二次函数复习集体备课

合集下载

二次函数集体备课材料

二次函数集体备课材料

二次函数集体备课材料第一、我们首先确定本章的教学内容1、二次函数的定义、图象、性质2、二次函数与一元二次方程、一元二次不等式3、二次函数与实际问题第二,我们要抓住本章的教学目标:1.经历探索分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.2.用表格、表达式、图象表示变量之间的二次函数关系,并能根据集体问题,选取适当的方法表示之间的二次函数关系.3.会作二次函数的图象,并能根据图象对二次函数的性质进行分析,逐步积累研究函数性质的经验.4.能根据二次函数的表达式确定二次函数的开口方向、对称轴和顶点坐标.5.理解一元二次方程与二次函数的关系,并能利用图象法求一元二次方程的近似根,提高学生的估算能力第三、本章的教学重、难点1.重点:●了解二次函数的含义●理解二次函数的图象及其性质,●抛物线图象的平移问题.●体会一元二次方程与二次函数的关系●能用二次函数解决实际问题2.难点:●二次函数图象特征及其性质.●对二次函数与一元二次方程的关系理解与应用.●应用二次函数解决实际问题.能解决与其他函数结合的问题第四、课时安排1、二次函数所描述的关系 1课时2、结识抛物线 1课时3、刹车距离与二次函数 1课时4、二次函数y=ax²+bx+c的图象 2课时5、用三种方式表示二次函数 1课时6、何时获得最大利润 1课时7、最大面积是多少 2课时8、二次函数与一元二次方程 2课时回顾与思考 2课时第五、考试链接二次函数题型多样,形式灵活,综合应用强,一般以填空题、选择题及综合题的形式考察二次函数。

涉及的主要内容有:1、二次函数的定义2、二次函数三种解析式。

3、二次函数的图象及性质4、二次函数y=ax²+bx+c(a≠0)的图象特征,与a、b、c 、Δ的关系5、二次函数图象的平移6、二次函数与一元二次方程、一元二次不等式的关系7、二次函数与实际问题第六、针对本章的主要知识点进行归纳,并设置典型例题首先,二次函数的定义一般地形如y=ax²+bx+c(a、b、c是常数,且a≠0)的函数叫做x的二次函数.让学生记住二次函数的特征:一个自变量;自变量的最高次数是2次;a≠0;整式、等式。

二次函数集体备课活动记录(2)

二次函数集体备课活动记录(2)

集体备课活动记录教学过程:(一)自学指导:画出函数y =-12 x 2、y =-12 (x +1)2-1的图象,指出它的开口方向、对称轴及顶点、最值、增减性.列表:x … -4 -3 -2 -1 0 1 2 … y =-12 x 2y =-12 (x +1)2-1……二 .合作探究1.由图象归纳:2.把抛物线y =-12 x 2向_______平移______个单位,再向_______平移_______个单位,就得到抛物线y =-12 (x +1)2-1.三.拓展提升(二)画出函数y =x 2、y =(x +1)2-1、y =(x -2)2+3的图象,指出它的开口方向、对称轴及顶点、最值、增减性.函数 开口方向 顶点坐标 对称轴 最值增减性 y =-12(x +1)2-1当x =____时,y 有最____值,是___ _当x 时y 随x 的增大而 当x 时y 随x 的增大而填表:四.当堂反馈1、把抛物线y =x 2向_______平移______个单位,再向_______平移_______个单位,就得到抛物线y =(x +1)2-1.2、把抛物线y =x 2向_______平移______个单位,再向_______平移_______个单位,就得到抛物线y =(x -2)2+3.3、把抛物线y =(x +1)2-1向_______平移______个单位,再向_______平移_______个单位,就得到抛物线y =(x -2)2+3.开口方向 顶点坐标 对称轴 有最高或最低点最值y =x 2当x =____时,y有最_____值,是______.y =(x +1)2-1当x =____时,y 有最_____值,是______y =(x -2)2+3当x =____时,y 有最_____值,是_____板书设计: 二次函数y=a(x-h)2 +k 的图象和性质1、 开口方向2、 对称轴是直线x=h3、 顶点坐标是(h,k )4、 增减性5、最值。

二次函数集体备课

二次函数集体备课
燕子砭镇初级中学七年级数学教(学)案
序号:授课时间:审核人签名:沈荣刚
课题
27 . 3实践与探索(4)
课型
新授
主备人
杨明建
学习目标
掌握一元二次方程及二元二次方程组的图象解法
学习重点
一元二次方程及二元二次方程组的图象解法
学习难点
一元二次方程及二元二次方程组的图象解法
教学流程
个性修改栏
一.情境导入:
上节课的作业第5题:画图求方程 的解,你是如何解决的呢?我们来看一看两位同学不同的方法.
甲:将方程 化为 ,画出 的图象,观察它与x轴的交点,得出方程的解.
乙:分别画出函数 和 的图象,观察它们的交点,把交点的横坐标作为方程的解.
你对这两种解法有什么看法?请与你的同学交流.
二.疑难导学:
例1.利用函数的图象,求下列方程的解:
(1) ;
(2) .
分析上面甲乙两位同学的解法都是可行的,但乙的方法要来得简便,因为画抛物线远比画直线困难,所以只要事先画好一条抛物线 的图象,再根据待解的方程,画出相应的直线,交点的横坐标即为方程的解.
解(1)在同一直角坐标系中画出
函数 和 的图象,
如图26.3.5,
得到它们的交点(-3,9)、(1,1),
则方程 的解为–3,1.
(2)解题略
例2.利用函数的图象,求下列方程组的解:
(1);(2) .
分析(1)可以通过直接画出函数 和 的图象,得到它们的交点,从而得到方程组的解;(2)也可以同样解决.当1≤x≤2。5时般地,求一元二次方程 的近似解时,可先将方程 化为 ,然后分别画出函数 和 的图象,得出交点,交点的横坐标即为方程的解.
四课堂练习:
1.利用函数的图象,求下列方程的解:

二次函数专题复习教案与学案(4)

二次函数专题复习教案与学案(4)

九年级数学集体备课教案中心备课者:黄新总第4课时二次函数专题复习学案(4)一、典型例题讲评例1、点O 是坐标原点,点A (n ,0)是x 轴上一动点(n <0)。

以AO 为一边作矩形AOBC ,使OB =2OA ,点C 在第二象限。

将矩形AOBC 绕点A 逆时针旋转90°得矩形AGDE 。

过点A 得直线y =kx +m (k ≠0)交y 轴于点F ,FB =F A 。

抛物线y =ax 2+bx +c 过点E 、F 、G 的垂线,垂足为点M 。

(1)求k 的值;(2)点A 位置改变使,△AMH 的面积和矩形AOBC二、课堂练习2、如图1,点A 是直线y =kx (k >0,且k 为常数)上一动点,以A 为顶点的抛物线y =(x -h)2+m 交直线y =x 于另一点E ,交 y 轴于点F ,抛物线的对称轴交x 轴于点B ,交直线EF 于点C .(点A,E,F 两两不重合)(1)请写出h 与m 之间的关系;(用含的k 式子表示)(2)当点A 运动到使EF 与x 轴平行时(如图2),求线段AC 与OF 的比值; (3)当点A 运动到使点F 的位置最低时(如图3),求线段AC 与三、课后作业3、已知:抛物线y=ax 2+bx+c 与x 轴交于A 、B 两点,与y 轴交于点C . 其中点A 在x 轴的负半轴上,点C 在y 轴的负半轴上,线段OA 、OC 的长(OA<OC )是方程x 2-5x+4=0的两个根,且抛物线的对称轴是直线x=1. (1)求A 、B 、C 三点的坐标; (2)求此抛物线的解析式;(3)若点D 是线段AB 上的一个动点(与点A 、B 不重合),过点D 作DE ∥BC 交AC 于点E ,连结CD ,设BD 的长为m ,△CDE 的面积为S ,求S 与m 的函数关系式,并写出自变量m 的取值范围.S 是否存在最大值?若存在,求出最大值并求此时D 点坐标;若不存在,请说明理由.4、如图1,已知:抛物线212y x bx c =++与x 轴交于A B 、两点,与y 轴交于点C ,经过B C 、两点的直线是122y x =-,连结AC .(1)B C 、两点坐标分别为B (_____,_____)、C (_____,_____),抛物线的函数关系式为______________;(2)判断ABC △的形状,并说明理由;(3)若ABC △内部能否截出面积最大的矩形DEFC (顶点D E F 、、、G 在ABC △各边上)?若能,求出在AB 边上的矩形顶点的坐标;若不能,请说明理由.[抛物线2y ax bx c =++的顶点坐标是24,24b ac b aa ⎛⎫-- ⎪]图1图2(备用)。

二次函数集体备课

二次函数集体备课

二次函数1、学习目标1、通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。

2、会用描点法画出二次函数的图象,能从图象上认识二次函数的性质。

3、会用配方法将数字系数的二次函数的表达式化为2()y a x h k -+=的形式,并能由此得到二次函数图象的顶点坐标,说出图象的开口方向,画出图象的对称轴,并能并能解决简单的实际问题。

