微积分一教学大纲

合集下载

(完整版)同济大学高等数学上第七版教学大纲(64学时)

(完整版)同济大学高等数学上第七版教学大纲(64学时)

福建警察学院《高等数学一》课程教学大纲课程名称:高等数学一课程编号:学分:4适用对象:一、课程的地位、教学目标和基本要求(一)课程地位高等数学是各专业必修的一门重要的基础理论课程,它具有高度的抽象性、严密的逻辑性和应用的广泛性,对培养和提高学生的思维素质、创新能力、科学精神、治学态度以及用数学解决实际问题的能力都有着非常重要的作用。

高等数学课程不仅仅是学习后继课程必不可少的基础,也是培养理性思维的重要载体,在培养学生数学素养、创新意识、创新精神和能力方面将会发挥其独特作用。

(二)教学目标通过本课程的学习,逐步培养学生使其具有数学运算能力、抽象思维能力、空间想象能力、科学创新能力,尤其具有综合运用数学知识、数学方法结合所学专业知识去分析和解决实际问题的能力,一是为后继课程提供必需的基础数学知识;二是传授数学思想,培养学生的创新意识,逐步提高学生的数学素养、数学思维能力和应用数学的能力。

(三)基本要求1、基本知识、基本理论方面:掌握理解极限和连续的基本概念及其应用;熟悉导数与微分的基本公式与运算法则;掌握中值定理及导数的应用;掌握不定积分的概念和积分方法;掌握定积分的概念与性质;掌握定积分在几何上的应用。

2、能力、技能培养方面:掌握一元微积分的基本概念、基本理论、基本运算技能和常用的数学方法,培养学生利用微积分解决实际问题的能力。

二、教学内容与要求第一章函数与极限【教学目的】通过本章学习1、理解函数的概念,了解函数的几种特性(有界性),掌握复合函数的概念及其分解,掌握基本初等函数的性质及其图形,理解初等函数的概念。

2、理解数列极限的概念、掌握数列极限的证明方法、了解收敛数列的性质。

3、理解函数极限和单侧极限的概念,掌握函数极限的证明方法、理解极限存在与左、右极限之间的关系,了解函数极限的性质。

4、理解无穷小和无穷大的概念、掌握无穷大和无穷小的证明方法。

5、掌握极限运算法则。

6、了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。

微积分教学大纲

微积分教学大纲

微积分教学大纲
I. 前置知识
1. 代数基础:变量、方程、不等式、函数、图像、复合函数、反函数、指数与对数、三角函数、向量
2. 几何基础:平面与空间直角坐标系、几何图形的性质、三角形、圆、直线、平面曲线
II. 导数与微分
1. 导数的概念及其意义:导数的定义、导数与函数的关系、导数的几何意义、导数的物理意义
2. 导数与微分的关系:微分的定义、微分与导数的关系、微分的应用
3. 导数的计算:基本导数公式、导数的四则运算、复合函数的求导、高阶导数、隐函数的导数、参数方程的导数、相关变化率问题
III. 积分与不定积分
1. 积分的概念及其意义:积分的定义、积分与函数的关系、积分的几何意义、积分的物理意义
2. 不定积分:不定积分的定义、基本初等函数的积分、换元法、分部积分法、有理函数的积分、三角函数的积分、反常积分的定义与应用
3. 定积分:定积分的定义、积分中值定理、牛顿-莱布尼茨公式、定积分的几何意义、定积分的物理应用、定积分的计算、变限积分、广义积分
IV. 微积分应用
1. 微积分在几何中的应用:一阶导数与函数性质、二阶导数与函数曲率、微积分中值定理的应用、微积分与极值问题、微积分与曲线绘制
2. 微积分在物理中的应用:速度、加速度与微积分、微积分与质量、微积分与重心
3. 微积分在工程与经济学中的应用:微积分在工程设计中的应用、微积分在经济学中的应用
V. 总结与拓展
1. 总结微积分的主要内容与应用
2. 谈论微积分的一些现代拓展领域,如微分方程、向量微积分、多元微积分等
3. 为学生提供拓展学习的资源和建议。

