微积分一教学大纲

合集下载

(完整版)同济大学高等数学上第七版教学大纲(64学时)

(完整版)同济大学高等数学上第七版教学大纲(64学时)

福建警察学院《高等数学一》课程教学大纲课程名称:高等数学一课程编号:学分:4适用对象:一、课程的地位、教学目标和基本要求(一)课程地位高等数学是各专业必修的一门重要的基础理论课程,它具有高度的抽象性、严密的逻辑性和应用的广泛性,对培养和提高学生的思维素质、创新能力、科学精神、治学态度以及用数学解决实际问题的能力都有着非常重要的作用。

高等数学课程不仅仅是学习后继课程必不可少的基础,也是培养理性思维的重要载体,在培养学生数学素养、创新意识、创新精神和能力方面将会发挥其独特作用。

(二)教学目标通过本课程的学习,逐步培养学生使其具有数学运算能力、抽象思维能力、空间想象能力、科学创新能力,尤其具有综合运用数学知识、数学方法结合所学专业知识去分析和解决实际问题的能力,一是为后继课程提供必需的基础数学知识;二是传授数学思想,培养学生的创新意识,逐步提高学生的数学素养、数学思维能力和应用数学的能力。

(三)基本要求1、基本知识、基本理论方面:掌握理解极限和连续的基本概念及其应用;熟悉导数与微分的基本公式与运算法则;掌握中值定理及导数的应用;掌握不定积分的概念和积分方法;掌握定积分的概念与性质;掌握定积分在几何上的应用。

2、能力、技能培养方面:掌握一元微积分的基本概念、基本理论、基本运算技能和常用的数学方法,培养学生利用微积分解决实际问题的能力。

二、教学内容与要求第一章函数与极限【教学目的】通过本章学习1、理解函数的概念,了解函数的几种特性(有界性),掌握复合函数的概念及其分解,掌握基本初等函数的性质及其图形,理解初等函数的概念。

2、理解数列极限的概念、掌握数列极限的证明方法、了解收敛数列的性质。

3、理解函数极限和单侧极限的概念,掌握函数极限的证明方法、理解极限存在与左、右极限之间的关系,了解函数极限的性质。

4、理解无穷小和无穷大的概念、掌握无穷大和无穷小的证明方法。

5、掌握极限运算法则。

6、了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。

微积分教学大纲

微积分教学大纲

微积分教学大纲
I. 前置知识
1. 代数基础:变量、方程、不等式、函数、图像、复合函数、反函数、指数与对数、三角函数、向量
2. 几何基础:平面与空间直角坐标系、几何图形的性质、三角形、圆、直线、平面曲线
II. 导数与微分
1. 导数的概念及其意义:导数的定义、导数与函数的关系、导数的几何意义、导数的物理意义
2. 导数与微分的关系:微分的定义、微分与导数的关系、微分的应用
3. 导数的计算:基本导数公式、导数的四则运算、复合函数的求导、高阶导数、隐函数的导数、参数方程的导数、相关变化率问题
III. 积分与不定积分
1. 积分的概念及其意义:积分的定义、积分与函数的关系、积分的几何意义、积分的物理意义
2. 不定积分:不定积分的定义、基本初等函数的积分、换元法、分部积分法、有理函数的积分、三角函数的积分、反常积分的定义与应用
3. 定积分:定积分的定义、积分中值定理、牛顿-莱布尼茨公式、定积分的几何意义、定积分的物理应用、定积分的计算、变限积分、广义积分
IV. 微积分应用
1. 微积分在几何中的应用:一阶导数与函数性质、二阶导数与函数曲率、微积分中值定理的应用、微积分与极值问题、微积分与曲线绘制
2. 微积分在物理中的应用:速度、加速度与微积分、微积分与质量、微积分与重心
3. 微积分在工程与经济学中的应用:微积分在工程设计中的应用、微积分在经济学中的应用
V. 总结与拓展
1. 总结微积分的主要内容与应用
2. 谈论微积分的一些现代拓展领域,如微分方程、向量微积分、多元微积分等
3. 为学生提供拓展学习的资源和建议。

微积分课程教学大纲

微积分课程教学大纲

《微积分》课程教学大纲一、使用说明(一)课程性质《微积分》是高等学校财经、管理类专业核心课程经济数学基础之一,它有着深刻的实际背景,在自然科学、社会科学、工程技术、军事和工农业生产等领域中有广泛的应用。

微积分作为一学年的课程,是为财经类、管理类等非数学专业本科生开设的,制定大纲的原则是具有一定数学基础的学生对该领域的基础知识、背景有所了解,为进一步学习专业课打下坚实的基础。

(二)教学目的通过本课程的学习,使学生较好地掌握微积分特有的分析思想,并在一定程度上掌握利用微积分认识问题、解决问题的方法;对微积分的基本概念、基本方法、基本结果有所了解,并能运用其手法解决实际问题中的简单课题。

