第8章_概率论基本概念_习题答案
概率论与数理统计第8章(公共数学版)
P (弃真)
P(拒 绝H0
|
H
为
0
真)
P(
A
|
H
为
0
真)
小概率事件发生的概率就是犯弃真错误的概率
越大,犯第一类错误的概率越大, 即越显著. 故在检验中,也称为显著性水平
20
2.第二类错误:纳伪错误
如
果
原
假
设H
是
0
不
正
确
的, 但
却
错
误
地
接
受
了Hቤተ መጻሕፍቲ ባይዱ
0
此时我们便犯了“纳伪”错误,也称为第二类错误
统计量观测值 u 57.9 53.6 2.27 6 10
该批产品次品率 p 0.04 , 则该批产品不能出厂.
11
若从一万件产品中任意抽查12件发现1件次品
p 0.04 代入
取 0.01,则 P12(1) C112 p1(1 p)11 0.306 0.01
这不是小概率事件,没理由拒绝原假设,从而接受 原假设, 即该批产品可以出厂.
13
例2 某厂生产的螺钉,按标准强度为68/mm2, 而实际
称其中的一个为原假设,也称零假设或基本假设 记 为H0 称另一个为备择假设,也称备选假设或对立假设 记为H1 一般将含有等号的假设称为原假设
7
二、假设检验的基本原理
假设检验的理论依据是“小概率原理” 小概率原理:如果一个事件发生的概率很小,那么在一 次实验中,这个事件几乎不会发生. 如: 事件“掷100枚均匀硬币全出现正面”
(三)对给定(或选定)的显著性水平 ,由统计
量的分布查表确定出临界值,进而得到H0的拒绝域 和接受域.
概率论与数理统计 第8章
现在的问题就是要判别新产品的寿命是服从 μ >1500 的
正态分布,还是服从 μ ≤1500的正态分布? 若是前者,我们 就说新产品的寿命有显著性提高;若是后者,就说新产品的 寿命没有显著性提高。
定义 1 将对总体提出的某种假设称为原假设,记为 H 0 ; 将与原假设矛盾的假设称为备择假设,记为 H 1 。
在例 8-1 中,我们把涉及的两种情况用假设的形式表示
出来,第一个假设 μ ≤1500 表示采用新工艺后产品平均寿命没 有显著性提高,第二个假设 μ >1500 表示采用新工艺后产品平
均寿命有显著性提高。第一个假设为原假设,即“ H 0 :μ
定义 8 给定犯第一类错误的概率不大于 α 所作的假设 检验称为显著性检验,称 α 为显著性水平。 例 8-2 某车间用一台包装机包装食盐,每袋食盐的净 重是一个随机变量,它服从正态分布。当包装机正常时,其 均值为 0.5kg ,标准差为 0.015kg 。某日开工后为检查包装 机工作是否正常,随机地抽取它所包装的食盐 9 袋,称得样 本均值 ������ X =0. 511kg ,问在显著性水平 α =0.05 下,这 天包装机工作是否正常。
由于无论是第一类错误还是第二类错误都是作假设检验 时的随机事件,因此在假设检验中它们都有可能发生。我们 当然希望尽可能使犯两类错误的概率都很小,但一般来说, 当样本的容量固定时,若刻意地减少犯一类错误的概率,则 犯另一类错误的概率往往会增大。若要使两类错误的概率都 减小,就需增大样本的容量。在给定样本容量的情况下,我 们总是对犯第一类错误的概率加以控制,使它不大于 α , 而不关心犯第二类错误的概率 β是增大了还是减小了,这样 的假设检验就是显著性检验。
第八章试题答案 概率论与数理统计
第八章试题一、单项选择题(本大题共l0小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设总体X 服从正态分布N (μ,1),x 1,x 2,…,x n 为来自该总体的样本,x为样本均值,s 为样本标准差,欲检验假设H 0∶μ=μ0,H 1∶μ≠μ0,则检验用的统计量是( ) A.n/s x 0μ- B.)(0μ-x n C.10-μ-n /s xD.)(10μ--x n答案:B2.设总体X~N (μ,σ2),X 1,X 2,…,X n 为来自该总体的一个样本,X为样本均值,S 2为样本方差.对假设检验问题:H 0:μ=μ0↔H 1:μ≠μ0,在σ2未知的情况下,应该选用的检验统计量为( ) A .nX σμ0- B .1--n X σμ C .nSX 0μ-D .1--n SX μ答案:C3.在假设检验问题中,犯第一类错误的概率α的意义是( ) A .在H 0不成立的条件下,经检验H 0被拒绝的概率B .在H 0不成立的条件下,经检验H 0被接受的概率C .在H 0成立的条件下,经检验H 0被拒绝的概率D .在H 0成立的条件下,经检验H 0被接受的概率 答案:C4.设总体X~N (μ,σ2),σ2未知,X为样本均值,S n 2=n1∑=-n1i iXX()2,S 2=1n 1-∑=-n1i iXX()2,检验假设H 0:μ=μ0时采用的统计量是( ) A .Z=n/X 0σμ- B .T=n/S X n 0μ- C .T=n/S X 0μ-D .T=n/X 0σμ-答案:C4. .对正态总体的数学期望μ进行假设检验,如果在显著水平0.05下接受H0:μ=μ0,那么在显著水平0.01下,下列结论中正确的是( )A.必接受H0B.可能接受H0,也可能拒绝H0C.必拒绝H0D.不接受,也不拒绝H0答案:A二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
概率论与数理统计课后习题答案 第八章
有无显著差异(
).
解:检验假设
经计算
查表知
由于
故接受
即甲,乙两台车床加工的产品直径无显著差异.
8. 从甲地发送一个信号到乙地.设乙地接受到的信号值是一个服从正态分布
的随机变量,其
中 为甲地发送的真实信号值.现甲地重复发送同一信号 5 次,乙地接受到的信号值为
8.05
8.15
8.2
8.1
8.25
设接收方有理由猜测甲地发送的信号值为 8.问能否接受这一猜测? (
∵
该机正常工作与否的标志是检验 是否成立.一日
试问:在检验水平
下,该日自动机工作是否正
查表知
,由于
故拒绝 ,即该日自动机工作不正常.
2. 假定考生成绩服从正态分布,在某地一次数学统考中,随机抽取了 36 位考生的成绩,算的平均成绩为 分,标准差 S=15 分,问在显著性水平 0.05 下,是否可以认为这次考试全体考生的平均成绩为
问这两台机床的加工精度是否一致?
解:该题无 值,故省略.(用 F 检验)
4. 对两批同类电子元件的电阻进行测试,各抽 6 件,测得结果如下(单位:Ω )
A 批 0.140 0.138 0.143 0.141 0.144 0.137
B 批 0.135 0.140 0.142 0.136 0.138 0.141
态分布
(单位:公斤).现抽测了 9 包,其重量为:
99.3
98.7
100.5 101.2 98.3
99.7
99.5
102.0 100.5
问这天包装机工作是否正常?
将这一问题化为一个假设检验问题,写出假设检验的步骤,设
解: (1)作假设
《概率论与数理统计》习题及答案第八章
《概率论与数理统计》习题及答案第⼋章《概率论与数理统计》习题及答案第⼋章1. 设x.,x2,,%…是从总体X中抽岀的样本,假设X服从参数为兄的指数分布,⼏未知,给泄⼊〉0和显著性⽔平a(Ovavl),试求假设H o的⼒$检验统计量及否建域.解选统汁量*=2⼈⼯⼄=2如庆则Z2 -Z2(2n) ?对于给宦的显著性⽔平a,査z'分布表求出临界值加⑵",使加⑵2))=Q因z2 > z2 > 所以(F": (2/1)) => (/2 > /; (2n)),从⽽a = P{X2 > 加⑵“} n P{r > Za(2/0)可见仏:2>^的否定域为Z2>Z;(2?).2. 某种零件的尺⼨⽅差为O-2=1.21,对⼀批这类零件检查6件得尺⼨数据(毫⽶):,,,,,。
设零件尺⼨服从正态分布,问这批零件的平均尺⼨能否认为是毫⽶(a = O.O5).解问题是在/已知的条件下检验假设:“ = 32.50Ho的否定域为1“ l> u af2u0(n5 = 1.96 ,因1“ 1=6.77 >1.96,所以否泄弘,即不能认为平均尺⼨是亳⽶。
3. 设某产品的指标服从正态分布,它的标准差为b = 100,今抽了⼀个容量为26的样本,计算平均值1580,问在显著性⽔平a = 0.05下,能否认为这批产品的指标的期望值“不低于1600。
解问题是在b?已知的条件下检验假设://>1600的否定域为u < -u a/2,其中X-1600 r-r 1580-1600 c , “11 = ------------ V26 = ------------------- x 5.1 = —1.02.100 100⼀叫05 =—1.64.因为// =-1.02>-1.64 =-M005,所以接受H(>,即可以认为这批产品的指标的期望值“不低于1600.4. ⼀种元件,要求其使⽤寿命不低于1000⼩时,现在从这批元件中任取25件,测得其寿命平均值为950⼩时,已知该元件寿命服从标准差为o-=100 ⼩时的正态分布,问这批元件是否合格(<7=0.05)解设元件寿命为X,则X~N(“,IO。
《经济数学》第三篇概率论第8章随机变量与数字特征作业详解
《经济数学》第三篇概率论第8章随机变量与数字特征作业详解练习8.11.定点投篮1次,投中的概率是0.4,试用随机变量描述这一试验解,引入随机变量X,8发投篮命中的,令X=1;当不中时X=0,即P(X=1)=0.4,P(X=0)=1-0.4=0.6。
2.一次试验中,若某事件A必然产生、试用随机变量描述该现象,并指出此随机变量可能取多少个值?A出现,令X=1,有P(X=1)=1,A不出现,令X=0,有P(X=0)=0,X 可能取1,0两个值。
练习8.21.判断以下两表的对应值能否作为离散型随机变量的概率分布(1)(2)解:P k的概率之和为1,即∑P k=1。
现在第(1)情况,虽P k≥0,但。
所以不可以作为随机变量概率分布。
第(2)情况不仅P k≥0,且,所以能作为离散型随机变量的概率分布。
2.设随机变量Y的概率分布为,k=1,2,3,求P(Y=1),P(Y>2),P(≤3),P(1.5≤y≤5),P(y>)解:P(Y=1)=,P(Y>2)=P(Y=3)=P(1.5≤Y≤5)=P(Y=2)+P(Y=3)=;P(Y>)=P(Y=2)+P(Y=3)=3.气象记录表明,某地在11月份的30天中平均有3天下雪,试问明年11月份至多有3个下雪天的概率11月份下雪天的概率是,不下雪天的概率是,每次只有两种可能,要么下雪,要么不下雪,所以服从二项分布,X~B(30,0.1)X表示11月份下雪天数,解:P(X≤3)=P(X=0)+P(X=1)+P(X=2)+P(X=3)其中不下雪的概率P(X=0)==0.04239有一天下雪的概率P(X=1)==0.1413有二天下雪的概率P(X=2)==0.22766有三天下雪的概率P(X=3)==0.2361∴P(X≤3)=0.04239+0.1413+0.22766+0.2361≈0.6474.某车间有12台车床,每台车床由于装卸加工的零件等原因时常停车,设各台车床停车或开车是相互独立的每台车床在任一时刻处于停车状态的概率是0.3,求(1)任一时刻车间内停车台数X的分布;(2)车间内有3台车床停车的概率;(3)任一时刻车间内车床全部工作的概率。
概率论与数理统计习题解答(第8章)
第八章 假 设 检 验三、解答题1. 某种零件的长度服从正态分布,方差σ2 = 1.21,随机抽取6件,记录其长度(毫米)分别为32.46,31.54,30.10,29.76,31.67,31.23在显著性水平α = 0.01下,能否认为这批零件的平均长度为32.50毫米? 解:这是单个正态总体均值比较的问题,若设该种零件的长度),(~2σμN X ,则需要检验的是:00:μμ=H 01:μμ≠H由于2σ已知,选取nX Z σμ0-=为检验统计量,在显著水平α = 0.01下,0H 的拒绝域为:}|{|}|{|005.02Z z Z z ≥=≥α查表得 2.575829005.0=Z ,现由n =6, 31.1266711∑===ni i x n x ,1.1=σ, 50.320=μ计算得:3.0581561.132.5-31.126670==-=nX z σμ005.0Z z >可知,z 落入拒绝域中,故在0.01的显著水平下应拒绝0H ,不能认为这批零件的平均长度为32.50毫米。
EXCEL 实验结果:2. 正常人的脉搏平均每分钟72次,某医生测得10例“四乙基铅中毒”患者的脉搏数如下:54,67,68,78,70,66,67,65,69,70已知人的脉搏次数服从正态分布,问在显著水平α = 0.05下,“四乙基铅中毒”患者的脉搏和正常人的脉搏有无显著差异?解:这是单个正态总体均值比较的问题,若设“四乙基铅中毒”患者的脉搏数),(~2σμN X ,则需要检验的是:0:μμ=H1:μμ≠H由于方差未知,选取ns X T 0μ-=为检验统计量,在显著水平α = 0.05下,0H 的拒绝域为:)}9(|{|)}1(|{|2/05.02t t n t t ≥=-≥α查表得 2.26215716)9(025.0=t ,现由n =10, 67.411∑===n i i x n x , ()35.155555611122∑==--=n i i x x n s , 计算得2.45335761035.1555556724.670=-=-=nsX t μ)9(025.0t t >可知,t 落入拒绝域中,故在0.05的显著水平下应拒绝0H ,“四乙基铅中毒”患者的脉搏和正常人的脉搏有显著差异。
《概率论与数理统计》(第3版) 习题详解-(第8章)习题详解
