第1章 概率论的基本概念

合集下载

第一章 概率论的基本概念

第一章  概率论的基本概念
6
§2 样本空间、随机事件 (一)样本空间 随机试验E的所有可能结果的集合称为样本 空间,记为S。组成样本空间的元素 ,即试验 的一个可能出现的结果,记为e,故样本空间 S可记作S={e},样本空间的元素,即E的每一 个结果,称为样本点. 例如上一节试验的样本空间为: S1 ={H,T} H-正面 T-反面; S2 ={0,1,2,3} , i=0,1,2,3 为正面出现的次数; S3 ={HHH ,HHT ,HTH ,THH ,HTT, THT, TTH ,TTT};
24
这个等式也可以由等式 A = B (C∪D)利 用De Morgan对偶律得到.事实上,我们 有

25
例7 设A,B,C,D是四个事件,用A,B,C, D的运算关系表示下列事件。 (1)A1:“A,B,C,D中仅有A发生” (2)A2:“A,B,C,D中恰有一个发生” (3)A3:“A,B,C,D中至少有一个发生” (4)A4:“A,B,C,D中至少有两个发生” (5)A5:“A,B,C,D中至多有一个发生” (6)A6:“A,B,C,D中至多有两个发生” (7)A7:“A,B,C,D都不发生” (8)A8:“A,B,C,D不都发生” (9)A9:“A,B,C,D中至多一个发生,但D 不发生” (10)A10:“A,B,C,D2)事件AB={x|xA或xB}称为事件A与 事件B的和事件. 当且仅当A, B中至少有一个 发生时, 事件AB发生.
A S
类似地,
n
B
称 Ak为n个事件A1 , A2 , , An的和事件;
k 1
称 Ak为可列个事件A1 , A2 ,的和事件.
k 1
17
(3)事件AB={x|xA且xB}称为事件A与 事件B的积事件. 当且仅当A, B同时发生时, 事 件AB发生. AB也记作AB

概率论第一章 概率论的基本概念

概率论第一章  概率论的基本概念

P( A1 A2 An ) = P( A1) P( A2) P( An ).
概率的有限可加性
证明 令 An1 = An2 = = , Ai Aj = , i j, i, j = 1,2,.
由概率的可列可加性得
P(A1
A2
An )
=
P(
Ak
)
=
P( Ak ) =
n
P( Ak ) 0
概率论
第一章 概率论的基本概念
第一节 随机试验 第二节 样本空间、随机事件 第三节 频率与概率 第四节 等可能概型(古典概型) 第五节 条件概率 第六节 独立性
概率论
第一节 随机试验
几个具体试验 随机试验 小结
概率论
上一讲中,我们了解到,随机现象有其偶 然性的一面,也有其必然性的一面,这种必然 性表现在大量重复试验或观察中呈现出的固有 规律性,称为随机现象的统计规律性.而概率 论正是研究随机现象统计规律性的一门学科.
nH
f
22 0.44
n = 500 nH f
251 0.502
15124
123 4 5 6 7
随3 n的增0.6大, 频率25 f 呈现0.5出0 稳定24性9 0.498
0.2 21 0.42 256 0.512
1.0
25 0.50 247 0.494
ห้องสมุดไป่ตู้
0.2
24 0.48 251 0.502
0.4
(3) 若 A1, A2, , Ak 是两两互不相容的事件,则 f ( A1 A2 Ak ) = fn( A1) fn( A2 ) fn( Ak ).
实例 将一枚硬币抛掷 5 次、50 次、500 次, 各做
7 遍, 观察正面出现的次数及频率.

概率论基础知识

概率论基础知识
几何性质:介于曲线y=f(x)与Ox轴之间的面积等于1。X落在区间(x1,x2]的概率P{x1<X≤x2}等于区间(x1,x2]上曲线y=f(x)之下的曲边梯形的面积。
对于连续型随机变量来说,它取任一指定实数值a的概率均为0,即P{X=a}=0。事实上0≤P{X=a}≤P{a-△x<X≤a}=F(a)-F(a-△x).P{a<X≤b}=P{a≤X≤b}=P{a<X<b}.
定理二:若事件A与B相互独立,则下列各对事件也相互独立:
多个事件相互独立:一般,设A1,A2,…,An是n(n≥2)个事件,如果对于其中任意2个,任意3个,…,任意n个事件的积事件的概率,都等于各事件概率之积,则称事件A1,A2,…,An相互独立。
推论:①若事件A1,A2,…,An(n≥2)相互独立,则其中任意k(2≤k≤n)个事件也是相互独立的。
第一章 概率论的基本概念
一、事件运算常用定律(设A,B,C为事件):
二、频率与概率
1.概率的公理化定义:
①非负性:对于每一个事件A,有P加性:设A1,A2,…是两两互不相容的事件,即对于AiAj=∅,i≠j,i,j=1,2,…,有P(A1∪A2∪…)=P(A1)+P(A2)+….
P{X>s+t|X>s}=P{X>t}
3.正态分布(高斯分布)[X~N(μ,σ2)]:
正态分布性质:
①曲线关于x=μ对称,这表明对于任意h>0有P{μ-h<X≤μ}=P{μ<X≤μ+h }.
②当x=μ时取到最大值 ,x离μ越远,f(x)的值越小。
③在x=μ±σ处曲线有拐点。曲线以Ox轴为渐近线。
标准正态分布:μ=0,σ=1.其概率密度和分布函数分别用φ(x),Φ(x)表示,即有:
②若n个事件A1,A2,…,An(n≥2)相互独立,则将A1,A2,…,An中任意多个事件换成它们各自的对立事件,所得的n个事件仍相互独立。