(三)教学时数本课程共132学时,8学分。

(四)教学方法采用课堂讲授、多媒体课件等方法和形式。

(五)面向专业经济学、管理学所有本科专业。

二、教学内容第一章函数(一)教学目的与要求[教学目的]使学生正确理解函数的定义。

理解函数的各种表示法,特别是分析表示法。

了解函数的几何特性及图形特征,了解反函数、复合函数概念。

熟练掌握基本初等函数的性质及图形,掌握初等函数的结构并能确定其定义域,能列出简单的实际问题中的函数关系。

[基本要求]1、理解实数与实数的绝对值的概念。

2、理解函数、函数的定义域和值域,熟悉函数的表示法。

3、了解函数的几何特性并掌握各几何特性的图形特征。

4、了解反函数概念;知道函数与其反函数的几何关系;给定函数会求其反函数。

5、理解复合函数的概念;了解函数能构成复合函数的条件;掌握将一个复合函数分解为较简单函数的方法。

6、基本初等函数及定义域、值域等概念;掌握基本初等函数的基本性质。

7、了解分段函数的概念。

8、会建立简单应用问题的函数关系。

(二)教学内容函数的定义,函数的几何特性,反函数,复合函数,初等函数,经济中的常用函数。

教学重点:1、五个基本初等函数的分析表达式、定义域、值域及其图形。

2、初等函数的概念,复合函数的复合步骤的分解方法。

《高等数学B-微积分一》本科教学大纲

《高等数学B-微积分一》本科教学大纲

《高等数学B-微积分(一)》本科教学大纲课程编号:上海立信会计金融学院《高等数学B—微积分(一)》课程教学大纲一、课程基本信息课程名称:高等数学B-微积分(一)英文名称:Advanced Mathematics (B)-Calculus Ⅰ课程编号:课程类别:长学段-专业必修课预修课程:初等数学开设部门:统计与数学学院适用专业:经管类专业(本科)学分:4总课时:60学时其中理论课时:60学时,实践课时:0学时二、课程性质、目的微积分是经济管理类本科专业的学科专业课。

本课程的教学目的是使学生掌握经济管理学科所需的微积分基础知识,学会应用变量数学的方法分析研究经济现象中的数量关系,同时通过本课程的教学,培养学生的抽象思维和逻辑推理能力,为后继课程的学习和将来进一步的专业发展打好扎实必要的数学基础。

思政元素融入课程,引导学生树立正确的科学观,培养学生科学理性思维能力、创新思维能力、独立思考能力,解决实际问题能力,培养探索未知、追求真理、勇攀科学高峰的责任感和使命感;引导学生树立正确的人生观和价值观,了解数学发展史和数学文化,提升数学素养、弘扬中华文明、培养民族文化自信,以精神文明为切入点,科学育人、文化育人。

在大纲中,概念、理论方面用“理解”表述,方法、运算方面用“掌握”表述的内容,应该使学生深入领会和掌握,并能熟练运用;概念理论方面用“了解”表述,方法、运算方面用“熟悉”表述的内容,也是必不可少的,只是在教学要求上低于前者。

三、教学内容、基本要求、课时分配四、课程考核考核方式:考试;期末考核形式:课程试卷闭卷(教考分离);题型:填空、选择、计算、证明题和应用题等;课程类别:■必修(考试)课程□除体育类、短学段开设、实践教学类以外的必修(考查)课程□选修课程□体育类必修(考查)课程□短学段开设的必修(考查)课程□实践教学类必修(考查)课程平时成绩占50 %,期末成绩占50 %(见下表)。

平时成绩考核项目参照表平时成绩考核评定依据与标准:1. 课堂表现(含考勤):随机抽查考勤、课堂提问、参与讨论等20次,每次5分,满分100分,按20%的比例记入平时成绩;2. 课外作业:作业共收15次,随机抽10次记分,每次满分10分,满分100分,按30%的比例记入平时成绩;3. 阶段测验:在学期1/4和3/4节点处各安排1次阶段测验,每次满分100分,取两次成绩平均分,按30%的比例记入平时成绩;4. 期中测验:在学期1/2节点处安排1次期中测验,满分100分,按20%的比例记入平时成绩。

高等数学一教学大纲

高等数学一教学大纲

高等数学一教学大纲一、课程简介高等数学一是理工科专业的一门核心数学课程。

本课程旨在为学生提供基础的数学理论和方法,培养学生的数学思维能力和解决实际问题的能力。

通过学习本课程,学生将掌握微积分、方程与不等式、数列与级数等基础知识,为进一步学习高等数学二打下坚实的基础。

二、课程目标1. 培养学生的抽象思维和逻辑推理能力,使其具备解决数学问题的能力;2. 培养学生的数学模型建立和运用能力,使其能够将数学知识应用于实际问题的解决;3. 培养学生的数学推理和证明能力,使其具备严密的数学思维和分析问题的能力;4. 培养学生的团队合作和沟通能力,使其能够与他人合作解决复杂的数学问题。

三、教学内容和大纲1. 微积分1.1 函数与极限1.2 连续与间断1.3 导数与微分1.4 微分中值定理1.5 不定积分1.6 定积分与积分中值定理2. 方程与不等式2.1 一元二次方程与不等式2.2 二元一次方程组2.3 二次三项式与高次方程3. 数列与级数3.1 数列的概念与性质3.2 通项公式与递推公式3.3 等差数列与等比数列3.4 级数的概念与性质3.5 收敛与发散的判定四、教学方法1. 讲授法:通过系统的理论讲解,向学生介绍各个知识点的概念、性质和定理,并讲解基本的解题思路和方法;2. 例题分析法:通过分析典型的例题,引导学生掌握解题方法和技巧,培养学生独立解题的能力;3. 练习巩固法:通过大量的练习题,让学生在实践中掌握所学知识,提高解题能力和应用能力;4. 讨论互动法:组织学生进行小组讨论和互动,促进学生彼此之间的交流与思考,加深对知识的理解和掌握。