习题八1. 已知某炼铁厂的铁水含碳量在正常情况下服从正态分布N(4.55,0.1082).现在测了5炉铁水,其含碳量(%)分别为4.28 4.40 4.42 4.35 4.37问若标准差不改变,总体平均值有无显著性变化(α=0.05)?【解】0010/20.0250.025: 4.55;: 4.55.5,0.05, 1.96,0.1084.364,(4.364 4.55)3.851,0.108.H Hn Z ZxxZZZαμμμμασ==≠=======-===->所以拒绝H0,认为总体平均值有显著性变化.2. 某种矿砂的5个样品中的含镍量(%)经测定为:3.24 3.26 3.24 3.27 3.25设含镍量服从正态分布,问在α=0.01下能否接收假设:这批矿砂的含镍量为3.25?【解】设0010/20.0050.005: 3.25;: 3.25.5,0.01,(1)(4) 4.60413.252,0.013,(3.252 3.25)0.344,0.013(4).H Hn t n tx sxtttαμμμμα==≠===-====-===<所以接受H0,认为这批矿砂的含镍量为3.25.3. 在正常状态下,某种牌子的香烟一支平均1.1克,若从这种香烟堆中任取36支作为样本;测得样本均值为1.008(克),样本方差s2=0.1(g2).问这堆香烟是否处于正常状态.已知香烟(支)的重量(克)近似服从正态分布(取α=0.05).【解】设0010/20.02520.025: 1.1;: 1.1.36,0.05,(1)(35) 2.0301,36,1.008,0.1,6 1.7456,1.7456(35)2.0301.H Hn t n t nx sxtttαμμμμα==≠===-=========<=所以接受H0,认为这堆香烟(支)的重要(克)正常.4.某公司宣称由他们生产的某种型号的电池其平均寿命为21.5小时,标准差为2.9小时.在实验室测试了该公司生产的6只电池,得到它们的寿命(以小时计)为19,18,20,22,16,25,问这些结果是否表明这种电池的平均寿命比该公司宣称的平均寿命要短?设电池寿命近似地服从正态分布(取α=0.05). 【解】0100.050.05:21.5;:21.5.21.5,6,0.05, 1.65, 2.9,20,(2021.5)1.267,2.91.65.H Hn z xxzz zμμμασ≥<======-===->-=-所以接受H0,认为电池的寿命不比该公司宣称的短.5.测量某种溶液中的水分,从它的10个测定值得出x=0.452(%),s=0.037(%).设测定值总体为正态,μ为总体均值,σ为总体标准差,试在水平α=0.05下检验.(1)H0:μ=0.5(%);H1:μ<0.5(%).(2):Hσ'=0.04(%);1:Hσ'<0.04(%).【解】(1)00.050.050.5;10,0.05,(1)(9) 1.8331,0.452,0.037,(0.4520.5)4.10241,0.037(9) 1.8331.n t n tx sxtt tαμα===-====-===-<-=-所以拒绝H0,接受H1.(2)2222010.9522222220.95(0.04),10,0.05,(9) 3.325,0.452,0.037,(1)90.0377.7006,0.04(9).nx sn sασαχχχσχχ-=======-⨯===>所以接受H0,拒绝H1.6.某种导线的电阻服从正态分布N(μ,0.0052).今从新生产的一批导线中抽取9根,测其电阻,得s=0.008欧.对于α=0.05,能否认为这批导线电阻的标准差仍为0.005?【解】00102222/20.0251/20.975222220.02522:0.005;:0.005.9,0.05,0.008,(8)(8)17.535,(8)(8) 2.088,(1)80.00820.48,(8).(0.005)H Hn sn sαασσσσαχχχχχχχσ-===≠=======-⨯===>故应拒绝H0,不能认为这批导线的电阻标准差仍为0.005.7.有两批棉纱,为比较其断裂强度,从中各取一个样本,测试得到:第一批棉纱样本:n1=200,x=0.532kg, s1=0.218kg;第二批棉纱样本:n2=200,y=0.57kg, s2=0.176kg.设两强度总体服从正态分布,方差未知但相等,两批强度均值有无显著差异?(α=0.05)【解】01211212/2120.0250.0250.025:;:.200,0.05,(2)(398) 1.96,0.1981,1.918;(398).w H H n n t n n t z s x y t t t αμμμμα=≠===+-=≈=======-< 所以接受H 0,认为两批强度均值无显著差别.8.两位化验员A ,B 对一种矿砂的含铁量各自独立地用同一方法做了5次分析,得到样本方差分别为0.4322(%2)与0.5006(%2).若A ,B 所得的测定值的总体都是正态分布,其方差分别为σA 2,σB 2,试在水平α=0.05下检验方差齐性的假设222201:;:.A B A B H H σσσσ=≠【解】221212/2120.0250.9750.02521225,0.05,0.4322,0.5006,(1,1)(4,4)9.6,11(4,4)0.1042,(4.4)9.60.43220.8634.0.5006n n s s F n n F F F s F s αα=====--========那么0.9750.025(4,4)(4,4).F F F <<所以接受H 0,拒绝H 1.9~12. 略。
概率论与数理统计习题解答(第8章)
第八章 假 设 检 验三、解答题1. 某种零件的长度服从正态分布,方差2= ,随机抽取6件,记录其长度(毫米)分别为,,,,,在显著性水平 = 下,能否认为这批零件的平均长度为32.50毫米 解:这是单个正态总体均值比较的问题,若设该种零件的长度),(~2σμN X ,则需要检验的是:00:μμ=H 01:μμ≠H由于2σ已知,选取nX Z σμ0-=为检验统计量,在显著水平 = 下,0H 的拒绝域为:}|{|}|{|005.02Z z Z z ≥=≥α>查表得 2.575829005.0=Z ,现由n =6, 31.1266711∑===ni i x n x ,1.1=σ, 50.320=μ计算得:3.0581561.132.5-31.126670==-=nX z σμ005.0Z z >可知,z 落入拒绝域中,故在的显著水平下应拒绝0H ,不能认为这批零件的平均长度为32.50毫米。
EXCEL 实验结果:2. 正常人的脉搏平均每分钟72次,某医生测得10例“四乙基铅中毒”患者的脉搏数如下:、54,67,68,78,70,66,67,65,69,70已知人的脉搏次数服从正态分布,问在显著水平 = 下,“四乙基铅中毒”患者的脉搏和正常人的脉搏有无显著差异解:这是单个正态总体均值比较的问题,若设“四乙基铅中毒”患者的脉搏数),(~2σμN X ,则需要检验的是:0:μμ=H1:μμ≠H由于方差未知,选取ns X T 0μ-=为检验统计量,在显著水平 = 下,0H 的拒绝域为:)}9(|{|)}1(|{|2/05.02t t n t t ≥=-≥α查表得 2.26215716)9(025.0=t ,现由n =10, 67.411∑===n i i x n x , ()35.155555611122∑==--=n i ix x n s , 计算得2.45335761035.1555556724.670=-=-=nsX t μ()9(025.0t t >可知,t 落入拒绝域中,故在的显著水平下应拒绝0H ,“四乙基铅中毒”患者的脉搏和正常人的脉搏有显著差异。
概率论与数理统计习题及答案第八章
习题8-11.填空题(1) 假设检验易犯的两类错误分别是____________和__________.解第一类错误(弃真错误); 第二类错误(取伪错误).(2) 犯第一类错误的概率越大, 则右侧检验的临界值(点)越_____, 同时犯第二类错误的概率越_____.解小, 小.2. 已知一批零件的长度X(单位:cm)服从正态分布(,1)Nμ, 从中随机地抽取16个零件, 得到长度的平均值为40cm. 求:(1) 取显著性水平α=0.05时, 均值μ的双侧假设检验的拒绝域;(2) μ的置信水平为0.95的置信区间;(3) 问题(1)和(2)的结果有什么关系.解(1) 计算得到拒绝域为(-∞, 39.51)∪(40.49, +∞).(2) 已知x=40, σ =1,α = 0.05, 查表可得0.02521.96,z zα==所求置信区间为22()(40 1.96,40 1.96),x z x zαα+=-(39.51,40.49).=(3) 对于显著性水平α=0.05, μ的双侧假设检验的接受域恰为μ的置信水平为0.95的置信区间.习题8-21.填空题(1) 设总体2~(,)X Nμσ,12,,,nX X X是来自总体X的样本. 对于检验假设H:μμ=(μμ≥或μμ≤), 当2σ未知时的检验统计量是,H为真时该检验统计量服从分布; 给定显著性水平为α, 关于μ的双侧检验的拒绝域为, 左侧检验的拒绝域为, 右侧检验的拒绝域为__________.解Xt=; 自由度为n-1的t分布;2t tα…;t tα-…;t tα….2. 统计资料表明某市人均年收入服从2150μ=元的正态分布. 对该市从事某种职业的职工调查30人, 算得人均年收入为2280x=元, 样本标准差476s=元. 取显著性水平0.1, 试检验该种职业家庭人均年收入是否高于该市人均年收入?解由于总体方差未知, 故提出假设H0:μ≤μ0=2150; H1:μ>μ0.对于α=0.1,选取检验统计量X t =拒绝域为t >)1(-n t α=t 0.1(29)=1.3114.代入数据n =30, x =2280, s =476, 得到4959.130476215022800=-=-=n s x t μ>1.3114.所以拒绝原假设, 可以认为该种职业家庭人均年收入高于市人均年收入.3. 从某种试验物中取出24个样品,测量其发热量, 算得平均值11958, 样本标准差316s =.设发热量服从正态分布. 取显著性水平α=0.05, 问是否可认为该试验物发热量的期望值为12100?解 提出假设 H 0: μ=μ0=12100; H 1:μ≠μ0 .对于α=0.05,选取检验统计量X t =, 拒绝域为|t |>)1(2-n t α=t 0.025(23)=2.0687代入数据n =24, x =11958, s =316, 得到|| 2.20144x t ===>2.0687.所以拒绝原假设, 不能认为该试验物发热量的期望值为12100.4.从某锌矿的东西两支矿脉中, 各抽取容量分别为9和8的样品, 计算其样本含锌量(%)的平均值与方差分别为:东支: 0.230,x =2110.1337,9;n s ==西支: 0.269,y =2220.1736,8s n ==.假定东、西两支矿脉的含锌量都服从正态分布. 取显著性水平0.05α=, 问能否认为两支矿脉的含锌量相同?解 提出假设 H 0:μ1-μ2=0 ; H 1: μ1-μ2≠0.已知α=0.05, 210.230,0.1337x s ==, 220.269,0.1736y s ==,129,8,n n ==选取检验统计量X Y t =, 22112212(1)(1)2w n S n S S n n -+-=+-,拒绝域为|t |>120.0252(2)(15) 2.1315.t n n t α+-==因为2222112212(1)(1)(91)0.1337(81)0.17360.392982wn s n s s n n -+--⨯+-⨯===+-+-,||0.2058x y t ===<2.1315,所以不能拒绝原假设, 可以认为两支矿脉的含锌量相同.习题8-3一、 填空题1. 设总体2~(,)X N μσ, 12,,,n X X X 是来自总体X 的样本, 则检验假设0H :220σσ=(220σσ≥或220σσ≤), 当μ未知时的检验统计量是 , 0H 为真时该检验统计量服从 分布; 给定显著性水平α, 关于σ2的双侧检验的拒绝域为 , 左侧检验的拒绝域为 , 右侧检验的拒绝域为__________.解 2220(1)n S χσ-=; 2(1)n χ-; 2212(1)n αχχ--≤或222(1)n αχχ-≥;221(1)n αχχ--≤;22(1)n αχχ-≥. 2. 为测定某种溶液中的水分, 由它的10个测定值算出样本标准差的观察值0.037s =%. 设测定值总体服从正态分布, 2σ为总体方差, 2σ未知. 试在0.05α=下检验假设0:0.04H σ≥%; 1:0.04H σ<%.解 只需考虑假设 022:0.04)%H ≥(σ; 122:(0.04)%H <σ . 对于α=0.05, 选取检验统计量2220(1)n S χσ-=, 拒绝域为22210.95(1)(9) 3.325n αχχχ--==≤.代入数据10=n ,220(0.04%)=σ, s 2=(0.037%)2, 计算得到222220(1)(101)(0.037%)(0.04%)n S --⨯==χσ=7.701>3.325,不落在拒绝域内,所以在水平α=0.05下接受H 0, 即认为σ≥0.04%.3. 有容量为100的样本, 其样本均值观察值 2.7x =, 而10021225()i i x -x ==∑.试以0.01α=检验假设H 0: σ2=2.5.解 提出假设 2201: 2.5;: 2.5.H H σσ=≠对于α=0.01, 选取检验统计量2220(1)n S χσ-=, 拒绝域为22220.9950.995121(1)(99)(2n z αχχχ--=≈+≤=65.67,或22220.0050.00521(1)(99)(2n z αχχχ-=≈≥=137.96.代入数据n =100, 2(1)225,n s -=得到2220(1)2252.5n s χσ-===90.因为65.67<90<137.96, 即χ2的观察值不落在拒绝域内, 所以在水平α=0.01下接受H 0, 即认为σ2=2.5.习题8-41..试在显著性水平α=0.025下检验H 0: X 的概率密度2,01,()0,.x x f x <<⎧=⎨⎩其它解 因为22/4(1)/41(1){}2,4416i i i i i i i p P X x x ----=<==⎰≤d i =1, 2, 3, 4.待检假设 02,01,:()0,.x x H X f x <<⎧=⎨⎩ 其它列计算表如表8-1所示, 算得2421() 1.83.i i i if np npχ=-==∑表8-1 第1题数据处理查表知20.025(3)9.348,χ= 经比较知220.0251.83(3)9.348,χχ=<=故接受H 0, 认为X 的概率密度为2,01,()0,.x x f x <<⎧=⎨⎩其它2. 在显著性水平α=0.05下, 检验这枚骰子是否均匀.解 用X 表示骰子掷出的点数, P {X =i }=p i , i =1, 2, …, 6. 如果骰子是均匀的, 则p i =16, i =1, 2, …, 6. 因此待检假设01:6i H p =, i =1, 2, …, 6. 计算检验统计量221()ni i i if np np χ=-=∑的值, 得2222222100100100[(13)(14)(20)666100100100100(17)(15)(21)]66663.2.χ=-+-+-+-+-+-÷=查表知20.05(61)11.071,χ-= 经比较知220.053.2(5)11.071,χχ=<= 故接受H 0, 认为骰子是均匀的.。
第八章试题答案概率论与数理统计
第八章试题答案概率论与数理统计第八章试题一、单项选择题(本大题共l0小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设总体X 服从正态分布N (μ,1),x 1,x 2,…,x n 为来自该总体的样本,x为样本均值,s 为样本标准差,欲检验假设H 0∶μ=μ0,H 1∶μ≠μ0,则检验用的统计量是()A.n/s x 0μ- B.)(0μ-x n C.10-μ-n /s xD.)(10μ--x n答案:B2.设总体X~N (μ,σ2),X 1,X 2,…,X n 为来自该总体的一个样本,X为样本均值,S 2为样本方差.对假设检验问题:H 0:μ=μ0?H 1:μ≠μ0,在σ2未知的情况下,应该选用的检验统计量为() A .nμ0- B .1--n X σμ C .nSX 0μ-D .1--n SX μ答案:C3.在假设检验问题中,犯第一类错误的概率α的意义是() A .在H 0不成立的条件下,经检验H 0被拒绝的概率B .在H 0不成立的条件下,经检验H 0被接受的概率C .在H 0成立的条件下,经检验H 0被拒绝的概率D .在H 0成立的条件下,经检验H 0被接受的概率答案:C4.设总体X~N (μ,σ2),σ2未知,X为样本均值,S n 2=n1∑=-ni iXX()2,S 2=1n 1-∑=-n1i iXX()2,检验假设H 0:μ=μ0时采用的统计量是() A .Z=n/X 0σμ- B .T=n/S X n 0μ- C .T=n/S X 0μ-D .T=n/X 0σμ-答案:C4. .对正态总体的数学期望μ进行假设检验,如果在显著水平0.05下接受H0:μ=μ0,那么在显著水平0.01下,下列结论中正确的是( )A.必接受H0B.可能接受H0,也可能拒绝H0C.必拒绝H0D.不接受,也不拒绝H0答案:A二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
