integrin review 整合素受体信号通路综述

合集下载

Src 及其信号通路在肿瘤发生过程中的作用

Src 及其信号通路在肿瘤发生过程中的作用
156
World Latest Medicine Information (Electronic Version) 2019 Vo1.19 No.30
·综述·
பைடு நூலகம்
Src 及其信号通路在肿瘤发生过程中的作用
邹晓倩,汪芮萱,杨林,郭青龙(通讯作者 *)
(中国药科大学基础医学与临床药学学院,江苏 南京)
摘要:非受体酪氨酸激酶(NRTKs)能够将来源于细胞外受体接受的信号传递给细胞质内的其他蛋白或者是传递到细胞核,从而调节细胞的 多种生理功能。其中,Src 家族蛋白酪氨酸激酶(SFKs)作为一类重要的非受体酪氨酸激酶,在细胞的生长,分化,转移和生存中都有着重要 的作用。其中,在肿瘤细胞的转移过程中,Src 可以与整合素(Integrin)家族的不同亚型作用,介导不同的信号通路,从而影响细胞的运动性 和转移性。在这篇综述中,将会对 Src 及其在肿瘤中的作用和靶向 Src 激酶的一些药物做一个简单的介绍。 关键词:肿瘤细胞;Src;整合素;Src 激酶抑制剂 中图分类号:R73 文献标识码:A DOI: 10.19613/ki.1671-3141.2019.30.071 本文引用格式:邹晓倩 , 汪芮萱 , 杨林 , 等 . Src 及其信号通路在肿瘤发生过程中的作用 [J]. 世界最新医学信息文摘 ,2019,19(30):156-158,161.
ABSTRACT:Non-Receptor Tyrosine Kinases (NRTKs) could transmit the signaling to the cytoplasmic proteins or to the nucleus, which are obtained from extracellular receptors, to regulate several physiological cellular processes. Src-family protein kinases (SFKs), as a series of important NRTKs, play an important role in cell growth, division, migration and survival signaling pathways. During the process of migration, Src could interact with different subtypes of Integrin to induce various pathways involved in cell mobility and migration. In this review, I would give a brief introduction of Src and its signaling in cancer, together with some Src kinase inhibitors. KEY WORDS: Cancer cells; Src; Integrins; Src kinase inhibitors

整合素连接激酶(ILK)在肿瘤中的作用

整合素连接激酶(ILK)在肿瘤中的作用

整合素连接激酶(ILK)在肿瘤中的作用蹇华;陈乾美【期刊名称】《中国现代医药杂志》【年(卷),期】2006(8)7【摘要】整合素连接激酶(integrin—linked kinase,ILK)是由Hannigan GE 等于1996年确定并克隆出来的一种丝氨酸,苏氨酸(Sert/Thr)蛋白激酶.是一种具有多种生物学活性的信号通路中的整合素受体的细胞质效应分子.参与了生物体内多种信号通路.包括整合素、生长因子和Wnt信号传导通路,在细胞外基质(extracellular matrix.ECM)介导的信号传导中发挥着关键作用。

它通过与整合素B亚单位的结合与整合素共同介导细胞与细胞外基质的连接,影响细胞外信号向下游的传递.对细胞的生长、分化、铺展、迁移及细胞凋亡、细胞周期、细胞粘附、增殖等进行调控.在肿瘤的发生、发展中发挥着重要的作用。

作为一种关键的细胞外基质粘附组分及可能中的癌基因.ILK近年被越来越广泛的予以研究。

本文就ILK的生物学效应及其在肿瘤中的作用作一综述。

【总页数】3页(P148-150)【作者】蹇华;陈乾美【作者单位】550004,贵州省第二人民医院耳鼻咽喉科;550004,贵州省第二人民医院耳鼻咽喉科【正文语种】中文【中图分类】R73【相关文献】1.核糖核酸酶抑制因子与整合素连接激酶相互作用通过ILK/AKT/mTOR通路抑制r膀胱癌体内外生长 [J], 邢雷;庄翔;陈俊霞2.整合素连接激酶(ILK)在胃癌组织中的表达及意义 [J], 王舟;王学春;李继锋;梁桂华;王旭3.整合素连接激酶(ILK)参与肿瘤的形成和转移的研究进展 [J], 郑利民;方明镜4.乳腺肿瘤中整合素连接激酶(ILK)的表达及临床意义 [J], 李胜水;许华;于翠珍;张凤梅;李双标;刘岩5.PI3k/AKT信号通路在老年大鼠乳腺癌血管形成中的作用及对整合素连接激酶ILK的抑制效果 [J], 曲义坤;国麟祺;夏伟滨;徐剑因版权原因,仅展示原文概要,查看原文内容请购买。