4、会利用二次函数的图象求一元二次方程的近似解。

5、*知道给定不共线三点的坐标可以确定一个二次函数。

2、课标要求3、课时安排本章共分三节。

首先介绍二次函数及其图象,并从图象得出二次函数的有关性质,然后探讨二次函数与一元二次方程的联系,最后通过探究展现二次函数的应用。

本章教学时间教参给出的是12课时,计划使用13课时,具体分配如下: 26.1二次函数及其图象 7课时 26.2用函数观点看一元二次方程 1课时 26.3实际问题与二次函数 2课时 全章小结 3课时4、教学重点 1.知识方面,要让学生掌握各种形式的二次函数的图像和性质,并会求解二次函数的表达式。

2.能力方面,要学生在学习和探究中学会分析简单的二次函数的有关问题。

3.情感目标,要让学生认识到轴对称图形的美感,并解二次函数的应用之广泛。

5、教学难点1、二次函数与一元二次方程的关系。

2、二次函数的应用题。

6、能力培养培养学生逻辑思维能力、空间想象能力和分析解决实际问题地能力及数学应用地意识。

7、数学思想转化、数形结合、方程思想、分类讨论、函数思想等。

8、课程分析 (1)二次函数 教学目标:(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯 重点难点:能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

主要内容问题1、多边形的对角线数d 与边数n 有什么关系?问题2、某工厂一种产品现在的年产量是20件,计划今后两年增加产量,如果每年都比上一年的产量增加x 倍,那么两年后这种产品的产量y 将随计划所定的x 的值而确定,y 与x 之间的关系应怎样表示?二次函数:一般的,形如2(,,0)y ax bx c a b c a ++=是常数,≠的函数,叫做二次函数。

二次函数的复习教案

二次函数的复习教案

二次函数的复习教案教案标题:二次函数的复习教案教案目标:1. 复习学生对二次函数的基本概念和性质的理解。

2. 强化学生对二次函数图像、顶点、轴对称性和零点的掌握。

3. 提高学生解决与二次函数相关的实际问题的能力。

教学时长:2个课时教学步骤:第一课时:1. 导入(5分钟)- 通过提问引起学生对二次函数的兴趣,例如:你知道什么是二次函数吗?它有哪些特点?2. 复习基本概念(15分钟)- 提醒学生二次函数的一般形式为f(x) = ax^2 + bx + c,并解释a、b、c的含义。

- 回顾二次函数的图像特点,如开口方向、顶点位置等。

- 强调二次函数的轴对称性和零点的概念。

3. 图像练习(20分钟)- 展示几个不同形态的二次函数图像,要求学生根据图像特点判断函数的开口方向、顶点和轴对称性。

- 给学生一些简单的二次函数,要求他们画出对应的图像,并标出顶点和轴对称线。

4. 零点练习(15分钟)- 提供一些二次函数的方程,要求学生解方程求出零点。

- 引导学生思考零点与图像的关系,例如:零点在图像上对应什么位置?第二课时:1. 复习顶点和轴对称线(10分钟)- 提醒学生顶点是二次函数图像的最高点或最低点,轴对称线通过顶点并将图像分为两部分。

2. 实际问题解决(20分钟)- 提供一些与实际问题相关的二次函数,要求学生解决问题。

- 引导学生将问题转化为二次函数的方程,并解方程求出答案。

3. 总结(10分钟)- 回顾本节课所学内容,强调二次函数的重要性和应用。

- 鼓励学生通过做更多的练习来巩固所学知识。

教学方法和教学资源:1. 教学方法:- 提问法:通过提问引导学生思考和回忆所学知识。

- 演示法:展示二次函数图像和实际问题,帮助学生理解和解决问题。

2. 教学资源:- PowerPoint幻灯片或白板,用于展示图像和问题。

- 二次函数练习题,包括图像练习和实际问题练习。

评估方法:1. 课堂表现评估:- 观察学生在课堂上的参与度和回答问题的准确性。

二次函数单元集体备课

二次函数单元集体备课

九年级下册第二章《二次函数》单元备课【单元分析】课标要求:1.通过对实际问题的分析,体会二次函数的意义。

2.会用描点法画出二次函数的图象,通过图象了解二次函数的性质。

3. 会用配方法将数字系数的二次函数的表达式化为k=2)(-ahxy+的形式,并能由此得到二次函数图象的顶点坐标,说出图象的开口方向,画出图象的对称轴,并能解决简单实际问题。

4.会利用二次函数的图象求一元二次方程的近似解。

5.知道给定不共线三点的坐标可以确定一个二次函数。

教材分析:“二次函数”这章主要要求学生在掌握好原来的一次函数、正比例函数、反比例函数的基础上,进一步学习二次函数的初步知识。

本章采用由简入繁的方式对各种形式的二次函数进行了系统的学习。

尤其与旧教材不同的是,加入了函数的平移,从而对函数的图像进行了更深入的理解。

对二次函数的表达式问题中,要求了三种形式,而且对二次函数表达式的确定要求的也非常具体。

对二次函数与一元二次方程的关系中,也与旧教材有鲜明的对比。

在这一节中,一直采用探究的形式对一元二次方程的根的情况和二次函数进行对比、研究。

最后,对二次函数的应用部分,题目的设计充分体现了“数学源于生活又服务于生活”的这一原则。

【学情分析】学生知识与技能基础:学生在之前已经学习过变量、自变量、因变量、函数等概念,对一次函数、反比例函数的相关知识如:各种变量、函数的一般形式、图像、增减性等知识有一定基础,相关应用也较常见,学生在学二次函数前具备了一定函数方面的基础知识、基本技能。

学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些解决实际问题活动,感受到了函数反映的是变化过程,并可通过列表、解析式、图像了解变化过程,对各种函数的表达方法的特点有所了解,获得了探究学习新函数知识的基础;同时在以前的学习中学生经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

【单元目标】1.知识与技能:要让学生掌握各种形式的二次函数的图像和性质,并会求解二次函数的表达式。

【公开课】《 二次函数的应用》集体备课记录

【公开课】《 二次函数的应用》集体备课记录
叶:利用二次函数的最值确定最大利润、最节省方案等问题是二次函数应用最常见的问题,解决此类问题的关键是认真审题,理解题意,建立二次函数的数学模型,再用二次函数的相关知识解决。其中,利用二次函数的性质解决最值问题,一般方法是:(1)列出二次函数的解析式,列解析式时,要根据自变量的实际意义,确定自变量的取值范围;(2)在自变量取值范围内,运用公式法或配方法求出二次函数的最大值或最小值。对于利润问题,更是常见题型,从中进行相应变式,可以拓宽学生的知识面和思维,如利润不少于1000元的二次不等式如何依靠数形结合进行解答。
教学研讨课
集 体 备 课 记 录 表
时间
年10月8日星期一上午第三节
学科
数学
备课组
初三年
主持人
记录人
与会者
签名
备课 记 录
刘:二次函数与几何知识联系密切,互相渗透,以点的坐标和线段长度的关系为纽带,把二次函数与全等、相似、最大(小)面积、周长等结合起来,解决这类问题时,先要对已知和未知条件进行综合分析,用点的坐标和线段长度的联系,从图形中建立二次函数的模型,从而使问题得到解决。解这类问题的关键就是要善于利用几何图形和二次函数的有关性质和知识,并注意挖掘题目中的一些隐含条件,从而到达解题目的。本节课以3道综合例题,重点解决坐标问题,比如利用函数解析式对动点的坐标进行设元,再利用几何特殊性质进行求解,当然,也不能忽视通解通法,所以课堂上,应注重对点、线位置的分析。
王:教学目标应该定位为:1、通过数形结合,由抛物线的图象,让学生进一步熟练掌握求二次函数解析式,能利用二次函数的性质去解决实际问题,初步掌握运用数学知识解决问题的基本方法;2、感知各知识之间的联系,增强学生对二次函数本质的理解,提高学生提出问题及解决问题的能力。教学重点:培养学生的问题意识和利用二次函数知识解决实际问题中最值问题;教学难点:熟练掌握知识之间的关联与转化,提升思维的灵活性与深刻性。授课时,应注意重难点的突破。

第22章二次函数集体备课

第22章二次函数集体备课

第22章二次函数集体备课镇原县方山初中高效课堂三维互助导学案九年级数学上册主题:22.1.1二次函数主备:刘卫平审核:郭无祥班级:姓名:[核心目标]1、经历对实际问题情境分析确定二次函数表达式的过程,理解并掌握二次例函数的概念2、能判断一个给定的函数是否为二次例函数3.可根据实际问题的条件,确定二次样条函数的解析式。

[课前自学]回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?1.变化过程中有两个变量X和Y。

如果y有一个唯一的值对应于X的每个值,那么y 就是X,并且X被调用。

2.形如y?___________()的函数是一次函数,图像是经过、两点的直线;当______?0时,它是函数,图像是经过的直线。

3.立方体的六个面是全等的正方形。

如果正方形的边长是x,表面积是y,写下y和x 之间的关系。

n形多边形的对角线数D和边数n之间的关系是什么?即5.工厂目前的年产量为20件,计划在未来两年增加产量。

如果每年的产量是前一年的x倍,则两年内该产品的数量y将取决于计划中设定的x值。

如何表达Y和X之间的关系?即6.通过观察上述三个问题写出的三个函数关系的特点是什么?【课堂指导】一、沟通与展示1.小组展示二次函数的定义:2.小组讨论二次函数的二次项系数a、一次项系数b和常数项c的取值。

二、知识点1.下列函数表达式中,哪些是二次函数?哪些不是?若是二次函数,请指出各项对应项的系数.(1) y=1-3x2(2)y=3x2+2x(3)y=x(x-5)+2(4)y=3x3+2x2(5)?十、嗯?m2。