概率论与数理统计习题集及答案
《概率论与数理统计》作业集及答案第1章 概率论的基本概念§1 .1 随机试验及随机事件1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ;(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ;2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B:数点大于2,则B= .(2) 一枚硬币连丢2次, A :第一次出现正面,则A = ;B:两次出现同一面,则= ; C :至少有一次出现正面,则C= .§1 .2 随机事件的运算1. 设A 、B、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B都不发生,而C 发生表示为: .(4)A、B 、C 中最多二个发生表示为: .(5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: .2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则(1)=⋃B A ,(2)=AB ,(3)=B A ,(4)B A ⋃= ,(5)B A = 。
§1 .3 概率的定义和性质1. 已知6.0)(,5.0)(,8.0)(===⋃B P A P B A P ,则(1) =)(AB P , (2)()(B A P )= , (3))(B A P ⋃= .2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = .§1 .4 古典概型1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率.2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率.§1 .5 条件概率与乘法公式1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。
概率论基本概念习题答案
期望与方差习题答案解析
期望与方差习题答案解析1
这道题考查的是期望和方差的计算方法。根据题目给 出的条件,我们可以使用期望和方差的定义和计算公 式来求解。首先,我们需要明确问题中涉及的随机变 量和它们的期望与方差,然后使用期望和方差的计算 公式来求解。
期望与方差习题答案解析2
这道题考查的是期望和方差的应用。根据题目给出的 条件,我们可以使用期望和方差的性质来解决实际问 题。首先,我们需要明确问题中涉及的随机变量和它 们的期望与方差,然后使用期望和方差的性质来求解 。
概率论的发展历程
概率论起源于17世纪,最初是赌博者们为了解决赌博中的问题而开始研究 随机现象。
随着时间的推移,概率论逐渐发展成为一门独立的数学分支,吸引了众多 数学家和科学家的关注。
现代概率论已经广泛应用于各个领域,如统计学、经济学、物理学、工程 学等。
概率论的应用领域
统计学
概率论是统计学的基础,用于描述和分析数 据的概率性质。
条件概率具有加法性质和乘法性 质,即 P(A∪B|C)=P(A|C)+P(B|C)和 P(A∩B|C)=P(A|C)×P(B|C)。
如果两个事件A和B是独立的,那 么P(A∩B)=P(A)×P(B),并且 分布
随机变量的定义
随机变量是一个函数,其定义域是样本空间,值域是 一个实数集合。
期望与方差习题2答案
对于两个随机变量X和Y,已知E(X)=2,E(Y)=3,D(X)=4,D(Y)=5,判断X和Y是否独 立。根据期望和方差的性质,如果E(XY)=E(X)E(Y),则X和Y独立。由于题目未给出 E(XY),无法判断X和Y是否独立。
04
概率论基本概念习题答案解析
概率计算题答案解析
条件概率与独立性习题答案
概率论与数理统计(茆诗松)第二版课后第八章习题参考答案
第八章 方差分析与回归分析本章前三节研究方差分析,讨论多个正态总体的比较,后两节研究回归分析.讨论两个变量之间的相关关系.§8.1 方差分析8.1.1问题的提出上一章讨论了单个或两个正态总体的假设检验,这里讨论多个正态总体的均值比较问题.通常为了研究某一因素对某项指标的影响情况,将该因素在多种情形下进行抽样检验,作出比较.一般将该因素称为一个因子,所检验的每种情形称为水平.在每个水平下需要考察的指标都分别构成一个总体,比较它们的总体均值是否相等.对每一个总体都分别抽取一个样本,样本容量称为重复数.如果只对一个因子中的多个水平进行比较,称为单因子方差分析,对多个因子的水平进行比较,称为多因子方差分析.本章只进行单因子方差分析.例 在饲料养鸡增肥的研究中,现有三种饲料配方:A 1 , A 2 , A 3 ,为比较三种饲料的效果,特选24只相似的雏鸡随机均分为三组,每组各喂一种饲料,60天后观察它们的重量.实验结果如下表所示: 饲料鸡重/gA 1 1073 1009 1060 1001 1002 1012 1009 1028 A 2 1107 1092 990 1109 1090 1074 1122 1001 A 3 1093 1029 1080 1021 1022 1032 1029 1048 在此例中,就是要考察饲料对鸡增重的影响,需要比较三种饲料对鸡增肥的作用是否相同.这里,饲料就是一个因子,三种饲料配方就是该因子的三个水平,每种饲料喂养的雏鸡60天后的重量分别构成一个总体,这里共有3个总体,每一个总体抽取样本的重复数都是8,比较这3个总体的均值是否相等. 8.1.2单因子方差分析的统计模型设因子A 有r 个水平A 1 , A 2 , …, A r ,在每个水平下需要考察的指标都构成一个总体,即有r 个总体,分别记为Y 1 , Y 2 , …, Y r ,对每一个总体都分别抽取一个样本,首先考虑重复数相等的情形,设重复数都是m ,总体Y i 的样本Y i 1 , Y i 2 , …, Y im ,i = 1, 2, …, r .作出以下假定:(1)每一个总体都服从正态分布,即r i N Y i i i ,,2,1),,(~2L =σµ;(2)各个总体的方差都相等,即22221r σσσ===L ,都记为σ 2;(3)各个总体及抽取的样本相互独立,即Y ij 相互独立,i = 1, 2, …, r ,j = 1, 2, …, m . 需要比较它们的总体均值是否相等,即检验的原假设与备择假设为H 0:µ 1 = µ 2 = … = µ r vs H 1:µ 1 , µ 2 , …, µ r 不全相等,如果H 0成立,就可以认为这r 个水平下的总体均值相同,称为因子A 不显著;反之,如果H 0不成立,就称为因子A 显著.在水平A i 下的样品Y ij 与该水平下的总体均值µ i 之差ε ij = Y ij − µ i 为随机误差.由于Y ij ~ N (µ i , σ 2 ),因此随机误差ε ij ~ N (0 , σ 2 ).对所有r 个水平下的总体均值求平均,即∑==+++=ri i r r r 1211)(1µµµµµL称为总均值.每个水平A i 下的总体均值µ i 与总均值µ 之差a i = µ i − µ 称为该水平A i 下主效应.显然所有主效应a i 之和等于0,即01=∑=ri ia,检验所有水平下的总体均值是否相等,也就是检验所有主效应a i 是否全等于0.这样单因子方差分析在重复数相等的情形下,统计模型为⎪⎪⎩⎪⎪⎨⎧===++=∑=).,0(;0;,,2,1,,,2,1,21σεεµN a m j r i a Y ij r i i ij i ij 相互独立,且都服从L L 检验的原假设与备择假设为H 0:a 1 = a 2 = … = a r = 0 vs H 1:a 1 , a 2 , …, a r 不全等于0. 8.1.3平方和分解一.试验数据对于r 个总体下的试验数据Y ij , i = 1, 2, …, r ,j = 1, 2, …, m ,记T i 表示第i 个总体下试验数据总和,⋅i Y 表示第i 个总体下样本均值,n = rm 表示总的样本容量,T 表示总的试验数据总和,Y 表示总的样本均值,即∑==mj ij i Y T 1,∑=⋅==mj ij i i Y m m T Y 11, i = 1, 2, …, r ,∑∑∑=====r i mj ij r i i Y T T 111,∑∑∑=⋅=====ri i r i m j ij Y r Y rm T n Y 111111, 用⋅i Y 作为µ i 的点估计,Y 作为µ 的点估计.又记⋅i ε表示第i 个总体下随机误差平均值,ε表示总的随机误差平均值,即∑=⋅=mj ij i m 11εε, i = 1, 2, …, r ,∑∑∑=⋅====ri i r i m j ij r n 11111εεε.显然有⋅⋅+=i i i Y εµ,εµ+=Y .在单因子方差分析中通常将试验数据及基本计算结果写成表格形式 因子水平试验数据和 和的平方平方和A 1 Y 11 Y 12 … Y 1m T 1 21T∑21jY A 2 Y 21 Y 22 … Y 2m T 2 22T∑22jY┆ ┆ ┆ ┆ ┆ ┆ ┆┆A rY r 1Y r 2…Y rmT r2r T ∑2rjYΣ T∑=ri i T 12∑∑==ri mj ijY112二.组内偏差与组间偏差数据Y ij 与样本总均值Y 之差Y Y ij −称为样本总偏差,可以分成两部分之和:)()(Y Y Y Y Y Y i i ij ij −+−=−⋅⋅,其中⋅⋅⋅−=+−+=−i ij i i ij i i ij Y Y εεεµεµ)()(是第i 个总体内数据与该总体内样本均值的偏差,称为组内偏差,反映第i 个总体内的随机误差;εεεµεµ−+=+−+=−⋅⋅⋅i i i i i a Y Y )()(是第i 个总体内样本均值与总样本均值的偏差,称为组间偏差,反映第i 个总体的主效应. 三.偏差平方和及其自由度在统计学中,对于k 个独立数据Y 1 , Y 2 , …, Y k ,平均值∑==ki i Y k Y 11,称Y i 与Y 之差为偏差,所有偏差的平方和∑=−=ki i Y Y Q 12)(称为这k 个数据的偏差平方和,反映这k 个数据的分散程度.由于所有偏差之和0)(11=−=−∑∑==Y k Y Y Y ki i k i i , 即这k 个偏差由k 个独立数据受到一个约束条件形成,可以证明它们与k − 1个独立(随机)变量可以相互线性表示,称之为等价于k − 1个独立(随机)变量.一般地,若k 个独立数据受到r 个不相关的约束条件,则它们等价于k − r 个独立(随机)变量.在统计学中,把形成平方和的变量所等价的独立变量个数,称为该平方和的自由度,通常记为f .如上述偏差平方和Q 的自由度为k − 1,即f Q = k − 1.由于平方和的大小与变量个数(或自由度)有关,为了对偏差进行比较,通常考虑偏差平方和与其自由度之商,称为均方和,记为MS ,反映一组数据的平均分散程度,如样本方差∑=−−=ni i X X n S 122)(11就是样本数据偏差的均方和. 四.总平方和分解公式总偏差平方和记为S T 或SST ,其自由度记为f T ,有∑∑==−=r i mj ij T Y Y S 112)(,f T = rm − 1 = n − 1;组内偏差平方和记为S e 或SSE ,其自由度记为f e ,有∑∑==⋅−=r i mj i ij e Y Y S 112)(,f e = r (m − 1) = n − r ;组间偏差平方和记为S A 或SSA ,其自由度记为f A ,有∑∑∑=⋅==⋅−=−=ri i r i m j i A Y Y m Y Y S 12112()(,f A = r − 1.组内偏差平方和反映所有总体内的随机误差,组间偏差平方和反映所有总体的主效应.定理 总偏差平方和S T 可以分解为组内偏差平方和S e 与组间偏差平方和S A 之和,其自由度也可作相应的分解,即S T = S e + S A ,f T = f e + f A ,称之为平方和分解公式. 证:∑∑∑∑==⋅⋅==−+−=−=ri mj i i ij ri mj ij T Y Y Y Y Y Y S 112112()[()(∑∑∑∑∑∑==⋅⋅==⋅==⋅−−+−+−=ri mj i i ij ri mj i ri mj i ij Y Y Y Y Y Y Y Y 11112112))((2)()(A e A e ri i A e ri mj i ij i A e S S S S Y Y S S Y Y Y Y S S +=++=×−++=−−++=∑∑∑=⋅==⋅⋅0]0[(2])()[(2111,且显然有f T = n − 1 = (n − r ) + (r − 1) = f e + f A . 8.1.4检验方法由于组内偏差平方和反映所有总体内的随机误差,组间偏差平方和反映所有总体的主效应,通过比较组内偏差平方和与组间偏差平方和检验因子的显著性.下面将证明在假设所有主效应都等于0成立的条件下,它们的均方和之商服从F 分布.定理 在单因子方差分析模型中,组内偏差平方和S e 与组间偏差平方和S A 满足(1)E(S e ) = (n − r )σ 2,且)(~22r n Se −χσ; (2)∑=+−=ri i A a m r S 122)1()E(σ,且当H 0:a 1 = a 2 = … = a r = 0成立时,)1(~22−r S Aχσ;(3)S e 与S A 相互独立. 证:根据第五章的定理结论知:设X 1 , X 2 , …, X n 相互独立且都服从正态分布N (µ , σ 2),记∑==ni i X n X 11,∑=−=ni i X X S 120)(,则X 与S 0相互独立,且)1(~22−n S χσ.(1)∑∑==⋅−=ri mj i ij e Y Y S 112)(,Y i 1 , Y i 2 , …, Y im 相互独立且都服从正态分布N(µ i , σ 2),∑=⋅=mi ij i Y m Y 11,则∑=⋅−mj i ij Y Y 12)(与⋅i Y 相互独立,且)1(~)(12122−−∑=⋅m Y Y mj i ijχσ,因在不同水平下的样本都相互独立,则∑∑==⋅−ri mj i ij Y Y 112)(与⋅⋅⋅r Y Y Y ,,,21L 也相互独立,且根据独立χ 2变量的可加性知)(~)(121122r rm Y Y r i mj i ij−−∑∑==⋅χσ,故)(~)(1211222r n Y Y S r i mj i ije−−=∑∑==⋅χσσ,即得E(S e ) = (n − r )σ 2;(2)∑∑∑∑∑=⋅=⋅==⋅=⋅−+−+=−+=−=ri i i r i i r i ir i i i r i i A a m m a m a m Y Y m S 112121212(2)()()(εεεεεε,因ε ij (i = 1, 2, …, r , j = 1, 2, …, m ) 相互独立且都服从正态分布N (0, σ 2 ),有∑=⋅=m j ij i m 11εε (i = 1, 2, …, r ) 相互独立且都服从正态分布,0(2m N σ,∑=⋅=ri i r 11εε,则0)E()E()E(=−=−⋅⋅εεεεi i 且)1(~)(2212−−∑=⋅r mri i χσεε,即m r r i i 212)1()(E σεε−=⎥⎦⎤⎢⎣⎡−∑=⋅, 故21211212)1()E(2)(E )E(σεεεε−+=−+⎥⎦⎤⎢⎣⎡−+=∑∑∑∑==⋅=⋅=r a m a m m a m S ri i r i i i r i i ri iA ,当H 0:a 1 = a 2 = … = a r = 0成立时,∑∑=⋅=⋅−=−=ri i r i i A m Y Y m S 1212)()(εε,故)1(~)(22122−−=∑=⋅r mS ri i Aχσεεσ;(3)因∑∑==⋅−=ri mj i ij e Y Y S 112)(与⋅⋅⋅r Y Y Y ,,,21L 相互独立,有S e 与∑=⋅=ri i Y r Y 11相互独立,且∑=⋅−=ri i A Y Y m S 12(,故S e 与S A 相互独立.