概率论与数理统计复习笔记

概率论与数理统计复习笔记

概率论与数理统计复习第一章概率论的基本概念一.基本概念随机试验E:1可以在相同的条件下重复地进行;2每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;3进行一次试验之前不能确定哪一个结果会出现.样本空间S: E的所有可能结果组成的集合. 样本点基本事件:E的每个结果.随机事件事件:样本空间S的子集.必然事件S:每次试验中一定发生的事件. 不可能事件:每次试验中一定不会发生的事件.二. 事件间的关系和运算事件B包含事件A 事件A发生必然导致事件B发生.∪B和事件事件A与B至少有一个发生.3. A∩B=AB积事件事件A与B同时发生.4. A-B 差事件事件A 发生而B 不发生.5. AB= A 与B 互不相容或互斥事件A 与B 不能同时发生.6. AB=且A ∪B=S A 与B 互为逆事件或对立事件表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德摩根律 B A B A = B A B A =三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为PA,称为事件A 的概率.1非负性 PA ≥0 ; 2归一性或规范性 PS=1 ;3可列可加性 对于两两互不相容的事件A 1,A 2,…A i A j =φ, i ≠j, i,j=1,2,…,PA 1∪A 2∪…=P A 1+PA 2+…2.性质1 P = 0 , 注意: A 为不可能事件2有限可加性对于n个两两互不相容的事件A1,A2,…,An,PA1∪A2∪…∪An=PA1+PA2+…+PAn有限可加性与可列可加性合称加法定理3若A B, 则PA≤PB, PB-A=PB-PA .4对于任一事件A, PA≤1, PA=1-PA .5广义加法定理对于任意二事件A,B ,PA∪B=PA+PB-PAB .对于任意n个事件A1,A2,…,An…+-1n-1PA1A2…An四.等可能古典概型1.定义如果试验E满足:1样本空间的元素只有有限个,即S={e1,e2,…,en};2每一个基本事件的概率相等,即Pe1=Pe2=…= Pen.则称试验E所对应的概率模型为等可能古典概型.2.计算公式 PA=k / n 其中k是A中包含的基本事件数, n是S中包含的基本事件总数.五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率PB|A=PAB / PA PA>0.2.乘法定理 PAB=PA P B|A PA>0; PAB=PB P A|B PB>0.PA 1A 2…A n =PA 1PA 2|A 1PA 3|A 1A 2…PA n |A 1A 2…A n-1 n ≥2, PA 1A 2…A n-1 > 03. B 1,B 2,…,B n 是样本空间S 的一个划分B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S ,则当PB i >0时,有全概率公式 PA=()()i ni i B A P B P ∑=1当PA>0, PB i>0时,有贝叶斯公式P B i|A=()()()()()()∑==ni i i i i i B A P B P B A P B P A P AB P 1. 六.事件的独立性1.两个事件A,B,满足PAB = PA PB 时,称A,B 为相互独立的事件.1两个事件A,B 相互独立 PB= P B|A .2若A 与B,A 与B ,A 与B, ,A 与B 中有一对相互独立,则另外三对也相互独立.2.三个事件A,B,C 满足PAB =PA PB, PAC= PA PC, PBC= PB PC,称A,B,C 三事件两两相互独立. 若再满足PABC =PA PB PC,则称A,B,C 三事件相互独立.个事件A 1,A 2,…,A n ,如果对任意k 1<k ≤n,任意1≤i 1<i 2<…<i k ≤n.有()()()()kki i i i i i A P A P A P A A A P 2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X e 称为随机变量.2.随机变量X 的分布函数Fx=P{X ≤x} , x 是任意实数. 其性质为:10≤Fx≤1 ,F -∞=0,F∞=1. 2Fx 单调不减,即若x 1<x 2 ,则 Fx 1≤Fx 2.3Fx 右连续,即Fx+0=Fx. 4P{x 1<X≤x 2}=Fx 2-Fx 1.二.离散型随机变量 只能取有限个或可列无限多个值的随机变量1.离散型随机变量的分布律 P{X= x k }= p k k=1,2,… 也可以列表表示. 其性质为:1非负性 0≤P k ≤1 ; 2归一性11=∑∞=k k p .2.离散型随机变量的分布函数 Fx=∑≤xX k k P 为阶梯函数,它在x=x kk=1,2,…处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布1X~0-1分布 P{X=1}= p ,P{X=0}=1–p 0<p<1 .2X~bn,p 参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1k=0,1,2,…,n 0<p<1 3X~参数为的泊松分布 P{X=k}=λλ-e k k !k=0,1,2,… >0 三.连续型随机变量1.定义 如果随机变量X 的分布函数Fx 可以表示成某一非负函数fx 的积分Fx=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f x 称为X 的概率密度函数.2.概率密度的性质1非负性 fx ≥0 ; 2归一性 ⎰∞∞-dx x f )(=1 ;3 P{x 1<X ≤x 2}=⎰21)(xx dx x f ; 4若f x 在点x 处连续,则f x=F/x .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 .3.三种重要的连续型随机变量的分布1X ~U a,b 区间a,b 上的均匀分布⎩⎨⎧=-0)(1a b x f其它b x a << . 2X 服从参数为的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 >0.3X~N ,2参数为,的正态分布222)(21)(σμσπ--=x e x f -<x<, >0.特别, =0, 2=1时,称X 服从标准正态分布,记为X~N 0,1,其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--xt dt e x 2221)(π, -x=1-Φx .若X ~N ,2, 则Z=σμ-X ~N 0,1, P{x 1<X ≤x 2}=Φσμ-2x-Φσμ-1x .若P{Z>z }= P{Z<-z }= P{|Z|>z /2}= ,则点z ,-z , z / 2分别称为标准正态分布的上,下,双侧分位点. 注意:z =1- , z 1- = -z .四.随机变量X 的函数Y= g X 的分布1.离散型随机变量的函数若gx k k=1,2,…的值全不相等,则由上表立得Y=gX 的分布律.若gx k k=1,2,…的值有相等的,则应将相等的值的概率相加,才能得到Y=gX 的分布律.2.连续型随机变量的函数若X 的概率密度为f X x,则求其函数Y=gX 的概率密度f Y y 常用两种方法:1分布函数法 先求Y 的分布函数F Y y=P{Y ≤y}=P{gX ≤y}=()()dx x f ky Xk∑⎰∆其中Δk y 是与gX ≤y 对应的X 的可能值x 所在的区间可能不只一个,然后对y 求导即得f Y y=F Y/y .2公式法 若gx 处处可导,且恒有g /x>0 或g / x<0 ,则Y=g X 是连续型随机变量,其概率密度为()()()()⎩⎨⎧'=yhyhfyf XY其它βα<<y其中hy是gx的反函数 , = min g -,g = max g -,g .如果f x在有限区间a,b以外等于零,则 = min g a,g b = max g a,g b .第三章二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义若X和Y是定义在样本空间S上的两个随机变量,则由它们所组成的向量X,Y称为二维随机向量或二维随机变量.对任意实数x,y,二元函数Fx,y=P{X≤x,Y≤y}称为X,Y的X和Y的联合分布函数.2.分布函数的性质1Fx,y分别关于x和y单调不减.20≤Fx,y≤1 , Fx,- =0, F-,y=0, F-,-=0, F,=1 .3 Fx,y关于每个变量都是右连续的,即 Fx+0,y= Fx,y, Fx,y+0= Fx,y .4对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= Fx 2,y 2- Fx 2,y 1- Fx 1,y 2+ Fx 1,y 1二.二维离散型随机变量及其联合分布律1.定义 若随机变量X,Y 只能取有限对或可列无限多对值x i ,y j i ,j =1,2,… 称X,Y 为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为X,Y 的联合分布律.也可列表表示.2.性质 1非负性 0≤p i j ≤1 .2归一性 ∑∑=i jijp 1 .3. X,Y 的X 和Y 的联合分布函数Fx,y=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f x,y,使对任意的x 和y,有Fx,y=⎰⎰∞-∞-y xdudv v u f ),(则称X,Y 为二维连续型随机变量,称fx,y 为X,Y 的X 和Y 的联合概率密度.2.性质 1非负性 f x,y ≥0 . 