Y(m?1)x?3倍?1是二次函数,那么M的值是______21x3.函数y=(m-2)x2+mx-3(m为常数).(1)当m__________时,该函数为二次函数;(2)当m__________时,该函数为一次函数.三、达标训练一镇原县方山初中高效课堂三维互助导学案九年级数学上册1.众所周知,直角三角形的两条直角边之和为10厘米。

数学九年级上册《二次函数-复习课》教案

数学九年级上册《二次函数-复习课》教案

初中20 -20 学年度第一学期教学设计2、二次函数2y ax bx c =++的图像如图1,则点),(ac b M 在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3、已知二次函数y=ax 2+bx+c 的图象与x 轴交于点(-2,O)、(x 1,0),且1<x 1<2,与y 轴的正半轴的交点在点(O ,2)的下方.下列结论:①a<b<0; ②2a+c>O;③4a+c<O;④2a -b+1>O ,其中正确结论的个数为( )A 1个 B. 2个 C. 3个 D .4个4、已知:关于x 的一元二次方程ax 2+bx+c=3的一个根为x=-2,且二次函数y=ax 2+bx+c 的对称轴是直线x=2,则抛物线的顶点坐标为( ) A(2,-3) B.(2,1) C(2,3) D .(3,2) 三、拓展延伸(小组探究,合作学习) 1、已知抛物线y=x 2+(2k+1)x-k 2+k(1) 求证:此抛物线与x 轴总有两个不同的交点;(2)设A (x 1,0)和B (x 2,0)是此抛物线与x 轴的两个交点,且满足x 12+x 22= -2k 2+2k+1,①求抛物线的解析式②此抛物线上是否存在一点P ,使△PAB 的面积等于3,若存在,请求出点P 的坐标;若不存在,请说明理由。

3、已知抛物线y=12x 2+x-52.(1)用配方法求它的顶点坐标和对称轴.(2)若该抛物线与x 轴的两个交点为A 、B ,求线段AB 的长.四、课堂小结通过本节课的练习,你学到了什么知识? 五、布置作业学思练本章复习题板书设计:教学后记(反思成败、总结经。