海洋无脊椎动物甲状腺激素信号通路的研究进展

海洋无脊椎动物甲状腺激素信号通路的研究进展

海洋无脊椎动物甲状腺激素信号通路的研究进展徐建波;张丽莉;王艺磊;王国栋【摘要】在脊椎动物中,甲状腺激素信号通路是调控生长、发育和机体能量代谢必不可少的信号通路之一,并且参与了两栖类和鱼类的变态反应.近来,越来越多的证据表明,在海洋无脊椎动物中存在内源性的甲状腺激素、甲状腺激素受体等信号通路的成员分子,而且这些分子参与了海洋无脊椎动物的发育和变态过程.这表明在海洋无脊椎动物中存在与脊椎动物类似的甲状腺激素信号通路.综述了海洋无脊椎动物中甲状腺激素信号通路的相关研究进展,旨在为研究甲状腺激素在海洋无脊椎动物的生物学功能及其作用机制提供基础资料.【期刊名称】《生物技术通报》【年(卷),期】2014(000)010【总页数】10页(P23-32)【关键词】海洋无脊椎动物;甲状腺激素;甲状腺过氧化物酶;甲腺原氨酸脱碘酶;甲状腺激素受体【作者】徐建波;张丽莉;王艺磊;王国栋【作者单位】集美大学水产学院农业部东海海水健康养殖重点实验室集美大学水产生物技术研究所,厦门361021;集美大学水产学院农业部东海海水健康养殖重点实验室集美大学水产生物技术研究所,厦门361021;集美大学水产学院农业部东海海水健康养殖重点实验室集美大学水产生物技术研究所,厦门361021;集美大学水产学院农业部东海海水健康养殖重点实验室集美大学水产生物技术研究所,厦门361021【正文语种】中文甲状腺激素(Thyroid hormones,THs)是动物自身分泌的一种重要激素,它是一种小的、亲脂性的酪氨酸碘化物。

在动物体内,分泌的甲状腺激素主要是四碘甲腺原氨酸(Thyroxine,T4)和三碘甲腺原氨酸(Triiodothyronine,T3)。

此外,还有少量逆-三碘甲腺原氨酸(rT3)。

THs是促进机体细胞生长、组织分化、发育和成熟的重要因素。

THs对哺乳动物中枢神经系统发育的重要性已经被广泛证明[1]。

THs缺乏对脑细胞的增殖、分化、迁移和成熟会产生较大的影响,并最终影响到大脑功能[2]。

细胞粘附和外泌体在肿瘤侵袭和转移中的作用分析

细胞粘附和外泌体在肿瘤侵袭和转移中的作用分析

细胞粘附和外泌体在肿瘤侵袭和转移中的作用分析肿瘤的侵袭和转移是导致恶性肿瘤死亡的主要原因之一。

为了更好地理解这个过程,需要对细胞粘附和外泌体的作用进行深入分析。

一、细胞粘附与肿瘤侵袭细胞粘附指的是细胞表面的一些蛋白质分子与细胞外基质分子相互作用,形成一个可逆的连接。

这种连接能够使细胞在生长、分化、迁移等过程中保持稳定的形态和位置。

在肿瘤发展过程中,细胞粘附分子的稳定性降低,导致肿瘤细胞与周边组织失去粘附能力,从而产生侵袭性和转移性。

研究表明,一些细胞粘附分子的异常表达与恶性肿瘤的发生、发展和预后有密切关系。

例如,整合素(integrin)是一种介导细胞粘附的受体分子,它们可以与胶原蛋白和纤维连接蛋白等组织基质相互作用。

许多肿瘤细胞与周围组织失去粘附能力之后,会大量表达αvβ3、αvβ5等整合素分子,这些分子可以促进肿瘤细胞侵袭和转移。

除此之外,细胞粘附分子的异常表达还与肿瘤细胞的抗凋亡能力、代谢能力、免疫逃避等方面有关。

因此,细胞粘附在恶性肿瘤的发展中具有重要作用。

二、外泌体与肿瘤转移外泌体是一种直径在30-150 nm的小囊泡,它们由细胞膜包裹而形成。

外泌体能够携带不同种类的生物活性分子,如DNA、RNA、蛋白质、脂质等,从而影响周围细胞或组织的功能。

研究表明,外泌体在肿瘤的侵袭和转移中起到了极其重要的作用。

恶性肿瘤细胞释放大量的外泌体,这些外泌体可以通过多种途径与周围细胞或组织相互作用,并改变其生物学特性。

首先,肿瘤细胞释放的一些特定的外泌体与靶细胞的表面受体结合,从而增强靶细胞的侵袭性和转移性。

例如,肿瘤细胞释放的miR-10b与靶细胞表面的HOXD10基因相互作用,促进了肿瘤细胞的转移。

其次,一些肿瘤细胞释放的外泌体还能够抑制宿主细胞的抗肿瘤功能。

例如,转化生长因子β(TGF-β)能够刺激肿瘤细胞释放外泌体,这些外泌体能够启动宿主细胞的TGF-β信号通路,抑制抗肿瘤免疫应答。

最后,外泌体还能够在远距离上影响身体其他器官的功能和代谢,从而导致血管新生、细胞转移和预后恶化。

联合靶向免疫检查点CD47与PDL1的抗肿瘤研究进展

联合靶向免疫检查点CD47与PDL1的抗肿瘤研究进展

中国细胞生物学学报Chinese Journal of Cell Biology 2021,43(4): 896-904DOT: 10.11844/cjcb.2021.04.0024联合靶向免疫检查点CD47与PDL1的抗肿瘤研究进展高向征梁可莹梅圣圣彭珊珊詹金彪*(浙江大学医学院生物化学系,杭州310058)摘要 程序性死亡配体l(p r o g r a m m e d cell death 1ligand 1,P D L1)是适应性免疫系统中的一个关键的抑制性信号。

