物理-热力学第一定律

合集下载

高中物理-热力学第一定律

高中物理-热力学第一定律

热力学第一定律热力学第一定律热力学第一定律内容是:研究对象内能的改变量,等于外界对它传递的热量与外界对它所做的功之和。

注:热量的传导与做功均需要注意正负性。

热力学第一定律公式热力学第一定律公式:△U=W+Q其中,△U——内能的变化量,单位焦耳(J),如果为负数,则说明研究对象内能减小。

Q——研究对象吸收的热量,单位焦耳(J),如果为负数,则说明研究对象向外释放热量。

在自然态下,Q传导具有方向性,即只能从高温物体向低温物体传递热量。

W——外界对研究对象做的功,单位焦耳(J),如果为负数,则说明研究对象对外界做功。

热力学第一定律理解误区之吸热内能一定增加?老师:并非如此。

如果对外做功,内能可能不变,甚至减小。

物体的内能是变大还是变小,取决于两个外在因素,其一是吸收(或放出)热量,另外一个是做功。

如果吸收了10J的热量,向外界做了20J的功,物体的内能不会增加,反而会减小(减小10J)。

热力学第一定律深入理解之温度与分子平均动能关系老师:分子平均动能Ek与热力学温度T是正比例关系,即分子平均动能Ek越大,热力学温度T就越大。

分子平均动能Ek是微观表现方式,而热力学温度T是宏观表现方式。

热力学第一定律深入理解之做功与气体体积关系老师:W与气体的体积相关,V减小,则是外界对气体做正功(压缩气体)。

反之,V增大,则是外界对气体做负功(气体膨胀向外界做功)。

热力学第一定律深入理解之能量守恒定律在热学的变形式老师:从热力学第一定律公式来看:△U=W+Q这与能量守恒定律是一致的。

能量守恒定律的内容是:能量既不会凭空产生,也不会凭空消失,只能从一个物体传递给另一个物体,而且能量的形式也可以互相转换。

在热学领域,物体内能改变同样遵守能量守恒定律。

物体内能的增加,要么是伴随着外界做功,要么是由外界热量传导引起的。

在物体A内能增加的同时,物体B因为向A做功能量减小,或者物体C把自身内能以热量形式向物体A传导,自身能量减小。

热力学第一定律

热力学第一定律

热力学第一定律功:δW =δW e +δW f(1)膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。

(2)非膨胀功δW f =xdy非膨胀功为广义力乘以广义位移。

如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。

热 Q :体系吸热为正,放热为负。

热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。

热容 C =δQ/dT(1)等压热容:C p =δQ p /dT = (∂H/∂T )p (2)等容热容:C v =δQ v /dT = (∂U/∂T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差:(1)任意体系 C p —C v =[p +(∂U/∂V )T ](∂V/∂T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程:pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=11-γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1nR-δ(T 1—T 2) 热机效率:η=212T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β=121T T T -焦汤系数: μJ -T =H p T ⎪⎪⎭⎫⎝⎛∂∂=-()pT C p H ∂∂ 实际气体的ΔH 和ΔU :ΔU =dT T U V ⎪⎭⎫ ⎝⎛∂∂+dV V U T ⎪⎭⎫ ⎝⎛∂∂ ΔH =dT T H P ⎪⎭⎫ ⎝⎛∂∂+dp p H T⎪⎪⎭⎫ ⎝⎛∂∂ 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑BB γRT化学反应热效应与温度的关系:()()()dT B C T H T H 21T T m p B1m r 2m r ⎰∑∆∆,+=γ热力学第二定律Clausius 不等式:0TQS BAB A ≥∆∑→δ—熵函数的定义:dS =δQ R /T Boltzman 熵定理:S =kln Ω Helmbolz 自由能定义:F =U —TS Gibbs 自由能定义:G =H -TS 热力学基本公式:(1)组成恒定、不作非膨胀功的封闭体系的热力学基本方程:dU =TdS -pdV dH =TdS +Vdp dF =-SdT -pdV dG =-SdT +Vdp (2)Maxwell 关系:T V S ⎪⎭⎫⎝⎛∂∂=V T p ⎪⎭⎫ ⎝⎛∂∂Tp S ⎪⎪⎭⎫ ⎝⎛∂∂=-p T V ⎪⎭⎫ ⎝⎛∂∂ (3)热容与T 、S 、p 、V 的关系:C V =T VT S ⎪⎭⎫⎝⎛∂∂ C p =T p T S ⎪⎭⎫ ⎝⎛∂∂Gibbs 自由能与温度的关系:Gibbs -Helmholtz 公式 ()pT /G ⎥⎦⎤⎢⎣⎡∂∆∂T =-2T H ∆ 单组分体系的两相平衡: (1)Clapeyron 方程式:dT dp=mX m X V T H ∆∆ 式中x 代表vap ,fus ,sub 。

《大学物理》课件-热力学第一定律

《大学物理》课件-热力学第一定律
非平衡态不能用一定的状态参量描述,非准静态过程 也就不能用状态图上的一条线来表示。
21
例1 理想气体准静态等温膨胀做的功。并思考如何实现这 一准静态过程。
22
假设缸中由v mol气体,等温膨胀的温度为T,体积
变化为:
V1 →V2