五、考核方式1. 课堂表现:包括课堂积极参与、提问与回答等;2. 作业完成情况:完成课后作业的质量和准时程度;3. 平时测试:包括小测验、月考等;4. 期末考试:综合考核学生对课程学习内容的掌握程度。

六、教材推荐1. 《高等数学》(上册),同济大学出版社2. 《高等数学解题方法与技巧》,清华大学出版社七、学习建议1. 注重理论与实践相结合,理解知识点的同时进行大量的练习;2. 主动参与课堂,积极提问和回答问题,提高对知识点的理解深入程度;3. 组织学习小组,相互合作、讨论,互相帮助提高解题能力;4. 善于总结知识,建立起知识体系,做好复习和巩固工作;5. 利用教师提供的教学资源,积极参与相关的学术讲座和研讨会。

小学教育(数学方向)专业 《微积分》教学大纲

小学教育(数学方向)专业 《微积分》教学大纲

《微积分》课程教学大纲课程编号: 0401301 总学时: 99 总学分: 5开课学期:第1、2学期适用专业:小学教育(数学方向)大纲执笔人:大纲审核人:一、课程性质、目的与任务微积分是小学教育(数学方向)专业的一门重要的专业必修课程,它为学习专业课程和后续课程奠定必要的数学基础,它是为培养我国社会主义现代化建设所需要的高技能专门人才服务的。

通过本课程的学习,要使学生获得:1、函数极限与连续;2、一元函数微分学及应用3、一元函数积分及应用;4、常微分方程;5、多元函数微积分学及应用;6、无穷级数等方面的基本概念、基本理论和基本运算技能。

在传授知识的同时,要通过各个教学环节逐步培养学生具有抽象思维能力、逻辑推理能力、空间想象能力、运算能力和自学能力,注重培养学生数学地提出问题、分析问题和解决问题的能力,发展学生的创新意识和应用意识,提高学生的数学探究能力、数学建模能力,还要特别注意培养学生具有综合运用所学知识去分析问题和解决问题的能力。

二、课程教学的基本要求1、正确理解下列基本概念和它们之间的内在联系:函数,极限,无穷小,连续,导数,微分,极值,不定积分,定积分,偏导数,全微分,条件极值,重积分,曲线积分,曲面积分,无穷级数,微分方程。

2、正确理解下列基本定理和公式并能正确运用:极限的主要定理,罗尔定理和拉格朗日中值定理,泰勒定理,定积分作为其上限函数的求导定理,牛顿-莱布尼兹公式,格林公式,高斯公式。

3、牢固掌握下列公式:两个重要极限,基本初等函数的导数公式,基本积分公式,函数exp(x) 、sinx的麦克劳林展开式。

4、熟练运用下列法则和方法:导数的四则运算法则和复合函数的求导法,换元积分法和分部积分法,二重积分的计算法,正项级数的比值审敛法,变量可分离的方程及一阶线性微分方程的解法,二阶常系数齐次线性微分方程的解法。

5、会运用微积分和常微分方程的方法解一些简单的实际问题。

三、课程的主要内容、重点和难点1、函数、极限与连续教学内容:区间、邻域、函数、基本初等函数、初等函数;数列极限、函数极限及其性质、无穷小与无穷大、极限的运算、极限存在准则、两个重要极限、函数的连续性及其性质。

川大理工科数学I,II,III之微积分和线性代数教学大纲

川大理工科数学I,II,III之微积分和线性代数教学大纲

课程号:20113740课程名称:大学数学(I) 微积分开课学期:秋季春季(学年课)学分:秋季4 春季5先修课程:初等数学基本目的:介绍微积分的基本知识,为非数学类各专业后继课程提供基本的数学工具,初步培养学生应用数学知识分析、解决实际问题的意识与能力内容提要:一、函数与极限(约22学时)函数,函数与数列极限的定义与性质,无穷小与无穷大,无穷小比较,极限四则运算,极限存在准则与两个重要极限,函数的连续性与间断点,初等函数连续性,闭区间上连续函数性质。

二、一元函数微分学(约26学时)导数的定义与性质,基本求导方法与导数公式,微分,高阶导数,微分中值定理,泰勒公式,洛必达法则,导数的应用三、一元函数积分学(约30学时)不定积分与定积分的概念与性质,牛顿-莱布尼茨公式,换元积分法与分部积分法,定积分的应用与近似计算。

四、空间解析几何与矢量代数(约16学时)矢量及矢量的运算,坐标系及矢量的坐标,平面与直线,曲面与曲线,二次曲面的标准型五、多元函数微分学(约20学时)多元函数的概念,偏导数与全微分,复合函数,隐函数的微分法,微分法在几何上的应用,多元函数的极值,矢量分析六、重积分(约12学时)二重积分的概念与性质,二重积分的计算及应用,三重积分七、曲线积分和曲面积分(约14学时)第一、二型曲线积分,格林公式及曲线积分与路程径无关的条件,第一、二型曲面积分,高斯公式与散度,斯托克斯公式与旋度。