C D47是先天性免疫系统中的一个关键的“不要吃我”信号,也是适应性免疫 反应的调节剂。

由于C D47和P D L1分子在许多肿瘤细胞表面过度表达,从而使肿瘤细胞能够逃避 机体免疫系统监视。

近年来,越来越多的研究聚焦于双重阻断免疫检查点P D L1与C D47分子,以调 动先天性和适应性免疫应答,实现协同治疗多种恶性肿瘤的目的。

该文就近年来双重阻断P D L1和C D47在肿瘤研究中的进展作一简要综述,这种联合靶向策略可能为开发联合先天性和适应性抗肿瘤免疫反应的高效免疫疗法奠定基础。

关键词 P D L1;C D47;免疫检查点;免疫治疗Anti-Tumor Progress on Dual Blockage of Immune CheckpointsCD47 and PDL1G A O X i a n g z h e n g,L I A N G K e y i n g,M E I S h e n g s h e n g,P E N G S h a n s h a n,Z H A N Jinbiao*(Department o f B iochemistry, Zhejiang University School o f M edicine, Hangzhou 310058, China)Abstract P D L1(p r o g r a m m e d death 1ligand 1)is a key inhibitory signal in the adaptive i m m u n e sys­t e m.C D47 is a k e y''don't eat m e M signal in the innate i m m u n e system a n d also a modulator of adaptive i m m u n e responses.T h e overexpression of C D47 a n d P D L1o n the surface of m o s t t u m o r cells is associated with the cancer i m m u n e escape.E m e r g i n g evidence has indicated that dual targeting of the i m m u n e checkpoints P D L1a n d C D47 c an provide m o r e opportunities for the clearance of malignant cells.This review s u m m a r i e s the progress o n the dual blockage of P D L1a nd C D47 for t u m o r i m m u n o t h e r a p y in recent years.T h e dual blockage synergistic strategy m a y provide a highly effective combination alternative that modulates both innate a n d adaptive anti-tumor i m m u n i t y.K e y w o r d s P D L1;C D47; i m m u n e checkpoint;i m m u n o t h e r a p y自2011年美国食品药品监督管理局(Food and D r u g Administration,F D A)首次批准抗细胞毒性T淋 巴细胞相关蛋白-4(cytotoxic T lymphocyte-associated antigen-4,C T L A-4)抗体---I p i limumab用于治疗转移性黑色素瘤以来,免疫检查点抑制剂与肿瘤免疫 治疗的研宄受到日益关注。

Src、FAK对E-cadherin和integrin介导的串联以及肿瘤浸润、转移的影响

Src、FAK对E-cadherin和integrin介导的串联以及肿瘤浸润、转移的影响

Src、FAK对E-cadherin和integrin介导的串联以及肿瘤浸润、转移的影响周俭珊;黄海燕【摘要】钙黏蛋白(E-cadherin)和整合素(Integrin)在协调控制细胞基本的生理和病理过程中扮演着重要的角色,包括形态发生、组织分化、伤口愈合、免疫监视、炎症反应、肿瘤进展和转移等.然而,目前调节钙黏蛋白和整合素之间通信的根本性分子机制仍然不是很清楚.尽管大量的证据支持两种黏附受体家族间存在有精细调控的串联,而且这种串联可以影响他们的表达、翻转、定位和/或功能,并可根据细胞内外的环境背景来增强或抑制黏附连接,然而这些重要的现象中涉及到的分子和分子调控机制目前还不完全清楚.最近越来越多的证据表明,非受体酪氨酸激酶Src和FAK与整合素和钙黏蛋白调控的细胞间黏附和信号转导的过程密切相关,本文主要是综述Src及FAK在串联中的重要作用,及探讨这种串联对肿瘤细胞的集体迁移、浸润和转移的潜力的影响.【期刊名称】《海南医学》【年(卷),期】2016(027)001【总页数】4页(P93-96)【关键词】钙黏蛋白;整合素;串联;Src;FAK【作者】周俭珊;黄海燕【作者单位】三峡大学医学院,湖北襄阳 443000;三峡大学医学院,湖北襄阳443000【正文语种】中文【中图分类】R73-37所谓分子串联是指信号通路间的通信,在细胞生物学中起着核心作用,使细胞能够连接到相邻细胞或者较远的分子功能组件,来产生协同或拮抗效应,最终产生生物学效果[1]。

细胞间最重要的串联事件是连接到整合素和钙黏蛋白家族的黏附分子受体的信号网络。

钙黏蛋白(E-cadherins)和整合素(Integrins)是在上皮中分别介导细胞和细胞间、细胞和胞外基质间黏附的主要分子。

已有研究证实,这些分子参与了如细胞迁移、增殖、分化,生存和基因表达等重要生物过程的调节。

大量的体内和体外实验都证明了在细胞黏附和移动过程中E-cadherins和Integrins两者介导的连接存在着串联,且这种串联可以调控肿瘤细胞的可塑性,在肿瘤细胞的局部浸润和远处转移中发挥了重要作用[2-3]。

CD47-SIRPa信号通路功能机制的研究进展

CD47-SIRPa信号通路功能机制的研究进展

CD47-SIRPa信号通路功能机制的研究进展Research progress on CD47-SIRPa Signal pathway摘要:CD47又称整合素相关蛋白(integrin-associated protein,IAP),是一种膜糖蛋白,广泛表达于多个物种和各个组织之间。

并与抑制性受体信号调节蛋白(Signal regulatory protein,SIRP)的互为受体和配体,形成CD47-SIRPa信号复合体,介导双向调节信号调控多种免疫反应进程。