V2
A=
V1
pdV
= V2RT
绝热壁
C
向真空中自由膨胀。测量 膨胀前后水温的变化。
气体
真空 水
实验结果:水温不变,
验证了理想气体的内能与体积无关。为什么?
dQ = 0,dA = 0 dE = 0 (V1 →V2 )
但水的热容比气体的大得多,焦耳实验中气体温度变化不 易测出。实验进一步改进。1852年焦耳和汤姆逊用节流方法重 新做了实验。
11
4.热力学第一定律 机械能守恒: Aex + Ain,n-cons = EB - EA 对保守系统: Aex = EB - EA = ΔE 质心参考系下:Aex = Ein,B - Ein,A
对单一组分的热力学系统(保守系统),外界对系统做 功可分为:①与系统的边界具有宏观位移相联系的宏观功; ②没有宏观位移的热传递型微观功。
Aex = A + Q 则机械能守恒在热力学系统的新形式: A + Q = ΔE
12
对于任何宏观系统的任何过程,系统从外界吸收的热
量等于系统内能的增量和系统对外做的功之和。
Q = E2-E1 + A
A = -A表示系统对外界做功。对初、末态为平衡态的无
限小过程
dQ = dE + dA
——涉及热现象的能量守恒定律的表述。 ——不需要能量输入而能继续做功的“第一类永动机”不 存在。

物理学热力学第一定律

物理学热力学第一定律

物理热力学第一定律知识点归纳总结第二讲热力学第一定律§2.1 改变内能的两种方式热力学第一定律2.1.1、作功和传热作功可以改变物体的内能。

如果外界对系统作功W。

作功前后系统的内能分别为、,则有没有作功而使系统内能改变的过程称为热传递或称传热。

它是物体之间存在温度差而发生的转移内能的过程。

在热传递中被转移的内能数量称为热量,用Q表示。

传递的热量与内能变化的关系是做功和传热都能改变系统的内能,但两者存在实质的差别。

作功总是和一定宏观位移或定向运动相联系。

是分子有规则运动能量向分子无规则运动能量的转化和传递;传热则是基于温度差而引起的分子无规则运动能量从高温物体向低温物体的传递过程。

2.1.2、气体体积功的计算1、准静态过程一个热力学系统的状态发生变化时,要经历一个过程,当系统由某一平衡态开始变化,状态的变化必然要破坏平衡,在过程进行中的任一间状态,系统一定不处于平衡态。