由于)(~22r n S e −χσ,当H 0:a 1 = a 2 = … = a r = 0成立时,)1(~22−r S A χσ,且S e 与S A 相互独立,则根据F 分布的定义可知:当H 0成立时,有),1(~)()1(22r n r F MS MS f S f S r n S r S F eAe e A A eA−−==−−=σσ.由于∑=+−=ri i A a m r S 122)1()E(σ,则F 越大,即S A 越大时,越有可能发生a i ≠ 0,则检验的拒绝域为右侧.步骤:假设H 0:a 1 = a 2 = … = a r = 0 vs H 1:a 1 , a 2 , …, a r 不全等于0,统计量),1(~r n r F MS MS f S f S F eAe e A A −−==, 显著水平α ,右侧拒绝域W = {f ≥ f 1 − α (r − 1, n − r )},计算f ,并作出判断. 这是F 检验法.通常列成方差分析表: 来源 平方和 自由度 均方和 F 比 因子 S A f A = r − 1 MS A = S A / f A F = MS A / MS e误差 S e f e = n − r MS e = S e / f A总和S Tf T = n − 1为了计算方便,可给出三个偏差平方和的计算公式.对于一组数据X 1 , X 2 , …, X n ,记∑==ni i X n X 11,则有2112212121)(⎟⎟⎠⎞⎜⎜⎝⎛−=−=−∑∑∑∑====n i i ni i n i i n i i X n X X n X X X , 记∑==m j ij i Y T 1,∑∑∑=====r i mj ij r i i Y T T 111,可得2112211112211211211)(T n Y Y n Y Y n Y Y Y S r i mj ij r i m j ij ri mj ij ri mj ij ri mj ij T −=⎟⎟⎠⎞⎜⎜⎝⎛−=−=−=∑∑∑∑∑∑∑∑∑∑==========, 212211121212121111)(T n T m Y n mr Y m m Y r Y m Y Y m S r i i r i m j ij r i m j ij r i i ri i A −=⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛=⎥⎦⎤⎢⎣⎡−=−=∑∑∑∑∑∑∑======⋅=⋅, ∑∑∑===−=−=r i i r i mj ijA T e T m Y S S S 121121.例 在饲料养鸡增肥的研究中,现有三种饲料配方:A 1 , A 2 , A 3 ,为比较三种饲料的效果,特选24只相似的雏鸡随机均分为三组,每组各喂一种饲料,60天后观察它们的重量.实验结果如下表所示: 饲料鸡重/gA 1 1073 1009 1060 1001 1002 1012 1009 1028 A 2 1107 1092 990 1109 1090 1074 1122 1001 A 3 1093 1029 1080 1021 1022 1032 1029 1048 在显著水平α = 0.05下检验这三种饲料对雏鸡增重是否有显著差别. 解:假设H 0:a 1 = a 2 = a 3 = 0 vs H 1:a 1 , a 2 , a 3不全等于0,统计量),1(~r n r F MS MS f S f S F eAe e A A −−==,平方和显著水平α = 0.05,n = 24,r = 3,m = 8,右侧拒绝域W = { f ≥ f 0.95 (2, 21)} = { f ≥ 3.47},试验数据计算表 因子水平试验数据Y ijT i2i T∑=mj ijY 12A 1 1073 1009 1060 1001 10021012100910288194 67141636 8398024 A 2 1107 1092 990 1109 10901074112210018585 73702225 9230355 A 31093 1029 1080 1021 10221032102910488354 69789316 8728984总和 25133 210633177 26357363计算可得0833.96602513324121063317781112212=×−×=−=∑=T n T m S r i i A ,875.282152106331778126357363112112=×−=−=∑∑∑===r i i r i mj ije T m Y S ,方差分析表来源平方和自由度均方和F 比因子 9660.0833 2 4830.0417 3.5948 误差 28215.875 21 1343.6131 总和 37875.958323有F 比f = 3.5948 ∈ W ,故拒绝H 0 ,接受H 1 ,可以认为这三种饲料对雏鸡增重有显著差别, 并且检验的p 值p = P {F ≥ 3.5948} = 1 − 0.9546 = 0.0454 < α = 0.05. 8.1.5参数估计在方差分析问题中,可对总均值µ ,误差的方差σ 2作参数估计.当检验结果为因子不显著时,各水平下指标的总体均值与总体方差都相同,可将所有水平的指标看作一个统一的总体,全部试验数据是来自正态总体Y ~ N (µ , σ 2 ) 的一个容量为n = rm 的样本,因此样本均值nT Y n Y r i m j ij ==∑∑==111,样本方差1)(111122−=−−=∑∑==n S Y Y n S T r i m j ij.这样总均值µ 和误差的方差σ 2的点估计分别为Y =µˆ,22S =∧σ,置信度为1 − α 的置信区间分别是 ])1([2/1nSn t Y −±∈−αµ,])1()1(,)1()1([22/222/122−−−−∈−n S n n S n ααχχσ.当检验结果为因子显著时,还可进一步对主效应a i 作参数估计. 一.点估计由于试验数据Y ij , (i = 1, 2, …, r , j = 1, 2, …, m ) 相互独立且都服从正态分布N (µ + a i , σ 2 ),根据最大似然估计法,得到总均值µ ,误差的方差σ 2及主效应a i 的点估计.似然函数∏∏∏∏====⎪⎭⎪⎫⎪⎩⎪⎨⎧−−−==r i mj i ij r i m j ij r a y y p a a a L 11222112212)(exp π21)(),,,,,(σµσσµL ⎭⎬⎫⎩⎨⎧−−−=∑∑==ri mj iij na y 112222)(21exp )π2(1µσσ, 取对数,得∑∑==−−−−−=r i mj i ija yn n L 11222)(21)ln(2π)2ln(2ln µσσ.令关于µ 的偏导数等于0,有⎟⎟⎠⎞⎜⎜⎝⎛−−=−⋅−−−=∂∂∑∑∑∑∑=====r i i r i mj ijri mj i ij a m n y a y L 11121121)1()(221ln µσµσµ0101112112=⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛−−=∑∑∑∑====µσµσn y n y r i m j ij r i mj ij , 得y y n r i mj ij ==∑∑==111µ,故总均值µ 的最大似然估计为Y =µˆ. 令关于a k 的偏导数等于0,有01)1()(221ln 1212=⎟⎟⎠⎞⎜⎜⎝⎛−−=−⋅−−−=∂∂∑∑==k mj kj mj k kj k ma m y a y a L µσµσ, k = 1, 2, …, r , 得µµ−=−=⋅=∑k mj kj k y y m a 11,故主效应a i 的最大似然估计为Y Y Y a i i i −=−=⋅⋅µˆˆ, i = 1, 2, …, r ,相应,第i 个水平下的总体均值µ i 的最大似然估计为⋅=+=i i i Y a ˆˆˆµµ. 令关于σ 2的偏导数等于0,有0)(2112)(ln 112422=−−+⋅−=∂∂∑∑==r i mj i ija yn L µσσσ,得∑∑==−−=r i m j i ij a y n 1122)(1µσ,故误差的方差σ 2的最大似然估计为nS Y Y n e r i m j i ij M =−=∑∑==⋅∧1122)(1σ.由于E(S e ) = (n − r )σ 2,可知∧2Mσ不是σ 2的无偏估计,修偏得σ 2的无偏估计e eMS rn S =−=∧2σ. 二.置信区间对总均值µ ,误差的方差σ 2及第i 个水平下的总体均值µ i 给出置信区间.第i 个水平下总体均值µ i 的点估计为∑=⋅==mj ij i i Y m Y 11ˆµ,因试验数据Y ij , (i = 1, 2, …, r , j = 1, 2, …, m )相互独立且都服从正态分布N(µ i , σ 2),则有),(~2mN Y i i σµ⋅,即)1,0(~N mY ii σµ−⋅,但σ 未知,用r n S e −=σˆ替换.由于)(~22r n S e −χσ且S e 与⋅i Y 相互独立,则根据χ 2分布的定义可得 )(~ˆ)(2r n t mY r n S m Y i i eii −−=−−⋅⋅σµσσµ,故第i 个水平下总体均值µ i 的置信度为1 − α 的置信区间是]ˆ)([2/1mr n t Y i i σµα−±∈−⋅.总均值µ 的点估计为∑∑====r i mj ij Y n Y 111ˆµ,因数据Y ij , (i = 1, 2, …, r , j = 1, 2, …, m ) 相互独立且都服从正态分布N (µ i , σ 2 ),有Y 服从正态分布,且µµµ====∑∑∑∑∑=====r i i r i mj i r i m j ij n m n Y n Y 111111)E(1)E(,n n n n Y nY ri mj r i mj ij 222112211211)Var(1)Var(σσσ=⋅===∑∑∑∑====, 得,(~2nN Y σµ,即)1,0(~N nY σµ−,但σ 未知,用r n S e −=σˆ替换.由于)(~22r n S e −χσ且S e 与Y 相互独立,则根据t 分布的定义可得 )(~ˆ)(2r n t nY r n S n Y e−−=−−σµσσµ, 故总均值µ 的置信度为1 − α 的置信区间是ˆ)([2/1nr n t Y σµα−±∈−.误差的方差σ 2的点估计为r n S e −=∧2σ,且)(~22r n Se −χσ,故误差的方差σ 2的置信度为1 − α 的置信区间是⎥⎦⎤⎢⎢⎢⎣⎡−−−−=⎥⎦⎤⎢⎣⎡−−∈∧−∧−)()(,)()()(,)(22/222/1222/22/12r n r n r n r n r n S r n S e e ααααχσχσχχσ. 例 由前面的鸡饲料对鸡增重问题的数据给出总均值µ ,误差的方差σ 2及三个水平下总体均值µ1 , µ 2 , µ 3的点估计和置信区间(α = 0.05).解:前面已检验知因子显著,则三个水平下总体均值µ1 , µ 2 , µ 3的点估计为25.102488194ˆ111====⋅m T Y µ, 125.107388585ˆ222====⋅m T Y µ,25.104488354ˆ333====⋅m T Y µ,总均值µ 的点估计为2083.10472425133ˆ====n T Y µ,误差的方差σ 2的点估计为6131.13432==−=∧e eMS rn S σ, 置信度为0.95的置信区间是]2008.1051,2992.997[86131.13430796.225.1024[]ˆ)21([975.011=×±=±∈⋅m t Y σµ,]0758.1100,1742.1046[86131.13430796.2125.1073[]ˆ)21([975.022=×±=±∈⋅m t Y σµ,]2008.1071,2992.1017[]86131.13430796.225.1044[]ˆ)21([975.033=×±=±∈⋅mt Y σµ,]7684.1062,6482.1031[]246131.13430796.22083.1047[]ˆ)21([975.0=×±=±∈nt Y σµ,[]9608.2743,2861.7952829.10875.28215,4789.35875.28215)21(,)21(2025.02975.02=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡∈χχσe e S S . 8.1.6重复数不等的情形如果每个水平下试验次数不全相等,称为重复数不等的情形,其检验方法与在重复数相等的情形下类似,只是在对数据的表述和处理上有几点区别. 一.数据设第i 个水平A i 下的重复数为m i ,所取得的样本为i im i i Y Y Y ,,,21L ,i = 1, 2, …, r .显然重复数总数为n ,即m 1 + m 2 + … + m r = n . 二.总均值总均值µ 是各水平下总体均值µ i 的以频率nm i为权数的加权平均,即 ∑==+++=r i i i r r m n n m n m n m 122111µµµµµL .三.主效应约束条件第i 个水平下主效应a i = µ i − µ ,则满足011=−=∑∑==µµn m a m ri iir i ii .四.模型单因子方差分析在重复数不等的情形下,统计模型为⎪⎪⎩⎪⎪⎨⎧===++=∑=).,0(;0;,,2,1,,,2,1,21σεεµN a m m j r i a Y ij r i i i i ij i ij 相互独立,且都服从L L 检验H 0:a 1 = a 2 = … = a r = 0 vs H 1:a 1 , a 2 , …, a r 不全等于0.五.平方和的计算记∑==im j ij i Y T 1,∑=⋅==im j ij i i i i Y m m T Y 11,∑∑∑=====ri i ri m j ij T Y T i111,∑∑∑=⋅=====ri i i r i m j ij Y m n Y n n T Y i 11111, 则各平方和的计算公式为n T Y Y n Y Y Y S ri m j ijri m j ijri m j ij T iii21122112112)(−=−=−=∑∑∑∑∑∑======, n T m T Y n Y m Y Y m Y Y S ri ii ri i i ri i i ri m j i A i21221212112)()(−=−=−=−=∑∑∑∑∑==⋅=⋅==⋅, ∑∑∑===−=−=ri ii ri m j ijA T e m T Y S S S i12112. 