八、无穷级数(约17学时)常数项级数,幂级数,傳里叶级数九、广义积分与含参变量的积分(约3学时)广义积分,含参变量的积分十、常微分方程(约14学时)微分方程的基本概念,一阶微分方程的初等解法,可降阶的高阶微分方程,高阶线性方程教学方式:秋季每周授课5学时,共85学时左右;春季每周授课6学时,共102学时,其中每周习题课1学时教材与参考书:1)杨志和等,微积分(上、下册),高等教育出版社2)同济大学应用数学系,高等数学,高等教育出版社3)马知恩等,工科分析基础,高等教育出版社4)杨志和等,微积分学习指导,自编讲义(待出版)学生成绩评定方法:平时(作业、出勤率)10%,期中考试20%,期末考试70%课程名称:大学数学(II)微积分开课学期:秋季、春季(学年课)学分:每期各4 学分先修课程:初等数学基本目的:介绍微积分的基本知识,为非数学类各专业后继课程提供基本的数学工具,初步培养学生应用数学知识分析、解决实际问题的意识与能力内容提要:一、函数与极限(约16学时)函数,数列与函数的极限,无穷小与无穷大,极限运算法则,极限存在准则,函数的连续性与间断点,初等函数连续性,闭区间上连续函数性质。

微积分课程教学大纲

微积分课程教学大纲

微积分课程教学大纲一、课程简介微积分课程是大学数学的基础课程之一,旨在培养学生分析、解决实际问题的能力,以及为后续数学课程和科学类课程奠定基础。

本大纲将介绍微积分课程的教学目标、教学内容、教学方法和评估方式。

二、教学目标1、掌握微积分的基本概念、原理和方法,了解微积分的实际应用。

2、培养学生的数学思维、逻辑推理和解决问题的能力。

3、培养学生的创新意识和团队协作能力。

三、教学内容1、极限与连续:极限的定义与性质,极限的运算,连续函数的概念与性质。

2、导数与微分:导数的定义与计算,微分的定义与计算,导数与微分的应用。

3、不定积分与定积分:不定积分的定义与计算,定积分的定义与计算,定积分的应用。

4、多元微积分:多元函数的极限、导数与微分,以及偏导数与全微分的应用。

5、无穷级数与常微分方程:无穷级数的概念与性质,常微分方程的基本概念与求解方法。

四、教学方法1、理论教学:通过课堂讲解、推导和证明,使学生深入理解微积分的原理和方法。

2、实践教学:通过例题讲解、课堂练习、课后作业和实验等方式,加强学生的实际操作能力。

3、多媒体教学:利用多媒体课件、教学视频等手段,提高教学效果和学生学习效率。

4、团队协作:通过小组讨论、合作解决问题等方式,培养学生的团队协作能力。

五、评估方式1、平时成绩:包括课堂表现、作业完成情况、实验报告等。

2、期中考试:以闭卷形式进行,主要考察学生对基本概念和方法的掌握情况。

3、期末考试:以闭卷形式进行,主要考察学生对整个课程内容的理解和应用能力。

4、总评成绩:结合平时成绩、期中考试和期末考试的成绩进行综合评价。

六、教学进度安排本课程总计学时,具体分配如下:5、极限与连续:学时;6、导数与微分:学时;7、不定积分与定积分:学时;8、多元微积分:学时;9、无穷级数与常微分方程:学时;10、总复习与答疑:学时。

微积分教学大纲一、课程简介微积分是高等数学的一个分支,研究函数的微分和积分以及相关的概念和应用。

专科《微积分》大纲08-09

专科《微积分》大纲08-09

《微积分》专科教学大纲(课程编号:191320401 )上海立信会计学院《微积分》课程教学大纲一、课程基本信息课程名称:微积分英文名称:Calculus课程编号:191320401课程类别:专业必修课程预修课程:无开设部门:数学与统计学系适用专业:除外语专业外的所有专科专业学分:4总课时:68学时其中:理论教学课时:68学时,上机实验课0学时选用教材:赵斯泓等编:《微积分》,立信会计出版社,2000年8月第1版二、课程性质、目的本课程是立信会计学院经济应用数学基础课程之二。

本课程的教学目的是使学生获得从事经济管理工作所必需的微积分基础知识,学会应用变量数学的方法分析研究经济现象中的数量关系,培养学生具有一定的抽象思维和逻辑推理能力。