如当推动活塞压缩气缸中的气体时,气体的体积、温度、压强均要发生变化。

在压缩气体过程中的任一时刻,气缸中的气体各部分的压强和温度并不相同,在靠近活塞的气体压强要大一些,温度要高一些。

在热力学中,为了能利用系统处于平衡态的性质来研究过程的规律,我们引进准静态过程的概念。

如果在过程进行中的任一时刻系统的状态发生的实际过程非常缓慢地进行时,各时刻的状态也就非常接近平衡态,过程就成了准静态过程。

因此,准静态过程就是实际过程非常缓慢进行时的极限情况对于一定质量的气体,其准静态过程可用图、图、图上的一条曲线来表示。

注意,只有准静态过程才能这样表示。

2、功在热力学中,一般不考虑整体的机械运动。

热力学系统状态的变化,总是通过做功或热传递或两者兼施并用而完成的。

在力学中,功定义为力与位移这两个矢量的标积。

在热力学中,功的概念要广泛得多,除机械功外,主要的有:流体体积变化所作的功;表面张力的功;电流的功。

(1)机械功有些热力学问题中,应考虑流体的重力做功。

物理学中的热力学第一定律

物理学中的热力学第一定律

物理学中的热力学第一定律热力学是物理学中一个重要的分支领域,主要研究物质的热力学性质和能量转换规律。

热力学第一定律是热力学中最基本的定律之一,也被称为能量守恒定律。

本文将介绍热力学第一定律的基本概念和应用。

一、热力学第一定律的基本概念热力学第一定律是关于能量转化和守恒的重要规律。

它表明在任何一个封闭系统中,能量的总增量等于系统对外做功与系统吸收的热量之和。

简单来说,能量不可能从“无中生有”,也不可能消失于“无中”。

能量只能从一种形式转化为另一种形式,其总量保持不变。

二、能量转化的过程热力学第一定律指出能量的转化过程,主要包括以下几个方面:1. 系统吸收热量,增加内能:当一个系统吸收热量时,其内能会增加。

内能是系统微观粒子热运动的总和,吸收热量会增强粒子的热运动。

2. 系统对外做功,减少内能:当一个系统对外做功时,它的内能会减少。

系统通过对外界施加力或移动物体来做功,从而减少内能。

3. 热传递与能量转化:能量可以通过热传递的方式在物体之间转化。

热传递是指热从高温物体传递到低温物体的过程,高温物体的内能减少,而低温物体的内能增加。

三、热力学第一定律的数学表达热力学第一定律可以用数学公式来表示。

假设一个系统在某一时刻的内能为U,同时对外做功为W,吸收的热量为Q,则热力学第一定律可以表示为:△U = Q - W其中,△U表示内能的增量。

根据定义,内能的增量等于内能的终值减去内能的初值。

若系统对外做正功,则W为正;若系统吸收的热量为正,则Q为正。

四、热力学第一定律的应用热力学第一定律在各个领域都有广泛应用,以下以几个典型的应用为例进行介绍。

1. 热机工作原理:热力学第一定律揭示了热机的工作原理。

热机根据能量转化的规律,将热能转化为机械能,如汽车发动机、蒸汽机等。

2. 热传导:热力学第一定律在研究传热问题中具有重要意义。

根据热传导定律,热量会自热量高的物体传递到热量低的物体,热力学第一定律可以解释热传导现象的能量转换。

热力学第一定律能量守恒定律

热力学第一定律能量守恒定律

热力学第一定律能量守恒定律在物理学中,热力学第一定律,也被称为能量守恒定律,是热力学的基本原理之一。

它表明,在一个封闭系统中,能量既不能被创造也不能被毁灭,只能从一种形式转化为另一种形式。

能量是物质存在的基本属性,它可以表现为热能、机械能、电能、化学能等形式。

根据能量守恒定律,这些形式的能量可以相互转化,但是总能量的和保持不变。

热力学第一定律可以用数学表达式来表示,即△U = Q - W。

其中,△U表示系统内能的变化,Q表示系统所吸收或释放的热量,W表示系统对外界做功。

根据这个公式,我们可以得出结论:当系统吸收热量时,系统内能增加,而当系统释放热量时,系统内能减少。

同样地,当系统对外界做功时,系统内能减少,而当外界对系统做功时,系统内能增加。

通过这些能量的转化,能量在系统内部和外部之间得以平衡。

热力学第一定律还可以解释一些日常生活中的现象。

例如,我们常常用电器加热食物。

当电器吸收电能时,电能被转化为热能,使食物加热。

在这个过程中,虽然电能转化为热能,但总能量并没有减少,而是转化为了热能。

这就是热力学第一定律的体现。

同样地,汽车的运行也符合热力学第一定律。

当汽车行驶时,发动机燃烧汽油产生能量,将能量转化为机械能推动汽车前进。

在这个过程中,汽油的化学能转化为机械能,使汽车运行。

虽然化学能减少,但总能量并没有减少,而是以机械能的形式存在于汽车运动中。

热力学第一定律对于能源的利用和保护具有重要意义。

我们应该从能量守恒的角度思考如何更有效地利用能源,降低能源的浪费和损耗。

通过提高能源利用效率,我们可以减少对环境的影响,保护地球的可持续发展。

总之,热力学第一定律,即能量守恒定律,是一个基本的物理定律,揭示了能量转化的基本原理。

通过理解和应用这一定律,我们可以更好地理解能量的本质,合理利用能源,保护环境,实现可持续发展。

这也是我们在学习和应用热力学知识时需要深入探索和研究的方向。

热力学第一定律的内容及公式

热力学第一定律的内容及公式

热力学第一定律的内容及公式热力学第一定律是物理学中一个重要的定律,它总结规定了热力学系统内物质的状态变化,通常也被称为“平衡态定律”,它是一个重要的理论框架,将热力学和它的应用的范围从物理学的实验室延伸到日常生活中所涉及的广泛的应用领域。

热力学第一定律的概念源自19世纪末的欧洲,但直到20世纪初,才形成了它的形式化定义。

1923年,康涅狄格州立大学随后,热力学第一定律被定义为“能量不会因某些热力学过程而创造或消失,热量只能从一个体系传到另一个体系”。

那时,热力学第一定律只是具有普遍性的概念,并没有被用来作为实际工程设计的工具,直到20世纪30年代,随着实验结果的出现,热力学第一定律才得到实际应用。

热力学第一定律的原理说明,尽管有内部热量转换的时候,热力学系统的总能量保持不变,这就意味着能量在绝对的状态下保持不变,而不是简单的动能和位能的变化。

在热力学过程中,能量是不可替代的,也就是说,当一个体系失去某些能量时,这个体系必须从其他体系获得一些新的能量,以保持总能量的恒定性。

因此,热力学第一定律可以用克里斯特公式表达,即:ΔU = Q - W其中,Δu表示系统的总能量变化,Q表示从外部传入的热能,W 表示系统中发生的功的大小。

此外,热力学第一定律建立在热力学的基本假设上,即物质处于恒定温度、恒定压力和恒定体积的条件下受到平衡时,物理密度不变。

据此,热力学第一定律可以用以下公式表示:ΔU = Q - PV其中,Δu表示物质总能量的变化,Q表示物质吸收热量,P表示物质的压强,V表示体积的变化。

热力学第一定律的定义及其表达形式已经被用来作为描述热力学系统在平衡状态下的物理定律,不仅用于理解实验室行为,也是工程设计和工业应用的基础。

热力学第一定律的重要性不能被夸大,它可以帮助我们理解热力学系统处于热平衡,内部能量流动以及能量从一个体系传至另一个体系的过程,从而为工程设计和工业应用提供重要的理论支持。