例 某食品公司对一种食品设计了四种新包装,为了考察哪种包装最受顾客欢迎,选了10个地段繁华程度相似、规模相近的商店做试验,其中两种包装各指定两个商店销售,另两种包装各指定三个商店销售.在试验期内各店货架排放的位置、空间都相同,营业员的促销方法也基本相同,经过一段时间,记录其销售量数据,见下表包装类型销售量数据A 1 12 18 A 2 14 12 13 A 3 19 17 21 A 4 24 30在显著水平α = 0.01下检验这四种包装对销售量是否有显著影响. 解:假设H 0:a 1 = a 2 = a 3 = a 4 = 0 vs H 1:a 1 , a 2 , a 3 , a 4不全等于0,统计量),1(~r n r F MS MS f S f S F eAe e A A −−==,显著水平α = 0.01,n = 10,r = 4,右侧拒绝域W = { f ≥ f 0.99 (3, 6)} = { f ≥ 9.78},销售量数据计算表计算可得258180101349812212=×−=−=∑=T n m T S ri ii A ,463498354412112=−=−=∑∑∑===ri i i ri mj ije m T Y S ,方差分析表来源平方和自由度均方和F 比因子 258 3 86 11.2174 误差 46 6 7.6667 总和 3049有F 比f = 11.2174 ∈ W ,故拒绝H 0 ,接受H 1 ,可以认为这四种包装对销售量有显著影响, 并且检验的p 值p = P {F ≥ 11.2174} = 1 − 0.9929 = 0.0071 < α = 0.01. 由于因子显著,则四个水平下总体均值µ1 , µ 2 , µ 3 , µ 4的点估计为15230ˆ1111====⋅m T Y µ, 13339ˆ2222====⋅m T Y µ, 19357ˆ3333====⋅m T Y µ, 27254ˆ4444====⋅m T Y µ, 总均值µ 的点估计为1810180ˆ====n T Y µ, 误差的方差σ 2的点估计为6667.72==−=∧e eMS rn S σ, 置信度为0.99的置信区间是]2587.22,7413.7[]26667.77074.315[]ˆ)6([1995.011=×±=±∈⋅m t Y σµ,]9267.18,0733.7[]36667.77074.313[]ˆ)6([2995.022=×±=±∈⋅m t Y σµ,]9267.24,0733.13[]36667.77074.319[]ˆ)6([3995.033=×±=±∈⋅m t Y σµ,]2587.34,7413.19[]26667.77074.327[]ˆ)6([4995.044=×±=±∈⋅m t Y σµ,]2462.21,7538.14[106667.77074.318[]ˆ)6([995.0=×±=±∈nt Y σµ,[]0775.68,4801.26757.046,5476.1846)6(,)6(2005.02995.02=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡∈χχσeeS S .§8.2 多重比较上一节是将多个总体作为一个整体进行检验.如果检验结果是因子A 显著,则可以认为各水平下的均值µ i 不全相等,但却不能直接说明µ i 中哪些可以认为相等,哪些可以认为不等.这一节是对各个µ i 两两之间进行比较,对µ i − µ j ,也就是效应差a i − a j 作出估计、检验. 8.2.1效应差的置信区间效应差a i − a j = µ i − µ j 的点估计为⋅⋅−j i Y Y .因Y ik ~ N (µ i , σ 2 ), (i = 1, 2, …, r , k = 1, 2, …, m i ),则),(~121i i m k ik i i m N Y m Y iσµ∑=⋅=,,(~121jj m k jkj j m N Ym Y jσµ∑=⋅=,且当i ≠ j 时,⋅i Y 与⋅j Y 相互独立,可得))11(,(~2σµµji j i j i m m N Y Y +−−⋅⋅, 即)1,0(~11)()(N m m Y Y ji j i j i +−−−⋅⋅σµµ,但σ 未知,用r n S e −=σˆ替换.由于)(~22r n S e −χσ且S e 与⋅⋅j i Y Y ,相互独立,则根据t 分布的定义可得 )(~11ˆ)()()(11)()(2r n t m m Y Y r n S m m Y Y ji j i j i ej i j i j i −+−−−=−+−−−⋅⋅⋅⋅σµµσσµµ,故效应差a i − a j = µ i − µ j 的置信度为1 − α 的置信区间是]11ˆ)([2/1ji j i j i m m r n t Y Y +⋅−±−∈−−⋅⋅σµµα. 例 由前面的鸡饲料对鸡增重问题的数据给出各效应差µ i − µ j 的点估计和置信区间(α = 0.05). 解:因m 1 = m 2 = m 3 = 8,n = 24,r = 3,有25.102488194111===⋅m T Y ,125.107388585222===⋅m T Y ,25.104488354333===⋅m T Y , 则各效应差µ i − µ j 的点估计分别为875.48125.107325.10242121−=−=−=−⋅⋅∧Y Y µµ, 2025.104425.10243131−=−=−=−⋅⋅∧Y Y µµ, 875.2825.1044125.10733232=−=−=−⋅⋅∧Y Y µµ;因6553.3621875.28215ˆ==−=r n S e σ,有1142.385.06553.360796.211ˆ)21(975.0=××=+⋅j i m m t σ,则各效应差µ i − µ j 的置信度为0.95的置信区间分别是]7608.10,9892.86[]1142.38875.48[]8181ˆ)21([975.02121−−=±−=+⋅±−∈−⋅⋅σµµt Y Y , ]1142.18,1142.58[]1142.3820[]8181ˆ)21([975.03131−=±−=+⋅±−∈−⋅⋅σµµt Y Y , ]9892.66,2392.9[]1142.38875.28[]8181ˆ)21([975.03232−=±=+⋅±−∈−⋅⋅σµµt Y Y . 例 由前面的食品包装对销售量影响问题的数据给出各效应差µ i − µ j 的点估计和置信区间(α = 0.01). 解:因m 1 = 2,m 2 = 3,m 3 = 3,m 4 = 2,n = 10,r = 4,有15230111===⋅m T Y ,13339222===⋅m T Y ,19357333===⋅m T Y ,27254444===⋅m T Y , 则各效应差µ i − µ j 的点估计分别为213152121=−=−=−⋅⋅∧Y Y µµ,419153131−=−=−=−⋅⋅∧Y Y µµ, 1227154141−=−=−=−⋅⋅∧Y Y µµ,619133232−=−=−=−⋅⋅∧Y Y µµ, 1427134242−=−=−=−⋅⋅∧Y Y µµ,827194343−=−=−=−⋅⋅∧Y Y µµ;因7689.2646ˆ==−=r n S e σ,有2653.107689.27074.3ˆ)6(995.0=×=⋅σt ,则各效应差µ i − µ j 的置信度为0.99的置信区间分别是]3709.11,3709.7[]9129.02653.102[]3121ˆ)6([995.02121−=×±=+⋅±−∈−⋅⋅σµµt Y Y , ]3709.5,3709.13[]9129.02653.104[]3121ˆ)6([995.03131−=×±−=+⋅±−∈−⋅⋅σµµt Y Y , ]7347.1,2653.22[]12653.1012[]2121ˆ)6([995.04141−−=×±−=+⋅±−∈−⋅⋅σµµt Y Y , ]3816.2,3816.14[]8165.02653.106[]3131ˆ)6([995.03232−=×±−=+⋅±−∈−⋅⋅σµµt Y Y , ]6291.4,3709.23[]9129.02653.1014[]2131ˆ)6([995.04242−−=×±−=+⋅±−∈−⋅⋅σµµt Y Y , ]3709.1,3709.17[]9129.02653.108[]2131ˆ)6([995.04343−=×±−=+⋅±−∈−⋅⋅σµµt Y Y .8.2.2 多重比较问题对各个µ i 两两之间进行比较,也就是检验任意两个水平A i 与A j 下的总体均值是否相等,即检验假设j i ij H µµ=:0 vs j i ij H µµ≠:1, i , j = 1, 2, …, r .对于每一个假设ijH 0可以采取上一章两个正态总体的均值比较方法进行检验,但这里需要同时检验2)1(2−=r r C r 个这种假设. 设需要同时检验k 个假设k i H i ,,2,1,0L =,每一个假设的显著水平是α ,即在iH 0成立的条件下,接受i H 0的概率为1 − α ,但在所有k 个假设i H 0都成立的条件下,要同时接受所有假设iH 0的概率就可能远小于1 − α .事实上,此时对每一个假设i H 0,拒绝i H 0的概率为α ,而对所有k 个假设k i H i ,,2,1,0L =,至少拒绝其中一个i H 0的概率最大时可能达到k α ,即同时接受所有假设i H 0的概率就可能只有1 − k α .可见,需要同时检验多个假设时,一般不应逐个检验每一个假设,而是采用多重比较方法同时检验多个假设.多重比较方法,就是针对所有假设,构造一个统一的拒绝域,再逐个进行比较.这里,需要检验假设j i ijH µµ=:0 vs j i ij H µµ≠:1, 1≤ i < j ≤ r , 在ij H 0成立的条件下,⋅i Y 与⋅j Y 不应相差太大.对每一个假设ijH 0,拒绝域可以取为}|{|ij j i ij c Y Y W ≥−=⋅⋅,其中c ij 是常数.对所有的假设ijH 0,统一的拒绝域取为U U rj i ij j i rj i ijc Y YWW ≤<≤⋅⋅≤<≤≥−==11}|{|.分成重复数相等与不等两种场合进行讨论. 8.2.3重复数相等场合的T 法重复数相等时,各水平是平等的,由对称性,可以要求所有的c ij 相等,记为c ,即统一的拒绝域为}min max {}||max {}|{|1111c Y Y c Y Y c Y YW i ri i ri j i rj i rj i j i ≥−=≥−=≥−=⋅≤≤⋅≤≤⋅⋅≤<≤≤<≤⋅⋅U .因Y ij , (i = 1, 2, …, r , j = 1, 2, …, m ) 相互独立且都服从正态分布N (µ i , σ 2),有,(~2mN Y i i σµ⋅.当所有的假设ijH 0都成立时,即µ 1 = µ 2 = … = µ r = µ ,有,(~2mN Y i σµ⋅,则)1,0(~N mY i σµ−⋅.但σ 未知,用r n S e−=σˆ替换.由于)(~22r n S e −χσ且S e 与⋅i Y 相互独立,则根据t 分布的定义可得 )()(~ˆ)(2e i ei f t r n t mY r n S m Y =−−=−−⋅⋅σµσσµ.统一的拒绝域W 的形式可改写为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≥−−−=≥−=⋅≤≤⋅≤≤⋅≤≤⋅≤≤m c m Y m Y c Y Y W i r i i r i i r i i r i σσµσµˆˆmin ˆmax }min max {1111, 其中mY Y mY mY Q i ri i ri i ri i ri σσµσµˆmin max ˆminˆmax1111⋅≤≤⋅≤≤⋅≤≤⋅≤≤−=−−−=是从分布为t ( f e )的总体中抽取容量为r 的样本所得的最大与最小顺序统计量之差(极差),称之为t 化极差统计量,其分布记为q (r , f e ).显然,t 化极差统计量Q 的分布q (r , f e ) 只与水平个数r 以及t 分布的自由度f e 有关,而与参数µ , σ 2及重复数m 无关.分布q (r , f e )的准确形式比较复杂,通常采用随机模拟方法得到其分位数q 1 − α (r , f e ).对于给定的容量r 及自由度f e ,随机模拟方法是(1)随机生成r 个标准正态分布N (0, 1) 随机数x 1 , x 2 , …, x r ,将这r 个随机数按由小到大的顺序排列,得到其最小随机数x (1) 和最大随机数x (r ) ;(2)随机生成1个自由度为f e 的χ 2分布χ 2 ( f e ) 随机数y ; (3)计算er f y x x q )1()(−=;(4)重复(1)至(3)步N 次,得到t 化极差统计量Q 的N 个观测值,只要N 非常大(如10 4或10 5次),就可得q (r , f e )的各种分位数q 1 − α (r , f e )的近似值.当显著水平为α 时,拒绝域{}),(ˆ1ef r q Q m c Q W ασ−≥=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≥=,有m c f r q e σαˆ),(1=−,可得 mf r q c e σαˆ),(1⋅=−,再逐个将||⋅⋅−j i Y Y 与c 比较,得出每一对µ i 与µ j 是否有显著差异的结论.步骤:假设j i ijH µµ=:0 vs j i ij H µµ≠:1, 1≤ i < j ≤ r , 统计量mY Y mY mY Q i ri i ri i ri i ri σσµσµˆmin max ˆminˆmax1111⋅≤≤⋅≤≤⋅≤≤⋅≤≤−=−−−=,显著水平α ,右侧拒绝域{}),(ˆ1e f r q Q m c Q W ασ−≥=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≥=,计算mf r q c e σαˆ),(1⋅=−,逐个将||⋅⋅−j i Y Y 与c 比较,得出结论.例 由前面的鸡饲料对鸡增重影响问题的数据对各因子作多重比较(α = 0.05).解:假设j i ijH µµ=:0 vs j i ij H µµ≠:1, 1≤ i < j ≤ 3, 统计量mY Y mY mY Q i ri i ri i ri i ri σσµσµˆmin max ˆminˆmax1111⋅≤≤⋅≤≤⋅≤≤⋅≤≤−=−−−=,显著水平α = 0.05,r = 3,f e = n − r = 21,右侧拒绝域W = {Q ≥ q 0.95 (3, 21)} = {Q ≥ 3.57},因m = 8,6553.3621875.28215ˆ==−=r n S e σ,有2658.4686553.3657.3=×=c , 由于c Y Y >=−=−⋅⋅875.48|125.107325.1024|||21,故µ 1与µ 2有显著差异;c Y Y <=−=−⋅⋅20|25.104425.1024|||31,故µ 1与µ 3没有显著差异; c Y Y <=−=−⋅⋅875.28|25.1044125.1073|||32,故µ 2与µ 3没有显著差异;8.2.4重复数不等场合的S 法重复数不等时,因)1,0(~11)()(N m m Y Y ji j i j i +−−−⋅⋅σµµ,但σ 未知,用r n S e−=σˆ替换.