本文综述了CD47-SIRPa信号通路的作用机理,及其对免疫系统应答,巨噬细胞吞噬,,中枢神经系统发育以及定向造血干细胞移植等方面发挥的作用。

随着对CD47-SIRPa信号通路在免疫和中枢神经系统中作用机理越来越深入的研究,其成果也为自身免疫性疾病和神经系统疾病的治疗方面提供了更多新的治疗靶点。

Abstract: CD47, also called as integrin-associated protein (IAP), is a kind of membrane glycoprotein, which is widely distributed in every tissue of human body. As the extracellular ligand of inhibitory receptor signal regulator protein (SIRP), it forms CD47-SIRPa signal complex together with SIRP, thus triggering negative adjustment signal channel. This review summarizes the mechanism of action of CD47-SIRPa signal complex, the adjustment to the phagorytosis of macrophagocyte, the function on the central nervous system, the adjustment to its immunity system, and the effect on the directional hematopoietic stem cell transplant. As the research on the mechanism of action of CD47-SIRPa signal complex in the immunity system and the central nervous system goes deeper, its results will have more new approaches for the treatment of the diseases of autoimmunity and nervous system.关键词:CD47-SIRPa通路作用机制Keywords: CD47-SIRPa signal pathway, mechanism of action.SIRPa,CD47及CD47-SIRPa信号复合物信号调节蛋白a SIRP (Signal regulatory protein) a,亦被称为SHPS-1或SIRPA,是SIRP 家族中一个典型的抑制性免疫受体,【1】其可以选择性地表达于髓系细胞(包括巨噬细胞,粒细胞和树突状细胞)和神经细胞膜表面,而在体内的其它细胞则表达较少。

蛇毒抗肿瘤成分的研究进展

蛇毒抗肿瘤成分的研究进展

蛇毒抗肿瘤成分的研究进展赵健楠;孙晋民【摘要】Objective To explore the application of the anti-tumor components of snake venom in the field of medicine and to provide a reference for research of the components of snake venom in the field of anti-tumor.Methods The literature of research and review of the anti-tumor components of snake venom both at domestic and abroad were summarized.Results Snake venom contained a variety of anti-tumor components by inhibiting the expression of tumor-related gene,the proliferation of tumor cell,tumor angiogenesis and inducing the apoptosis of tumor cell.Conclusion Study of the anti-tumor components of snake venom in depth has great value in the field of anti-tumor drugs research.%目的探讨蛇毒抗肿瘤成分的作用及其在医药领域的应用,为蛇毒成分在抗肿瘤领域的研发提供参考.方法查阅并总结资料文献,对国内外蛇毒抗肿瘤成分的研究进行综述.结果蛇毒具有多种抗肿瘤成分,对多种肿瘤均有抑制作用,可抑制肿瘤相关的基因表达、抑制肿瘤细胞增殖、诱导肿瘤细胞凋亡和抑制肿瘤血管再生与转移等.结论对蛇毒抗肿瘤成分进行深入研究,开发其在抗肿瘤药物研究领域的价值.【期刊名称】《西北药学杂志》【年(卷),期】2017(032)003【总页数】3页(P391-393)【关键词】蛇毒;抗肿瘤;抗肿瘤成分【作者】赵健楠;孙晋民【作者单位】中国医科大学,沈阳 110013;中国医科大学科学实验中心,沈阳110013【正文语种】中文【中图分类】R979.1蛇毒是从毒蛇的毒腺中分泌出的黏液,是动物毒中组成最复杂的,除致死性毒素外,还含有多种无毒或低毒的酶和多肽等成分[1]。

整合素在肿瘤转移中的作用及治疗应用

整合素在肿瘤转移中的作用及治疗应用<br/>

中国组织化学与细胞化学杂志CHINESE JOURNAL OF HISTOCHEMISTRY AND CYTOCHEMISTRY第29卷第4期2020年8月V ol.29.No.4August.2020〔收稿日期〕2020-04-08 〔修回日期〕2020-08-10〔基金项目〕国家自然科学基金项目(81960560)〔作者简介〕赵柯郁,男(1990年),汉族,研究实习员*通讯作者(To whom correspondence should be addressed):xlsu@整合素在肿瘤转移中的作用及治疗应用赵柯郁,苏秀兰*(内蒙古医科大学附属医院临床医学研究中心,内蒙古医学细胞生物学重点实验室,呼和浩特010050)〔摘要〕肿瘤转移是由多种分子参与、涉及多个信号通路的复杂的过程,也是肿瘤主要致死原因。

整合素是一类粘附分子受体,参与细胞-细胞、细胞-细胞外基质之间相互作用,进而调控细胞转移、侵袭、生存、凋亡、增殖和分化等过程。

大量研究表明,整合素在肿瘤转移过程中发挥重要作用。

目前,在多种肿瘤中发现整合素表达以及相关信号通路调控发生异常,这会导致胞内生理代谢过程以及细胞外基质结构和功能发生变化,进而影响肿瘤细胞粘附、转移、侵袭和锚定等能力,并促进肿瘤细胞在转移过程中的生存。

本文将结合近年来整合素与肿瘤转移以及靶向治疗相关研究成果进行综述。

〔关键词〕肿瘤;整合素;转移;靶向治疗〔中图分类号〕R730.5 〔文献标识码〕A DOI :10.16705/ j. cnki. 1004-1850. 2020. 04. 015The role and therapeutic application of integrin in metastasisZhao Keyu, Su Xiulan *(Inner Mongolia Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, the Affiliated Hospital of Inner MongoliaMedical University; Hohhot 010050, China)〔Abstract 〕Metastasis is a complex process involving a variety of molecules and signaling pathways, which is also major cause of cancer death. Integrin is a kind of adhesion molecule receptor, involved in cell-cell, cell-xtracellular matrix interaction, and regu-lates migration, invasion, survival, apoptosis, proliferation and differentiation. A lot of researches have shown that integrin plays an important role in metastasis process. Abnormal of integrin expression and integrin related pathways were found in metastasis, which leads to changes in intracellular physiological metabolism and extracellular matrix structure and function, and then affects the abilities of adhesion, metastasis, invasion and anchor of tumor cells , and promotes cancer cell survival in metastasis. This article did a review on researches and results about the role of integrin in metastasis and application in treatment.〔Keywords 〕Tumour; integrin; metastasis; targeting treatment肿瘤是仅次于心脑血管疾病的第二大致死疾病,根据全球肿瘤机构对185个国家的统计报告显示,2018年新增病例1810万人,死亡960万人,防控形式依然严峻[1]。