此外,热力学第一定律还可以用来解释质能守恒定律,即宇宙的总能量是恒定的,宇宙中所有的物质系统总能量保持不变,在每一个时刻,物质系统内的总能量量是不变的。

热力学第一定律能量守恒定律

热力学第一定律能量守恒定律

热力学第一定律能量守恒定律1热力学第一定律的基本概念热力学第一定律是热力学中最基本的定律之一,它也被称为能量守恒定律。

这个定律表达了宇宙中能量守恒的基本规律:在任何系统中,能量总是守恒的。

也就是说,能量不能被创造或破坏,只能转换成其他形式。

这个定律用简单的数学公式表达为:ΔE=Q-W其中,ΔE代表能量的变化量,Q代表系统吸收的热量,W代表系统对外做功的量。

这个公式表明,系统所吸收的热量和对外做的功之和等于能量的变化量。

它也可以用下面的形式表达:∆U=Q-W其中,∆U代表系统内部能量的变化量。

这个公式表明,系统内部能量的变化量取决于吸收的热量和对外做的功的差异。

2能量的转换和守恒热力学第一定律的本质是能量守恒定律。

能量是一个宇宙中最基本的物理量之一,它包括热能、机械能、电能、化学能等各种形式。

在热力学研究中,我们主要关注的是热能和机械能的相互转换。

热能和机械能的转换通常涉及到工作物体和热源之间的能量交换。

例如,将一份热水加热到沸腾所需要的能量就来自于热源的热能。

如果我们将这个热水倒入一个容器中,它们就在容器的底部对容器产生了一个压力。

这个压力实际上就是机械能,它可以用来做功或者产生运动。

在能量的转换过程中,能量总是守恒的。

这意味着,在系统中能量的总量是不变的,只有能量的形式发生了变化。

因此,如果一个系统吸收热量Q,做了W单位的功,那么系统内部能量的变化量就是ΔE=Q-W,这个量可以用来计算系统所获得或失去的能量。

3热力学第一定律在实际生活中的应用热力学第一定律是一项非常基础的物理定律,影响到人类社会的各个领域。

在能源方面,热力学第一定律的应用非常广泛。

例如,在燃煤、核能发电等领域中,我们都需要利用热力学第一定律来分析能量的转换和利用方式。

在化学工程领域,热力学第一定律也是必不可少的工具。

例如,在制造化学反应器时,我们需要利用热力学第一定律确定系统的能量输出和输入,以便计算反应过程中的热量变化和温度变化。

热力学第一定律

热力学第一定律

W>0 对系统作功
闭口系统的热力学第一定律表达式
一般式 Q = ∆U + W dQ = dU + dW q = ∆u + w dq = du + dw 适用条件: ) 适用条件: 1)任何工质 2) 任何过程 Q
微分形式 单位质量工质
W
闭口系统的热力学第一定律表达式
对于可逆过程 对于可逆过程
δw = pdv
实质:能量转换和守恒定律在热力学系统中的应用。 实质:能量转换和守恒定律在热力学系统中的应用。 可表述为: 可表述为:在孤立系统内能量的总量保持不变
能量守恒与转换定律:能量不可能被创造, 能量守恒与转换定律 能量不可能被创造,也不可能被消 能量不可能被创造 只能相互转换,且在孤立系统中总量保持不变。 灭,只能相互转换,且在孤立系统中总量保持不变。
• 18世纪初,工业革命,热效率只有 。 世纪初, 世纪初 工业革命,热效率只有1%。 • 1842年,J.R.Mayer阐述热力学第一定律, 年 阐述热力学第一定律, 阐述热力学第一定律 但没有引起重视。 但没有引起重视。 • 1840-1849年,Joule用多种实验的一致性证 1840-1849年 Joule用多种实验的一致性证 明热力学第一定律, 明热力学第一定律,于1850年发表并得到公 年发表并得到公 认。
• 第一 什么是热力学第一定律? 什么是热力学第一定律? 热力系内物质的能量可以传递,其形式可以转换,在转 热力系内物质的能量可以传递,其形式可以转换, 换和传递过程中各种形式能源的总量保持不变。 换和传递过程中各种形式能源的总量保持不变。 • 第二 为什么要学习热力学第一定律? 为什么要学习热力学第一定律? 物质和能量既不能被消灭也不能被创造。 物质和能量既不能被消灭也不能被创造。 • 第三 热力学第一定律的应用? 热力学第一定律的应用? 第一类永动机是不可能造成的

热力学第一定律

热力学第一定律

热力学第一定律热力学第一定律是热力学的基本原理之一,也被称为能量守恒定律。

它描述了能量的转化和守恒,对于揭示物质的能量变化和热力学性质具有重要的意义。

本文将深入探讨热力学第一定律的概念、原理和应用。

热力学第一定律的概念热力学第一定律是由英国物理学家焦耳在19世纪提出的。

它可以简洁地表述为能量守恒定律,即能量既不能被创造也不能被摧毁,只能在不同形式之间转化。

这意味着一个封闭系统中的能量总量是恒定的,能量既不能消失也不能产生。

当一个系统经历能量的转化时,其总能量保持不变,只是能量的形式和分布发生改变。

热力学第一定律的原理热力学第一定律的原理可以通过以下公式表示:ΔU = Q - W其中,ΔU表示系统内部能量的变化,Q表示系统吸收的热量,W表示系统对外做的功。

这个公式表明,系统内部能量的变化等于系统吸收的热量与系统对外做的功之间的差值。

当系统吸热时,ΔU为正,系统内部能量增加;当系统放热时,ΔU为负,系统内部能量减少;当系统对外做功时,ΔU 为负,系统内部能量减少;当系统由外界做功时,ΔU为正,系统内部能量增加。

热力学第一定律的应用热力学第一定律在工程和科学领域有着广泛的应用。

下面将介绍热力学第一定律的几个重要应用。

1. 热机效率计算热力学第一定律在热机效率计算中起着重要的作用。

热机的效率是指能够转化为有效功的热量与燃料能量之间的比例。

通过热力学第一定律的应用,我们可以计算出热机的效率,从而评估其性能。

2. 平衡热量计算在热平衡过程中,热力学第一定律可以用于计算平衡热量。

平衡热量是指系统从一个状态到另一个状态的过程中吸收或释放的热量。

通过应用热力学第一定律,我们可以计算系统在不同温度下的平衡热量,并进一步了解能量转化过程。

3. 定常流动计算在工程领域中,很多设备和系统都涉及流体的流动。

热力学第一定律可以用于定常流动过程的计算。

这种定常流动的例子包括空调系统、燃料电池、蒸汽涡轮等。

通过应用热力学第一定律,我们可以计算能量损失和效率,从而优化系统性能。

热力学第一定律的内容及公式

热力学第一定律的内容及公式

热力学第一定律的内容及公式
热力学第一定律是热力学很重要的定律,简称为第一定律。

热力学第一定律是物理和化学中最基本也是最重要的定律,概括地说,它指出了总热量是不可消失的,即能量守恒定律。

它是由德国物理学家莱布尼兹在1850年发现的。

热力学第一定律指出,内能系统内所有物质之间的总热量交换是不可消失的,即总热量守恒定律,在反应过程中能量不会消失,它只能以动能形式存在,也就是说,能量可以有很多形式存在,但是总量是不变的。