同时,本课程也为后继课程提供必要的数学基础。

三、与其他课程的衔接本课程是学生入大学以来第一门数学课程,只需高中数学基础即可。

四、教学基本要求本课程要求学生理解极限、连续的概念,掌握极限的求法。

掌握导数和微分的概念、导数和微分的计算方法、导数的应用。

掌握不定积分及定积分的概念,计算方法及应用。

掌握二元函数的偏导数、全微分的计算方法及二元函数的极值,掌握二重积分的计算方法。

五、教学内容与课时本课程教学内容与课时分配见下表:六、课程考核1.考核方式:考试。

2.考核内容:以考查数学建模的基本方法和模型分析研究为主要内容。

3.成绩评定:平时成绩占30%,期末测验占70%。

七、参考文献资料1. 《微积分》,赵树嫄编著,中国人民大学出版社,1988年5月第一版八、制定与审定签章。

高等数学(一)1课程教学大纲

高等数学(一)1课程教学大纲
课程内容:
第一章矢量与坐标
【目的要求】能正确理解矢量的概念,并且能灵活运用这些概念解决一些具体问题;掌握矢量的线性关系及矢量的分解;熟练掌握矢量各种运算的定义、性质、法则以及矢量的各种位置关系及其对应的代数表示式,在此基础上能进行正确的证明、计算;能正确理解矢量的坐标与点的坐标的内在联系和区别,掌握矢量运算的坐标表示及其各种位置关系的坐标表示,并且能熟练地进行运算和论证。
三、泰勒公式
四、函数单调性的判别法
五、函数的极值及其求法
六、函数的最大值和最小值
七、函数的凹凸性与拐点
八、函数图形的描绘
九、曲率
●实践教学内容与安排(4学时)
一、第一章习题
二、描绘函数图形
【作业与思考】第一章部分习题
思考:函数一阶导、二阶导数与函数极值点和拐点有哪些联系?
第六章定积分
【目的要求】掌握积分概念,性质,换元积分法和分部积分法、有理函数、三角函数有理式、简单无理式的积分方法。
【作业与思考】第三章部分习题
思考:微分与积分的联系。
学时分配表
课程内容
学时
理论
第一章中值定理与导数应用
16
第二章不定积分
10
第三章定积分
10
实践
一各章节习题
19
二描绘函数图形
2
三讨论:定积分与不定积分换元法的区别
1
考核
1.第一、二章内容
2
合计
60
教学策略与方法建议:以讲授法为主,辅以练习法、谈话法、讨论法、引导发现法。教学策略上宜以问题的呈现引发学生思考,帮助学生建立数学模型,找出解决问题的一般方法,从而建立概念,掌握有关数学思想方法,巩固定理和法则。
【重点与难点】重点是求导公式及法则。难点是导数与微分概念。

微积分教学大纲

微积分教学大纲

微积分教学大纲一、引言微积分作为高等数学的重要分支,是培养学生逻辑思维能力和解决实际问题能力的重要工具。

本教学大纲旨在明确微积分课程的教学目标、内容和评价方式,为教师和学生提供指导,以达到更好的教学效果。

二、教学目标本课程的主要教学目标如下:1. 理解微积分的基本概念和原理,包括极限、导数、不定积分和定积分等;2. 掌握微积分的计算方法和技巧,能够运用微积分解决实际问题;3. 培养学生的逻辑思维能力、抽象思维能力和问题解决能力;4. 培养学生的数学建模能力,能够将实际问题转化为数学模型并进行求解。

三、教学内容本课程的主要教学内容如下:1. 极限1.1 极限的概念1.2 极限的性质1.3 极限的计算方法2. 导数2.1 导数的概念2.2 导数的计算方法2.3 导数的应用3. 不定积分3.1 不定积分的概念3.2 基本不定积分的计算方法3.3 不定积分的应用4. 定积分4.1 定积分的概念4.2 定积分的计算方法4.3 定积分的应用5. 微积分的应用5.1 曲线的切线与法线5.2 速度和加速度5.3 积分学的应用5.4 微分方程四、教学方法本课程采用多种教学方法,包括课堂教学、实例演练、小组讨论和实践应用等。

1. 课堂教学:通过讲解和示范,引导学生理解微积分的基本概念和原理。

2. 实例演练:通过大量的实例练习,巩固学生对微积分的计算方法和技巧的掌握。

3. 小组讨论:组织学生进行小组讨论,促进学生思维交流和合作学习。

4. 实践应用:引导学生将微积分应用于实际问题的解决,培养其数学建模和问题解决能力。

五、教学评价本课程的评价方式包括平时表现评价和考试评价。

1. 平时表现评价:包括课堂参与、作业完成情况和小组讨论等,反映学生的学习态度和学习效果。

2. 考试评价:通过期中考试和期末考试,考察学生对微积分基本概念的理解和计算方法的掌握。

六、教学资源本课程需要准备的教学资源包括教材、课件、实例题和相关参考资料。

微积分课程教学大纲

微积分课程教学大纲

《微积分(I)》课程教学大纲英文译名:Calculus I适用专业:学分数:6 总学时数:96一、本课程教学目的和任务通过本课程的学习,使学生获得一元函数微积分学、向量代数和空间解析几何等方面的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础。

同时,注重培养学生获取知识能力、应用能力和创新能力,提高学生的素质。

二、本课程的基本要求1.理解函数的概念,掌握基本初等函数的性质及其图形,理解复合函数的概念,了解反函数、分段函数的概念。

会建立简单实际问题的函数关系模型。

2.理解极限的概念(对极限的ε—N、ε—δ定义,可在教学过程中逐步加深理解,对于给定ε求N或δ不作过高要求),掌握极限四则运算法则,了解两个极限存在准则(夹逼准则和单调有界准则),会用两个重要极限求极限,了解无穷小、无穷大的概念,会用无穷小的比较求极限。