北师大版初中九年级数学下册第二章集体备课教案教学设计含教学反思

北师大版初中九年级数学下册第二章集体备课教案教学设计含教学反思

第二章二次函数1 二次函数【知识与技能】使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围. 【过程与方法】复习旧知识,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力.【情感态度】通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心.【教学重点】对二次函数概念的理解.【教学难点】由实际问题确定函数解析式.一、情景导入,初步认知1.什么叫函数?它有几种表示方法?2.什么叫一次函数?(y=kx+b)自变量是什么?函数是什么?常量是什么?为什么要有的条件?k值对函数性质有什么影响?【教学说明】复习这些问题是为引入一元二次函数做铺垫,帮助学生加深对函数定义的理解.强调k≠0的条件,以备与二次函数中的a 进行比较.二、思考探究,获取新知问题1某果园有100棵橙子树,平均每棵树结600个橙子,现准备多种一些树,以提高产量.但是树种多了,那么树之间的距离和每棵树接收的阳光就会减少.根据经验,估计每多种一棵树,平均每棵树就会少结5个橙子.①哪些是变量?哪些是自变量?哪些是因变量?②如果设多种x棵树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子?③如果果园橙子的总产量为y,请你写出y与x之间的关系式.问题2教材29页的“做一做”设年利率为x,本息和为y.请你写出y与 x之间的关系式.教师提问:以上两个例子所列出的函数有什么特点,学生观察并讨论. 【教学说明】通过具体事例,让学生列出关系式,启发学生观察、思考、对比一次函数,归纳出二次函数的定义.【归纳结论】我们把形如y=ax2 +bx + c (其中a,b,c是常数,a ≠0)的函数叫做二次函数.其中x是自变量,a为二次项系数,b为一次项系数,c为常数项.三、运用新知,深化理解下列关系式中,一定属于二次函数的是(x为自变量)()解析:紧抓二次函数的概念.答案:A2.m取哪些值时,函数y=(m2-m)x2 + mx + (m+1)是以x为自变量的二次函数?分析:若函数 y=(m2-m)x2+mx+(m+1)是二次函数,须满足的条件是m2-m≠0.解:若函数 y=(m2-m)x2+mx+(m+1)是二次函数,则m2-m≠0.解得m≠0,且m≠1.因此,当m≠0,且m≠1时,函数y=(m2-m)x2+mx+(m+1)是二次函数.3.(1)写出正方体的表面积S(cm2)与正方体棱长a(cm)之间的函数关系;(2)写出圆的面积y(cm2)与它的周长x(cm) 之间的函数关系.分析:(1)根据正方体表面积公式可得.(2)面积与半径有关,所以根据周长表示出半径就可求出面积.解:(1)S=6a2(a>0);2x(2)(0)y=x>4【教学说明】学习完二次函数的概念后,让学生在实践中感悟什么样的函数是二次函数,将理论知识应用到实践操作中.四、师生互动,课堂小结叙述二次函数的定义.二次函数定义:形如y=ax2+bx+c(a、b、c 是常数,a≠0)的函数叫做x的二次函数,a叫做二次项的系数,b叫做一次项的系数,叫作常数项.1.布置作业:教材“习题2.1”中第3、题.2.完成练习册中本课时的练习.本节课通过简单的实际问题,学生会很容易列出函数关系式,也很容易分辨出哪个是二次函数. 通过复习类比,大部分同学对于二次函数的理解都比较好,会找自变量,会列简单的函数关系式,总体效果良好!第1课时二次函数y=ax2的图象与性质【知识与技能】1.能够利用描点法作出y=x2的图象,并能根据图象认识和理解二次函数y=x2的性质.2.能作出二次函数y=x2的图象,并能够比较与y=x2的图象的异同,初步建立二次函数表达式与图象之间的联系.【过程与方法】经历画二次函数y=x2的图象和探索性质的过程,获得利用图象研究函数性质的经验.【情感态度】培养学生数形结合的思想,积累数学经验,为后续学习服务.【教学重点】会画y=ax2的图象,理解其性质.【教学难点】结合图象理解拋物线开口方向、对称轴、顶点坐标及基本性质,并归纳总结出来.一、情景导入,初步认知(k≠0)图象是什么形状?有哪些一次函数y=kx+b和反比例函数xy=k性质呢?那么二次函数y=ax2+bx+c(a≠0)的图象会是什么样?通常怎样画一个函数的图象呢?——引入课题【教学说明】通过创设问题情景,引导学生复习描点法,复习借助图象分析性质的过程中注意分类讨论、由特殊到一般的解决问题的方法,为学习二次函数的图象奠定基础.二、思考探究,获取新知(1)试着画出y=x2的图象【教学说明】让学生自己经历画y=x2的图象的过程,进一步了解用描点法的方法画图象的基本步骤,为将来画其他函数的图象奠定基础,同时也培养了学生动手操作能力,经历了知识的形成过程.(2)探究y=x2的性质【教学说明】让学生自己去观察去分析,过程让学生自己去感受,结论让学生自己去总结,实现学生主动参与、探究新知的目的.【归纳结论】它有一条对称轴,且对称轴和图象有一个交点.拋物线顶点概念:拋物线与它的对称轴的交点叫做拋物线的顶点.在同一直角坐标系中,画出函数y=x2与y=-x2的图象,观察并比较两个图象,你发现有什么共同点?又有什么区别?【归纳结论】1.抛物线y=ax2(a≠0)的对称轴是狔轴,顶点是原点;a>0时,抛物线y=ax2的开口向上,顶点是抛物线的最低点,a越大,抛物线的开口越小;a<0时,抛物线y=ax2的开口向下.顶点是抛物线的最高点,a越大,抛物线的开口越大.三、运用新知,深化理解1.已知函数()27=-是二次函数且开口向下,则m=_____.2my m x-解析:它是二次函数,所以m2-7=2,得m=±3,且开口向下,所以m- 2<0,得m<2. 即:m=-3 答案:-3.2.已知拋物线y=ax2经过点A(-2,-8).(1)求此拋物线的函数解析式;(2)判断点B(-1,-4)是否在此拋物线上.分析:(1)把a的值求出即可;(2)把B的坐标代入,等式成立则在此抛物线上,否则不在.解:(1)把(-2,-8 )代入y=ax2中得:a=-2.∴解析式为:y=-2x2(2)把(-1,-4)代入y=-2x2中得-2×(-1)2=-2≠-4,∴等式不成立•点B(-1,-4)不在此拋物线上.【教学说明】学生独立完成以后,让他们发表自己的看法,教师更正、强调.四、师生互动,课堂小结1.拋物线y= ax2(a≠0)的对称轴是y轴,顶点是原点;2.a>0时,拋物线y = ax2的开口向上,顶点是拋物线的最低点a越大,拋物线的开口越小;3.a<0时,拋物线y = ax2的开口向下,顶点是拋物线的最高点a越大,拋物线的开口越大.1.布置作业:教材“习题2.2”中第1、2题.2.成练习册中本课时的练习.本节课的教学过程的设计符合新课程标准和课程改革的要求,通过教学情景创设和优化课堂教学设计,体现了在活动中学习数学,在活动中“做数学”,并利用教具使教学内容形象、直观并具有亲和力,极大地调动了学生的学习积极性和热情,培养了学生学习数学的兴趣.教学过程始终坚持让学生自己去动脑、动手、动口,在分析、练习基础上掌握知识.整个教学过程都较好地落实了“学生的主体地位和教师的主导作用”,让学生体会到学习成功的乐趣.第2课时二次函数y=ax2+c的图象与性质【知识与技能】1.使学生能利用描点法正确作出函数y=x2+2与y=x2-2的图象.2.理解二次函数y=ax2+c的性质及它与函数y=ax2的关系.【过程与方法】让学生经历二次函数y=ax2+c性质探究及性质应用的过程.【情感态度】培养学生动手操作的能力及归纳总结与灵活应用知识的能力.【教学重点】理解二次函数y=ax2+c的性质及它与函数y=ax2的关系【教学难点】理解二次函数y=ax2+c的性质及它与函数y=ax2的关系一、情景导入,初步认知1.二次函数y=x2的图象是,它的开口向,顶点坐标是;对称轴是,在对称轴的左侧y 随x的增大而,在对称轴的右侧y随工的增大而,函数y=x2在x= 时,取最值,其最值是 .2.二次函数y=x2十2的图象与二次函数y=x2的图象开口方向、对称轴和顶点坐标是否相同?【教学说明】巩固旧知,引出新知识.二、思考探究,获取新知问题1对于前面提出的第2个问题,你将采取什么方法加以研究?问题2你能在同一直角坐标系中,画出函数y=x2与y=x2+2的图象吗?【教学说明】先让学生回顾二次函数画图的三个步骤,按照画图步骤画出函数图象.观察所画图象,有什么异同?它们的开口方向、对称轴、顶点坐标是什么?【归纳结论】函数y=x2+2的图象上的点都是由函数y=x2的图象上的相应点向上移动了两个单位.完成下表:三、运用新知,深化理解1.(1)函数y=4x2+5的图象可由y=4x2的图象向平移单位得到;(2)y=4x2-11的图象向平移个单位得到.2.将函数y=-3x2+4的图象向平移个单位可得y=-3x2的图象;将y=2x2-7的图象向平移个单位得到可y=2x2的图象;将y=x2-7的图象向平移个单位可得到y=x2+2的图象.3.拋物线y=-3x2+5的开口向,对称轴是,顶点坐标是,在对称轴的左侧,y随x的增大而,在对称轴的右侧y随x的增大而,当x= 时,取得最值,这个值等于 .4.拋物线y=7x2-3的开口向,对称轴是,顶点坐标是,在对称轴的左侧y随x的增大而,在对称轴的右侧,y随x的增大而,当x = 时,取得最值,这个值等于 .5.拋物线y =ax2+c与y=3x2的形状相同,且其顶点坐标是(0,1),则其表达式为 .解:1.(1)上 5 (2)下 112.下 4 上 7 上 93.下 y轴(0,5)增大减小 0 大 54.上 y轴(0,-3)减小增大 0 小 -35.y=3x2+1【教学说明】以上5题,是对本节课的知识点的复习巩固,让学生自主完成,教师做强调.四.师生互动,课堂小结本节课你有何收获?本节课你有何疑问1.布置作业:教材“习题2.3”中第1、2题.2.完成练习册中本课时的练习.函数的教学,尤其二次函数是学生普遍感觉较为抽象难懂的知识.在教学过程中,除了让学生多动手画图象,加深学生对函数图象的了解,加深他们对函数性质的了解外,更重要的是让学生参与到函数图象和性质的探索中去.要利用一切可以利用的材料来帮助学生理解所学的知识.本节中通过表格上函数值的变化让学生猜想函数图象的位置变化,给学生留下较深刻的印象,普遍能较好的掌握图象的平移规律.第3课时 二次函数y=a (x-h )2的图象与性质【知识与技能】会画出y=a(x-h)2这类函数的图象,掌握这类函数的性质.【过程与方法】学生能通过图象的观察,对比分析发现规律,从而归纳性质.【情感态度】锻炼学生的观察、分析、归纳能力.【教学重点】掌握y=a(x-h)2的性质.【教学难点】掌握y=a(x-h)2的性质.一、情景导入,初步认知我们已经了解到,函数y=ax 2+c 的图象, 可以由函数y=ax 2的图象上下平移所得,那么函数2122y x =-()的图象,是否也可以由函数212y x = 平移而得到呢? y=a(x-h)2的图象是如何得到的呢?画图试一试,你能从中发现什么规律吗?【教学说明】小组代表阐述本组的观点,全班交流,并提出本组的疑难问题,小组互助讨论.教师在学生发言的基础上补充并展示.二、思考探究,获取新知探究1:在同一直角坐标系中,画出下列函数的图象.212y x =,21+12y x =(),21-12y x =()并指出它们的开口方向、对称轴和顶点坐标.观察并归纳,它们的图象有什么规律?【归纳结论】由抛物线212y x =向左、向右平移一个单位得到的抛物线分别是21+12y x =(),21-12y x =() 【教学说明】通过作图,训练学生动手操作的能力.通过观察、讨论、交流,培养学生的观察能力、思维能力、归纳能力等.三、运用新知,深化理解1.函数y=ax 2与y=a(x —2)(a <0)函数在同一坐标系里的图象大致是 .解析:根据a 的正负性确定它们的性质.答案:D2.二次函数y=2(x —1)2的图象可由y=2x 2的图象( )得到A.向左平移1个单位长度B.向左平移2个单位长度C.向右平移1个单位长度D.向右平移2个单位长度解析:左右平移是A的值发生改变.答案:C【教学说明】应用所学,加深理解,巩固新知.四、师生互动,课堂小结1.二次函数y=a(x-h)2的图象与性质.2.平移的方法.1.布置作业:教材“习题2. 4”中第1题(2)、(6)2.完成练习册中本课时的练习.本节课主要是通过让学生自主学习,动手操作获取经验,并从中获得知识,本节课教师主要处于引导地位,让学生充当学习的主人,较好地体现了学生学习的主动性.第4课时二次函数y=a(x-h)2+k的图象与性质【知识与技能】会画出y=a(x-h)2+k这类函数的图象,掌握这类函数的性质.【过程与方法】学生能通过图象的观察,对比分析发现规律,从而归纳性质.【情感态度】锻炼学生的观察、分析、归纳能力.【教学重点】掌握y=a(x-h)2+k 的性质.【教学难点】掌握y=a(x-h)2+k 的性质.一、情景导入,初步认知上一节课,我们已经了解到,函数y=a(x-h)2的图象,可以由函数y=ax 2的图象左右平移所得,那么y=a(x-2)2+2的图象,是否也可以由函数y=ax 2平移得到呢?y=a(x-h)2+k 的图象是如何得到的呢?