它可以用如下的公式来表示:
E=q+w
其中,E表示热力学第一定律定义的能量总量;q表示热量;w
表示功能。

热力学第一定律可以用来解释诸如内能的变化、热动力学中的功能过程、经典热力学定律的发展,以及熵的概念。

它的应用还可以普遍用于热力学和热工程的其他领域。

所有的能量转换都可以用热力学第一定律进行表述,即能量在某种形式变换到另一种形式的守恒定律。

比如,当将动能转化为功能,则q+w=E,即动能变为功能的过程中,能量总量E是不变的。

当功能转化为动能,则q-w=E,即功能变为动能的过程中,能量总量E也是不变的。

总之,热力学第一定律是一个重要的定律,它表明能量总量在任何过程中都是守恒的,它是对物理和化学中反应过程能量变化的最基
本的定律。

热力学第一定律解释了热力学和热工程中诸如内能的变化、热动力学中的功能过程、熵的性质及其变化的原理,在热力学和热工程的理论和应用方面有着重要的意义。

热力学第一定律

热力学第一定律
1. 作用形式
热力学系统中的力学作用形式多样, 如:压强、表面张力、弹性力、 电磁力、等等。
2. 作用效果
使热力学系统的力学平衡条件被破坏,在系统状态 变化过程中伴随有能量转移,其形式即:作功。
3. 一些常见过程中元功的计算
作用力为广义力, 状态变化量为广义位移,
记 Y 为广义力,X 为广义位移,
则其元功为: W YX .
3.车载的能量有限。
冷却外壳
离合器部分
驱动电机系统概述
二、驱动电机的分类
按照结构和工作原理不同,目前的驱动电动机有直流电动机、交流异步电动 机、永磁同步电动机、开关磁阻电动机等几种。
1.直流电动机 直流电动机通过定子绕组产生磁场,向转子绕组通入直流电,并用换向装置对 绕组内电流在适当时候进行换向,使转子绕组始终受到固定方向的电磁转矩。
驱动电机系统概述
一、驱动电机简介
用于驱动车辆的电动机称为驱动电动机。其任务是在驾驶人的控制下,高效
率地将蓄电池的电量转化为车轮的动能,或者将车轮的动能反馈到蓄电池中。
驱动电动机的工作条件与一般工业电动机有明显不同,体现在以下方面。
1.驱动电动机的转速、转矩变化范围大;
发动机
电动机
就业变速箱
2.驱动电动机所处的使用环境恶劣;
三、驱动电机的额定指标 驱动电动机的额定指标是指根据国家标准及电动机的设计、试验数据而确定的额
定运行数据,是电动机运行的基本依据。电动机的额定指标主要包括以下各项。 1.额定功率。额定功率是指额定运行情况下轴端输出的机械功率(W或kW)。 2.额定电压。额定电压是指外加于线端的电源线电压(V)。 3.额定电流。额定电流是指电动机额定运行(额定电压、额定输出功率)情况下

热力学第一定律的表达式

热力学第一定律的表达式

热力学第一定律的表达式热力学第一定律的表达式:ΔE=W+Q。

在热力学中,热力学第一定律通常表述为:热能和机械能在转化时,总能量保持不变。

其数学表达式为ΔE=W+Q,其中ΔE表示系统内能的改变,W表示系统对外所做的功,Q表示系统从外界吸收的热量。

这个定律表明,能量的转化和守恒定律是自然界的基本定律之一,它适用于任何与外界没有能量交换的孤立系统。

换句话说,在一个封闭系统中,能量的总量是恒定的,改变的只是能量的形式。

因此,热力学第一定律是能量守恒定律在热现象领域中的应用。

另外,对于一个封闭系统,如果系统内部没有发生化学反应或相变等过程,那么系统对外做的功等于系统从外界吸收的热量。

这是因为系统内能的改变量等于系统对外做的功和系统从外界吸收的热量之和。

值得注意的是,热力学第一定律也适用于非平衡态系统。

即使系统处于非平衡态,热力学第一定律仍然适用。

因此,它不仅是热力学的基石之一,也是整个物理学的基石之一。

为了更好地理解热力学第一定律,我们可以考虑一些具体的应用场景。

例如,在汽车发动机中,汽油燃烧产生的热能转化为汽车的动能和废气中的内能。

在这个过程中,系统内能的改变量等于系统对外做的功和系统从外界吸收的热量之和。

因此,根据热力学第一定律,我们可以计算出汽车发动机的效率,从而评估其能源利用效果。

此外,热力学第一定律还可以应用于电学、化学等领域。

例如,在电学中,当电流通过电阻时会产生热量,根据热力学第一定律可以计算出电阻产生的热量。

在化学中,反应热的计算也可以根据热力学第一定律来进行。

以下是一些具体例子,说明热力学第一定律的应用:1. 热电站:在热电站中,燃料燃烧产生的热能转化为蒸汽的机械能,再转化为电能。

根据热力学第一定律,热能被转化为机械能和电能,而总能量保持不变。

通过计算输入和输出的能量,我们可以评估热电站的效率。

2. 制冷机:制冷机是一种将热量从低温处转移到高温处的设备。

在制冷过程中,制冷剂在蒸发器中吸收热量并转化为气态,然后通过压缩机和冷凝器将热量释放到高温处。

热力学第一定律精选全文完整版

热力学第一定律精选全文完整版

可编辑修改精选全文完整版热力学第一定律科技名词定义中文名称:热力学第一定律英文名称:first law of thermodynamics其他名称:能量守恒和转换定律定义:热力系内物质的能量可以传递,其形式可以转换,在转换和传递过程中各种形式能源的总量保持不变。

