Φ--Φ=<<X P =0.8413-0.5=0.3413 (2) 95.01)3(2)11()|1(|=-Φ=+<<+-=<-b b X b P b X P Θ 96.13,975.0)96.1(,975.0)3(=∴=Φ=Φ∴bb Θ ∴b = 5.8814、设随机变量X具有密度函数:⎪⎪⎩⎪⎪⎨⎧<≤-≤<=其他021210)(x xx x x f ,求)(),(X D X E 。

解: ⎰⎰⎰-+==+∞∞-2112)2()()(dxx x dx x dx x xf X E 13/13/833/1=+-+=⎰⎰⎰-+==+∞∞-2121322)2()()(dx x xdx xdx x f xX E4/143/144/1+-+=6/7=22)]([)()(X E X E X D -=6/116/7=-=15、设⎪⎪⎭⎫ ⎝⎛-12/1312/112/103/12~X ,求)52(3+XE ,)52(3+XD 。

解:因为3112/1312/112/103/1)2()(33333-=⨯+⨯+⨯+⨯-=X E649312/1312/112/103/1)2()(66666=⨯+⨯+⨯+⨯-=X E所以3/135)3/1(25)(2)52(33=+-⨯=+=+X E X E}]([)({4)(4)52(23633X E X E X D X D -==+9/2954])3/1(6/493[42=--= 16、设随机变量X ~P (2),求随机变量23-=X Z 的期望与方差。

解:因为,2)(,2)(==X D X E所以.18)(9)(,42)(3)(===-⨯=X D Z D X E Z E17、已知随机变量X 服从二项分布,且4.2)(=X E ,44.1)(=X D ,求二项分布的参数p n ,的值。

解:因为,44.1)1(,4.2=-===p np DX np EX 于是4.0,6==p n 。

18、设E(X)=10,D(X)=4,用切比雪夫不等式估计P(7<X<13)。

解:95941)3|10(|)137(=-≥<-=<<X P X P19、一个复杂的系统,由100个相互独立起作用的部件所组成,在整个运行期间,每个部件损坏的概率为0.1,为了使整个系统起作用,至少需要有85个部件工作,利用隶莫费-拉普拉斯中心极限定理求整个系统工作的概率。

解:假设100个部件中工作的部件数为X ,则X ~ B(100,0.9), 所以根据隶莫费-拉普拉斯中心极限定理,整个系统工作的概率)1.09.01009.010085(1)85(1)85(⨯⨯⨯-Φ-≈<-=≥X P X P9525.0)67.1()35(1=Φ=-Φ-=20、某保险公司多年的统计资料表明,在索赔户中被盗索赔户占20%,以X 表示在随意抽查的近100个索赔户中因被盗向保险公司索赔的户数。

(1)写出X 的分布律;(2)利用拉普拉斯定理,求被盗索赔户不小于14户且不多于30户的概率。

解:(1))2.0,100(~B X(2))4203042042014()3014(-≤-≤-=≤≤X P X P927.0)5.1()5.2(=-Φ-Φ≈21、设总体)20,80(~2N X ,从总体中抽取一个容量为100的样本,问样本均值与总体均值之差的绝对值大于3的概率是多少?解:设容量为100的样本为),,,(10021X X X Λ,X是样本的均值,则)4,0(~80N X -,所求概率为1334.0)9332.01(2)]5.1()5.1([1}3|80{|1}3|80{|=-=-Φ-Φ-=≤--=>-X P X P 22、设θˆ是参数θ的无偏估计量,且有0)ˆ(>θD ,试证22)ˆ(ˆθθ=不是2θ的无偏估计量.证:因为 2222)ˆ()]ˆ([)ˆ()ˆ(θθθθθθ>+=+=D E D E ,所以22)ˆ(ˆθθ=不是2θ的无偏估计量.23、 从大批彩色显像管中随机抽取100只,其平均寿命为10000小时,可以认为显像管的寿命X 服从正态分布.已知均方差40=σ小时,在置信度0.95下求出这批显像管平均寿命的置信区间。

相关文档
最新文档