3.理解函数在一点连续的概念,了解间断点的概念并会判别间断点的类型,了解初等函数的连续性和闭区间上连续函数的性质(介值定理和最大值最小值定理)。

4.理解导数和微分的概念,理解导数的几何意义及函数的可导与连续之间的关系,掌握导数与微分的运算法则和导数的基本公式,掌握初等函数的一阶、二阶导数的求法,会求隐函数和参数方程所确定的函数的一阶、二阶导数,会用导数描述一些几何量与物理量。

5.理解拉格朗日中值定理,了解罗尔中值定理、柯西中值定理和泰勒公式。

6.理解函数极值的概念,会求函数的极值;会判断函数的单调性、函数图形的凹凸性,会求拐点;会描绘函数的图形(包括水平和铅直渐近线);会求解较简单的最大值和最小值的应用问题。

7.会用罗必达法则求不定式的极限。

8.会求曲线的曲率和曲率半径。

9.理解不定积分和定积分的概念和性质,掌握换元积分法和分部积分法,含有理函数和三角函数有理式的积分,理解变上限函数及求导定理,掌握牛顿—莱布尼兹公式,了解广义积分的概念,掌握用定积分求一些几何量和物理量(如平面面积、体积、平面弧长、功、压力、引力等)的方法。

Calculus_BC_Syllabus_1[1] AP微积分教学大纲

Calculus_BC_Syllabus_1[1] AP微积分教学大纲
• Techniques of integration:
oo Substitution, integration by parts, trigonometric substitution, partial fractions
• Separable differential equations
• Euler’s Method
• Taylor’s series/Maclaurin series • Lagrange form of the remainder • Tests for convergence/divergence:
oo nth term test oo Direct Comparison oo Ratio Test oo Integral Test oo Limit Comparison Test oo Alternating Series Test (Leibniz’s Theorem)
The chapter numbers follow the textbook. Note that we work on Chapter 10 before Chapter 9.
Chapter 1: Prerequisites for Calculus (7 days)
• Elementary functions:
Chapter 8: L’Hôpital’s Rule, Improper Integrals,
Partial Fractions (13 days)
• Indeterminate forms
⎛0 ⎜
,

,∞

⎞ ∞ , 1∞ , 0 0 , ∞ 0 ⎟
and L’HÔpital’s Rule

微积分教学大纲完整版

微积分教学大纲完整版

微积分教学大纲HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】《微积分》教学大纲课程代码:名称:微积分学授课专业:工业设计专业学时数:100一、课程的目的和要求学生能够通过本课程的学习,获得一元函数微积分学、多元函数微分学方面比较系统的知识。

同时,这些知识的掌握也会给后续课程的学习打下基础。

更重要的是,在教学过程中使学生加深高等数学的辩证统一思想的理解,并利用这一思想解决一些实际问题。

通过这门课程的学习,提高学生的空间想象能力、逻辑思维和创造性思维能力,全面提高学生的数学素质。

二、课程教学内容第一部分函数主要内容:函数的概念与性质,复合函数、初等函数的概念。

要求:1、理解函数的概念,能列出简单实际问题中的函数关系。

2、理解函数的单调性、周期性、有界性和奇偶性;3、理解反函数和复合函数的概念;4、理解初等函数的概念和性质。

重点:函数的的概念与性质。

难点:列出问题中的函数关系,反函数和复合函数的概念。

第二部分极限与连续主要内容:极限的概念,极限四则运算,无穷小、无穷大的概念,函数连续的概念。

要求:1、了解数列极限、函数极限的概念(对极限的精确定义、证明不作要求);2、掌握极限四则运算法则,会用两个重要极限求极限;3、理解解无穷小与无穷大、高阶无穷小、同阶无穷小和等价无穷小的概念;4、理解函数在一点连续和在一区间连续概念,了解函数间断的概念;5、了解初等函数的连续性,了解在闭区间上连续函数的性质.重点:极限的四则运算法则。

难点:极限的概念,连续的概念。

第三部分导数与微分主要内容:导数和微分的概念,导数和微分的运算。

要求:1、理解导数和微分的概念,理解导数的几何意义,了解函数的可导与连续之间的关系;2、熟练掌握导数和微分的运算法则、导数的基本公式,了解高阶导数概念,能熟练求初等函数的一阶、二阶导数(n>2阶导数不作要求);3、掌握复合函数和隐函数的求导法;4、会求曲线的切线与法线方程,了解微分在近似计算中的应用。

微积分教学大纲

微积分教学大纲

微积分课程教学大纲
格式要求:正文宋体小四
一、模块基本信息
课程名称微积分课程英文名称Calculus
课程代码SL331101 学分 3
总学时75 课程归属部门数理化学科部
先修课程高中数学后续课程线性代数,概率论
学期总学时学期共
同学习
学时
学期自
主学习
学时
师生共同学习周学时
授课总周