概述热力学第一定律热力学第一定律:△U=Q+W。

系统在过程中能量的变化关系英文翻译:the first law of thermodynamics简单解释在热力学中,系统发生变化时,设与环境之间交换的热为Q(吸热为正,放热为负),与环境交换的功为W(对外做功为负,外界对物体做功为正),可得热力学能(亦称内能)的变化为ΔU = Q+ W或ΔU=Q-W物理中普遍使用第一种,而化学中通常是说系统对外做功,故会用后一种。

定义自然界一切物体都具有能量,能量有各种不同形式,它能从一种形式转化为另一种形式,从一个物体传递给另一个物体,在转化和传递过程中能量的总和不变。

英文翻译:The first explicit statement of the first law of thermodynamics, byRudolf Clausiusin 1850, referred to cyclic thermodynamic processes "In all cases in which work is produced by the agency of heat, a quantity of heat is consumed which is proportional to the work done; and conversely,by the expenditure of an equal quantity of work an equal quantity of heat is produced."基本内容能量是永恒的,不会被制造出来,也不会被消灭。

热力第一定律

热力第一定律

热力学第一定律热力学第一定律是能量守恒原理的一种表达方式。

此定律曰:在一个热力学系统内,能量可转换,即可从一种形式转变成另一种形式,但不能自行产生,也不能毁灭。

一般公式化为:一个系统内能的改变等于供给系统的热量减去系统对外环境所作的功。

热力学第一定律是生物,物理化学等学科的重要定律。

20本词条无基本信息模块, 正文缺少最新信息, 欢迎各位编辑词条,额外获取20个积分。

基本信息∙中文名称热力学第一定律∙外文名称the first law of thermodynamics∙应用学科物理∙提出时间19世纪50年代∙提出者迈耳 J.R.Mayer、焦耳 T.P.Joule∙表达式△U=Q+W目录1 基本介绍1.1 简单解释1.2 定义1.3 基本内容2 发展历史2.1 发展历史2.2 表述展开1 基本介绍1.1 简单解释1.2 定义1.3 基本内容2 发展历史2.1 发展历史2.2 表述+1QQ空间新浪微博腾讯微博百度贴吧人人豆瓣基本介绍编辑本段热力学第一定律:△U=Q+W。

系统在过程中能量的变化关系英文翻译:the first law of thermodynamics简单解释在热力学中,系统发生变化时,设与环境之间交换的热为Q,与环境交换的功为W,可得热力学能(亦称内能)的变化为ΔU = Q+ W或ΔU=Q-W(目前通用这两种说法,以前一种用的多),为了避免混淆,物理中普遍使用第一种,而化学中通常是说系统对外做功,故会用后一种。

定义自然界一切物体都具有能量,能量有各种不同形式,它能从一种形式转化为另一种形式,从一个物体传递给另一个物体,在转化和传递过程中能量的总和不变。

英文翻译:The first explicit statement of the first law of thermodynamics, by Rudolf Clausius in 1850, referred to cyclic thermodynamic processes"In all cases in which work is produced by the agency of heat, a quantity of heat is consumed which is proportional to the work done; and conversely, by the expenditure of an equal quantity of work an equal quantity of heat is produced."基本内容热可以转变为功,功也可以转变为热;消耗一定的功必产生一定的热,一定的热消失时,也必产生一定的功。

热力学第一定律

热力学第一定律

P2V2
ln
V2 V1
7
又 ∵ 等温过程有
V2 P1 V1 P2

AT
P1V1 M
ln P1 P2 RT
ln
P2V2 P1
ln
P1 P2
M mol
P2
(3)强调QT=AT
即在等温过程中,系统的热交换不能直接计算,但可用等 温过程中的功值AT来间接计算。
8
※三种过程中气体做的功
等体过程
(1)特征:dT=0, ∴dE=0 热一律为 QT=AT
在等温过程中,理想气体所吸收 的热量全部转化为对外界做功,系 统内能保持不变。
(2)等温过程的功
PI
P1
P2
o
V1
II
V2 V
∵T=C(常数),
P RT 1
V
dAT PdV
AT
V2 RTdV RT ln V2
V V1
V1
P1V1
ln
V2 V1
T1)
M M mol R(T2 T1)
5
C p
C V
R i2R 2
──此即迈耶公式
(3)比热容比:
定义
Cp
Cv
i 2
RR iR
i2 i
2
对理想气体刚性分子有:
单原子分子:
双原子分子:
5 3 7 5
1.67 1.4
*: 经典理论的缺陷
多原子分子:
8 6
1.33
6
3、等温过程
1
符号规定
Q
吸热为正, 放热为负.
系统对外做功为正, A 外界对系统做功为负.
各物理量的单位统一用国际单位制。

热力学第一定律能量守恒定律

热力学第一定律能量守恒定律

热力学第一定律能量守恒定律热力学第一定律,也被称为能量守恒定律,是热力学中的基本原理之一。

它阐述了能量在物理系统中的转换和守恒规律。

本文将探讨热力学第一定律的基本概念、应用以及在实际生活中的意义。

一、能量的转换与守恒热力学第一定律强调了能量的转换和守恒原则。

根据这个定律,能量可以从一种形式转化为另一种形式,但总能量量不变。

简单来说,能量既不能被创造,也不能被毁灭,只能在不同形式之间相互转化。

二、热力学第一定律的数学表达热力学第一定律可以用以下数学方程式来表示:ΔU = Q - W其中,ΔU表示系统内能的变化,Q表示系统吸收的热量,W表示系统对外做功。