微积分课程教学大纲

微积分课程教学大纲

《微积分》课程教学大纲一、使用说明(一)课程性质《微积分》是高等学校财经、管理类专业核心课程经济数学基础之一,它有着深刻的实际背景,在自然科学、社会科学、工程技术、军事和工农业生产等领域中有广泛的应用。

微积分作为一学年的课程,是为财经类、管理类等非数学专业本科生开设的,制定大纲的原则是具有一定数学基础的学生对该领域的基础知识、背景有所了解,为进一步学习专业课打下坚实的基础。

(二)教学目的通过本课程的学习,使学生较好地掌握微积分特有的分析思想,并在一定程度上掌握利用微积分认识问题、解决问题的方法;对微积分的基本概念、基本方法、基本结果有所了解,并能运用其手法解决实际问题中的简单课题。

(三)教学时数本课程共132学时,8学分。

(四)教学方法采用课堂讲授、多媒体课件等方法和形式。

(五)面向专业经济学、管理学所有本科专业。

二、教学内容第一章函数(一)教学目的与要求[教学目的]使学生正确理解函数的定义。

理解函数的各种表示法,特别是分析表示法。

了解函数的几何特性及图形特征,了解反函数、复合函数概念。

熟练掌握基本初等函数的性质及图形,掌握初等函数的结构并能确定其定义域,能列出简单的实际问题中的函数关系。

[基本要求]1、理解实数与实数的绝对值的概念。

2、理解函数、函数的定义域和值域,熟悉函数的表示法。

3、了解函数的几何特性并掌握各几何特性的图形特征。

4、了解反函数概念;知道函数与其反函数的几何关系;给定函数会求其反函数。

5、理解复合函数的概念;了解函数能构成复合函数的条件;掌握将一个复合函数分解为较简单函数的方法。

6、基本初等函数及定义域、值域等概念;掌握基本初等函数的基本性质。

7、了解分段函数的概念。

8、会建立简单应用问题的函数关系。

(二)教学内容函数的定义,函数的几何特性,反函数,复合函数,初等函数,经济中的常用函数。

教学重点:1、五个基本初等函数的分析表达式、定义域、值域及其图形。

2、初等函数的概念,复合函数的复合步骤的分解方法。

《高等数学B-微积分一》本科教学大纲

《高等数学B-微积分一》本科教学大纲

《高等数学B-微积分(一)》本科教学大纲课程编号:上海立信会计金融学院《高等数学B—微积分(一)》课程教学大纲一、课程基本信息课程名称:高等数学B-微积分(一)英文名称:Advanced Mathematics (B)-Calculus Ⅰ课程编号:课程类别:长学段-专业必修课预修课程:初等数学开设部门:统计与数学学院适用专业:经管类专业(本科)学分:4总课时:60学时其中理论课时:60学时,实践课时:0学时二、课程性质、目的微积分是经济管理类本科专业的学科专业课。

本课程的教学目的是使学生掌握经济管理学科所需的微积分基础知识,学会应用变量数学的方法分析研究经济现象中的数量关系,同时通过本课程的教学,培养学生的抽象思维和逻辑推理能力,为后继课程的学习和将来进一步的专业发展打好扎实必要的数学基础。

思政元素融入课程,引导学生树立正确的科学观,培养学生科学理性思维能力、创新思维能力、独立思考能力,解决实际问题能力,培养探索未知、追求真理、勇攀科学高峰的责任感和使命感;引导学生树立正确的人生观和价值观,了解数学发展史和数学文化,提升数学素养、弘扬中华文明、培养民族文化自信,以精神文明为切入点,科学育人、文化育人。

在大纲中,概念、理论方面用“理解”表述,方法、运算方面用“掌握”表述的内容,应该使学生深入领会和掌握,并能熟练运用;概念理论方面用“了解”表述,方法、运算方面用“熟悉”表述的内容,也是必不可少的,只是在教学要求上低于前者。