由于)(~22r n S e −χσ且S e 与⋅⋅j i Y Y ,相互独立,则根据t 分布的定义可得 )()(~11ˆ)()(e ji j i j i f t r n t m m Y Y =−+−−−⋅⋅σµµ,当所有的假设ijH 0都成立时,即µ 1 = µ 2 = … = µ r = µ ,有)(~11ˆe ji j i ij f t m m Y Y T +−=⋅⋅σ,得),1(~11ˆ)(222e j i j i ijij f F m m Y Y T F ⎟⎟⎠⎞⎜⎜⎝⎛+−==⋅⋅σ,从而统一的拒绝域可以取为U U r j i ji j i r j i ji j i c m m Y Y m m c Y Y W ≤<≤⋅⋅≤<≤⋅⋅≥+−=+≥−=11}11||{}11|{| }ˆmax {}ˆ11ˆ)(max {}ˆ11ˆ||max {221222211σσσσσc F c m m Y Y cm m Y Y ij r j i j i j i r j i ji j i r j i ≥=≥⎟⎟⎠⎞⎜⎜⎝⎛+−=≥+−=≤<≤⋅⋅≤<≤⋅⋅≤<≤,可以证明,),1(~1max 1e ij rj i f r F r F −−≤<≤&.当显著水平为α 时,拒绝域{}),1(ˆ)1(122e f r f F r c F W −≥=⎭⎬⎫⎩⎨⎧−≥=−ασ,有221ˆ)1(),1(σα−=−−r c f r f e ,可得),1()1(ˆ1e f r f r c −−=−ασ,因此⎟⎟⎠⎞⎜⎜⎝⎛+−−=+=−j i e ji ij m m f r f r m m c c 11),1()1(ˆ111ασ, 再逐个将||⋅⋅−j i Y Y 与ji ij m m cc 11+=比较,得出每一对µ i 与µ j 是否有显著差异的结论. 步骤:假设j i ijH µµ=:0 vs j i ij H µµ≠:1, 1≤ i < j ≤ r , 统计量),1(~11ˆ)1()(max1max 2211e j i j i rj i ijrj i f r F m m r Y Y r F F −⎟⎟⎠⎞⎜⎜⎝⎛+−−=−=⋅⋅≤<≤≤<≤&σ,显著水平α ,右侧拒绝域{}),1(ˆ)1(122e f r f F r c F W −≥=⎭⎬⎫⎩⎨⎧−≥=−ασ, 计算⎟⎟⎠⎞⎜⎜⎝⎛+−−=+=−j i e ji ij m m f r f r m m cc 11),1()1(ˆ111ασ, 逐个将||⋅⋅−j i Y Y 与c ij 比较,得出结论.例 由前面的食品包装对销售量影响问题的数据对各因子作多重比较(α = 0.01). 解:假设j i ijH µµ=:0 vs j i ij H µµ≠:1, 1≤ i < j ≤ 4, 统计量),1(~11ˆ)1()(max)1(max 224141e j i j i j i ij j i f r F m m r Y Y r F F −⎟⎟⎠⎞⎜⎜⎝⎛+−−=−=⋅⋅≤<≤≤<≤&σ,显著水平α = 0.01,r = 4,f e = n − r = 6,右侧拒绝域W = {F ≥ f 0.99 (3, 6)} = {F ≥ 9.78},因m 1 = m 4 = 2,m 2 = m 3 = 3,7689.2646ˆ==−=r n S e σ,有9981.1478.937689.2=××=c , 则6914.13312134241312=+====cc c c c ,9981.14212114=+=c c ,2459.12313123=+=c c , 由于12212|1315|||c Y Y <=−=−⋅⋅,故µ 1与µ 2没有显著差异;13314|1915|||c Y Y <=−=−⋅⋅,故µ 1与µ 3没有显著差异; 144112|2715|||c Y Y <=−=−⋅⋅,故µ 1与µ 4没有显著差异; 23326|1913|||c Y Y <=−=−⋅⋅,故µ 2与µ 3没有显著差异; 244214|2713|||c Y Y >=−=−⋅⋅,故µ 2与µ 4有显著差异; 34438|2719|||c Y Y <=−=−⋅⋅,故µ 3与µ 4没有显著差异.§8.3 方差齐性检验在单因子方差分析统计模型中,总是假设各个水平下的总体方差都相等,即222221σσσσ====r L ,称之为方差齐性.但方差齐性不一定自然成立,需要对其进行检验,检验的原假设与备择假设为H 0:22221r σσσ===L vs H 1:22221,,,r σσσL 不全相等,称为方差齐性检验.各水平下的总体方差2i σ分别是以该水平下的样本方差2i S 作为点估计,以由22221,,,r S S S L 构成的函数作为检验的统计量.分成重复数相等与不等两种场合进行讨论. 8.3.1重复数相等场合的Hartley 检验法重复数相等时,样本方差⎥⎦⎤⎢⎣⎡−−=⎥⎦⎤⎢⎣⎡−−=−−=∑∑∑=⋅==⋅m T Y m Y m Y m Y Y m S i m j ij i m j ij m j i ij i2122121221111)(11,i = 1, 2, …, r , 各水平是平等的,以r 个水平下样本方差),,2,1(,2r i S i L =的最大值与最小值之比作为检验的统计量H ,即},,,min{},,,max{2222122221r r S S S S S S H L L =.在方差齐性成立的条件下,统计量H 的分布只与水平个数r 及样本方差2i S 的自由度f = m − 1有关,记为H (r , f ).分布H (r , f )的准确形式比较复杂,通常采用随机模拟方法得到其分位数H 1 − α (r , f ).显然有H ≥ 1,且H 的观测值越接近1,方差齐性越应该成立,因此拒绝域取为W = {H ≥ H 1 − α (r , f )}.步骤:假设H 0:22221r σσσ===L vs H 1:22221,,,r σσσL 不全相等,统计量},,,min{},,,max{2222122221rr S S S S S S H L L =,显著水平α ,右侧拒绝域W = {H ≥ H 1 − α (r , f )}, 计算H ,并作出判断. 这称之为Hartley 检验法.例 由前面的鸡饲料对鸡增重影响问题的数据采用Hartley 检验法进行方差齐性检验(α = 0.05).解:假设H 0:232221σσσ== vs H 1:232221,,σσσ不全相等,统计量},,min{},,max{232221232221S S S S S S H =, 显著水平α = 0.05,且r = 3,f = m − 1,右侧拒绝域W = {H ≥ H 0.95 (3, 7)} = {H ≥ 6.94},根据试验数据计算表,可得T 1 = 8194,T 2 = 8585,T 3 = 8354,8398024121=∑=mj j Y ,9230355122=∑=mj jY,8728984123=∑=mj j Y ,则9286.759)881948398024(71221=−=S ,9821.2510885859230355(71222=−=S ,9286.759)883548728984(71223=−=S ,可得W H ∉==3042.39286.7599821.2510,故拒绝H 0 ,接受H 1 ,可以认为三个水平下的总体方差满足方差齐性.8.3.2 重复数不等场合大样本情形的Bartlett 检验法重复数不等时,样本方差⎥⎦⎤⎢⎣⎡−−=⎥⎦⎤⎢⎣⎡−−=−−=∑∑∑=⋅==⋅i i m j ij i i i m j ij i m j i ij i im T Y m Y m Y m Y Y m S i i i 2122121221111)(11,i = 1, 2, …, r , 记i i m j ijm j i ij i m T Y Y Y Q ii21212)(−=−=∑∑==⋅为第i 个水平下的偏差平方和,f i = m i − 1为其自由度,有i i i f Q S =2,且e r i m j i ijr i i S Y YQ i=−=∑∑∑==⋅=1121)(,e ri ir i i f r n r mf =−=−=∑∑==11,则组内偏差均方和∑∑∑=======ri i ei ri ii e ri ie e e e Sf f S f f Q f f S MS 1212111, 即MS e 等于样本方差22221,,,r S S S L 以各自自由度所占比例为权数的加权算术平均,而相应的加权几何平均记为GMS e ,即∏==ri f f i e eiS GMS 12)(.以MS e 与GMS e 之商的一个函数作为检验统计量.可以证明,大样本情形,在方差齐性成立的条件下,)1(~])ln()ln([1ln 212−−==∑=r S f MS f C GMS MS C f B ri i i e e e e e χ&,其中常数⎟⎟⎠⎞⎜⎜⎝⎛−−+=∑=e r i i f f r C 11)1(3111. 由于算术平均必大于等于几何平均,即MS e ≥ GMS e ,当且仅当所有2i S 都相等时等号成立,即B 的观测值越小,方差齐性越应该成立,因此拒绝域取为)}1({21−≥=−r B W αχ.。
概率论与数理统计第八章课后习题及参考答案
概率论与数理统计第八章课后习题及参考答案1.设某产品指标服从正态分布,它的均方差σ已知为150h ,今从一批产品中随机抽查26个,测得指标的平均值为1637h .问在5%的显著性水平,能否认为这批产品的指标为1600h ?解:总体X ~)150,(2μN ,检验假设为0H :1600=μ,1H :1600≠μ.采用U 检验法,选取统计量nX U /00σμ-=,当0H 成立时,U ~)1,0(N ,由已知,有1637=x ,26=n ,05.0=α,查正态分布表得96.1025.0=u ,该检验法的拒绝域为}96.1{>u .将观测值代入检验统计量得2577.142.293726/150********==-=u ,显然96.12577.1<=u ,故接受0H ,即可认为这批产品的指标为1600h .2.正常人的脉搏平均为72次/min ,现某医生从铅中毒患者中抽取10个人,测得其脉搏(单位:次/min)如下:54,67,68,78,70,66,67,70,65,69设脉搏服从正态分布,问在显著性水平05.0=α下,铅中毒患者与正常人的脉搏是否有显著性差异?解:本题是在未知方差2σ的条件下,检验总体均值72=μ.取检验统计量为nS X T /0μ-=,检验假设为0H :720==μμ,1H :72≠μ.当0H 成立时,T ~)1(-n t ,由已知,有4.67=x ,93.5=s ,05.0=α,查t 分布表得262.2)9(025.0=t ,将观测值代入检验统计量得45.288.16.410/93.5724.67/0-=-=-=-=n s x t μ,显然)9(262.2447.2025.0t t =>=,故拒绝0H ,即铅中毒患者与正常人的脉搏有显著性差异.3.测定某溶液中的水分,得到10个测定值,经统计%452.0=x ,22037.0=s ,该溶液中的水分含量X ~),(2σμN ,μ与2σ未知,试问在显著性水平05.0=α下该溶液水分含量均值μ是否超过5%?解:这是在总体方差2σ未知的情况下,关于均值μ的单侧检验.检验假设为0H :%5.0≤μ,1H :%5.0>μ.此假设等价于检验假设0H :%5.0=μ,1H :%5.0>μ.由于2σ未知,取检验统计量为nS X T /0μ-=.当0H 成立时,T ~)1(-n t ,拒绝域为)}1(/{0-≤-n t n s x αμ,将观测值代入检验统计量得709.1)5.052.0(10/0=-=-=ns x t μ,由05.0=α,查t 分布表得833.1)9(05.0=t ,显然)9(833.1709.105.0t t =<=,所以接受0H ,即该溶液水分含量均值μ是否超过5%.4.甲、乙两个品种作物,分别用10块地试种,产量结果97.30=x ,79.21=y ,7.2621=s ,1.1222=s .设甲、乙品种产量分别服从正态分布),(21σμN 和),(22σμN ,试问在01.0=α下,这两种品种的产量是否有显著性差异?解:这是在方差相等但未知的情况下检验两正态总体的均值是否相等的问题.检验假设为0H :21μμ=,1H :21μμ≠.由题可知,22221σσσ==未知,因此取检验统计量nm n m mn S n S m YX T +-+-+--=)2()1()1(2221,当0H 为真时,T ~)2(-+n m t ,该检验法的拒绝域为)}2({2/-+>n m t t α.由题设,10==n m ,97.30=x ,79.21=y ,7.2621=s ,1.1222=s .将其代入检验统计量得n m n m mn S n S m yx t +-+-+--=)2()1()1(222166.4201810101.1297.26979.2197.30=⨯⨯⨯+⨯-=,由01.0=α,查t 分布表得878.2)18()2(005.02/==-+t n m t α.显然)18(878.266.4005.0t t t =>=,因此,拒绝0H ,即这两种品种的产量有显著性差异.5.某纯净水生产厂用自动灌装机装纯净水,该自动灌装机正常罐装量X ~)4.0,18(2N ,现测量某厂9个罐装样品的灌装量(单位:L)如下:0.18,6.17,3.17,2.18,1.18,5.18,9.17,1.18,3.18在显著性水平05.0=α下,试问:(1)该天罐装是否合格?(2)罐装量精度是否在标准范围内?解:(1)检验罐装是否合格,即检验均值是否为18,故提出假设0H :18=μ,1H :18≠μ,由于方差224.0=σ已知,取检验统计量为nX U /00σμ-=,当0H 为真时,U ~)1,0(N ,该检验法的拒绝域为}{2/αu u ≥.由题可知,9=n ,18=x ,将其代入检验统计量得09/4.01818/00=-=-=n x u σμ,由05.0=α,查标准正态分布表得96.1025.0=u ,显然,025.096.10u u =<=,故接受0H ,即该天罐装合格.(2)检验罐装量精度是否在标准范围内,即检验假设0H :224.0≤σ,1H :224.0>σ,此假设等价于0H :224.0=σ,1H :224.0>σ.由于18=μ已知,选取检验统计量为∑=-=n i i X12202)18(1σχ,当0H 为真时,2χ~)(2n χ,该检验法的拒绝域为)}({22n αχχ≥.由已知计算得625.6)18(112202=-=∑=n i i x σχ,查2χ分布表得307.18)10(205.0=χ,由此知)10(307.18625.6205.02χχ=<=,故接受0H ,即罐装量精度在标准范围内.6.某厂生产某型号电池,其寿命长期以来服从方差221600h =σ的正态分布,现从中抽取25只进行测量,得222500h s =,问在显著性水平05.0=α下,这批电池的波动性较以往有无显著变化?解:这是在均值未知的条件下,对正态总体方差的检验问题.检验假设为0H :202σσ=,1H :202σσ≠,其中160020=σ,取检验统计量为222)1(σχS n -=.