这个方程式说明了能量守恒的基本原理,系统的内能变化等于热量和功之间的差值。

三、热力学第一定律的应用热力学第一定律在许多领域都有广泛的应用。

以下是其中一些常见的应用:1. 热机和热能转换:热力学第一定律为热机提供了理论基础。

热机将热能转化为机械能,如汽车发动机、蒸汽机等。

这些机械设备的工作原理都依赖于能量的转换和守恒。

2. 制冷和空调:热力学第一定律也适用于制冷和空调系统。

这些系统通过转移热量来调节温度,从而满足人们对舒适环境的需求。

3. 化学反应:热力学第一定律可以用于分析和预测化学反应的能量变化。

在化学反应中,能量的释放或吸收对于确定反应的可行性和速率至关重要。

4. 可再生能源:热力学第一定律也与可再生能源有关。

可再生能源,如太阳能和风能,利用自然界存在的能量转换为可用能源,遵循了能量守恒的原则。

四、热力学第一定律在实际生活中的意义热力学第一定律在实际生活中有着重要的意义。

它提醒我们要合理利用能源资源,遵循能量守恒的原则。

在能源有限的情况下,我们应该设法降低能量的消耗,并寻找替代能源,以实现可持续发展。

此外,在能源转换和利用过程中,我们也要注意能量的转换效率。

通过提高能量转换效率,我们可以减少能源的浪费,减轻对环境的负担。

总结:热力学第一定律能量守恒定律是热力学中的基本原理,强调了能量在物理系统中的转换和守恒。

大学物理课件热学-热力学第一定律

大学物理课件热学-热力学第一定律

PF S
如果活塞没有加速度(或可忽略), 由力学的动量守恒,有外压力与气 体压力相等。这时:
A PdV
3.热量:物体间通过热接触传递的能量。热量的测量方法:量热技术。
Q=?
实验时,如果电阻的欧姆热全部流入系统,有

Q / t RI 2


电阻
电流

接 地
如果一定量的机械能通过摩擦产生的热都流入了系统,有
B
如果从B到A,放热.
注意:一个过程不一定从头到尾都吸收或放热.
V
它可能有时吸收热, 有时放热.
因此分析整个过程吸收或放热是, 应一小段,一小段地考虑
6.理想气体平衡过程分析: 等温过程、绝热过程、等容过程、循环过程,……
等容过程 dV=0 : (1) A 不变化: A=0!
P
A
(2) 热:
B
Q U dU T
p1
ab
试求: ( 1)状态d的体积Vd;
d
(2)整个过程对外所作的功; o
V
(3)整个过程吸收的热量。
V1 2V1
解:(1)根据题意 Ta Td
又根据物态方程 pV RT
Td
Ta
p1V1 R
p
Tc
pcVc R
4 p1V1 R
4Ta
2p1
c
再根据绝热方程TcVc 1 TdVd 1 p1 a b
3 热力学第一定律
(能量守恒: 能量与能流)
1.物体的能量: 内能或热力学能量。有时可分为:1机械能 + 2热能。
能量概念来自对力学运动规律的研究。 从质点动力学人们认识到,比如:
弹簧质点组成的“孤立”系统:
m1

热力学第一定律

热力学第一定律

热力学第一定律热力学第一定律,也被称为能量守恒定律,是热力学基本定律之一。

它阐述了能量在物理系统中的守恒原理,即能量不会被创造或消灭,只会在不同形式之间转换或传递。

该定律在许多领域都有广泛的应用,包括工程、物理、化学等。

1. 定律的表述热力学第一定律可从不同的角度进行表述,以下是几种常见的表述方式:1.1 内能变化根据热力学第一定律,一个封闭系统内能的变化等于系统所吸收的热量与系统所做的功的代数和。

数学表达式如下:ΔU = Q + W其中,ΔU表示系统内能的变化,Q表示系统吸收的热量,W表示系统所做的功。

1.2 能量守恒根据能量守恒定律,能量既不能被创造也不能被摧毁,只会在不同形式之间传递或转换。

能量的总量在一个封闭系统中保持不变。

2. 系统内能的变化系统内能的变化是热力学第一定律的核心内容之一。

系统内能的变化是由系统吸收或释放的热量以及系统所做的功决定的。

2.1 系统吸收的热量系统吸收的热量指的是系统从外界获得的热能。

当一个热源与系统接触时,能量会以热量的形式从热源传递到系统中。

系统吸收的热量可以引起系统内能的增加。

2.2 系统所做的功系统所做的功指的是系统对外界做的能量转移。

当系统对外界施加力并移动时,能量会以功的形式从系统传递到外界。

系统所做的功可以引起系统内能的减少。

3. 热力学第一定律的应用3.1 工程应用热力学第一定律在工程领域有着广泛的应用。

例如,在能源系统的设计与优化中,需要根据系统的能量转换过程,计算系统的内能变化和热功效率等参数,以提高能源利用效率。

3.2 物理学应用在物理学研究中,热力学第一定律通常用于分析热力学过程中的能量转化。

例如,在热力学循环中,通过计算各个环节的能量转换情况,可以确定工作物质的热效率,从而评估系统的性能。

3.3 化学反应在化学反应中,热力学第一定律对于研究反应的能量变化和平衡状态具有重要意义。

通过计算反应过程中释放或吸收的热量,可以确定反应的放热性或吸热性,并预测反应的发生与否。

热力学第一定律的表达式为

热力学第一定律的表达式为

热力学第一定律的表达式为热力学第一定律,也叫热力学总体定律,是热力学中最基本的定律之一,也是热力学中最重要的定律。

它概括地说明热力学系统的能量是保守的,也就是说,热力学系统的总能量是不变的。

这条定律最早是由德国数学家、物理学家卡尔弗里德里希热平克(Karl Freidrich Zeipel)在1850年提出的,他将热力学第一定律定义为“一个系统里,只有当机械作用之后,系统的总能量才会改变,而在没有机械作用的情况下,总能量不变”。