三、教学内容、基本要求、课时分配四、课程考核考核方式:考试;期末考核形式:课程试卷闭卷(教考分离);题型:填空、选择、计算、证明题和应用题等;课程类别:■必修(考试)课程□除体育类、短学段开设、实践教学类以外的必修(考查)课程□选修课程□体育类必修(考查)课程□短学段开设的必修(考查)课程□实践教学类必修(考查)课程平时成绩占50 %,期末成绩占50 %(见下表)。

平时成绩考核项目参照表平时成绩考核评定依据与标准:1. 课堂表现(含考勤):随机抽查考勤、课堂提问、参与讨论等20次,每次5分,满分100分,按20%的比例记入平时成绩;2. 课外作业:作业共收15次,随机抽10次记分,每次满分10分,满分100分,按30%的比例记入平时成绩;3. 阶段测验:在学期1/4和3/4节点处各安排1次阶段测验,每次满分100分,取两次成绩平均分,按30%的比例记入平时成绩;4. 期中测验:在学期1/2节点处安排1次期中测验,满分100分,按20%的比例记入平时成绩。

高等数学一教学大纲

高等数学一教学大纲

高等数学一教学大纲一、课程简介高等数学一是理工科专业的一门核心数学课程。

本课程旨在为学生提供基础的数学理论和方法,培养学生的数学思维能力和解决实际问题的能力。

通过学习本课程,学生将掌握微积分、方程与不等式、数列与级数等基础知识,为进一步学习高等数学二打下坚实的基础。

二、课程目标1. 培养学生的抽象思维和逻辑推理能力,使其具备解决数学问题的能力;2. 培养学生的数学模型建立和运用能力,使其能够将数学知识应用于实际问题的解决;3. 培养学生的数学推理和证明能力,使其具备严密的数学思维和分析问题的能力;4. 培养学生的团队合作和沟通能力,使其能够与他人合作解决复杂的数学问题。

三、教学内容和大纲1. 微积分1.1 函数与极限1.2 连续与间断1.3 导数与微分1.4 微分中值定理1.5 不定积分1.6 定积分与积分中值定理2. 方程与不等式2.1 一元二次方程与不等式2.2 二元一次方程组2.3 二次三项式与高次方程3. 数列与级数3.1 数列的概念与性质3.2 通项公式与递推公式3.3 等差数列与等比数列3.4 级数的概念与性质3.5 收敛与发散的判定四、教学方法1. 讲授法:通过系统的理论讲解,向学生介绍各个知识点的概念、性质和定理,并讲解基本的解题思路和方法;2. 例题分析法:通过分析典型的例题,引导学生掌握解题方法和技巧,培养学生独立解题的能力;3. 练习巩固法:通过大量的练习题,让学生在实践中掌握所学知识,提高解题能力和应用能力;4. 讨论互动法:组织学生进行小组讨论和互动,促进学生彼此之间的交流与思考,加深对知识的理解和掌握。

五、考核方式1. 课堂表现:包括课堂积极参与、提问与回答等;2. 作业完成情况:完成课后作业的质量和准时程度;3. 平时测试:包括小测验、月考等;4. 期末考试:综合考核学生对课程学习内容的掌握程度。

六、教材推荐1. 《高等数学》(上册),同济大学出版社2. 《高等数学解题方法与技巧》,清华大学出版社七、学习建议1. 注重理论与实践相结合,理解知识点的同时进行大量的练习;2. 主动参与课堂,积极提问和回答问题,提高对知识点的理解深入程度;3. 组织学习小组,相互合作、讨论,互相帮助提高解题能力;4. 善于总结知识,建立起知识体系,做好复习和巩固工作;5. 利用教师提供的教学资源,积极参与相关的学术讲座和研讨会。

小学教育(数学方向)专业 《微积分》教学大纲

小学教育(数学方向)专业 《微积分》教学大纲

《微积分》课程教学大纲课程编号: 0401301 总学时: 99 总学分: 5开课学期:第1、2学期适用专业:小学教育(数学方向)大纲执笔人:大纲审核人:一、课程性质、目的与任务微积分是小学教育(数学方向)专业的一门重要的专业必修课程,它为学习专业课程和后续课程奠定必要的数学基础,它是为培养我国社会主义现代化建设所需要的高技能专门人才服务的。