2归一性 1),(=⎰⎰∞∞-∞∞-dxdy y x f .3若f x,y 在点x,y 连续,则yx y x F y x f ∂∂∂=),(),(2 4若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. X,Y 关于X 的边缘分布函数 F X x = P{X ≤x , Y<}= F x , .X,Y 关于Y 的边缘分布函数 F Y y = P{X<, Y ≤y}= F ,y2.二维离散型随机变量X,Y关于X 的边缘分布律 P{X= x i }=∑∞=1j ij p = p i · i =1,2,… 归一性 11=∑∞=•i i p .关于Y 的边缘分布律 P{Y= y j }=∑∞=1i ij p = p·jj =1,2,… 归一性11=∑∞=•j j p .3.二维连续型随机变量X,Y关于X 的边缘概率密度f X x=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X关于Y 的边缘概率密度f Y y=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dyy f Y五.相互独立的随机变量1.定义若对一切实数x,y,均有Fx,y= FX x FYy ,则称X和Y相互独立.2.离散型随机变量X和Y相互独立⇔p i j= p i··p·j i ,j =1,2,…对一切x i,y j成立.3.连续型随机变量X和Y相互独立⇔f x,y=f X xf Y y对X,Y所有可能取值x,y都成立.六.条件分布1.二维离散型随机变量的条件分布定义设X,Y是二维离散型随机变量,对于固定的j,若P{Y=yj}>0,则称P{X=xi |Y=yj}为在Y= yj条件下随机变量X的条件分布律.同样,对于固定的i,若P{X=xi}>0,则称P{Y=yj |X=xi}为在X=xi 条件下随机变量Y 的条件分布律.,}{},{jj ijjippyYPyYxXP•=====,}{},{•=====ij iijippxXPyYxXP第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量连续型随机变量分布律P{X=x i }= p i i =1,2,… 概率密度f x数学期望均值EX∑∞=1i i i p x 级数绝对收敛⎰∞∞-dx x xf )(积分绝对收敛方差DX=E{X-EX 2}[]∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=EX 2-EX 2 级数绝对收敛 积分绝对收敛函数数学期望EY=EgXi i i p x g ∑∞=1)(级数绝对收敛 ⎰∞∞-dx x f x g )()(积分绝对收敛标准差X=√DX .二.数学期望与方差的性质1. c 为为任意常数时, Ec = c , EcX = cEX , Dc = 0 , D cX = c 2 DX .,Y为任意随机变量时, E X±Y=EX±EY .3. X与Y相互独立时, EXY=EXEY , DX±Y=DX+DY .4. DX = 0 P{X = C}=1 ,C为常数.三.六种重要分布的数学期望和方差 EX DX~ 0-1分布P{X=1}= p 0<p<1 p p 1- p ~ b n,p 0<p<1 n p n p 1- p ~~ Ua,b a+b/2 b-a 2/12服从参数为的指数分布2~ N ,22四.矩的概念随机变量X的k阶原点矩EX k k=1,2,…随机变量X 的k 阶中心矩E{X-EX k}随机变量X 和Y 的k+l 阶混合矩EX k Y l l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{X-EX k Y-EY l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i i X X n S 12211 样本标准差S样本k 阶矩∑==n i k i k X n A 11 k=1,2,… 样本k 阶中心矩∑-==n i ki k X X n B 1)(1k=1,2,…二.抽样分布 即统计量的分布1.X 的分布 不论总体X 服从什么分布, E X = EX , D X = DX / n .特别,若X~ N ,2 ,则 X ~ N , 2 /n .分布 1定义 若X ~N 0,1,则Y =∑=ni i X 12~ 2n 自由度为n 的2分布.2性质 ①若Y~ 2n,则EY = n , DY = 2n .②若Y 1~ 2n 1 Y 2~ 2n 2 ,则Y 1+Y 2~ 2n 1 + n 2.③若X~ N ,2 , 则22)1(σS n -~ 2n-1,且X 与S 2相互独立.3分位点 若Y~ 2n,0< <1 ,则满足的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为2分布的上、下、双侧分位点.3. t 分布1定义 若X~N 0,1 ,Y~ 2 n,且X,Y 相互独立,则t=nY X~tn 自由度为n 的t 分布. 2性质①n →∞时,t 分布的极限为标准正态分布.②X ~N ,2 时,nS X μ-~ t n-1 . ③两个正态总体相互独立的样本 样本均值 样本方差X~ N 1,12 且12=22=2 X 1 ,X 2 ,…,X n1 X S 12Y~ N 2,22 Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t n 1+n 2-2 , 其中 2)1()1(212222112-+-+-=n n S n S n S w3分位点 若t ~ t n ,0 < <1 , 则满足的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧分位点.注意: t 1- n = - t n.分布 1定义 若U~2n 1, V~ 2n 2, 且U,V 相互独立,则F =21n V n U ~Fn 1,n 2自由度为n 1,n 2的F 分布.2性质条件同3.2③22212221σσS S ~Fn 1-1,n 2-13分位点 若F~ Fn 1,n 2 ,0< <1,则满足的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧分位点. 注意: .).(1),(12211n n F n n F αα=- 第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数1, 2,…, k .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμ 解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111kk k k k μμμθθμμμθθμμμθθ ,以样本矩A l 取代总体矩 ll=1,2,…,k 得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A θθθθθθ,若代入样本值则得到矩估计值.2.最大似然估计法若总体分布形式可以是分布律或概率密度为px, 1, 2,…, k ,称样本X 1 ,X 2 ,…,X n 的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθ 为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21 ,称为参数1, 2,…,k 的最大似然估计值,代入样本得到最大似然估计量.若L 1, 2,…, k 关于1, 2,…, k 可微,则一般可由似然方程组 0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ i =1,2,…,k 求出最大似然估计. 3.估计量的标准(1)无偏性 若E ∧θ=,则估计量∧θ称为参数的无偏估计量.不论总体X 服从什么分布, E X = EX , ES 2=DX, EA k =k =EX k ,即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值EX,方差DX,总体k 阶矩k 的无偏估计,2有效性 若E ∧θ1 =E ∧θ2= , 而D ∧θ1< D ∧θ2, 则称估计量∧θ1比∧θ2有效.3一致性相合性 若n →∞时,θθP →∧,则称估计量∧θ是参数的相合估计量.二.区间估计1.求参数的置信水平为1-的双侧置信区间的步骤1寻找样本函数W=WX 1 ,X 2 ,…,X n ,,其中只有一个待估参数未知,且其分布完全确定.2利用双侧分位点找出W 的区间a,b,使P{a<W <b}=1-.3由不等式a<W<b 解出θθθ<<则区间θθ,为所求.2.单个正态总体待估参数 其它参数 W 及其分布 置信区间2已知 nX σμ-~N 0,1 2/ασz n X ±2未知 nS X μ-~ t n-1 )1((2/-±n t n S X α 2未知22)1(σS n -~ 2n-1 ))1()1(,)1()1((22/1222/2-----n S n n S n ααχχ 3.两个正态总体1均值差 1- 2其它参数 W 及其分布 置信区间已知2221,σσ22212121)(n n Y X σσμμ+--- ~ N0,1 )(2221212n n z Y Xσσα+±-未知22221σσσ==212111)(n n S Y X w +---μμ~tn 1+n 2-2)11)2((21212n n S n n t Y X w+-+±-α 其中S w 等符号的意义见第六章二. 3 2③.2 1, 2未知, W=22212221σσS S ~ Fn 1-1,n 2-1,方差比12/22的置信区间为注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上下限中的下标/2改为,另外的下上限取为- 即可.。