整合素受体阻断剂的进展与临床评价

整合素受体阻断剂的进展与临床评价

整合素受体阻断剂的进展与临床评价张石革【摘要】目的:论述整合素受体阻断剂的进展和临床评价.方法:收集国内、外相关文献并进行综合分析.结果与结论:整合素受体阻断剂在血小板黏附、聚集和释放等功能中发挥着重要的作用,对整合素受体(血小板膜糖蛋白GPⅡb/Ⅲa受体)选择性高,在与整合素构象变化有关的细胞信号双向跨膜传递对血小板功能的调控作用已日益受到关注,在治疗血栓、急性心肌梗死、急性冠脉综合征上展现了良好的临床治疗前景.【期刊名称】《中国医院用药评价与分析》【年(卷),期】2011(011)010【总页数】4页(P872-875)【关键词】整合素受体阻断剂;血小板;血栓;进展;临床评价【作者】张石革【作者单位】北京大学第四临床医学院,北京积水潭医院药剂科,北京100035【正文语种】中文【中图分类】R9731 有关整合素与整合素受体整合素(integrin)广泛分布于有核细胞表面的跨膜糖蛋白,属于黏附分子中的一个大家族,能与其他细胞黏附分子相互作用,也是细胞外基质的主要受体,主要介导细胞的黏附。

其作为重要的信号分子通过独特的转导通路双向传导跨膜信号,调节细胞多种的功能,诸如生长发育、组织修复、创伤愈合、血栓形成等。

而整合素的表达和功能异常也与多种病生理改变密切相关,如心脑血管疾病、血液疾病、炎性疾病和恶性肿瘤等。

1.1 整合素受体血小板膜表面上的整合素由α、β两条支链以非共价的方式组合而成的异源二聚体,而受体主要由一个较大的膜外区、跨膜区和较短小的胞内区所组成,α和β亚单位的胞膜外区域共同构成整合素受体分子的配体结合部位。

不同的整合素均有相应的配体,不同状态的配体与其他配体的亲和力也会有明显变化,当处于静息状态时,整合素的胞外区表现低亲和力和折叠型构象,球状的头区处于关闭状态,不能与其他相应配体结合;当血小板被各种激活剂(环氧酶、二磷酸腺苷酶、凝血酶、磷酸二脂酶、肾上腺素等)作用于血小板膜的非整合素受体(P2Y、PAR-1)时,经insude-out信号通路活化整合素受体,使其跨膜区分离,胞外区构象快速的转变为伸展型,头区打开,与其他的配体亲和力极大增加,而当胞外区与相应配体结合后,可稳定其高亲和性构象,暴露出配体诱导的结合点,引起整合素在血小板表现聚集,触发血小板发生一系列的活化、黏附、聚集和释放等反应。