画图试一试, 你能从中发现什么规律?【教学说明】小组代表阐述本组的观点,全班交流,并提出本组的疑难问题,小组互助讨论.教师在学生发言的基础上补充并展示.二、思考探究,获取新知探究1在同一直角坐标系中,画出下列函数的图象.212y x =,21-12y x =(),21-1-22y x =(),并指出它们的开口方向、对称轴和顶点坐标.观察三个图象之间的关系.【归纳结论】由抛物线212y x =向右平移一个单位可得到抛物线21-12y x =(),再向下平移2个单位可得到21-1-22y x =(). 探究2:请依据探究1中的发现,说说拋物线y=a(x-h)2+h 是由拋物线y=ax 2通过怎样的平移得到的?并说说它的对称轴和顶点坐标.【归纳结论】 二次函数的图象的上下平移,只影响二次函数y=a(x-h)2+h 中k 的值;左右平移,只影响h 的值.在y=a(x-h)2+h 中:(1)当a >0时,开口向上;当a <0时,开口向下;(2)对称轴是直线x=h ;(3)顶点坐标为(h ,k ).【教学说明】通过作图,训练学生动手操作的能力.通过观察、讨论、交流,培养学生的观察能力、思维能力、归纳能力等.三、运用新知,深化理解1.拋物线y=-3(x-2)2+4的开口方向、对称轴、顶点坐标分别为( )A.开口向下,对称轴为x=-2,顶点坐标为(-2,4)B.开口向上,对称轴为x=2,顶点坐标为(2,4)C.开口向上,对称轴为x=2,顶点坐标为(2,-4)D.开口向下,对称轴为x=2,顶点坐标为(2,-4)解析:根据y=a(x-h)2+k 的性质可得出结果.答案:D2.把拋物线212y x 向左平移1个单位长度,再向下平移1个单位,得拋物线为( )解析:二次函数的图象的上下平移,只影响二次函数y=a(x-h)2+k 中k的值;左右平移,只影响h的值.答案:B【教学说明】应用所学,加深理解,巩固新知.四、师生互动,课堂小结1.二次函数y=a(x-h)2+k的图象与性质.2.平移的方法.1.布置作业:教材“习题2.4”中第1题的(1)、(3)、(4)、(5)小题和第3题.2.完成练习册中本课时的练习.本节课主要是通过让学生自主学习,动手操作获取经验,并从中获得知识,本节课教师主要处于引导地位,让学生充当学习的主人,较好地体现了学生学习的主动性.第5课时二次函数y=ax2+bx+c的图象与性质【知识与技能】1.使学生掌握用描点法画出函数y=ax2+bx+c的图象.2.使学生掌握用图象法或配方法确定拋物线的开口方向、对称轴和顶点坐标.【过程与方法】让学生通过绘画观察二次函数y=ax2+bx+c的图象,理解二次函数y=ax2+bx+c的开口方向、对称轴和顶点坐标以及性质.【情感态度】通过建立二次函数的数学模型解决实际问题,培养学生分析问题、解决问题的能力,提高学生运用数学的意识.【教学重点】通过配方确定拋物线的对称轴、顶点坐标.【教学难点】理解二次函数y=ax2+bx+c(a≠0)的性质.一、情景导入,初步认知由前面的知识,我们知道函数y=2x2的图象,向上平移2个单位,可以得到函数y=2x2+2的图象;函数y=2x2的图象,向右平移3个单位,可以得到函数y=2(x-3)2的图象,那么函数y=2x2的图象,如何平移,才能得到函数y=2(x-3)2+2的图象呢?函数y=2(x-3)2+2具有哪些性质?【教学说明】通过这些练习题,使学生对以前的知识加以复习巩固,以便这节课的应用. 这几个问题可找层次较低的学生回答,由其它同学给予评价.二、思考探究,获取新知探究:你能确定y=-2x 2+4x+6的开口方向、对称轴、顶点坐标吗?具有哪些性质?学生讨论得到:通过配方把二次函数y=ax 2+bx+c 转化成y=a (x-h )2+c 的形式,确定拋物线y=-2x 2+4x+6的开口方向、对称轴和顶点坐标,再描点画图.解:y=-2x 2+4x+6=-2(x 2—2x)+6=-2(x 2-2x+1-1)+6=-[2(x-1)2—2]+6=-2(x —1)2+8因此,拋物线开口向下,对称轴是直线x=1,顶点坐标为(1,8). 你能从上图中总结出二次函数y=ax 2+bx+c(a ≠0)的性质吗?【归纳结论】 二次函数y=ax 2+bx+c(a ≠0)的对称轴是2b x a=-,顶点坐标是24(24b ac b a a --,)【教学说明】让学生仔细观察所画图形,相互交流得出结论.三、运用新知,深化理解1.函数y=x 2-2x+3的图象的顶点坐标是( )A.(1,-4)B.(-1,2)C.(1,2)D.(0,3)解析:方法一,直接用二次函数顶点坐标公式求.方法二:将二次函数解析式由一般形式转换为顶点式,即y=a(x- h)2+k 的形式,顶点坐标即为(h ,k ),y = x 2 - 2x + 3=(x-1)2+2,所以顶点坐标为(1,2).答案:C.2.抛物线2144y x x =-+-的对称轴是( )A. x=-2B. x=2C. x=-4D. x=4解析:直接利用公式.答案:B3.已知二次函数y=ax2+bx+c 的图象如图所示,则下列结论中,正确的是( )A. ab >0,c >0B. ab <0,c <0C. ab <0,c >0D. ab <0,c <0解析:由图象知,抛物线开口向下,∴a <0,抛物线对称轴在y 轴右侧,∴2b a- >0,又∵a <0,∴b >0,∴ab <0,抛物线与y 轴交点坐标为(0,c )点,由图知,该点在x 轴上方,∴c >0. 答案选C.4.把拋物线y=-2x 2+4x+1的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是( )A. y=-2(x-1)2+6B. y=-2(x-1)2-6C. y=-2(x+1)2+6D. y=-2(x+1)2-6解析:二次函数图象的变化.抛物线y=-2x 2+4x+1=-2(x-1)2+3的图象向左平移2个单位得到y=-2(x+1)2+3,再向上平移3个单位得到y=-2(x+1)2+ 6.答案 选C.【教学说明】应用所学,加深理解,巩固新知四、师生互动,课堂小结二次函数y=ax 2+bx+c(a ≠0)的对称轴是2b x a=-,顶点坐标是24(24b ac b a a --,).1.布置作业:教材“习题2.5”中第1、2题.2.完成练习册中本课时的练习.本节课的重点是用配方法确定拋物线的顶点和对称轴.为了学生能在较复杂的题中顺利应用配方法,教师首先出示了几个较简单的练习由学生完成,并来讨论做题思路.这样这个重点和难点也就得到了自然地突破.3 确定二次函数的表达式【知识与技能】经历确定二次函数表达式的过程,体会求二次函数表达式的思想方法,培养数学应用意识.【过程与方法】会用待定系数法求二次函数的表达式.【情感态度】逐步培养学生观察、比较、分析、概括等逻辑思维能力引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.【教学重点】求二次函数的解析式.【教学难点】求二次函数的解析式.一、情景导入,初步认知问题1如何求一次函数的解析式?至少需要几个点的坐标?问题2 你能求二次函数的解析式吗?如果要求二次函数的解析式需要几个点的坐标?【教学说明】通过类比的思想,猜想求二次函数的解析式需要坐标点的个数.二、思考探究,获取新知问题已知二次函数的图象的顶点坐标为(1,-3),且与y轴交于点(0,1),求该二次函数的表达式.分析:根据已知抛物线的顶点坐标,可设函数关系式为y=a(x-h) 2+k,再根据抛物线与y轴的交点可求出a的值.【归纳结论】这种求二次函数表达式的方法称为顶点式.三、运用新知,深化理解1.已知二次函数y=x2+bx+c的顶点坐标为〖JP〗(1,-3),则二次函数对应的表达式为()A.y=x2-2x+2B.y=x2-2x-2C.y=-x2-2x+1D.y=x2-2x+1答案:B2.已知二次函数的图象经过点(1,10),顶点坐标为(-1,-2),求这个二次函数的表达式.分析:根据二次函数的顶点坐标设二次函数的表达式为y=a(x+1)2-2,再把(1,10)代入,求出a的值,即可得出二次函数的表达式.解:设二次函数的表达式为:y=a(x+1)2-2,把(1,10)代入表达式得10=4a-2,解得a=3,则二次函数的表达式为:y=3(x+1)2-2=3x2+6x+1.3.已知二次函数图象的顶点坐标是(2,-4),它与y轴的一个交点的纵坐标为4,求二次函数的表达式.分析:根据顶点坐标公式可列出两个方程.解法1:设所求的函数表达式为y=a(x-h)2+k,依题意,得y=a(x-2)2-4因为二次函数图象与y轴的一个交点的纵坐标为4,所以二次函数图象过点(0,4),于是a(0-2)2-4=4,解得a=2.所以,所求二次函数的表达式为y=2(x-2)2-4,即y=2x2-8x +4.【教学说明】凡是能用“顶点式”确定的,一定可用“一般式”确定,进一步明确两种表达式只是形式的不同而没有本质的区别;在做题时,不仅会使用已知条件,同时要养成挖掘和运用隐含条件的习惯.四、师生互动,课堂小结二次函数y=ax2+bx+c可化成y=a(x-h)2+k,顶点坐标是(h,k).如果已知顶点坐标,那么再知道图象上另一点的坐标,就可以确定这个二次函数的表达式.1.布置作业:教材“习题2.6”中第1题.2.完成练习册中本课时的练习.本课时从确定二次函数的表达式需要几个条件这个问题展开讨论,类比确定一次函数表达式的方法,引导学生思考、归纳确定二次函数表达式的方法.3 确定二次函数的表达式【知识与技能】学会运用待定系数法求二次函数表达式,熟练应用已知图象上三个点确定二次函数表达式.【过程与方法】进一步讨论确定二次函数表达式的方法,总结、归纳确定二次函数表达式的条件.【情感态度】培养学生合作学习、大胆创新的意识.【教学重点】求二次函数的解析式.【教学难点】求二次函数的解析式.一、情景导入,初步认知问题已知二次函数y=ax2+bx+c图象上的三个点,可以确定这个二次函数的表达式吗?【教学说明】采用启发性教学模式引导学生思考.二、思考探究,获取新知问题1.已知二次函数的图象经过点A(0,-1)、B(1,0)、C(-1,2),求这个二次函数的表达式分析:可设函数关系式为y=ax2+bx+c,根据二次函数的图象经过三个已知点,可得出一个关于a,b,c的三元一次方程组,从而可以求出a,b,c的值.【归纳结论】求二次函数y=ax2+bx+c的表达式,关键是确定a、b、c的值.由已知条件可列出三个方程,解此方程组,求出三个待定系数a,b,c.这种方法称为待定系数法.2.若二次函数的图象经过(0,1)、(-1,0)、(1,0)三点,求此二次函数的表达式.分析:由于已知二次函数的图象与x轴的交点坐标,则可设交点式y=a(x+1)(x-1),然后把(0,1)代入求出a的值即可解:设二次函数表达式为y=a(x+1)(x-1),把(0,1)代入得a×1×(-1)=1,解得a=-1,所以二次函数表达式为y=-(x+1)(x-1),即y=-x2+1.三、运用新知,深化理解1.已知二次函数的图象过点A(2,0),B(-1,0),与y轴交于点C,且OC=2.则二次函数的表达式为A.y=x2-x-2B.y=-x2+x+2C.y=x2-2-2或y=-x2+x+2D.y=-x2-x-2或y=x2+x+2答案:C2.已知:二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A 点坐标为(-1,0),点B(0,5),另外二次函数的图象经过点(1,8),求二次函数的表达式.分析:应用待定系数法求出a,b,c的值.解:依题意:二次函数的表达式为y=-x2+4x+53.已知二次函数图象的对称轴是直线x=2,且经过(3,1)和(0,-5)两点,求二次函数的表达式.分析:可设二次函数表达式为y=ax2+bx+c,已知两点的坐标,可列两个方程,再根据对称轴x=2,列出一个方程,则可求出a,b,c的值.因已知对称轴,故也可直接设二次函数表达式为y=a(x-2)2+k,再代入两点,即可求出a、b、c的值.解法1:设所求二次函数的解析式是y=ax2+bx+c,因为二次函数的图象过点(0,5),可求得c=-5,又由于二次函数的图象过点(3,1),且对称轴是直线x=2,可以得解法2:设所求二次函数的关系式为y=a(x-2)2+k,由于二次函数的图象经过(3,1)和(0,-5)两点,可以得到所以,所求二次函数的关系式为y=-2(x-2)2+3,即y=-2x2+8x-5.四、师生互动,课堂小结求二次函数y=ax2+bx+c的表达式,关键是确定a、b、c的值.由已知条件可列出三个方程,解此方程组,求出三个待定系数a,b,c.1.布置作业:教材“习题2.7”中第1、2题.2.完成练习册中本课时的练习.确定二次函数的关系式的一般方法是待定系数法,在选择把二次函数的关系式设成什么形式时,可根据题目中的条件灵活选择,以简单为原则.4二次函数的应用第1课时利用二次函数解决面积问题和抛物线形问题【知识与技能】经历探究解决图形的最大面积问题与抛物线形问题的过程,进一步获得利用数学方法解决实际问题的经验.【过程与方法】经历探索问题的过程,获得利用数学方法解决实际问题的经验,感受数学模型和数学应用的价值,通过观察、比较、推理、交流等过程,获得一些研究问题与合作交流的方法与经验.【情感态度】通过动手实践及同学之间的合作与交流,让学生积累经验,发展学习动力.【教学重点】。