概率论的基本概念

概率论的基本概念
⑴.两件都是正品: ;
⑵.两件都是次品: ;
⑶.一件是正品、另一件是次品: ;
⑷.第二件是次品: 。
6、高射炮向敌机发射三枚炮弹,设每发炮弹击中敌机的概率为 (每发击中与否相互独立),而敌机中一弹时坠落的概率为 ,中两弹时坠落的概率为 ,中三弹时坠落的概率为 。
⑴.求敌机被击落的概率;
⑵.若敌机被击落,求它只中一弹的概率。
解:用 分别表示电话是打给 的, 分别表示 因公外出,则
⑴. ;
⑵. ;
⑶. ;
⑷. ;
⑸. 。
解:用 表示敌机中 弹, ,用 表示敌机被击落,则
, ,故


7、已知男子中有 是色盲患者,女子中有 是色盲患者,现从男女人数相等的人群中随机地选一人,问此人是色盲患者的概率为多少若已知此人是色盲患者,求此人是男性的概率。
解:用 表示所选人为男性, 表示所选人为色盲患者,则
, , ,故


8、甲、乙、丙三人独立地去破译密码,已知甲、乙、丙各自能译出密码的概率分别为 ,问三人中至少有一人能将此密码译出的概率为多少
概率论的基本概念
第一章概率论的基本概念
【内容提要】
一、随机事件及其运算关系
1.随机现象在一定条件下,可能出现不同结果(不可预先确知的)的现象。
2.随机试验在一定条件下,对随机现象进行观测或观察的过程。随机试验具有如下特点:
⑴.可以在相同条件下重复进行;
⑵.每次试验的结果不止一个,并且能事先明确试验的所有可能结果;
⑴.非负性: ,有 ;
⑵.规范性: ;
⑶.可列可加性:对任意可列无穷多个两两互斥的事件 ,有 。
则称 为事件 的概率。事件的概率有如下性质:

第1章 概率论的基本概念

第1章 概率论的基本概念

试验者
德•摩根 蒲 丰 K•皮尔逊 K•皮尔逊 维 尼
n
2048 4040 12000 24000 30000
nH
1061 2048 60199 12012 14994
fn(H)
0.5181 0.5069 0.5016 0.5005 0.4998
nA 频率 f n ( A) 具有如下基本性质: n
统计概率的性质
1. 非负性:对每个事件A有 1 P ( A) 0; 2. 规范性:对必然事件S有 P ( S ) 1;
3. 有限可加性:设A1,A2,…An是两两互不相容事件 则 P( A1 A2 ... An ) P( A1 ) P( A2 ) ... P( An )


交换律 A B B A
A B B A
结合律 ( A B) C A ( B C )
( A B) C A ( B C )
分配律 ( A B) C ( A C ) ( B C )
A ( B C ) ( A B) ( A C )
其结果可能为:
正品、次品。
其结果可能为: 红、黄、绿。
实例6 “出生的婴儿可能是男,也可能是 女”。
实例7 “明天的天气可能是晴 , 也可能是多云 或雨 ”。
在我们所生活的世界上, 充满了不确定性
如何来研究随机现象?
随机现象是通过随机试验来研究的。
问题 什么是随机试验?
1. 试验(Experiment):包括各种各样的科学实 验,也包括对客观事物的“观察”、“测量”等。 2. 随机试验(E,Random experiment):具有以 下三个特征的试验: (1)可以在相同的条件下重复地进行; (2)每次试验的可能结果不止一个,并且能 事先明确试验的所有可能结果; (3)进行一次试验之前不能确定哪一个结果 会出现。

伊藤清概率论第一章

伊藤清概率论第一章

例如,由 R 的全体区间构成的族所生成的完全加法族为 Borel
集合族.再如,端点为有理数的全体区间构成的族也生成同一
个 Borel 集合族.R 上的完全加法族有很多种,但是 Borel 集合
族是最有用的一个.
将空间 Ω 与其子集构成的一个完全加法族 F 结合来考虑
时,所产生的序偶 (Ω, F ) 称为可测空间. 然而,当 Ω = R 时,通
4 第 1 章 概率论的基本概念
的测度 P ,称为 (Ω, F ) 上的概率测度. 对于 E ∈ F ,称 P (E) 为 E 的概率或 E 的P -测度.
将 Ω, F , P 一起考虑时,所产生的序偶 (Ω, F , P ) 称为概 率空间.
§2 概率空间的实际意义
针对想理解后面出现的定理含义的读者,这里有必要对前 一节定义的抽象概率空间在实际随机现象研究中的应用加以说 明,仅对推理感兴趣的读者另当别论.
k=1
3◦ 属于 F 的集合的余集也属于 F ,即若 E ∈ F ,则
2 第 1 章 概率论的基本概念
Ω−E ∈ F.
利用这三个条件,我们可以推出下列结论.
4◦ 空集 (今后用 ∅ 表示) 也属于 F .事实上,在 3◦ 中取
E = Ω 即可.

5◦ 如果 E1, E2, E3, · · · ∈ F , 则 Ek ∈ F .
这个等式称为有限可加性. 以此类推,仅依靠形式的推理是不能导出完全可加性的. 将
概率的完全可加性作为基础来假设,是数学上的理想化模式. 你 渐渐地便能理解这种理想化不是与实际相悖的,反而是与其一 致的.
综合以上三个步骤的分析便获得概率空间 (Ω, F , P ).
§3 概率测度的简单性质

第1章 概率论的基本概念.