细胞外基质的合成和调控机制

细胞外基质的合成和调控机制

细胞外基质的合成和调控机制细胞外基质(Extracellular matrix,ECM)是由细胞自身合成的一种重要的结构组分。

ECM不仅为细胞提供了生长、分化和传导信号的物质支持,也为细胞提供了一种机制来调节细胞内和细胞外环境的互动。

在本文中,将探讨ECM的合成和调控机制。

ECM的结构成分ECM由各种复杂的化合物组成,包括多种大分子蛋白质,如胶原蛋白、弹性蛋白和黏附蛋白等。

此外,ECM中还含有各种细胞外糖胺聚糖(glycosaminoglycan,GAGs)和蛋白聚糖(proteoglycan)。

其中,胶原蛋白是ECM最丰富的蛋白质,对于人体各种重要组织的形成和维持起着关键作用。

ECM的主要合成者ECM的合成是由细胞自身产生并分泌到细胞外环境中。

在不同的组织中,不同种类的细胞会合成不同的ECM成分。

例如,肌肉组织中的肌肉细胞会合成胶原蛋白和弹性蛋白,而骨骼组织中的成骨细胞则会产生一种富含胶原和磷酸钙的ECM。

ECM的合成和修饰与细胞内信号传导有密切关系。

在ECM的合成过程中,有多种信号通路参与其中,包括Wnt、Gli、Smads 和Notch等。

这些信号通路对于ECM的合成和纤维形成等方面具有关键作用。

ECM的转运和修饰ECM的合成和修饰还需要配合细胞内的一系列机制,如细胞表面的受体和信号转导通路。

细胞表面的受体可以识别和结合不同的ECM成分,如通过整合素(integrin)识别胶原蛋白,并通过信号转导通路将信息传递给细胞内部。

进而影响细胞的分化和增殖等生命活动。

另外,ECM的结构和功能也可以被一些糖基转移酶和肽酶等修饰酶调控。

这些修饰可以改变ECM的物理和化学特性,如酰化、磷酸化、糖基化等等。

ECM的动态调控除了上述的合成过程,ECM的动态调控也是非常重要的。

动态ECM可以改变细胞的形态、功能和信号传递。

例如,成长因子可以促进细胞增生,通过ECM的转化和调节来给予细胞充分的成长环境。

近年来,越来越多的研究发现,动态ECM在多种疾病的发生和发展过程中也起到了重要的作用。

integrin 介导细胞粘附

integrin 介导细胞粘附

integrin 介导细胞粘附整理(2017年12月)修订(2018年10月)多细胞生物能够有机地将众多的细胞联系在一个整体中,少不了细胞间的黏附作用。

细胞黏附是细胞最基本的生命活动,在细胞增殖、维持活性、分化和迁移中具有关键作用。

一旦细胞黏附发生异常,就会出现严重的病理变化,包括肿瘤的增殖、转移和抵抗凋亡等1。

细胞黏附的结构存在于几乎所有的多细胞生物体内的细胞中,并且细胞黏附的结构不是永恒不变的,是动态变化的2。

研究发现,存在多种介导细胞黏附的分子,整合素就是其中的一个大的家族。

整合素是跨膜蛋白,由α和β异源二聚体组成。

在哺乳动物中发现18个α亚单位和8个β亚单位构成24种不同的整合素。

每个亚单位由三部分组成,即一个长的细胞外节段、跨膜节段和较短的细胞内节段3。

细胞外段可以和和大部分的细胞外基质(ECM)结合,包括纤连蛋白(FN)、玻连蛋白、胶原和层连蛋白等,也可以和细胞的VCAM和ICAM等细胞表面受体结合,而细胞内段和细胞骨架蛋白连接4, 5。

因此,整合素有两个主要的功能:首先,整合素在细胞骨架和细胞外基质之间起到了物理支架的作用,有利于维持组织的正常形态和功能;其次,整合素能够介导细胞内外的信号转导,并且这种传导是双向的,一方面,它们能够感受到外部环境的物理和化学刺激,并相应地调整细胞的生命活动6;另一方面,细胞内的信号也可以通过Talin和Kindlin激活整合素,或者通过Filamins抑制整合素,从而调节整合素与配体的亲和力7。

整合素介导细胞和细胞外基质的黏附主要是通过形成局部黏附(focal adhesions,FAs)的结构3。

这个结构最初由一小部分整合素构成。

之后细胞外基质诱导整合素逐成簇分布,成簇分布的整合素募集细胞内成千上万的蛋白,构成了整合素黏附复合物(Integrin adhere complex, IACs)。

在这个过程中,局部黏附激酶FAK,SFK和其他的调节蛋白整合素连接激酶ILK, paxillin能够直接结合在α或者β亚单位的胞内段,促进其他蛋白的装配8, 9。

激动剂抑制剂全推荐——integrin 信号通路

激动剂抑制剂全推荐——integrin 信号通路

整联蛋白(integrin)又称整合素,普遍存在于脊椎动物细胞表面,依赖于Ca2+或Mg2+的异亲型细胞黏附分子,介导细胞和细胞之间以及细胞和细胞外基质之间的相互识别和粘附,具有联系细胞外部作用与细胞内部结构的作用。