二次函数复习集体备课

二次函数复习集体备课
关系,注意开口方向、对称轴、交点、特殊点
例2:P137例3
学法:学生先独立尝试(1),师生点评后完成(2) 方法技巧:1.正确找到题中的等量关系建立方程
2.求出a、b、c的值后根据函数图像进行取舍
小结 提炼
教法、 学法 建议
教材或《冋 步导学案》 习题增删
P1398题第二冋可直接编入9题第二冋,合为一题
教学重点
二次函数图像与系数的关系及实际应用
教学难点
二次函数图像与系数的关系及实际应用
过程设计
知识 回顾
P136知识回顾
学法:1.学生独立完成
2抽生(中下)板演3.4小题
3师生共评,梳理相关知识点.
例题 教学
例Hale Waihona Puke :P136例1学法:1.学生独立完成;
2抽生展示,叙述理由;
3.师生共评.
方法技巧:根据函数图像确定a,b,c的的性质符号及相互间的数量
变式4:在y轴上找一点M,在平面内找一点G,使得以A P、M G四 点为顶点的四边形为菱形.
注:变式训练在(3)基础上点拨方法即可
小结 提炼
二次函数存在性问题:矩形t直角三角形
菱形t等腰三角形
教法、 学法 建议
教材或《冋 步导学案》 习题增删
P135第6题可酌情处理
课题名称
二次函数复习(2)
课时
1课时
重庆市巴川中学
时间:2018.9.15中心发言人:王荣雪
课题名称
二次函数复习(1)
课时
1课时
教学重点
二次函数的图像和性质的综合应用
教学难点
二次函数的图像和性质的综合应用
过程设计
知识 回顾
P133知识回顾

数学组九年级小组集体备课(二次函数性质)

数学组九年级小组集体备课(二次函数性质)
情感态度
价值观
情感、态度与价值观:使学生懂得事物之间的必然联系,培养学生良好的学习习惯。
教学
重点
会用描点法画出二次函数y=ax2+b的图象,理解二次函数y=ax2+b的性质,理解函数y=ax2+b与函数y=ax2的相互关系是教学重点。
教学
难点
正确理解二次函数y=ax2+b的性质,理解抛物线y=ax2+b与抛物线y=ax2的关系是教学的难点。
2.二次函数y=2x2+1的图象与二次函数y=2x2的图象开口方向、对称轴和顶点坐标是否相同?
二、分析问题,解决问题
问题1:对于前面提出的第2个问题,你将采取什么方法加以研究?
问题2,你能在同一直角坐标系中,画出函数y=2x2与y=2x2+1的图象吗?
问题3:当自变量x取反映在图象上,相应的两个点之间的位置又有什么关系?
教学过程设计
教学内容及教师活动
学生活动
设计意图
一、提出问题
二次函数y=2x2的图象是____,它的开口向_____,顶点坐标是_____;对称轴是______,在对称轴的左侧,y随x的增大而______,在对称轴的右侧,y随x的增大而______,函数y=ax2与x=______时,取最______值,其最______值是______。
指导学生合作学习,自主练习,师生评价与指导。
指导学生小组验收学习效果,而后进行指导。
指导学生回顾与总结。
复习旧知,为学习新课打下基础。
板书课题,出示目标,为学生学习新课指明方向,有助于指导学生自主学习。
自主学习,合作探究,培养学生的自主学习能力。
完成教学目标,初步解决教学重点,突破教学难点。
让学生亲身体验用图象的性质,
2.你能说出函数y=ax2+k具有哪些性质

二次函数集体备课

二次函数集体备课
(三)讲解新课以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。二次函数的定义:形如y=ax2+bx+c (a≠0,a, b, c为常数)的函数叫做二次函数。巩固对二次函数概念的理解:1、强调“形如”,即由形来定义函数名称。二次函数即y是关于x的二次多项式(关于的x代数式一定要是整式)。2、在y=ax2+bx+c中自变量是x,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r>0)3、为什么二次函数定义中要求a≠0?(若a=0,ax2+bx+c就不是关于x的二次多项式了) 4、在例3中,二次函数y=100x2+200x+100中,a=100,b=200,c=100.5、b和c是否可以为零?由例1可知,b和c均可为零.若b=0,则y=ax2+c;若c=0,则y=ax2+bx;若b=c=0,则y=ax2.注明:以上三种形式都是二次函数的特殊形式,而y=ax2 +bx+c是二次函数的一般形式.【设计意图】这里强调对二次函数概念的理解,有助于学生更好地理解,掌握其特征,为接下来的判断二次函数做好铺垫。判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c.(1)y=3(x-1)²+1 (2)y=2(4x-1)2-4 (3)s=3-2t²(4)y=(x+3)²- x²(5) s=10πr²(6) y=2²+2x (8)y=x4+2x2+1(可指出y是关于x2的二次函数)【设计意图】理论学习完二次函数的概念后,让学生在实践中感悟什么样的函数是二次函数,将理论知识应用到实践操作中。
3、教学重点:对二次函数概念的理解。
4、教学难点:由实际问题确定函数解析式和确定自变量的取值范围

二次函数的复习研讨集体备课记录

二次函数的复习研讨集体备课记录

二次函数的复习研讨集体备课记录集体备课记录
备课组九年级数学组
时间2020.10.27 地点
小会议室
主持人主备教师参加人员
备课内容二次函数的复习研讨
备课过程这段时间学生在学习了二次函数的基础知识后,感觉知识比较分散,没有形成知识模块。

通过复习,了解考试动向,体会二次函数在实际中的应用。

二次函数也是某些单变量最优化问题的数学模型,对二次函数的研究将为学生进一步学习函数、体
会函数的思想奠定基础和积累经验;
1、注重从简单到复杂、从特殊到一般的探索结论。

例如:先
探索“y=ax2”“y=ax2+c”“y=a(x-h)2”“y=a(x-h)2+k”的函数图象之间的关系,再思考二次函数y=ax2+bx+c与y=a(x-h)2+k 的关系,通过配方法加以转化;
2、这部分知识要循序渐进的学习,不但让学生体会二次函数
图象及性质的关系,而且通过知识学习不断提高学习能力;
3、要注重联系学生生活实际。

二次函数与实际生活联系紧密,再讨论用二次函数解决实际问题时,要帮助学生建立数学模型,将实际问题转化为数学问题。

4、注重数形结合思想、转化思想、分类思想的渗透。

利用二次函数的图像及其位置关系,进一步探究抛物线的顶点坐标、对称轴及其变化趋势,从而解决“矩形面积”、“销售利润最大”等实际问题。

5、注意新旧知识的联系。

通过复习已学函数内容(一次函数、反比例函数),进一步了解函数的学习方式方法;通过平移、对称等图形变换理解函数图形变化
备课小结教师要注重引导同学们积极参与探究过程,在探究中逐步形成知识的迁移,理解新旧知识的关系,能够分析图像进而形成数学思维能力。

[精品教案]二次函数复习课教案

[精品教案]二次函数复习课教案

二次函数复习课教案以下是为您推荐的二次函数复习课教案,希望本篇文章对您学习有所帮助。

课题二次函数时间4月17日班级九年六班主讲人听课人教学目标知识与技能1.回忆所学二次函数的基础知识,进一步理解掌握2.灵活运用基础知识解决相关问题,提高学生解决问题的能力过程与方法1.学生自查遗忘的知识点,回答问题,提出问题。

2.经历例题习题的解答,提高技能。

3.讨论、交流,教师答疑、解惑、指导。

情感与价值渗透二次函数在实践中的运用,使学生知道学为所用,树立服务社会的思想。

重点二次函数的基础知识回忆及灵活运用。

难点知识点的灵活运用。

教具多媒体课件、杠杆、铁架台、钩码集体备课教学设计个人拓展教师活动学生活动一、基础知识回顾1.二次函数y=ax2+bx+c(a0)2.图像:抛物线;画法:描点法3.性质:二、例题1、抛物线的顶点坐标是,与x轴的交点坐标为,与y轴的交点坐标为;当x取何值时y>0;当x取何值时y<0。