第1章 概率论的基本概念.
, B不可能同时发生 概率论表述:事件 A .. A不能都不发生, 概率论表述:事件 A 不发生 . 事件 A 和 概率论表述:事件 A 发生,而事件 B 发生 . , , 概率论表述:事件 概率论表述:事件 概率论表述:事件 A A A , B B B 相等意味着它们是同一个集合 中至少有一个发生 同时发生 . . 概率论表述:事件A发生必然导致事件B发生. 也不能都发生,只能恰好发生其中一个.
注意事项
可能结果——样本点——基本事件
(1) (2)在概率论中常用一个长方形来 (3) 由中的单个元素组成的子集称为基本事件,常用表示. 判定一个事件是否发生的标准是看它所包含的样本点是否 表示概率空间,用椭圆或者其它的 A 出现 ① .事件发生当且仅当该事件包含的某个样本点出现 样本空间的最大子集称为必然事件,常用 表示; . ● 1 几何图形来表示事件.这类图形被称 ● ② 样本空间的最小子集称为不可能事件,常用 表示 .2 为维恩(Venn)图,又叫文氏图.
例1.1.2 一天内进入某商场的人数的样本空间为 ={0,1, 2, …}. 例1.1.3 电视机寿命的样本空间为 ={t|t0} . 在以后的数学处理上,我们往往把有限个或可列个 样本点的情况归为一类,称为离散样本空间;而将不可 列无限个样本点的情况归为另一类,称为连续样本空间.
随机事件 (random event) 随机试验的某些子集称为随机事件, 简称事件.它在随机试验中可能出现也可能不出现,而在大量重复试 验中具有某种规律性. 常用符号 (1)大写的英文字母:A,B,C. (2)大写的英文字母加下标:A1, A2, A3, … .
例1.1.7 设A, B, C是某个随机现象的三个事件,则 (1)事件“A与B发生,C不发生”:ABC (2)事件“A, B, C中至少有一个发生”:A B C (3)事件“A, B, C中至少有两个发生”:AB AC BC

第1章 概率论的基本概念

第1章 概率论的基本概念

确定概率的常用方法有: (1)频率方法(统计方法) (2)古典方法 (3)几何方法 (4)公理化方法 (5)主观方法
古典概率
(1) 古典概率的假想世界是不存在的 .对于那些极其罕见的, 定义 1.2.5 如果试验满足下面两个特征,则称其 但并非不可能发生的事情,古典概率不予考虑.如硬币落地后 为古典概型(或有限等可能概型): 恰好站立,一次课堂讨论时突然着火等. (1 )有限性:样本点的个数有限; (2) 古典概率还假定周围世界对事件的干扰是均等的 .而在 (2)等可能性:每个样本点发生的可能性相同 . 实际生活中无次序的、靠不住的因素是经常存在的 .
(3) 如果AiAj= (1 i < j k),则
fn(A1∪A2∪ … ∪Ak ) = fn(A1 ) +fn(A2 ) + … +fn(Ak 着事件在一次试验中发生的可能性就 大,反之亦然. 人们长期的实践表明:随着试验重复次数n的增加, 频率fn(A)会稳定在某一常数a附近,我们称这个常数为频 率的稳定值.这个稳定值就是我们所说的(统计)概率.
互不相容与对立区别 随机事件间的关系与运算
(1)事件A与事件B对立 AB= , A∪B= . (2)事件 A与事件B互不相容 AB= . 关系 运算 包含 相等 互不相容 并 交 差 补
如果属于A的样本点一定 由在 中而不在事件 A 中的样本点 , B没有相同的样本点, 如果事件 A 由事件 如果 A A 与事件 B ,且 A B 中所共有的样本 B,那么 A=B. A中而不在事件B中的样 中所有的样本点 由在事件 属于B,则称 A 包含于 B , BB.B 组成的新事件,也叫 A的对立 B A A A 则称互不相容 . 记作 A ∩ B= . 点组成的新事件 即B包含 A=B A B, A B A. . 组成的新事件 .记作 A记作 ∪ B.BA 本点组成的新事件 .记作 A-B. 或 A. 记作 B. .

1概率论的基本概念

1概率论的基本概念
试验E5:记录电话台(某固定)一分钟内接到的呼叫次数. S5={0,1,2,…} 试验E6:在一批灯泡中任意抽取一只, 测试其寿命. S6={t | t≥0} (t表示灯泡的寿命)
[注样本空间是相对于某个随机试验而言,而其元 ]
素取决于试验的内容和目的.
二、随机事件
1.随机事件: 试验E的样本空间S的子集. 简称事件. 通常用字母A,B,C表示.
A的对立事件记作 A .
ASA
B A
A
[注]
(1) 事件之间的关系可用文氏图表示; (2) 对于任意事件A,显然
AA , A
A S,
A S A, A A
(3) 基本事件都是互不相容的; A与B-A也是互不相容的. (4) B A B A B AB
B
A
A U B A U ( B A )
S1={H, T}(H表示出现正面, T表示出现反面)
试验E2:将一枚硬币抛掷三次,观察正面H、反面T出现的情况.
S2= {HHH,HHT,HTH,THH, HTT,THT,TTH,TTT}
试验E3:将一枚硬币抛掷三次,观察反面出现的次数. S3={0,1,2,3} 试验E4:抛掷一枚骰子, 观察出现的点数. S4={1,2,3,4,5,6}
第一章 概率论的基本概念
§1.1 §1.2 §1.3 §1.4 §1.5 §1.6 随机试验 样本空间、随机事件 频率与概率 等可能概型(古典概型) 条件概率 独立性
第一章 概率论的基本概念
引言:概率论是研究什么的?
研究和揭示随机现象的统计 在一定条件下必然发生的现象 确定现象 规律性的数学学科 例:向空中抛一物体必然落向地面; 水加热到100℃必然沸腾; 异性电荷相吸引; 放射性元素发生蜕变; … … 例:抛一枚硬币,结果可能正(反)面朝上; 向同一目标射击,各次弹着点都不相同; 某地区的日平均气温; 掷一颗骰子,可能出现的点数;… …