通过本课程的学习,要使学生获得:1、函数极限与连续;2、一元函数微分学及应用3、一元函数积分及应用;4、常微分方程;5、多元函数微积分学及应用;6、无穷级数等方面的基本概念、基本理论和基本运算技能。

在传授知识的同时,要通过各个教学环节逐步培养学生具有抽象思维能力、逻辑推理能力、空间想象能力、运算能力和自学能力,注重培养学生数学地提出问题、分析问题和解决问题的能力,发展学生的创新意识和应用意识,提高学生的数学探究能力、数学建模能力,还要特别注意培养学生具有综合运用所学知识去分析问题和解决问题的能力。

二、课程教学的基本要求1、正确理解下列基本概念和它们之间的内在联系:函数,极限,无穷小,连续,导数,微分,极值,不定积分,定积分,偏导数,全微分,条件极值,重积分,曲线积分,曲面积分,无穷级数,微分方程。

2、正确理解下列基本定理和公式并能正确运用:极限的主要定理,罗尔定理和拉格朗日中值定理,泰勒定理,定积分作为其上限函数的求导定理,牛顿-莱布尼兹公式,格林公式,高斯公式。

3、牢固掌握下列公式:两个重要极限,基本初等函数的导数公式,基本积分公式,函数exp(x) 、sinx的麦克劳林展开式。

4、熟练运用下列法则和方法:导数的四则运算法则和复合函数的求导法,换元积分法和分部积分法,二重积分的计算法,正项级数的比值审敛法,变量可分离的方程及一阶线性微分方程的解法,二阶常系数齐次线性微分方程的解法。

5、会运用微积分和常微分方程的方法解一些简单的实际问题。

三、课程的主要内容、重点和难点1、函数、极限与连续教学内容:区间、邻域、函数、基本初等函数、初等函数;数列极限、函数极限及其性质、无穷小与无穷大、极限的运算、极限存在准则、两个重要极限、函数的连续性及其性质。

川大理工科数学I,II,III之微积分和线性代数教学大纲

川大理工科数学I,II,III之微积分和线性代数教学大纲

课程号:20113740课程名称:大学数学(I) 微积分开课学期:秋季春季(学年课)学分:秋季4 春季5先修课程:初等数学基本目的:介绍微积分的基本知识,为非数学类各专业后继课程提供基本的数学工具,初步培养学生应用数学知识分析、解决实际问题的意识与能力内容提要:一、函数与极限(约22学时)函数,函数与数列极限的定义与性质,无穷小与无穷大,无穷小比较,极限四则运算,极限存在准则与两个重要极限,函数的连续性与间断点,初等函数连续性,闭区间上连续函数性质。

二、一元函数微分学(约26学时)导数的定义与性质,基本求导方法与导数公式,微分,高阶导数,微分中值定理,泰勒公式,洛必达法则,导数的应用三、一元函数积分学(约30学时)不定积分与定积分的概念与性质,牛顿-莱布尼茨公式,换元积分法与分部积分法,定积分的应用与近似计算。

四、空间解析几何与矢量代数(约16学时)矢量及矢量的运算,坐标系及矢量的坐标,平面与直线,曲面与曲线,二次曲面的标准型五、多元函数微分学(约20学时)多元函数的概念,偏导数与全微分,复合函数,隐函数的微分法,微分法在几何上的应用,多元函数的极值,矢量分析六、重积分(约12学时)二重积分的概念与性质,二重积分的计算及应用,三重积分七、曲线积分和曲面积分(约14学时)第一、二型曲线积分,格林公式及曲线积分与路程径无关的条件,第一、二型曲面积分,高斯公式与散度,斯托克斯公式与旋度。