2、如图平面直角坐标系中,抛物线-2x+3与y轴交于点A,P为抛物线上一点,且与点A不重合。

连接PA,以AO、AP 为邻边作平行四边形OAPQ, PQ所在直线与x轴交于点B。

设点P的横坐标为m。

(1)求点Q落在x轴上的m的值。

(2)若点Q在x轴下方,则m为何值时线段QB取最大值,求出最大值。

达标测试一、填空题:1、抛物线y=2x2+x-3与x轴有交点。

他们的坐标为。

2、顶点是(-2,0)开口方向、形状与抛物线相同的抛物线是。

3、如图是抛物线y=ax2+bx+c(a0)图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,0),则由图像可知不等式ax2+bx+c﹤0的解集是。

4、如图二次函数+bx+c的图像经过A(2,0)B(0,-6)两点(1)求二次函数解析式;(2)设该二次函数的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积。

5、如图平行四边形ABCD中,AB=4,点D的坐标是(0,8),以点C为顶点的抛物线y=ax2+bx+c经过A,B。

二次函数复习课教案精选全文完整版

二次函数复习课教案精选全文完整版

可编辑修改精选全文完整版《二次函数》复习课教案一、课标要求二、命题分析三、复习目标:知识目标:1、了解二次函数解析式的三种表示方法;2、抛物线的开口方向、顶点坐标、对称轴以及抛物线与对称轴的交点坐标等;3、掌握二次函数的图像和性质以及抛物线的平移规律技能目标:培养学生运用函数知识解决数学综合题和实际问题的能力。

情感目标:1、通过问题情境和探索活动的创设,激发学生的学习兴趣;2.让学生感受到数学与人类生活的密切联系,体会到学习数学的乐趣。

复习重、难点:函数综合题型复习方法:自主探究、合作交流四、复习过程:(一)、二次函数的定义•定义: y=ax²+ bx + c ( a 、 b 、 c 是常数, a ≠ 0 )•定义要点:①a ≠ 0 ②最高次数为2•③代数式一定是整式•练习:1、y=-x²,y=2x²-2/x,y=100-5 x²,•y=3 x²-2x³+5,其中是二次函数的有____个。

2.当m_______时,函数y=(m+1)χm^2-m - 2χ+1是二次函数?(二)、二次函数的图像及性质1、填表:2、二次函数y=ax+bx+c,当a>0时,在对称轴右侧,y随x的增大而,在对称轴左侧,y随x的增大而;当a<0时,在对称轴右侧,y随x的增大而 , 在对称轴左侧,y随x的增大而3、抛物线y=ax2+bx+c,当a>0时图象有最点,此时函数有最值;当a<0时图象有最点,此时函数有最值4、巩固练习:已知二次函数y=x2+2x-3 的图象是一条,它的开口方向,顶点坐标是,对称轴是,它与x 轴有个交点,交点坐标是;在对称轴的左侧,y 随着x 的增大而;在对称轴的右侧,y随着x的增大而;当x= 时,函数y 有最值,是.(三)、二次函数解析式的三种表示方法:1、(1)顶点式:(2)交点式:(3)一般式:2、求抛物线解析式的三种方法:(1)、一般式:已知抛物线上的三点,通常设解析式为________________(2)、顶点式:已知抛物线顶点坐标(h, k),通常设抛物线解析式为_______________ 求出表达式后化为一般形式.(3)、交点式:已知抛物线与x 轴的两个交点(x 1,0)、 (x 2,0),通常设解析式为_____________求出表达式后化为一般形式.3、例1、已知二次函数y=ax 2+bx+c 的最大值是2,图象顶点在直线y=x+1上,并且图象经过点(3,-6)。

(教案)二次函数图象和性质复习教案(共五篇)

(教案)二次函数图象和性质复习教案(共五篇)

(教案)二次函数图象和性质复习教案(共五篇)第一篇:(教案)二次函数图象和性质复习教案《二次函数的图象和性质》复习课教案海洲初级中学初三数学备课组内容来源:初中九年级《数学(上册)》教科书教学内容:二次函数图像与性质复习课时:两课时教学目标:1.根据二次函数的图象复习二次函数的性质,体会配方、平移的作用以及在解决相关问题的过程中进一步体会数形结合的数学思想。

2.会利用二次函数的图象判断a、b、c的取值情况。

3.在解决二次函数相关问题时,渗透解题的技巧和方法,培养学生的中考意识。

教材分析:二次函数是学生在中学阶段学习的第三种函数,是中考的重要考点之一,它与学生前面所学的一元二次方程有密切的联系,也是初中数学与高中数学的一个知识的交汇点。

本节课通过二次函数的图象和性质的复习,从特殊到一般,再由普遍的一般规律去指导具体的函数问题,加深学生对函数图象和性质之间的联系,构建知识网络体系,发展技能,归纳解题方法,让学生在练习中体会数形结合思想。

学情分析学生具有初步的、零散的关于二次函数的图象和性质的知识基础,但是还没有形成系统的知识体系,缺乏解决问题有效的、系统的方法,解决问题办法单一,较难想到运用函数的图象解决问题。

本节课针对班级学生特点采取小组合作进行教学,通过小组的交流、讨论和展示,提高学生学习的积极性和有效性。

通过本节课的学习使学生把函数的图象和性质紧密联系在一起,掌握解决一类问题的常用方法。

教学过程一、旧知回顾1、已知关于x的函数y=2、已知函数y=-2x-2,化为y=a+3x-4是二次函数,则a的取值范围是.+k的形式:此抛物线的开口向,对称轴为,顶点坐标;当x= 时,抛物线有最值,最值为;当x 时,y随x的增大而增大;当x 时,y随x的增大而减少。

3、二次函数y=-3的图象向右平移1个单位,再向上平移3个单位,所得到抛物线的解析式为4、若二次函数y=2x+m的图象与x轴有两个交点,则m的取值范围是5、抛物线的顶点在(-1,-2)且又过(-2,-1),求该抛物线的解析式。