第一章 概率论的基本概念

第一章 概率论的基本概念

• 答案:赢了4局的拿这个钱的3/4,赢了3局的 拿这个钱的1/4。
• 假定他们俩再赌一局,或者A赢,或者B赢。 若是A赢满了5局,钱应该全归他;A如果输了, 即A、B各赢4局,这个钱应该对半分。现在, A赢、输的可能性都是1/2,所以,他拿的钱 应该是(1/2)×1+(1/2)×(1/2)= 3/4,当然,B就应该得1/4。
24
0.4614
• “分赌本”问题 两个人决定赌若干局,事先约 定谁先赢得5局便算赢家。如果在一个人赢4 局,另一人赢3局时因故终止赌博,应如何分 赌本?是不是把钱分成7份,赢了4局的就拿4 份,赢了3局的就拿3份呢?或者,因为最早 说的是满5局,而谁也没达到,所以就一人分 一半呢?
• 法国数学家帕斯卡接受了这个问题,并与另一 位法国数学家费尔马进行讨论,后来荷兰科学 家惠更斯也参与了研究,并把解法写入了《论 赌博中的计算》(1657年)。
(5,1),(5,2),(5,3),(5,4),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5)
事件间的关系
包含:A B或B A,称事件B包含事件A,即事
件A发生必然导致事件B发生。
相等: A B且B A,即A B,称事件A与事件B
相等。
n
和: A,B表示A、B二事件中至少有一个发生;k1 Ak
ABC ABC ABC
6) 这三个事件至少发生一个可以表示为:
A B C或
ABC ABC ABC ABC ABC ABC ABC
练习 证明下列等式:
1A B A B A 2A B B A AB AB 3B A AB AB
解 1 A B A B A B A A
证明(3):由于A1,A2 ,… ,Ak是两两互不相 容,在n次试验中A1∪A2∪…∪Ak的频数

一概率论的基本概念

一概率论的基本概念
基本事件是样本空间的单点集。 复合事件是由多个样本点组成的集合。
必然事件包含一切样本点,它就是样本空间。
不可能事件不含任何样本点,它就是空集 。
上一页 下一页 返 回
例1 : 从一批产品中任取8件,观察其中的正品件数, 则这一试验的样本空间为:
={0,1,2,3,4,5,6,7,8}
引入下列随机事件: A={正品件数不超过3} ={0,1,2,3} B={取到2件至3件正品} ={2,3} C={取到2件至5件正品} ={2,3,4,5} D={取到的正品数不少于2且不多于5} ={2,3,4,5}
A B

对任一事件A,有A A ;A A;A .
5、互不相容事件(互斥事件)
如果事件A与B不可能同时发生,则称 事件A与B是互不相容事件(互斥), 记作A B .
基本事件是两两互不相容的。
A
B

6、逆事件(对立事件)
若A B 且A B ,则称事件A与B互为逆事件 (对立事件). A的对立事件 记 作A .
即事件C发生意味着事件A或事件B至少有一个发生。
3、事件的交(积)
“事件A与事件B同时发生”这一事件称为事件A 与事件B的交(积)事件。记作A B或AB.
对任一事件A,有A A;A .
类似的,
A B

“ 事 件A1, A2 ,, An同 时 发 生 ” 这 一 事 件 称为A1, A2 ,, An
1 : {H ,T }
E2 : 掷两颗骰子,观察出现的点数;
2 : {(i, j) | i, j 1,2,3,4,5,6}
E3 : 在一批电视机中任意抽取一台,测试它的寿命;
3 : {t | t 0}

概率论

概率论

S 7 : { ( x , y ) | T 0≤ x ≤ y ≤ T 1 }
返回主目录
第一章 概率论的基本概念
2、 随 机 事 件
定义: 定义: •随机事件 : 称试验 E 的样本空间 S 的子集为 E 的 随机事件 随机事件; 可能发生,也可能不发生) 随机事件; 可能发生,也可能不发生) ( •基本事件 : 有一个样本点组成的单点集; 基本事件 有一个样本点组成的单点集; ( •必然事件 : 样本空间 S 本身; 必然发生) 必然事件 本身; 必然发生) •不可能事件 : 空集∅。 不可能事件 空集∅ (必然不发生) 必然不发生)
返回主目录
第一章 概率论的基本概念 2 ) 频率的稳定性 n=500时 时 nA 251 249 256 253 251 246 fn(A) 0.502 0.498 0.512 0.506 0.502 0.492
244 0.488
0.002 -0.002 0.012 0.006 0.002 -0.008 -0.012 实验者 德•摩根 摩根 蒲 丰 n 2048 4040 nH 1061 2048 6019 fn(H) 0.5181 0.5096 0.5016 0.5005
A U A = A, A I A = A
A U B = B U A, A I B = B I A
( A U B ) U C = A U (B U C ) ( A I B ) I C = A I (B I C )
A U (B I C ) = ( A U B ) I ( A U C ) Morgan定律 定律: De Morgan定律: U A α = I Aα , I A α = U A α
不能同时发生 与 不能同时发生” 50 互不相容 A I B = ∅ “A与B不能同时发生” 60 对立(互逆)事件 A I B = ∅ 且 A U B = S 对立(互逆)

概率论1-1、2

概率论1-1、2
C=“点数之和不小于2”=S D=“点数之和大于12” =
三. 事件之间的关系及运算
随机事件的关系和运算雷同集合的关系和运算
事件
事件之间的关系与事件的运算
集合
集合之间的关系与集合的运算
给定一个随机试验,设S为其样本空间,事件A, B,Ak ( k =1 , 2 , 3 , ... ) 都是S的子集.
BA
例:
✓ 记A={明天天晴},B={明天无雨} B A
✓ 记A={至少有10人候车},B={至少有5人候车} B A
✓ 一枚硬币抛两次,A={第一次是正面},B={至少有一次正面17}
BA
相等事件(Equal)
B A且 A B A=B
S B A
事件A与事件B含有相同的样本点 例如:在投掷一颗骰子的试验中,事件“出现偶数点”
AB=Φ
S A
如A={1,2,3},B={1,3,5}, C={4,5}
A与C是互不相容的。
B
A与B是相容的。
5. 事件的对立
AB , AUB S
—— A 与B 互相对立
每次试验 A、 B中有且
只有一个发生
B A S
A
称B 为A的对立事件(or逆事件),
记为 B A
注意:“A 与B 互相对立”与“A 与B 互不相容” 是不同的概念。若A 与B 互相对立则A 与B 一定互
随机试验:抛掷两颗骰子
Rolling two die 随机试验
抛掷两颗骰子,观察出现的点数 试验的样本点和基本事件
样本空间 S={(1,1),(1,2),(1,3),(1,4), (1,5),(1,6),...,(6,1),(6, 2),...,(6,6)}.
随机事件