热力学第一定律的表达式热力学第一定律的表达式有多种,最常用的表达式是:U = Q - W,其中U为能量变化,Q 为热量, W 为功。

根据热力学定律,任何热力学的过程中,所有的热力学性质和能量都是不变的,热力学系统的能量变化只与工作量有关。

因此,热力学第一定律可以用其表达式来描述:U=Q-W 。

事实上,在物理学中,热力学第一定律可以用其他表达式来表示,比如:dU=dQ+dW 。

这两个表达式是等价的,可以互相转化,只是在不同情况下有不同的用法。

热力学第一定律的应用热力学第一定律是物质研究的基础,它提供了一种物质能量守恒的规律。

它既可以解释室温和低温的物理过程,也可以用于解释电能和热能的转化过程。

热力学第一定律可以用来研究物理学热学中的各种热力学过程,比如对热源的熔点和温度的变化,熔融过程的变换,物质在冷却、冷热相变和熔点转变时的行为等等,都可以用热力学第一定律来研究。

此外,热力学第一定律还可以用来解释和研究热电转换和涡轮机等储能机械的运行原理,以及热能学、物质动力学和材料的散热机理。

热力学第一定律是一个重要的物理学原理,它在很多物理学领域有重要的应用,比如能源技术、物质动力学、热力学、材料科学等等,都离不开它的应用。

所以,热力学第一定律是极具重要意义的物理学原理。

结论热力学第一定律是物理学中最基本的定律之一,它表明热力学系统的总能量是不变的,这也是物质能量守恒的基本原理。

它既可以用来研究室温和低温的物理过程,也可以用来研究热电转换的原理,热力学第一定律在很多物理学领域有重要的应用,它具有极具重要意义的物理学原理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
法国科学院在1775年针对愈来愈多地投送审查的设计方案 郑重声明:本科学院以后不再审查有关永动机的任何设计
第一类永动机必然失败的根本原因是它违反了热力学第一 定律,即能量守恒与转换定律。系统对外界作功时需消耗 系统本身的能量,所有第一类永动机的设想,都是企图在 不消耗能量的情况下无中生有地得到有用的功,这自然是 不可能实现的。
E 0 Q W 等价表述:第一类永动机不可能实现。
§2.2.5 第一类永动机
不消耗能量而能永远对外做功的机器,它违反了热力 学第一定律,称为“第一类永动机”。
亨内考的永动机
达芬奇的永动机
§2.2.5 第一类永动机
斯 特 尔 的 永 动 机
§2.2.5 第一类永动机
其他设想:轮子的惯性、水的浮力、细管子的毛细作用、 带电体间的电力和天然磁铁的磁力等。
E i RT
2
§2.2.4 热力学第一定律
意义:系统从外界吸收的热量等于系统内能的 增量和系统对外做功之和。 对无限小过程: 正负号约定: dQ 0 ——系统从外界吸热
dW 0 ——系统对外做功
§2.2.4 热力学第一定律
Q E W 本质上是包括热现象在内的能量转换和守恒定律,适 用于气、液、固任何系统。 适用于两平衡态间的任意过程(不仅是准静态过程), 即过程中经历的各状态则不一定是平衡态。 传热与做功在热力学过程中的地位相当,功和热都是 系统内能改变的度量。 系统与外界的热传导可以在等温条件下实现§2.2.2 热量源自1cal 4.1855 J
——热功当量
两种方式的区别:
功 —— 通过宏观位移,即大 量分子集体定向运动,进行
热 —— 通过分子热运动进 行
§2.2.3 内能
实验表明,当系统变化过程的始、末状态确定,变化
过程不同,系统吸收热量 Q 不同,对外做功 W 也不 同,但差值 Q W却与过程无关,只决定于系统初、
末状态。
§2.2.3 内能
力学中,保守力做功与路径无关,引入势能
热力学中,Q W与过程无关,引入内能
内能由系统状态决定,随状态改变而变化。内能 是状态的单值函数。
热力学中认为分子内原子能和核能是冻结的,不随 系统热力学状态变化而改变,也不考虑整体动能。
热力学仅涉及分子热运动能量及分子间作用势能
理想气体的内能
热容量:系统在某一过程中温度升高或降 低一度,需要从外界吸收或放出的能量。
C lim Q dQ T 0 T dT
热容量的单位: J K 热容量与过程有关。
§2.2.2 热量
比热:单位质量物质的热容量。
c C M
比热的单位: J kg K
系统温度从 T1升高到 T,2 从外界吸收的热量为
Q cM T2 T1
V1
V1
p
o V1
V2 V
功是过程量,不是状态的函数。
§2.2.2 热量
热交换也可以改变系统的状态。 热交换的本质是:分子平均平动动能大的高温物 体,向分子平均平动动能小的低温物体,通过热 辐射、分子扩散或分子之间的相互碰撞等方式传 递能量。
热量:热交换过程中交换能量多少的量度
热量的单位:
§2.2.2 热量
§2.2
热力学第一定律
§2.2.1 功
做功可以改变系统的状态 体积功:热力学系统通过做功形式和外界交换能 量,功的变化可以通过体积变化表示。
dl
S
p
在活塞发生微元位移 dl 的准静态过程中 dW pSdl pdV
§2.2.1 功
系统经历一个准静态过程,体积 V1 V2
W V2 dW V2 pdV
相关文档
最新文档