八、无穷级数(约17学时)常数项级数,幂级数,傳里叶级数九、广义积分与含参变量的积分(约3学时)广义积分,含参变量的积分十、常微分方程(约14学时)微分方程的基本概念,一阶微分方程的初等解法,可降阶的高阶微分方程,高阶线性方程教学方式:秋季每周授课5学时,共85学时左右;春季每周授课6学时,共102学时,其中每周习题课1学时教材与参考书:1)杨志和等,微积分(上、下册),高等教育出版社2)同济大学应用数学系,高等数学,高等教育出版社3)马知恩等,工科分析基础,高等教育出版社4)杨志和等,微积分学习指导,自编讲义(待出版)学生成绩评定方法:平时(作业、出勤率)10%,期中考试20%,期末考试70%课程名称:大学数学(II)微积分开课学期:秋季、春季(学年课)学分:每期各4 学分先修课程:初等数学基本目的:介绍微积分的基本知识,为非数学类各专业后继课程提供基本的数学工具,初步培养学生应用数学知识分析、解决实际问题的意识与能力内容提要:一、函数与极限(约16学时)函数,数列与函数的极限,无穷小与无穷大,极限运算法则,极限存在准则,函数的连续性与间断点,初等函数连续性,闭区间上连续函数性质。

微积分课程教学大纲

微积分课程教学大纲

微积分课程教学大纲一、课程简介微积分课程是大学数学的基础课程之一,旨在培养学生分析、解决实际问题的能力,以及为后续数学课程和科学类课程奠定基础。

本大纲将介绍微积分课程的教学目标、教学内容、教学方法和评估方式。

二、教学目标1、掌握微积分的基本概念、原理和方法,了解微积分的实际应用。

2、培养学生的数学思维、逻辑推理和解决问题的能力。

3、培养学生的创新意识和团队协作能力。

三、教学内容1、极限与连续:极限的定义与性质,极限的运算,连续函数的概念与性质。

2、导数与微分:导数的定义与计算,微分的定义与计算,导数与微分的应用。

3、不定积分与定积分:不定积分的定义与计算,定积分的定义与计算,定积分的应用。

4、多元微积分:多元函数的极限、导数与微分,以及偏导数与全微分的应用。

5、无穷级数与常微分方程:无穷级数的概念与性质,常微分方程的基本概念与求解方法。

四、教学方法1、理论教学:通过课堂讲解、推导和证明,使学生深入理解微积分的原理和方法。

2、实践教学:通过例题讲解、课堂练习、课后作业和实验等方式,加强学生的实际操作能力。

3、多媒体教学:利用多媒体课件、教学视频等手段,提高教学效果和学生学习效率。

4、团队协作:通过小组讨论、合作解决问题等方式,培养学生的团队协作能力。

五、评估方式1、平时成绩:包括课堂表现、作业完成情况、实验报告等。

2、期中考试:以闭卷形式进行,主要考察学生对基本概念和方法的掌握情况。

3、期末考试:以闭卷形式进行,主要考察学生对整个课程内容的理解和应用能力。

4、总评成绩:结合平时成绩、期中考试和期末考试的成绩进行综合评价。

六、教学进度安排本课程总计学时,具体分配如下:5、极限与连续:学时;6、导数与微分:学时;7、不定积分与定积分:学时;8、多元微积分:学时;9、无穷级数与常微分方程:学时;10、总复习与答疑:学时。

微积分教学大纲一、课程简介微积分是高等数学的一个分支,研究函数的微分和积分以及相关的概念和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微积分一教学大纲This model paper was revised by the Standardization Office on December 10, 2020《微积分(一)》教学大纲一、课程概述课程名称:CMP101 微积分(一) Calculus(I)学分课时:4学分,72课时课程代码:CMP101所属院系教学对象:全校一年级本科生或具有相同学历的学生。

考核方式:每周交一次作业,期中测验一次,期末考试一次。

平时成绩占10%,期中测验占10%,期末占80%授课方式:以讲授为主教学技术:多媒体辅助教学出勤要求:在没有特殊原因的情况下不得缺席,教师应把学生出勤情况作为考察平时成绩的重要因素之一教材与主要参考书:《高等数学》第五版同济大学数学教研室主编高等教育出版社 2002年7月第五版《微积分》朱来义主编高等教育出版社 2000年7月第一版《经济数学基础》(第一分册微积分)龚德恩主编四川人民出版社二、课程简介微积分是高等学校经济管理专业素质教育中一门必不可少的基础理论课。