讲课习题课讨论、练习合计
75 48 27 1 3 16
三、课程简介
该课程是财务管理和国际贸易专业的基础课;它为后继课程及科学研究提供必要的数学工具;本课程包括的主要内容有:导数与微分、一元积分学、偏微分和微分方程;该课程是培养学生掌握基础的数学知识和方法并用于解决实际问题的重要基础课程;该课程所论及的科学思想和方法论,在经济和社会科学等领域中具有广泛的应用;
四、课程目标
通过本课程的学习,要使学生系统地获得一元函数微积分及其应用、多元函数微分及其应用、常微分方程等方面的基本概念、基本理论、基本方法;通过本课程的学习,逐步培养学生具有抽象思维能力、逻辑推理能力、空间想象能力和较强的自主学习能力,同时注意培养学生学会建立数学模型,具备用微积分的方法解决经济问题的能力,为学习后继课程和进一步获得数学知识奠定必要的数学基础;
五、教学方法
学院倡导研究型教学,不主张照本宣科,提倡围绕问题和典型案例组织研究导向教学research-led teaching教学过程需从“学习知识”转向“学会学习”;教学互动的核心是教师如何引导学生利用各种工具和方法解释现象和解决问题,课堂上教师主要是引导或指导,学生主要的学习发生在课前的阅读和准备、课后的学习和研究、小组讨论和交流、实验室或深入实际的验证和总结等过程中;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微积分一教学大纲This model paper was revised by the Standardization Office on December 10, 2020《微积分(一)》教学大纲一、课程概述课程名称:CMP101 微积分(一) Calculus(I)学分课时:4学分,72课时课程代码:CMP101所属院系教学对象:全校一年级本科生或具有相同学历的学生。

考核方式:每周交一次作业,期中测验一次,期末考试一次。

平时成绩占10%,期中测验占10%,期末占80%授课方式:以讲授为主教学技术:多媒体辅助教学出勤要求:在没有特殊原因的情况下不得缺席,教师应把学生出勤情况作为考察平时成绩的重要因素之一教材与主要参考书:《高等数学》第五版同济大学数学教研室主编高等教育出版社 2002年7月第五版《微积分》朱来义主编高等教育出版社 2000年7月第一版《经济数学基础》(第一分册微积分)龚德恩主编四川人民出版社二、课程简介微积分是高等学校经济管理专业素质教育中一门必不可少的基础理论课。

通过本门课的学习,可使学生获得有关微积分学的基本理论和基本运算技能,获得一定的数学方法,为后继课程的学习奠定必要的数学基础。

在本课程的教学过程中,在注重传授知识的同时,要通过各个教学环节渗透数学思想,逐步培养学生素养,提高利用数学语言描述问题和分析问题的能力,逻辑推理的能力,抽象思维能力,空间想象力,运算力及自学的能力,以及处理实际经济问题的能力。

三、课程内容和基本要求第一章函数重点:函数的概念、分段函数与初等函数。

难点:复合函数、反函数。

§预备知识内容与要求:熟悉函数与数轴的对应关系,实数的绝对值及其性质,特别是区间与邻域的概念.§函数概念内容与要求:(1)深刻理解并掌握函数的概念,会用解析方法表示函数,了解函数表示的表格法、图示法;(2)会求函数的定义域,熟悉分段函数。

§函数的几何特征内容与要求:理解函数的有界性、奇偶性、周期性、单调性的概念,会用定义分析简单函数的相应性质。

§反函数内容与要求:理解反函数的概念,会求反函数。

§复合函数内容与要求:理解复合函数的概念,会构造或分解常见的复合函数。

§初等函数内容与要求:熟练掌握六类基本初等函数及其性质,理解初等函数的概念。

§简单函数关系的建立内容与要求:熟悉经济学中的常用函数,会对常见的经济问题建立相应的函数关系。

第二章 极限与连续重点:极限的概念和极限的运算,无穷小的概念,连续的概念和初等函数的连续性。

难点:极限的概念。

§ 数列的极限内容与要求:(1) 理解数列的定义(整标函数),数列通项的含义;(2) 知道数列的几何意义;(3) 理解单调数列与有界数列的含义,并能判定一个给定的比较简单的数列是否单调、是否有界;(4) 理解并会叙述数列极限的""N -ε定义,知道它在数轴上的几何意义;能用""N -ε定义证明简单的问题;(5) 领会夹逼准则与单调有界原理及其在求极限时所起的作用,熟记极限 § 函数的极限内容与要求:(1)理解并会叙述函数极限的""X -ε定义和""δε-定义,知道他们的几何意义;(2)正确认识和表达函数的左、右极限,熟练掌握分段函数在分段点处的左、右极限;(3)会用函数极限存在的充要条件(左、右极限都存在且相等)来讨论函数极限的存在性和不存在性。

§ 函数极限的性质及运算法则内容与要求:(1)了解极限的唯一性、有界性及保号性;(2)熟练掌握极限的四则运算法则,并能应用法则来求极限;(3)理解函数极限的夹逼准则,知道这个准则适合各种形式的极限,知道它在求极限时所起的作用;(4)熟练掌握两个重要极限:1sin lim 0=→x x x 与.)11(lim e xx x =+∞→并能结合极限的四则 运算法则灵活地使用它们来求极限。