当0H 为真时,2χ~)(2n χ,对于给定的显著性水平,该检验法的拒绝域为)}1({22/12-≤-n αχχ或)}1({22/2-≥n αχχ.将观测值25002=s 代入检验统计量得5.371600250024)1(222=⨯=-=σχs n .对于05.0=α,查2χ分布表得401.12)24()1(2975.022/1==--χχαn ,364.39)24()1(2025.022/==-χχαn ,由于)24(364.395.37401.12)24(2025.022975.0χχχ=<=<=,故接受0H ,即这批电池的波动性较以往无显著变化.7.某工厂生产一批保险丝,从中任取10根试验熔化时间,得60=x ,8.1202=s ,设熔化时间服从正态分布),(2σμN ,在01.0=α下,试问熔化时间的方差是否大于100?解:本题是在均值未知的条件下,检验2σ是否大于100,是关于2σ的单侧检验问题.检验假设为0H :1002≥σ,1H :1002<σ,此假设等价于0H :1002=σ,1H :1002<σ,这是左侧检验问题,取检验统计量为2022)1(σχS n -=,当0H 为真时,2χ~)(2n χ,该检验法的拒绝域为)}1({212-≤-n αχχ.将10=n ,10020=σ,8.1202=s ,代入上述统计量得87.101008.1209)1(2022=⨯=-=σχs n .对于01.0=α,查2χ分布表得0879.2)9(299.0=χ,显然)9(0879.287.10299.02χχ=>=,接受0H ,即熔化时间的方差大于100.本题如果将检验假设设为0H :1002≤σ,1H :1002>σ,即进行右侧检验,统计量得选取如上,则该检验法的拒绝域为)}1({22-≥n αχχ.对于01.0=α,查2χ分布表得666.21)9(201.0=χ,显然)9(666.2187.10201.02χχ=<=,接受0H ,即熔化时间的方差不大于100.注:若选取的显著性水平为3.0=α,用MATLAB 计算得6564.10)9(23.0=χ,从而有)9(6564.1087.1023.02χχ=<=,则应拒绝原假设,即熔化时间的方差大于100.上述结果说明了在观测值接近临界值时,原假设不同的取法会导致检验结果的不一样,如果用-p 值检验法则可避免上述矛盾.8.设有两个来自不同正态总体的样本,4=m ,5=n ,60.0=x ,25.2=y ,07.1521=s ,81.1022=s .在显著性水平05.0=α下,试检验两个样本是否来自相同方差的总体?解:记两正态总体为),(211σμN 和),(222σμN ,其中1μ和2μ未知.检验假设为0H :2221σσ=,1H :2221σσ≠.取检验统计量为2221S S F =,当0H 为真时,F ~)1,1(--n m F ,该检验法的拒绝域为)}1,1({2/1--≤-n m F F α或)}1,1({2/--≥n m F F α.由题可知,05.0=α,4=m ,5=n ,将观测值代入检验统计量得39.181.1007.152221===s s F ,查F 分布表得98.9)4,3()1,1(025.02/1==---F n m F α,066.010.151)3,4(1)4,3()1,1(025.0975.02/====--F F n m F α.由此知)4,3(98.939.1066.0)4,3(025.0975.0F F =<<=,观测值没有落入拒绝域内,接受0H ,即两个样本来自相同方差的总体.9.某厂的生产管理员认为该厂第一道工序加工完的产品送到第二道工序进行加工之前的平均等待时间超过90min .现对100件产品的随机抽样结果的平均等待时间为96min ,样本标准差为30min .问抽样的结果是否支持该管理员的看法?(05.0=α).解:这是非正态总体均值的检验问题,用X 表示第一道工序加工完的产品送到第二道工序进行加工之前的等待时间,设其均值为μ,依题意,检验假设为0H :90≤μ,1H :90>μ.由于100=n 为大样本,故用U 检验法.总体标准差σ未知,用样本标准差S 代替.取检验统计量为100/90S X U -=,当0H 为真时,近似地有U ~)1,0(N ,该检验法的拒绝域为}{αu u >.由题可知,96=x ,30=s ,100=n .对于05.0=α,查标准正态分布表得645.105.0==u u α.将观测值代入检验统计量得2100/309096100/90=-=-=s x u ,显然,05.0645.12u u =>=,故拒绝0H ,即平均等待时间超过90分钟,也即支持该管理员的看法.10.一位中学校长在报纸上看到这样的报道:“这一城市的初中学生平均每周看8h 电视.”她认为她所领导的学校,学生看电视时间明显小于该数字.为此,她向学校的100名初中学生作了调查,得知平均每周看电视的时间5.6=x h ,样本标准差为2=s h ,问是否可以认为校长的看法是对的?(05.0=α)解:初中生每周看电视的时间不服从正态分布,这是非正态总体均值的假设检验问题.检验假设为0H :8=μ,1H :8<μ.由于100=n 为大样本,故用U 检验法,取检验统计量为nS X U /μ-=,当0H 为真时,近似地有U ~)1,0(N ,该检验法的拒绝域为}{αu u -<.由题可知,5.6=x ,2=s ,100=n .对于05.0=α,查标准正态分布表得645.105.0==u u α.将观测值代入检验算统计量得5.7100/285.6-=-=u ,显然,05.0645.15.7u u -=-<-=,故拒绝0H ,即初中生平均每周看电视的时间少于8小时,这位校长的看法是对的.11.已知某种电子元件的使用寿命X (单位:h)服从指数分布)(λE .抽查100个元件,得样本均值950=x h .能否认为参数001.0=λ?(05.0=α)解:X ~)(λE ,λ1)(=X E ,21)(λ=X D ,由中心极限定理知,当n 充分大时,近似地有n X n X U )1(/1/1-=-=λλλ~)1,0(N .由题可知001.00=λ,检验假设可设为0H :0λλ=,1H :0λλ≠.取检验统计量为n X n X U )1(/1/1000-=-=λλλ,当0H 为真时,近似地有U ~)1,0(N ,该检验法的拒绝域为}{2/αu u ≤.由题知,100=n ,950=x ,05.0=α,查标准正态分布表知96.1025.02/==u u α.将观测值代入检验统计量得5.0-=u ,显然,025.096.15.0u u =<=,故接受0H ,即可以认为参数001.0=λ.12.某地区主管工业的负责人收到一份报告,该报告中说他主管的工厂中执行环境保护条例的厂家不足60%,这位负责人认为应不低于60%,于是他在该地区众多的工厂中随机抽查了60个厂家,结果发现有33家执行了环境保护条例,那么由他本人的调查结果能否证明那份报告中的说法有问题?(05.0=α)解:设执行环境保护条例的厂家所占的比率为p ,则检验假设为0H :6.0≥p ,1H :6.0<p ,上述假设等价于0H :6.0=p ,1H :6.0<p .引入随机变量⎩⎨⎧=.,0,,1条例抽到的厂家为执行环保例抽到的厂家执行环保条X 则X ~),1(p B ,p X E =)(,)1()(p p X D -=,由中心极限定理,当0H 为真时,统计量60/)6.01(6.06.0/)1(000--=--=X n p p p X U 近似地服从)1,0(N .对于显著性水平05.0=α,查标准正态分布表得645.105.0==u u α,由此可知05.0}645.160/)6.01(6.06.0{≈-<--X P .以U 作为检验统计量,该检验法的拒绝域为}645.1{05.0-=-<u u .将55.06033==x 代入上述检验统计量,得791.060/)6.01(6.06.055.0/)1(000-=--=--=n p p p x u ,显然,05.0645.1791.0u u -=->-=,故接受0H ,即执行环保条例的厂家不低于60%,也即由他本人的调查结果证明那份报告中的说法有问题.13.从选取A 中抽取300名选民的选票,从选取B 中抽取200名选民的选票,在这两组选票中,分别有168票和96票支持所选候选人,试在显著性水平05.0=α下,检验两个选区之间对候选人的支持是否存在差异.解:这是检验两个比率是否相等的问题,检验假设为0H :21p p =,1H :21p p ≠.取检验统计量为⎪⎭⎫ ⎝⎛+--=m n p p p pU 11)ˆ1(ˆˆˆ21,其中)(1ˆ2121m n Y Y Y X X X mn p ++++++++= 是21p p p ==的点估计.当0H 为真时,近似地有U ~)1,0(N .由题可知300=n ,168=n μ,200=m ,96=m μ,又56.0300168ˆ1==p ,48.020096ˆ2==p ,528.0500264ˆ==++=m n p m n μμ.由此得统计量的观测值为755.11201472.0528.048.056.0=⨯⨯-=u ,由05.0)96.1(==>αU P ,得拒绝域为}96.1{>u ,因为96.1755.1<=u ,故接受0H ,即两个选区之间对候选人的支持无显著性差异.。
《概率论与数理统计》习题及答案 第八章
《概率论与数理统计》习题及答案第 八 章1.设12,,,n X X X 是从总体X 中抽出的样本,假设X 服从参数为λ的指数分布,λ未知,给定00λ>和显著性水平(01)αα<<,试求假设00:H λλ≥的2χ检验统计量及否定域. 解 00:H λλ≥选统计量 200122nii XnX χλλ===∑记212nii Xχλ==∑则22~(2)n χχ,对于给定的显著性水平α,查2χ分布表求出临界值2(2)n αχ,使22((2))P n αχχα≥=因 22χχ>,所以2222((2))((2))n n ααχχχχ≥⊃≥,从而 2222{(2)}{(2)}P n P n αααχχχχ=≥≥≥ 可见00:H λλ≥的否定域为22(2)n αχχ≥.2.某种零件的尺寸方差为21.21σ=,对一批这类零件检查6件得尺寸数据(毫米):32.56, 29.66, 31.64, 30.00, 21.87, 31.03。
设零件尺寸服从正态分布,问这批零件的平均尺寸能否认为是32.50毫米(0.05α=).解 问题是在2σ已知的条件下检验假设0:32.50H μ= 0H 的否定域为/2||u u α≥ 其中29.4632.502.45 6.771.1X u -==⨯=-0.0251.96u =,因|| 6.77 1.96u =>,所以否定0H ,即不能认为平均尺寸是32.5毫米。
3.设某产品的指标服从正态分布,它的标准差为100σ=,今抽了一个容量为26的样本,计算平均值1580,问在显著性水平0.05α=下,能否认为这批产品的指标的期望值μ不低于1600。
解 问题是在2σ已知的条件下检验假设0:1600H μ≥0H 的否定域为/2u u α<-,其中 158016005.1 1.02100X u -==⨯=-.0.051.64u -=-.因为0.051.02 1.64u u =->-=-,所以接受0H ,即可以认为这批产品的指标的期望值μ不低于1600.4.一种元件,要求其使用寿命不低于1000小时,现在从这批元件中任取25件,测得其寿命平均值为950小时,已知该元件寿命服从标准差为100σ=小时的正态分布,问这批元件是否合格?(0.05α=)解 设元件寿命为X ,则2~(,100)X N μ,问题是检验假设0:1000H μ≥. 0H 的否定域为0.05u u ≤-,其中95010005 2.5100X u -==⨯=-0.05 1.64u = 因为0.052.5 1.64u u =-<-= 所以否定0H ,即元件不合格.5.某批矿砂的5个样品中镍含量经测定为(%)X : 3.25,3.27,3.24,3.26,3.24设测定值服从正态分布,问能否认为这批矿砂的镍含量为3.25(0.01)α=?解 问题是在2σ未知的条件下检验假设0: 3.25H μ=0H 的否定域为 /2||(4)t t α>522113.252,(5)0.00017,0.0134i i X S X X S ===-⨯==∑0.005(4) 4.6041t =3.252 3.252.240.3450.013X t -==⨯=因为0.005||0.345 4.6041(4)t t =<=所以接受0H ,即可以认为这批矿砂的镍含量为3.25.6.糖厂用自动打包机打包,每包标准重量为100公斤,每天开工后要检验一次打包机工作是否正常,某日开工后测得9包重量(单位:公斤)如下: 99.3,98.7,100.5,101.2,98.3,99.7,99.5,102.1,100.5 问该日打包机工作是否正常(0.05α=;已知包重服从正态分布)?解 99.98X =,92211(()) 1.478i i S X X ==-=∑, 1.21S =,问题是检验假设0:100H μ=0H 的否定域为/2||(8)t t α≥. 其中99.9810030.051.21X t -==⨯=-0.025(8) 2.306t =因为0.025||0.05 2.306(8)t t =<= 所以接受0H ,即该日打包机工作正常.7.按照规定,每100克罐头番茄汁中,维生素C 的含量不得少于21毫克,现从某厂生产的一批罐头中抽取17个,测得维生素C 的含量(单位:毫克)如下 22,21,20,23,21,19,15,13,16, 23,17,20,29,18,22,16,25.已知维生素C 的含量服从正态分布,试检验这批罐头的维生素含量是否合格。
概率论与数理统计练习册 参考答案