概率论第一章 概率论的基本概念 PPT

概率论第一章 概率论的基本概念 PPT

试验者
n
nA
fn (A)
德.摩根
2048
1061
0.5181
蒲丰
4040
2048
0.5069
费勒
10000
4979
0.4979
K.皮尔逊
12000
6019
0.5016
K.皮尔逊
24000
12012
0.5005
一口袋中有6个乒乓球,其中4个白的,2个红的.有
放回地进行重复抽球,观察抽出红色球的次数。
基本事件:随机事件仅包含一个样本点ω,单点子集{ω}。 复合事件:包含两个或两个以上样本点的事件。
事件发生:例如,在试验E2中,无论掷得1点、3点还是5点, 都称这一次试验中事件A发生了。
如,在试验E1中{H}表示“正面朝上”,就是个基本事件。
两个特殊的事件
必然事件:Ω; 不可能事件:φ.
既然事件是一个集合,因此有关事件间的关系、 运算及运算规则也就按集合间的关系、运算及运算规 则来处理。
如何研究随机现象呢?
1.1.2 随机试验
例1-1: E1: 抛一枚硬币,观察正面H、反面T出现的情况; E2: 掷一颗骰子,观察出现的点数; E3: 记录110报警台一天接到的报警次数; E4: 在一批灯泡中任意抽取一个,测试它的寿命; E5: 记录某物理量的测量误差;
E6: 在区间0,1上任取一点,记录它的坐标。
1.1.3 随机事件与样本空间
v样本空间: 试验的所有可能结果所组成的集合称为 试验E的样本空间, 记为Ω. v样本点: 试验的每一个可能出现的结果(样本空 间中的元素)称为试验E的一个样本点, 记为ω.
例1-2:
分别写出例1-1各试验 Ek 所对应的样本空间

chap1 概率论的基本概念

chap1 概率论的基本概念
P({e1}) = P({e2 }) = L = P({en })
又由于基本事件是两两互不相容的。于是
1 = P(S) = P({e1}∪{e2}∪L∪{en}) = P({e1})+ P({e2})+L+ P({en}) = nP({ei })
1 P({ei }) = ,ห้องสมุดไป่ตู้i = 1,2,L , n n
E4:抛一颗骰子,观察出现的点数 E5:记录某城市120急救电话一昼夜 接到的呼唤次数 E6:在一批灯泡中任意抽取一只,测试 它的寿命 E7:记录某地一昼夜的最高温度和最低 温度
随机试验的特点: 1.可以在相同的条件下重复地进行 2.每次试验的可能结果不止一个,并且能 事先明确试验的所有可能结果 3.进行一次试验之前不能确定哪一个结果 会出现
P( A) = 1 − P( A)
性质6:(加法公式)对于任意两事件A,B有
P( A ∪ B ) = P ( A) + P( B ) − P ( AB)

A1 , A2 , A3 为任意三个事件,则有
P( A1 ∪ A2 ∪ A3 ) = P( A1 ) + P( A2 ) + P( A3 ) − P( A1 A2 ) − P( A1 A3 ) − P( A2 A3 ) + P( A1 A2 A3 )
1, 2

k =1
1,
2
n
5.若 A ∩ B = Φ 则称事件A与B是互不相容的,或互斥的. 这指的是事件A与事件B不能同时发生. 基本事件是两两互不相容的. 6.若 A ∪ B = S and A ∩ B = Φ 则称事件A与B是互为逆事件.又称事件A 与事件B互为对立事件.记 B = A

概率论与数理统计知识点总结(详细)

概率论与数理统计知识点总结(详细)

《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk kn k kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章概率论的基本概念教学内容:1.随机试验2.样本空间、随机事件3.频率与概率4.等可能概率(古典概率)5.条件概率6.独立性教学目标:1.了解样本空间、随机事件的概念, 理解事件之间的关系与运算;2.了解频率、统计频率以及主观概率的定义,掌握古典概率, 几何概率的计算方法,理解概率的公理化定义。

掌握概率的性质并且会应用性质进行概率计算;3.理解条件概率的概念, 掌握条件概率公式,乘法公式,全概率公式和贝叶斯(Bayes)公式并会用这些公式进行概率计算阵;4.理解事件独立性的概念, 掌握贝努里概型并会应用它进行概率计算.教学重点:事件之间的关系与运算、古典概率、几何概率、概率的公理化定义与概率的性质、条件概率公式、全概率公式、贝叶斯公式和事件的独立性。

教学难点:全概率公式和贝叶斯公式及其应用。

教学方法:讲授法、演示法、练习法。

教学手段:多媒体+板书。

课时安排:10课时。

教学过程:§1.1 随机实验一、概率论的诞生及应用1654年, 法国一个名叫梅累的骑士(一个上流社会的赌徒兼业余哲学家)就“两个赌徒约定赌若干局, 且谁先赢c局便算赢家,若在一赌徒胜a局(ca<), 另一赌徒胜b局(cb<)时便终止赌博,问应如何分赌本”为题求教于帕斯卡,帕斯卡与费马通信讨论这一问题,于1654 年共同建立了概率论的第一个基本概念——数学期望.概率论是数学的一个分支,它研究随机现象的数量规律,概率论的应用几乎遍及所有的科学领域,例如天气预报、地震预报、产品的抽样调查,在通讯工程中概率论可用以提高信号的抗干扰性、分辨率等等.二、随机现象1.确定性现象在一定条件下必然发生的现象称为确定性现象,称为确定性现象。

如:太阳不会从西边升起、水从高处流向低处等。

2.统计规律性在一定条件下可能出现这样的结果,也可能出现那样的结果,而在试验或观察之前不能预知确切的结果,但人们经过长期实践并深入研究之后,发现在大量重复试验或观察下,他的结果却呈现处某种规律性.这种在大量重复试验或观察中所呈现出来来的固有规律性,称为统计规律性。

3.随机现象这种在个别试验中其结果呈现出不确定性,在大量重复试验中其结果有具有统计规律性的现象称为随机现象。

简言即:在一定条件下可能出现也可能不出现的现象称为随机现象.如:在相同条件下掷一枚均匀的硬币,观察正反结果,有可能出现正面也可能出现反面;抛掷一枚骰子,观察出现的点数,结果有可能为: 1、2、3、4、5、6等注:1. 随机现象揭示了条件和结果之间的非确定性联系, 其数量关系无法用函数加以描述;2.随机现象在一次观察中出现什么结果具有偶然性,但在大量试验或观察中,这种结果的出现具有一定的统计规律性 ,概率论就是研究随机现象这种本质规律的一门数学学科.3.随机现象是通过随机试验来研究的.三、随机试验定义:在概率论中, 把具有以下三个特征的试验称为随机试验.1. 可以在相同的条件下重复地进行;2. 每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;3. 进行一次试验之前不能确定哪一个结果会出现.如;“抛掷一枚硬币,观察字面,花面出现的情况”,分析:(1)试验可以在相同的条件下重复地进行; (2)试验的所有可能结果:字面、花面;(3)进行一次试验之前不能确定哪一个结果会出现.故为随机试验.§1.2 样本空间、随机事件一、样本空间 样本点定义 随机试验E 的所有可能结果组成的集合称为E 的样本空间, 记为S .样本空间的元素, 即试验E 的每一个结果,称为样本点.如:(1)抛掷一枚骰子, 观察出现的点数. .}6,5,4,3,2,1{1=s(2)从一批产品中,依次任选三件,记录出现正品与次品的情况..,次品正品记→→D N则.} , ,,, , , , {2DDD DND DDN NDD DNN NDN NND NNN s =说明:(1)试验不同,对应的样本空间也不同.(2)同一试验,若试验目的不同,则对应的样本(3)在具体问题的研究中, 描述随机现象的第一步就是建立样本空间.二、随机事件的概念1. 基本概念一般地,随机试验 E 的样本空间 S 的子集称为 E 的随机事件,简称事件。