§ 无穷大量与无穷小量内容与要求:(1)弄清无穷小是以零为极限的变量,不是绝对值很小的数;(2)领会函数的极限与无穷小之间的关系;(3)理解高阶无穷小、同阶无穷小、等价无穷小的概念,记住几个常用的等价无穷小并会用常用的等价无穷小求极限;(4)理解无穷大的概念,知道无穷大与无穷小的关系。

§函数的连续性内容与要求:(1)理解函数在一点连续(包括左、右连续)的概念;(2)掌握函数在一点连续的充要条件是函数在该点左、右连续;(3)知道函数在区间上连续的定义;(4)会确定分段函数在分段点处的连续性;(5)会熟练判断函数的间断点并判断其类型;(6)知道连续函数的运算性质和初等函数的连续性。

§闭区间上连续函数的性质内容与要求:熟练掌握闭区间上连续函数的性质,并能应用这些性质证明方程根的存在问题。

第三章导数与微分重点:导数的定义及其几何意义;导数的四则运算法则;复合函数的求导法则;初等函数的求导问题;隐函数的求导法则;参数方程的求导法则;微分的定义。

难点:隐函数的求导法则;参数方程的求导法则。

§导数概念内容与要求:(1)熟练掌握导数和左、右导数的定义;理解导函数的概念;(2)知道导数的几何意义;(3)会用导数定义求导数;(4)掌握函数可导的充要条件是左、右导数都存在且相等,并能应用它讨论分段函数的可导性;(5)熟悉可导与连续的关系。

§导数运算与导数公式内容与要求:熟练掌握导数的四则运算法则,熟记导数的基本公式。

§复合函数求导法则内容与要求:(1)熟练掌握复合函数的求导法则,并能熟练求出初等函数的导数。

(2)掌握隐函数的求导方法和对数求导法;(3)掌握参数方程所确定的函数的一阶导数;§微分及其计算内容与要求:(1)正确理解微分的定义————函数增量的线性主部;(2)了解微分的几何意义;(3)知道导数与微分的联系与区别;(5)了解微分的近似计算(6)熟记微分的基本公式与运算法则;(7)理解一阶微分形式不变性的含义,并会用一阶微分形式不变性求微分。

§高阶导数与高阶微分内容与要求:理解高阶导数与高阶微分的定义,会求简单函数的高阶导数;掌握函数二阶导数的计算。

第四章中值定理与导数的应用重点:微分中值定理。

难点:泰勒公式。

§ 微分中值定理内容与要求:(1)掌握罗尔中值定理,拉格朗日中值定理和柯西中值定理;(2)掌握罗尔中值定理,拉格朗日中值定理和柯西中值定理的条件、结论及相互关系;(3)会用中值定理证明某些简单的不等式和等式。

§ 泰勒公式内容与要求:(1)知道泰勒定理;(2)掌握简单函数的n 阶麦克劳林展开式;(3)了解用麦克劳林公式求极限。

§ 洛必达法则内容与要求:(1)知道什么是未定式及未定式的各种类型;(2)熟练的应用洛必达法则求未定式“00”型和“∞∞”型的极限;(3)能识别其它未定式,并能正确运用洛必达法则求其极限。

§函数的单调性与凹凸性内容与要求:(1)熟练掌握函数增减性的判定定理;(2)正确理解凹函数与凸函数的含义,知道拐点的定义;(3)会用导数判定函数的凹凸性;(4)会用导数讨论函数的增减性并证明不等式;§函数的极值与最大(小)值内容与要求:(1)正确理解函数的极大值和极小值的定义;(2)掌握驻点的定义,并会求驻点;(3)掌握拐点的定义,并会求拐点;(4)掌握函数取得极值的必要条件和充分条件,会求函数的极值;(5)清楚最值与极值的关系,会求函数在区间上的最大值,最小值。

§函数作图内容与要求:(1)知道渐近线的定义,并会求曲线y=f(x)的渐进线;(2)会求拐点并会判断曲线的凹向;(3)会列出函数的性态表,能准确画出函数的图形。

§导数与微分在经济学中的简单应用内容与要求:掌握边际函数和弹性的概念,会用边际和弹性分析简单的经济问题;理解边际成本、边际收益、和需求价格弹性的经济意义。

第五章不定积分重点:原函数与不定积分的概念,基本积分公式,换元积分法与分步积分法。

难点:换元积分法,分步积分法。

§原函数与不定积分的概念内容与要求:(1)熟练掌握原函数与不定积分的定义,知道它们的联系与区别;(2)知道原函数存在定理;(3)知道原函数、不定积分的几何意义;(4)熟知不定积分的基本性质和运算法则。

§基本积分公式内容与要求:牢记基本积分公式,并会用这些公式和积分法则来求不定积分。

§换元积分法内容与要求:(1)掌握并灵活运用第一换元积分法——凑微分法;(2)熟练掌握第二换元法,会求简单的有理函数,三角函数的有理式的积分。

§分步积分法内容与要求:熟练掌握分步积分公式,知道u和dv的一般选取原则,并记住几种特殊类型被积函数求积分时u和dv的取法。

§几种特殊类型函数的积分内容与要求:(1)知道有理函数积分的一般方法,能把较简单的有理函数分解为部分分式,然后求出其不定积分;(2)能把三角有理式的积分和简单无理函数的积分转化为有理函数的积分。

微积分(一)学时分配。

相关文档
最新文档