通过本门课的学习,可使学生获得有关微积分学的基本理论和基本运算技能,获得一定的数学方法,为后继课程的学习奠定必要的数学基础。

在本课程的教学过程中,在注重传授知识的同时,要通过各个教学环节渗透数学思想,逐步培养学生素养,提高利用数学语言描述问题和分析问题的能力,逻辑推理的能力,抽象思维能力,空间想象力,运算力及自学的能力,以及处理实际经济问题的能力。

三、课程内容和基本要求第一章函数重点:函数的概念、分段函数与初等函数。

难点:复合函数、反函数。

§预备知识内容与要求:熟悉函数与数轴的对应关系,实数的绝对值及其性质,特别是区间与邻域的概念.§函数概念内容与要求:(1)深刻理解并掌握函数的概念,会用解析方法表示函数,了解函数表示的表格法、图示法;(2)会求函数的定义域,熟悉分段函数。

§函数的几何特征内容与要求:理解函数的有界性、奇偶性、周期性、单调性的概念,会用定义分析简单函数的相应性质。

§反函数内容与要求:理解反函数的概念,会求反函数。

§复合函数内容与要求:理解复合函数的概念,会构造或分解常见的复合函数。

§初等函数内容与要求:熟练掌握六类基本初等函数及其性质,理解初等函数的概念。

§简单函数关系的建立内容与要求:熟悉经济学中的常用函数,会对常见的经济问题建立相应的函数关系。

第二章 极限与连续重点:极限的概念和极限的运算,无穷小的概念,连续的概念和初等函数的连续性。

难点:极限的概念。

§ 数列的极限内容与要求:(1) 理解数列的定义(整标函数),数列通项的含义;(2) 知道数列的几何意义;(3) 理解单调数列与有界数列的含义,并能判定一个给定的比较简单的数列是否单调、是否有界;(4) 理解并会叙述数列极限的""N -ε定义,知道它在数轴上的几何意义;能用""N -ε定义证明简单的问题;(5) 领会夹逼准则与单调有界原理及其在求极限时所起的作用,熟记极限 § 函数的极限内容与要求:(1)理解并会叙述函数极限的""X -ε定义和""δε-定义,知道他们的几何意义;(2)正确认识和表达函数的左、右极限,熟练掌握分段函数在分段点处的左、右极限;(3)会用函数极限存在的充要条件(左、右极限都存在且相等)来讨论函数极限的存在性和不存在性。

§ 函数极限的性质及运算法则内容与要求:(1)了解极限的唯一性、有界性及保号性;(2)熟练掌握极限的四则运算法则,并能应用法则来求极限;(3)理解函数极限的夹逼准则,知道这个准则适合各种形式的极限,知道它在求极限时所起的作用;(4)熟练掌握两个重要极限:1sin lim 0=→x x x 与.)11(lim e xx x =+∞→并能结合极限的四则 运算法则灵活地使用它们来求极限。

§ 无穷大量与无穷小量内容与要求:(1)弄清无穷小是以零为极限的变量,不是绝对值很小的数;(2)领会函数的极限与无穷小之间的关系;(3)理解高阶无穷小、同阶无穷小、等价无穷小的概念,记住几个常用的等价无穷小并会用常用的等价无穷小求极限;(4)理解无穷大的概念,知道无穷大与无穷小的关系。

§函数的连续性内容与要求:(1)理解函数在一点连续(包括左、右连续)的概念;(2)掌握函数在一点连续的充要条件是函数在该点左、右连续;(3)知道函数在区间上连续的定义;(4)会确定分段函数在分段点处的连续性;(5)会熟练判断函数的间断点并判断其类型;(6)知道连续函数的运算性质和初等函数的连续性。

§闭区间上连续函数的性质内容与要求:熟练掌握闭区间上连续函数的性质,并能应用这些性质证明方程根的存在问题。

第三章导数与微分重点:导数的定义及其几何意义;导数的四则运算法则;复合函数的求导法则;初等函数的求导问题;隐函数的求导法则;参数方程的求导法则;微分的定义。

难点:隐函数的求导法则;参数方程的求导法则。

§导数概念内容与要求:(1)熟练掌握导数和左、右导数的定义;理解导函数的概念;(2)知道导数的几何意义;(3)会用导数定义求导数;(4)掌握函数可导的充要条件是左、右导数都存在且相等,并能应用它讨论分段函数的可导性;(5)熟悉可导与连续的关系。