每次实验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生. 特别地,由一个样本点组成的单点集,称为基本事件样本空间S 包含所有的样本点,它是S 自身的子集,在每次实验中它总是发生的,S 称为必然事件.空集Φ不包含任何点,它也作为样本空间的子集,它在每次实验中都不发生,Φ称为不可能事件。

注:必然事件的对立面是不可能事件,不可能事件的对立面是必然事件,它们互称为对立事件.实例:抛掷一枚骰子, 观察出现的点数. 骰子“出现1点”, “出现2点”, … , “出现6点”, “点数不大于4”, “点数为偶数” 等都为随机事件. “出现1点”, “出现2点”, … , “出现6点”等都是基本事件. “点数不大于6” 就是必然事件. “点数大于6” 就是不可能事件.2. 几点说明(1)随机事件可简称为事件,并以大写英文字母A ,B ,C ,来表示事件. 例如:抛掷一枚骰子,观察出现的点数.可设A = “点数不大于4”, B = “点数为奇数”等等.(2)随机试验、样本空间与随机事件的关系:每一个随机试验相应地有一个样本空间,样本空间的子集就是随机事件.三、随机事件间的关系及运算设试验E 的样本空间为S ,而),2,1(,,=k A B A k 是S 的子集,1.若B A ⊂,则称事件B 包含事件A ,则称事件A 发生必然导致事件B 发生。

例:“长度不合格”必然导致“产品不合格”所以“产品不合格”包含“长度不合格”若B A ⊂,且A B ⊂,则称事件A 与事件B 相等。

2.事件{}B x A x x B A ∈∈=或 称为事件A 与事件B 的和事件。

当且仅当A ,B 中至少一个发生时,事件B A 发生。

推广 称n k nk A A A n A ,,,211 个事件为=的和事件,.,,211的和事件为可列个事件称 A A A k k ∞=3.事件{},B x A x x B A ∈∈=且 称为事件A 与事件B 积和事件。

当且仅当A ,B 同时发生时,事件B A 发生。

B A 也记作AB 。

类似地, 的积事个事件为称n k nk A A A n A ,,,211 =件,.,,211的积事件为可列个事件称 A A A k k ∞=4.事件{},B x A x x B A ∉∈=-且称为事件A 与事件B 积差事件。

当且仅当A 发生,B 不发生时,事件B A -发生。

5.若 ,∅=B A 称为事件A 与事件B 是互不相容或互斥的,.不能同时发生与事件这指的是事件B A注:基本事件是两两互不相容的.6.若,∅==B A S B A 且称为事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件,这指的是对每次试验而言,事件A ,B 中必有一个发生,且仅有一个发生。

,A A 的对立事件记为.A S A -= 事件间的运算规律 :,,,为事件设C B A 则有:(1)交换律: A B B A =, A B B A =(2)结合律 : C B A C B A )()(= ,C B A C B A )()(=(3)分配律 ;)()()(C A B A C B A =.)()()(C A B A C B A =(4)德.摩根律 B A B A = B A B A =.例1 {},,,,1HTT HTH HHT HHH A =设 {},,2TTT HHH A =TTT A A =-12, .,122121A A A A A A - ,求例2 如图所示的电路,,“信号灯亮”表示事件以A 分别表示事件:以D C B ,,将电器接点I,Ⅱ,Ⅲ闭合, ,,,A BD BC A BD A BC =⊂⊂ 则 ,∅=A B 而 .互不相容与事件即事件A B 又可得.C B C B =§1.3 频率与概率一、频率的定义与性质1.频率的定义定义 在相同条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数. 比值nn A 称为事件A 发生的频率,记作()A f n 。

2.频率的性质设A 是随机试验E 的任一事件,则(1);1)(0≤≤A f n(2)1)(=S f n(3)若k A A A ,,,21 是两两互不相容的事件,则).()()()(2121k n n n k n A f A f A f A A A f +++= 注:事件发生的频率大小表示其发生的频繁程度. 频率大, 事件发生就越频繁, 这表示事件在一次试验中发生的可能性就越大. 反之亦然.例1 考虑“抛硬币”这个试验, 将一枚硬币抛掷5次、50次、500次, 各做10遍,得到数据如下:(表见教材第6也表1-1)。

从上述数据可得:(1)频率有随机波动性, 即对于同样的n , 所得的f 不一定相同;(2) 抛硬币次数n 较小时,之间与在频率10)(H f n 随机波动,其幅度较大,但随着n 增大,频率()H f n 呈现出稳定性,即当n 逐渐增大时,()H f n 总在0.5附近摆动,而逐渐稳定与0.5.大量试验证实,当重复试验的次数n 逐渐增大时, 频率()A f n 呈现出稳定性,逐渐稳定于某个常数. 这种“频率稳定性”即通常所说的统计规律性,让试验重复大量次数, 计算频率()A f n 以它来表征事件A 发生的大小是合适的。

为了理论研究需要,我们从频率的稳定性和频率的性质得到启发, 给出如下表征事件发生大小的概率的定义.二、概率的定义与性质1.概率的定义定义 设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为()A P ,称为事件A 的概率,如果集合()•P 满足条件,0)(,:1≥A P A 有对于每一个事件非负性 ;;1)(,:2=S P S 有对于必然事件规范性,是两两互不相容的事件设可列可加性 ,,:321A A ,,2,1,,, =≠∅=j i j i A A j i 即对于有 ++=)()()(2121A P A P A A P2.概率的性质.0)(i =∅P 性质)(ii 有限可加性性质 n A A A ,,,21 若是两两互不相容事件,则有)()()()(2121n n A P A P A P A A A P +++=iii 性质设B A ,是两个事件,若B A ⊂,则有;)()()(A P B P A B P -=-)()(A P B P ≥iv 性质 对于任意事件A ,1)(≤A P)(v 逆事件的概率性质 对于任意事件A ,)(1)(A P A P -= )(vi 加法公式性质对于任意两个事件B A ,,())()()(AB P B P A P B A P -+= 此性质可以推广到多个事件的情况.设321,,A A A 为任意三个事件,则有)()()()()(21321321A A P A P A P A P A A A P -++=,,,21n A A A n 个事件对于任()()∑∑≤<≤=-=n j i ji n i i n A A P A P A A A P 1121)( ())(1)(2111n n n j i k j i A A A P A A A P -≤<≤-+++∑例3 2131,和的概率分别为设事件B A ,求在下列三种情况下)(A B P 的值。

相关文档
最新文档