概率论与数理统计练习册 参考答案第1章 概率论的基本概念 基础练习 1.11、C2、C3、D4、A B C ++5、13{|02}42x x x ≤<≤<或,{}12/1|<<x x ,Ω6、{3},{1,2,4,5,6,7,8,9,10},{1,2,6,7,8,9,10},{1,2,3,6,7,8,9,10}7、(1) Ω={正,正,正,正,正,次},A ={次,正}(2)Ω={正正,正反,反正,反反},A ={正正,反反},B={正正,正反}(3) 22{(,)|1}x y x y Ω=+≤,22{(,)|10}A x y x y x =+<<且 (4)Ω={白,白,黑,黑,黑,红,红,红,红},A={白},B={黑} 8、(1)123A A A (2)123123123A A A A A A A A A ++ (3)123A A A ++ (4)123123123123A A A A A A A A A A A A +++ (5)123123A A A A A A +9、(1)不正确 (2)不正确 (3)不正确 (4)正确 (5) 正确 (6)正确(7)正确 (8)正确10、(1)原式=()()()A B AB A B AB A B A B B -==+=U U U (2)原式=()()A A B B A B A AB BA BB A +++=+++= (3)原式=()AB AB =∅11、证明:左边=()AAB B A A B B AB B A B +=++=+=+=右边 1.21、C2、B3、B4、0.85、0.256、0.37、2226C C 8、0.081 9、2628C C10、3()()()()()()()()4P A B C P A P B P C P AB P BC P AC P ABC ++=++---+=11、解:设,,A B C 分别表示“100人中数学,物理,化学不及格的人数” 则{10},{9},{8}A B C ===,{5},{4},{4},{2}AB AC BC ABC ====100()84ABC A B C =-++=12、解:设A 表示“抽取3个球中至少有2个白球”21343437()C C C P A C +=13、解:(1)设A 表示“10件全是合格品”,则109510100()C P A C = (2) 设B 表示“10件中恰有2件次品”,则8295510100()C C P B C = 14、解:(1)设A 表示“五人生日都在星期日”,51()7P A =(2)设B 表示“五人生日都不在星期日”, 556()7P B = (3)设C 表示“五人生日不都在星期日”,55516()177P C =-- 15、解:{(,)|01,01}x y x y Ω=≤≤≤≤设A 表示“两人能会到面”,则1{(,)|}3A x y x y =-≤, 所以5()9P A =1.31、0.8,0.252、0.63、0.074、23 5、0.56、注:加入条件()0.4P B =解:()()0.1P AB P A ==,()()0.4P A B P B +==()()0.9P A B P AB +==,()(|)0.25()P AB P A B P B ==7、解:设A 表示"13张牌中有5张黑桃,3张红心,3张方块,2张梅花”则5332131313131352()C C C C P A C =,8、解:设123,,A A A 分别表示“零件由甲,乙,丙厂生产”,B 表示“零件时次品”则112233()()(|)()(|)()(|)P B P A P B A P A P B A P A P B A =++0.20.050.40.040.40.030.036=⋅+⋅+⋅=9、解:设123,,A A A 分别表示“甲,乙,丙炮射中敌机”, 123,,B B B分别表示“飞机中一门,二门,三门炮”,C 表示“飞机坠毁”。
概率论与数理统计第8章假设检验习题及答案
62第8章 假设检验一、填空题1、 对正态总体的数学期望m 进行假设检验,如果在显著性水平0.05下,接受假设00:m m =H ,那么在显著性水平0.01下,必然接受0H 。
2、在对总体参数的假设检验中,若给定显著性水平为a ,则犯第一类错误的概率是a 。
3、设总体),(N ~X 2s m ,样本n 21X ,X ,X ,2s未知,则00:H m =m ,01:H m <m 的拒绝域为 )}1(/{0--<-n t nS X a m ,其中显著性水平为a 。
4、设n 21X ,X ,X 是来自正态总体),(N 2s m 的简单随机样本,其中2,sm 未知,记å==n1i i X n 1X ,则假设0:H 0=m 的t 检验使用统计量=T Qn n X )1(-.二、计算题1、某食品厂用自动装罐机装罐头食品,规定标准重量为250克,标准差不超过3克时机器工作 为正常,每天定时检验机器情况,现抽取16罐,测得平均重量252=X 克,样本标准差4=S 克,假定罐头重量服从正态分布,试问该机器工作是否正常?解:设重量),(~2s m N X05.016==a n 4252==S X(1)检验假设250:0=m H 250:1¹m H , 因为2s 未知,在0H 成立下,)15(~/250t nS X T -=拒绝域为)}15(|{|025.0tT >,查表得1315.2)5(025.0=¹t由样本值算得1315.22<=T ,故接受0H (2)检验假设9:20=s H9:201>s H因为m 未知,选统计量 222)1(s S n x -=在0H 成立条件下,2x 服从)15(2x 分布,拒绝域为)}15({205.02x x >,查表得996.24)15(205.0=x ,现算得966.24667.26916152>=´=x 拒绝0H ,综合(1)和(2)得,以为机器工作不正常2、一种电子元件,要求其使用寿命不得低于1000小时,现在从一批这种元件中随机抽取25 件,测得其寿命平均值为950小时,已知该种元件寿命服从标准差100=s 小时正态分布, 试在显著性水平0.05下确定这批产品是否合格. 解:设元件寿命),(~2s m N X ,2s 已知10002=s,05.0,950,25===a X n检验假设1000:0=m H1000:1<m H在2s 已知条件下,设统计量)1,0(~/1000N nX s m -=拒绝域为}{05.0mm<,查表得645.195.005.0-=-=m m而645.15.2205025/1001000950-<-=-=-=m拒绝假设0H 选择备择假设1H ,所以以为这批产品不合格.3. 对 显 著 水 平 a , 检 验假 设 H 0 ; m = m 0, H 1 ; m ¹ m 0, 问当 m 0, m , a 一定 时 , 增大样本量 n 必 能 使 犯 第 二 类 错 误 概 率 b减 少 对 吗 ?并 说 明 理 由 。
概率论习题答案第8章答案
=
(n −1)s 2
σ
2 0
(其中σ 0
= 0.04% ),拒绝域为
{χ 2
≤
χ2 1−α
2
(n
−1)} ∪{χ 2
≥
χα2 (n 2
− 1)}
查表得
χ
2 0.025
(9)
= 19.023,
χ
2 0.975
(9)
=
2.7 ,算得 χ 2
=
7.701 ,它没有落在拒绝域中,故接受
原假设 H 0 .
5.本题是在显著性水平α = 0.05 下检验假设:
计算结果列表如下
i
vi
pi
np i
vi − npˆ i
(vi − npˆ i )2 / npˆ i
1
9
1/6
10.5
-1.5
0.2143
2
10
1/6
10.5
-0.5
0.02381
3
11
1/6
10.5
0.5
0.02381
4
8
1/6
10.5
-2.5
0.5952
5
13
1/6
10.5
2.5
0.5952
6
12
⎭
由于 n1, n2 很大,故有 t0.025 (218) ≈ z0.025 = 1.96 将 x = 2805, y = 2680, 以上数据代入上式
计算可得 | t |= 8.206 > 1.96 ,故拒绝原假设 H 0 ,可以认为两个总体的平均值有显著差异,即
两种枪弹在速度方面有显著差异. 综上所述,两种枪弹在速度方面有显著差异但在均匀性方面没有显著差异.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解: P 0.95 0.59
20. 设元件 E1 , E2 , E3 , E4 , E5 , E6 停止工作的概率均为0.3,且 各元件停止工作与否是相互独立的,求系统S停止工作的概率。 解: P (系统S停止工作)
E1
3
E2
E4
P ( 3条支路均停止工作) P (支路1停止工作)
解:P (100小时内系统失效)
1 P (100小时内系统正常) 1 P (100小时内雷达正常) P (100小时内计算机正常) 1 0.9(1 0.12) 20.8%
P ( AB ) 0.28 ,求: 13. 设 P ( A) P ( B ) 0.4 ,
24. 播种时用的一等小麦种子中,混有2%的二等种子、1.5%的 三等种子、1%的四等种子,用一二三四等种子长出的麦穗含有 50颗以上的麦粒的概率分别是0.5、0.15、0.1、0.05,求这批种
子结穗含有50颗麦粒以上的概率。
解:令 A1 , A2 , A3 , A4 分别表示一二三四等种子,B 表示结穗含 有50颗麦粒以上,根据全概率公式:
P( AB ) P( A B) 1 P( A B) 1 p q r
12. 一个火力控制系统,包括一个雷达和一个计算机,如果这两 样中有一个操作失效,该控制系统便失灵。设雷达在100小时内 操作正常的概率为0.9,而计算机在操作100小时内失效的概率 为0.12,试求在100小时内控制系统失灵的概率。
14. 设事件 A,B,C 满足 P ( A) P ( B) P (C ) 1 4 ,
P ( AB ) P (CB ) 0 , P ( AC ) 1 8 , 求事件A,B,C至少有一
个发生的概率。
解: P ( A, B , C至少一个发生 )
1 P( A B C ) 1 P( A B C ) P( A B C ) P ( A) P ( B ) P (C ) P ( AC ) 13 1 4 8 0.625
P (这批种子结穗含有 50颗麦粒以上) P ( B) P ( Ai ) P ( B | Ai )
i 1 4
(1 0.02 0.015 0.01) 0.5 0.02 0.15 0.015 0.1 0.01 0.05 0.4825
24. 三架飞机中有一架主机和两架僚机,被派出轰炸敌人阵地, 飞机缺少无线电导航设备时就达不到目的地,这种设备装置在 主机上。飞机到达目的地后,各机独立进行轰炸,每一架击中
目标的概率为0.4,在到达目的地之前,飞机需通过敌军高射炮
阵地,每机被击落的概率为0.2 。求敌军阵地被击中的概率。
解: P ( 敌军阵地被击中 )
1 - P ( 敌军阵地没有被击中 )
分析得下图:
敌 军 阵 地 没 有 被 击 中
主机被高 射炮击落
P 0.2
只有主机到达目 的地,没有击中 目标 主机和僚机1到 达目的,都没有 击中目标 主机和僚机2到 达目的,都没有 击中目标 主机和两架僚机 到达目的地,都 没有击中目标。
AC B ( S A C )
(2)( A B) ( A B )
解:原式 AA AB AB BB
A AB AB A AB A
(3)( A B) ( A B ) ( A B) 解:原式 A ( A B )
P
C
3 60
38.1%
9. 设有0,1,…,9十个数字,若在此十个数字中有放回陆续抽取5 个,每次抽到任意数字的概率都是相同的,问抽到5个不同的数 字的概率是多少? 解:抽取结果的可能组合为 10×10×10×10×10 ,抽取到5个 5 不同数字的可能组合为 C10 ,
5 C10 因此 P 5 0.25% 10
P (敌军阵地被击中 ) 1 - P (敌军阵地没有被击中 ) 1 0.421952 0.578
26. 设有5个袋子,有两个内装有2个白球1个黑球,一个内装10 个黑球,另外两个内装3个白球1个黑球。现任选一个袋子,由 其中任取1个球,求取得白球的概率。
解:用 Ai 表示选到第 i 个袋子,B 表示取得白球。
解:令 A=(使用到2000小时),B=(使用到3000小时),
则 P ( B | A)
P ( AB ) 0.87 0.9255 P ( A) 0.94
18. 五管收音机,每只电子管的寿命达到2000小时的概率为0.9,
问收音机的寿命达到2000小时的概率为多少。(假设只要有一
只电子管烧坏收音机就不能用,且每只电子管的寿命都是彼此 独立的。)
P 0.2 0.2 0.6 0.024 P 0.8 0.2 0.6 0.6 0.0576 P 0.8 0.2 0.6 0.6 0.0576 P 0.8 0.8 0.6 0.6 0.6 0.13824
主机没有 被击落
P 0.8
P (敌军阵地没有被击中 ) 0.2 0.8 (0.024 0.0576 0.0576 0.13824 ) 0.421952
AA AB AB
4. 一套书分4册,按任意顺序放到书架上,问各书自左到右恰好 按照1234顺序排列的概率是多少?
解:P 14 1
A4
24
5. 将正立方体的表面涂上颜色,然后锯成27个同样大小的正立 方体,混合后从中任取一块,问取得有两面涂上颜色的小立方 体的概率是多少?
解:有两面涂上颜色的小立方体共有12个
1 C12 P 1 4 0.444 C27 9
6. 号码锁一共三个圆盘,每一圆盘等分为10个带不同数字 0,1,…,9 的扇面。如果每一圆盘相对锁穴为一固定状态时,则 可打开。求在确定了任意的数字所构成的一个组合的情况下, 能打开锁的概率。
解:号码盘所有可能的组合为10×10×10种,其中只有一种可 以开锁, 1
E3
E5
P (支路1停止工作) 1 源自P ( E1正常工作) P ( E2正常工作) 1 0.7 0.7 0.51
E6
P(系统S停止工作) 0.513 0.1327
21. 制造某种零件可以采取两种工艺,(1)三道工序,每道工序
出废品的概率分别为0.2,0.1,0.1;(2)两道工序,每道工序出
P
10
3
0.1%
7. 有50件产品,其中4件不合格,从中随机抽取3件,求至少一 件不合格的概率。 解: P(至少一件不合格) 1 - P(所有都合格)
3 C46 1 3 22.5% C50
8. 一个纸盒中混放着60只外形类似的电阻,其中甲乙两厂生产 的各占一半。现随机地从中抽取3只,求其中恰有一只是甲厂生 产的概率。 2 1 解: C30 C30
由全概率公式,
P ( B ) P ( Ai ) P ( B | Ai )
i 1 2 1 2 1 1 3 1 3 1 0 5 3 5 3 5 5 4 5 4
5
0.567
27. 罐中装有 n 个黑球 r 个红球,随机取出1个球观察颜色,将 球放回后,另外再装入 c 个与取出颜色相同的球,第二次再从 罐中取出1球,求下列诸事件的概率。
解:
P ( A B ) P ( B AB ) 0.4 0.28 P ( A | B) 0.3 P ( B) P ( B) 0.4 P ( AB ) P ( A AB ) 0.4 0.28 P( A | B ) 0.2 P( B ) P( B ) 1 0.4 P ( A B ) P ( B AB ) 0.4 0.28 P( B | A ) 0.2 P( A ) P( A ) 1 0.4
废品的概率分别为0.2,0.15 。问哪种工艺的废品率低?(两种 工艺中,每道工序是彼此独立的。) 解:工艺(1)的废品率为
P1 (废品) 1 P (三道工序均不出废品 ) 1 (1 0.2)(1 0.1)(1 0.1) 0.352
工艺(2)的废品率为
P2 (废品) 1 P (两道工序均不出废品 ) 1 (1 0.2)(1 0.15) 0.32
16. 设有M只晶体管,其中有m只废品,从中任取2只,求所取 晶体管有1只正品的条件下,另1只是废品的概率。 解:令 A=(取到1只正品),B=(取到1只废品)
P ( AB ) P (有一只正品的条件下, 另一只是废品) P ( B | A) P ( A)
1 1 CM C m m 1 1 2 CM C ( M m) m 2m ( M m ) CM m m 2 2 2 2 M ( M 1) m( m 1) M M m 2 m Cm C M - Cm 1 2 2 2 CM
第八章 概率论基本概念 习题
1. 试将下列事件用A、B、C间的运算关系表出。 (1)A 出现,B、C不出现:AB C (2)A 、B、C都出现:ABC (3)A 、B、C至少一个出现:A B C (4)A 、B、C都不出现:A B C
A B C AB C A BC A B C (5)不多于一个事件出现:
2m ( M m ) 2m ( M m ) 2 2 M m ( M m ) ( M m )( M m ) ( M m ) 2m M m 1
17. 某种电子元件,使用到2000小时还能正常工作的概率是 0.94,使用到3000小时还能正常工作的概率是0.87,求已经工 作了2000小时的元件工作到3000小时的概率。
10. 电报的密码由0,1,…,9十个数字可重复任意4个数字组成,试 求密码最右边的一个数是偶数的概率。 解:在密码的所有组合中,出现偶数和奇数的概率是相同且均 等的,都是 50% 。