整联蛋白参与的的信号转导对细胞的许多行为产生影响,包括运动、生长甚至细胞的生存。

血管生成
面对VEGF的中和和通过血管生成的新生血管的抑制,肿瘤细胞必须通过变得活跃和劫持现有的血管系统来适应生存和生长。

作为侵袭性过程的一部分,一些细胞可能会进入血流,这可以解释许多研究中发现的转移增加。

β1整合素在转移、肿瘤生长和侵袭中发挥重要作用。

此外,最近有人发现了β1整合素依赖的血管融合机制,这种机制是由血管基底膜黏附驱动的。

血管cooption为新转移或局部侵袭的癌细胞提供了一个即时的血管系统。

因此,抗血管生成治疗的耐药性可以解释为细胞应激触发达尔文生存命令,促进β1整合素活性。

表明了β1整合素信号驱动的恶性特征谱通过与肿瘤微环境的相互作用促进了抗血管生成药物(如贝伐珠单抗)的耐药性。

抗炎
内皮素在白细胞粘附和迁移中的作用。

图示白细胞通过血管内皮细胞迁移的假设模型。

在炎症灶中,不同的可溶性因子被释放,包括趋化因子CXCL12,导致白细胞的激活和内源性蛋白依赖性外渗。

白细胞的转运过程包括CXCL12与其受体CXCR4的结合,进而激活β1整合素。

一旦激活,β1整合素与内皮细胞表面的内皮素的RGD基序结合,允许白细胞外渗和迁移到炎症部位。

癌症相关。

整合素简介

整合素简介

整合素概述:整合素是细胞表面受体的主要家族。

对细胞和细胞外基质的粘附起介导作用。

其特殊类型在白细胞粘附过程中还可诱导细胞与细胞间的相互作用。

整合素在体内表达广泛,大多数细胞表面都可表达一种以上的整合素,在多种生命活动中发挥关键作用。

例如,由于整合素具有粘附作用,使其成为白细胞游出、血小板凝集、发育过程和创伤愈合中的关键因素。

另外,某些细胞只有通过粘附才能使其发生增殖,若通过整合素介导的细胞与细胞外基质粘附发生障碍则可导致细胞凋亡。

整合素(integrin)大多为亲异性细胞粘附分子,其作用依赖于Ca2+。

介导细胞与细胞间的相互作用及细胞与细胞外基质间的相互作用(图11-20)。

几乎所有动植物细胞均表达整合素。

整合素是由α (120~185kD)和β(90~110kD)两个亚单位形成的异二聚体。

迄今已发现18种α亚单位和9种β亚单位。

它们按不同的组合构成20余种整合素。

α亚单位的N端有结合二价阳离子的结构域,胞质区近膜处都有一个非常保守的KXGFFKR序列,与整合素活性的调节有关。

含β1亚单位的整合素主要介导细胞与细胞外基质成分之间的粘附。

含β2亚单位的整合素主要存在于各种白细胞表面,介导细胞间的相互作用。

β3亚单位的整合素主要存在于血小板表面,介导血小板的聚集,并参与血栓形成。

除β4可与肌动蛋白及其相关蛋白质结合,α6β4整合素以层粘连蛋白为配体,参与形成半桥粒。

整合素与肿瘤转移肿瘤侵袭和转移是肿瘤的恶性标志和特征,也是导致肿瘤患者治疗失败和死亡的主要原因。

阻断肿瘤细胞的侵袭和转移为治疗肿瘤患者提供了一条新途径,肿瘤专业是一个复杂得多步骤多环节的过程,他需要几条信号传导通路的协调工作,包括肿瘤细胞增生,周围环境改变,侵袭和转移和分化四个步骤,在肿瘤转移过程中发生许多肿瘤细胞和细胞外基质(ECM)的相互作用,因此,近年来对整合素的关注也越来越多,本文就整合素和肿瘤及肿瘤转移的关系结合仅今年的研究做一综述。

整合素b1结构

整合素b1结构

整合素b1结构一、整合素b1的概述整合素是一类重要的跨膜蛋白受体,在细胞与细胞之间以及细胞与基质之间的相互作用中发挥着关键作用。

整合素b1是整合素家族中的一员,具有多种生物学功能,包括参与细胞黏附、生长、分化以及肿瘤转移等过程。

因此,了解整合素b1的结构对于理解其生物学功能以及相关疾病机制具有重要意义。

二、整合素b1的结构组成整合素b1由α和β两个亚基组成,每个亚基都由多个结构域组成。

其中,β1亚基的结构域包括:1.胞质结构域:该结构域与细胞骨架相互作用,并参与信号转导。

2.跨膜结构域:该结构域将整台素b1锚定在细胞膜上。

3.胞外结构域:该结构域与配体结合,参与细胞黏附。

此外,整合素b1还包含一个N末端前导序列和一个C末端尾部序列,这些序列对于整合素b1的活化和功能至关重要。

三、整合素b1的结构与功能关系整合素b1的结构与功能之间存在密切关系。

以下是几个关键的方面:1.配体结合:整合素b1的胞外结构域可以与多种配体结合,如纤连蛋白、层粘连蛋白等。

这些配体与整合素b1的结合可以触发一系列的生物学反应,如细胞黏附、迁移和增殖等。

2.细胞骨架相互作用:整合素b1的胞质结构域可以与细胞骨架蛋白相互作用,从而影响细胞的形态、运动和定位。

这种相互作用是由胞质结构域中的一些关键氨基酸残基介导的,这些残基在整合素b1活化后会发生变化。

3.信号转导:整合素b1可以参与多种信号转导途径,包括Ca2+信号通路、MAPK信号通路等。

这些信号转导途径与细胞的生长、分化等生物学过程密切相关。

4.蛋白质相互作用:整合素b1可以与其他蛋白质相互作用,如与整联蛋白、肌动蛋白等相互作用,从而参与形成更复杂的信号转导网络。

这些相互作用有助于解释整合素b1如何在多细胞生物中发挥复杂的功能。

5.活化状态:整合素b1有静息状态和活化状态两种形式。

这两种状态之间的转换受胞内信号的影响,如Ca2+浓度的变化和蛋白激酶的磷酸化作用等。

这种活化状态的转换对于整合素b1的功能至关重要,因为它可以影响细胞黏附、运动和生长等过程。

整合素信号通路对细胞走向的调节

整合素信号通路对细胞走向的调节

整合素信号通路对细胞走向的调节细胞是构成生命的基本单位,而细胞的运动是很多生物学过程中的重要组成部分,例如细胞迁移、器官发育和免疫反应等等。

细胞走向的调控是多因素的,其中整合素信号通路是极其重要的一部分,它对于细胞的黏附、运动以及定向性都有巨大影响。

一、整合素信号通路的基本结构与功能整合素是一种细胞外基质蛋白,存在于许多支持结构中,如胶原、纤维蛋白、血管基底膜等等。

细胞内整合素和细胞外整合素蛋白质分别连接在一起,形成了整合素介导的细胞外基质-细胞内细胞膜-细胞内骨架的联系。

整合素信号通路是一条多重途径的信号向细胞内发展而来的。

当整合素受体和配体结合后,整合素蛋白激酶(Focal Adhesion Kinase,FAK)和Src激酶成为细胞的主要活性酶。

两种激酶能够磷酸化细胞内肌球蛋白(Myosin Light Chain,MLC)等细胞内分子,进而影响了细胞的收缩和运动。

此外,整合素信号通路的激酶激活还能导致多种信号分子的磷酸化和激活,如Rho家族蛋白激酶、Erk1/2激酶、Akt蛋白激酶等,从而影响细胞的生长、分化和存活等诸多生物学过程。