二次函数集体备课材料

二次函数集体备课材料

二次函数集体备课材料本章教材分析 教学目标:1.经历探索分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.2.用表格、表达式、图象表示变量之间的二次函数关系,并能根据集体问题,选取适当的方法表示之间的二次函数关系.3.会作二次函数的图象,并能根据图象对二次函数的性质进行分析,逐步积累研究函数性质的经验.4.能根据二次函数的表达式确定二次函数的开口方向、对称轴和顶点坐标.5.理解一元二次方程与二次函数的关系,并能利用图象法求一元二次方程的近似根,提高学生的估算能力. 教学重点1.掌握二次函数的定义.2.会用三种方式表示二次函数,并能互相转化.3.会求抛物线的对称轴和顶点坐标,并能利用顶点坐标解决一些简单的实际问题. 利用图象法求一元二次方程的近似根.4.利用二次函数知识解决实际问题. 教学难点:1. 能把)0(2≠++=a c bx ax y 化为2()y a x h k =-+的形式,并能利用顶点坐标解决实际问题.2. 把实际问题转化为数学问题,利用数学知识解决实际问题. 二、各节知识点分析: §2.1二次函数所描述的关系 知识点1.探索并归纳二次函数的定义.2.能够表示简单变量之间的二次函数的关系. 能力训练1. 经历探索、分析和建立两个变量之间的二次函数的关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系. 2. 能够表示简单变量之间的二次函数的关系. 3. 能够利用尝试求值的方法解决实际问题.§2.2 结识抛物线 知识点1.能够运用描点法作出函数2x y =的图象;能根据图象认识和理解二次函数2x y =的性质.2.猜想并能作出2x y -=的图象,能比较它与2x y =的图象的异同. 能力训练1.经历探索二次函数的图象的作法和性质的过程,获得利用图象研究函数性质的经验.2.由函数2x y =的图象及性质,对比地学习2x y -=的图象和性质,并能比较出它们的异同点,培养学生的类比学习能力和发展学生的求同求异思维.3.能够利用尝试求值的方法解决实际问题.§2.3二次函数c ax y +=2的图象 知识点1.能作出函数2ax y =和c ax y +=2的图象;并研究它们的性质.2.能比较2ax y =和c ax y +=2的图象与2x y =的异同.理解a 与c 对二次函数图象的影响. 能力训练1.经历探索二次函数2ax y =和c ax y +=2的图象的作法和性质的过程,获得将表格、表达式、图象三者联系起来的经验.2.通过2ax y =,c ax y +=2与2x y =的图象及性质比较,培养学生的比较、鉴别能力.§2.4二次函数c bx ax y ++=2的图象 知识点1.经历探索二次函数c bx ax y ++=2的图象作法和性质的过程.2.能够作出2)(h x a y -=和k h x a y +-=2)(的图象,并能理解它与2ax y =的关系,理解a 、h 、k 对二次函数图象的影响.3.能正确说出k h x a y +-=2)(的图象的开口方向、对称轴和顶点坐标 4.体会建立二次函数对称轴和顶点坐标公式的必要性. 5.能够运用二次函数的对称轴和顶点坐标公式解决问题. 能力训练1. 通过自己的探索活动,对二次函数性质的研究,达到对抛物线自身特点的认识和对二次函数性质的理解, 培养学生的探索能力.2.通过解决实际问题,培养学生把数学知识运用于实践的能力.3.通过学生合作交流来解决问题,培养学生合作交流的能力. §2.5用三种方式表示二次函数 知识点1.能够分析和表示变量之间的二次函数,并解决用二次函数所表示的问题. 2.能够根据二次函数的不同表示方式,从不同侧面对函数性质进行研究. 3.经历用三种方式表示变量之间二次函数关系的过程,体会三种方式之间的联系与各自不同的特点. 能力训练1.通过解决用二次函数所表示的问题, 培养学生的运用能力.2.通过对二次函数的三种方式的特点进行研究,训练大家的求同求异思维. §2.6何时获得最大利润 知识点1.体会二次函数是一类最优化问题的数学模型,感受数学的应用价值. 2.掌握实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大值、最小值. 能力训练经历销售中最大利润问题的探究过程,让学生认识数学与人类生活的密切联系及对人类历史发展的作用,发展学生运用数学知识解决实际问题的能力. §2.7最大面积是多少知识点学会分析和表示不同背景下实际问题中的变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大值、最小值.能力训练1.通过分析和表示不同背景下实际问题中的变量之间的二次函数关系,培养学生的分析判断能力.2.通过运用二次函数知识解决实际问题,培养学生的数学应用能力.§2.8 二次函数与一元二次方程知识点1.经历探索二次函数与一元二次方程的关系的过程,体会二次函数与方程之间的联系;2.理解二次函数图象与x轴交点的个数与一元二次方程的根的个数之间的关系,及何时方程有两个不等的实根,两个相等的实根和没有实根;3.理解一元二次方程的根就是二次函数y=h(h是实数)图象交点的横坐标.4.能够利用二次函数的图象求一元二次方程的近似根;5.进一步发展估算能力.能力训练1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神;2.通过观察二次函数图象与x轴交点的个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想;3.通过学生共同观察和讨论,培养大家的合作交流意识.4.经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根体验;5.利用图象法求一元二次方程的近似根,重要的是让学生懂得这种求解方程的思路,体验数形结合思想.集体备课思考问题:§2.1.函数y=-5x2+100x+60000中,如何确定到底取何值能使y取到最大值?课本给出表格让学生探索,等于让学生沿着教师的思维进行思考和探究,这样做限制了学生的思维,使学生失去了自己探索的空间,不能全身心地投入数学学习.从本节的教后反馈来看,不借助上述的表格,放手让学生自主探索,学生完全能找到解决问题的办法.通过探究的过程,既培养了学生的观察能力,也回顾了学生已有的知识.§2.4二次函数c+=2的图象axbxy+y=3x2-6x+5进行配方化为y=3(x-1)2+2的形式. 此处的处理感觉很不自然,让学生完成课本P46的表格.不是全部校对,在回答到x=-1时,y=12时,让学生不急着给出下面的答案,先让学生思考从表格中发现了什么,学生很快的发现第三排的值刚好是把第二排的值向右平移一个单位.由此猜想当x=0时,y=3.然后引导学生验算.发现刚好相等.继续完成表格的第三排的函数值,发现都有相同的特点.此处的设计是要让学生学会观察,从表格里发现函数图象的平移.通过学生的描点、连线、并观察发现确实符合自己的猜想.经历这样的研究过程学生能形成较为深刻的印象,教师进行对比教学,总结出口诀“上左加下右减,位变形不变”便于学生记忆.2.7最大面积是多少对引例的处理(1)先利用几何画板的动画和计算功能让学生明确了随着x的变化y的值也发生了变化,并且可以看出最大值为3.当AB和AD的长度很接近的时候.面积会变大.当B是AF的中点的时候面积最大.猜想后,用计算来说明问题,列出y关于x的关系式,并求出面积y的最大值.发现当矩形ABCD面积取得最大值的时候点B、D、C分别是各边的中点.(2)用几何知识解决:当AB=2时,y的最大值为3,此时AD=1.5.在线段EF上是否只存在一个点C使得矩形的面积最大?应该有另一个位置,即当AB=1.5,AD=2时此时矩形的面积y=3也为最大.当AB=2,AD=1.5时y=AB×AD=2×1.5=3.那当然就应该存在另一种可能即当AB=1.5,AD=2时y=AB×AD=1.5×2=3.事实上本题却不然.当AB=1.5时,AD的值应该是15/8.从而发现第二种情况事实上是不发生的.其实y是x的二次函数,而我们知道通常情况二次函数的最大值出现在顶点的位置,而顶点只有一个.问题4 关于二次函数的解析式课本并没有系统讲解二次函数的解析式.但是我们认为新课标所提出的要求应该是对学生的最低要求,它并不反对教师结合学生的实际对教材的重新处理.学习二次函数的解析式的确立对前面所学的二次函数顶点的知识可以加深印象.提供3个练习教学过程参考1、如果二次函数y=ax2+bx+c的图象的顶点坐标为(-2,4),且经过原点,试确定a,b,c的值.2、变式一:如果二次函数y=ax2+bx+c的图象经过原点,当x=-2时,函数的最大值为4,试确定a,b,c的值.3、变式二:如果二次函数y=ax2+bx+c的图象经过原点,对称轴是直线x=2,函数的最大值为4,试确定a,b,c的值.二次函数练习与检测 一、填空题:1.二次函数y=3x 2-2x+1的图像是开口方向_______,顶点是________, 对称轴是__________.2.二次函数y=2x 2+bx+c 的顶点坐标是(1,-2),则b=_____,c=_____.3.二次函数y=ax 2+bx+c 中,a>0,b<0,c=0,则其图像的顶点是在第_____象限.4.如果函数y=(k-3)232kk x-++kx+1是二次函数,则k 的值一定是_______.5.二次函数y=12x 2+3x+52的图像是由函数y=12x 2的图像先向_____平移____个单位,再向_____平移_____个单位得到的.6.已知二次函数y=mx 2+(m-1)x+m-1的图像有最低点,且最低点的纵坐标是零,则m=_______.7.已知二次函数y=x 2-2(m-1)x+m 2-2m-3的图像与函数y=-x 2+6x 的图像交于y 轴一点,则m=_______. 8.如图所示,已知抛物线y=ax 2+bx+c 的图像, 试确定下列各 式的符号:a____0,b____0,c_____0;a+b+c_____0,a-b+c_____0.9.函数y=(x+1)(x-2)的图像的对称轴是______,顶点为________. 二、解答题:10.当一枚火箭被竖直向上发射时,它的高度h(m)与时间t(s)的关系可以用 h= -5t 2+150t+10表示,经过多长时间,火箭到达它的最高点?最高点的高度是多少?11.抛物线y=x 22的顶点在直线y=2上,求a 的值.12.如图所示,公园要造圆形的喷水池, 在水池中央垂直于水面处安装一个柱子OA,O恰在水面中心,OA=1.25m,由柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物线路线落下,为使水流形状较为漂亮,要求设计成水流在离OA距离为1m处达到距水面距离最大,高度2.25m.若不计其他因素, 那么水池的半径至少要多少米才能使喷出的水流不致落到池外?AO13.某农场种植一种蔬菜,销售员根据往年的销售情况,对今年这种蔬菜的销售价格进行了预测,预测情况如图,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系,观察图像,你能得到关于这种蔬菜的哪些信息?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变式4:在y轴上找一点M,在平面内找一点G,使得以A、P、M、G四点为顶点的四边形为菱形.
注:变式训练在(3)基础上点拨方法即可
小结提炼
二次函数存在性问题:矩形→直角三角形
菱形→等腰三角形
教法、
学法
建议
教材或《同步导学案》习题增删
P135 第6题可酌情处理
课题名称
二次函数复习(2)
课时
1课时
教学重点
P133例1
学法:1.学生独立完成前两问,尝试第三问;
2.抽生展示第二问,第三问求PF的最大值
3.师生共评,点拨方法
方法技巧:直角三角形存在性问题常用方法:设出坐标,利用勾股定理建立方程求解
变式1:当APC面积最大时,求点P的坐标;
变式2:在y轴上是否存在点M,使得APM是等腰三角形;
变式3:在y轴上找一点M,在平面内找一点G,使得以A、P、M、G四点为顶点的四边形为矩形.
例2:P137例3
学法:学生先独立尝试(1),师生点评后完成(2)
方法技巧:1.正确找到题中的等量关系建立方程
2.求出a、b、c的值后根据函数图像进行取舍
小结提炼
教法、
学法
建议
教材或《同步导学案》习题增删
P139 8题第二问可直接编入9题第二问,合为一题
重庆市巴川中学2019级数学组集体备课教案
时间:中心发言人:王荣雪
课题名称
二次函数复习(1)
课时
1课时
教学重点
二次函数的图像和性质的综合应用
教学难点
二次函数的图像和性质的综合应用
过程设计
知识回顾
P133知识回顾
学法:1.学生独立完成;
2.抽生(中下)展示,叙述理由;
3.师生共评,梳理相关知识点.
例题教学
二次函数图像与系数的关系及实际应用
教学难点
二次函数图像与系数的关系及实际应用
过程设计
知识回顾
P136知识回顾
学法:1.学生独立完成
2抽生(中下)板演小题
3师生共评,梳理相关知识点.
例题教学
例1:P136例1
学法:1.学生独立完成;
2定a,b,c的的性质符号及相互间的数量关系,注意开口方向、对称轴、交点、特殊点.
相关文档
最新文档