§导数运算与导数公式内容与要求:熟练掌握导数的四则运算法则,熟记导数的基本公式。

§复合函数求导法则内容与要求:(1)熟练掌握复合函数的求导法则,并能熟练求出初等函数的导数。

(2)掌握隐函数的求导方法和对数求导法;(3)掌握参数方程所确定的函数的一阶导数;§微分及其计算内容与要求:(1)正确理解微分的定义————函数增量的线性主部;(2)了解微分的几何意义;(3)知道导数与微分的联系与区别;(5)了解微分的近似计算(6)熟记微分的基本公式与运算法则;(7)理解一阶微分形式不变性的含义,并会用一阶微分形式不变性求微分。

§高阶导数与高阶微分内容与要求:理解高阶导数与高阶微分的定义,会求简单函数的高阶导数;掌握函数二阶导数的计算。

第四章中值定理与导数的应用重点:微分中值定理。

难点:泰勒公式。

§ 微分中值定理内容与要求:(1)掌握罗尔中值定理,拉格朗日中值定理和柯西中值定理;(2)掌握罗尔中值定理,拉格朗日中值定理和柯西中值定理的条件、结论及相互关系;(3)会用中值定理证明某些简单的不等式和等式。

§ 泰勒公式内容与要求:(1)知道泰勒定理;(2)掌握简单函数的n 阶麦克劳林展开式;(3)了解用麦克劳林公式求极限。

§ 洛必达法则内容与要求:(1)知道什么是未定式及未定式的各种类型;(2)熟练的应用洛必达法则求未定式“00”型和“∞∞”型的极限;(3)能识别其它未定式,并能正确运用洛必达法则求其极限。

§函数的单调性与凹凸性内容与要求:(1)熟练掌握函数增减性的判定定理;(2)正确理解凹函数与凸函数的含义,知道拐点的定义;(3)会用导数判定函数的凹凸性;(4)会用导数讨论函数的增减性并证明不等式;§函数的极值与最大(小)值内容与要求:(1)正确理解函数的极大值和极小值的定义;(2)掌握驻点的定义,并会求驻点;(3)掌握拐点的定义,并会求拐点;(4)掌握函数取得极值的必要条件和充分条件,会求函数的极值;(5)清楚最值与极值的关系,会求函数在区间上的最大值,最小值。

§函数作图内容与要求:(1)知道渐近线的定义,并会求曲线y=f(x)的渐进线;(2)会求拐点并会判断曲线的凹向;(3)会列出函数的性态表,能准确画出函数的图形。

§导数与微分在经济学中的简单应用内容与要求:掌握边际函数和弹性的概念,会用边际和弹性分析简单的经济问题;理解边际成本、边际收益、和需求价格弹性的经济意义。

第五章不定积分重点:原函数与不定积分的概念,基本积分公式,换元积分法与分步积分法。

难点:换元积分法,分步积分法。

§原函数与不定积分的概念内容与要求:(1)熟练掌握原函数与不定积分的定义,知道它们的联系与区别;(2)知道原函数存在定理;(3)知道原函数、不定积分的几何意义;(4)熟知不定积分的基本性质和运算法则。

§基本积分公式内容与要求:牢记基本积分公式,并会用这些公式和积分法则来求不定积分。

§换元积分法内容与要求:(1)掌握并灵活运用第一换元积分法——凑微分法;(2)熟练掌握第二换元法,会求简单的有理函数,三角函数的有理式的积分。

§分步积分法内容与要求:熟练掌握分步积分公式,知道u和dv的一般选取原则,并记住几种特殊类型被积函数求积分时u和dv的取法。

§几种特殊类型函数的积分内容与要求:(1)知道有理函数积分的一般方法,能把较简单的有理函数分解为部分分式,然后求出其不定积分;(2)能把三角有理式的积分和简单无理函数的积分转化为有理函数的积分。

微积分(一)学时分配。

相关文档
最新文档