二、整合素信号通路的调节细胞黏附动力学和变形度细胞在黏附、运动和定向过程中,依赖于整合素信号通路的作用。

细胞黏附的稳定性、运动的速度和方向以及变形度都在不同程度上受到整合素信号通路的调节。

例如,细胞黏附动力学的研究表明,在细胞外基质受到牵引力的作用下,细胞内部就能感受到这种力的变化,从而通过整合素信号调节细胞内小管形成的构造体或者肌原纤维等,来改变细胞的形态和黏附性质。

同时,整合素信号通路对于细胞的运动特性也有很大影响。

例如,进入细胞移动区域的细胞可通过与周围细胞间隙和细胞外基质的黏附来增强其运动速度和质量。

整合素介导的细胞外基质-细胞膜-细胞内骨架连接是支持细胞的动力学结构。

在这一过程中,整合素信号通路参与了细胞内的分子运动、膜蛋白水平运动、骨架变形和肌动蛋白收缩等过程,进而影响细胞的迁移能力和定向性。

RIG-I样受体信号通路及其调控研究综述

RIG-I样受体信号通路及其调控研究综述

综 述 Zongshu 《中外医学研究》第17卷 第14期(总第418期)2019年5月①湖南师范大学医学院 湖南 长沙 410000RIG-I样受体信号通路及其调控研究综述丁汝璇①【摘要】 RIG-I 样受体(维甲酸诱导基因I)是细胞质中的一类RNA 解旋酶,属于固有免疫的模式识别受体,其可以结合病原相关分子式及RNA 配体识别非自身的病毒RNA,激活RIG-I 信号通路,促进细胞因子产生,发挥抗病毒效应。

本研究综述RIG-I 样受体的多种信号通路和调控机制,为病毒感染的控制和免疫调节治疗提供新的思路和方向。

【关键词】 RIG-I 样受体; 信号通路; 调控机制; 病毒感染; 免疫反应 doi:10.14033/ki.cfmr.2019.14.086文献标识码 A文章编号 1674-6805(2019)14-0184-03 A Review of RIG-I Like Receptor Signaling Pathway and Its Regulation/DING Ruxuan.//Chinese and Foreign Medical Research,2019,17(14):184-186 【Abstract】 RIG-I like receptor(retinoic acid-induced gene I) is a kind of RNA helicase in cytoplasm,which belongs to the pattern recognition receptor of innate immunity,which can bind the pathogenic correlation molecular formula and RNA ligand to identify non-own viral RNA,activate the RIG-I signaling pathway,promote the production of cytokines and exert the antiviral effect.This study reviews the various signaling pathways and regulatory mechanisms of RIG-I like receptors,providing new ideas and directions for the control of viral infection and immunomodulatory therapy. 【Key words】 RIG-I like receptors; Signal transduction pathway; Regulation mechanism; Viral infection; Immune response First-author ’s address:Hunan Normal University School of Medicine,Changsha 410000,China 天然免疫模式识别理论最早于20世纪80年代末被提出,该理论指出:高等生物能通过体内的模式识别受体(PRRs),识别出病原微生物的保守分子式[1-2]。

细胞外基质功能研究的进展

细胞外基质功能研究的进展

细胞外基质功能研究的进展细胞外基质(Extracellular matrix,ECM)是指细胞所处的环境中细胞自身分泌并沉积的一种胶状物质,由一系列的结构蛋白(例如胶原蛋白、纤维连接蛋白)和多糖物质(例如透明质酸、肝素等)组成。

ECM作为细胞与外部环境之间的联系点,不仅为细胞提供了支架结构,更直接参与调节信号传递、细胞运动和分化、细胞存活和凋亡等生命过程。

近年来,随着生物学和材料学等领域的交叉发展,人们对于ECM的功能和构造进行了更深入的研究,不断揭示出该结构在生物学和医学领域中的重要作用。

ECM功能研究的历史可以追溯到上世纪50年代,当时人们已经知道ECM具有支持、保护和调节细胞的作用,主要是通过化学物质分析和电镜观察来研究。

1962年,美国生物化学家Pomerat 和Schnaitman首次成功地从哺乳动物软骨中分离出ECM的主要构成成分——胶原蛋白,从此开展了ECM生化研究的大门。

20世纪80年代,细胞间基质(Inter-Cellular matrix,ICM)的概念被提出,认为ECM不仅是细胞周围的结构蛋白和多糖物质的集合体,还包括细胞外泌物、生长因子、细胞骨架和细胞免疫反应等。

此后,随着研究技术的发展和研究方法的不断创新,ECM的研究逐渐深入,人们对于ECM的构造、功能以及在生命过程中的作用有了更为清晰的认识。

目前,ECM功能研究能够影响人们的学术研究、医学方面的治疗策略等多个方面的发展。

在生物学领域,ECM的化学成分和结构对于细胞的定位和定向提供了支持,对于细胞分化和形态变化、生长和凋亡等起着至关重要的作用。

在细胞信号传递方面,ECM参与细胞信号传递的方式复杂多样,包括传统皮质受体、非受体信号通路、细胞外途径信号传递等。

其中,细胞黏附受体如整合素(integrin)是ECM信号传递的重要桥梁,黏附受体是ECM与肿瘤细胞之间相互作用的主要途径,研究其功能对于肿瘤治疗具有重要的理论和实际意义。

细胞外基质信号转导机制的研究

细胞外基质信号转导机制的研究

细胞外基质信号转导机制的研究细胞外基质(extracellular matrix,ECM)是存在于细胞外的一种复杂的、生物活性的蛋白质网络,其主要功能是提供细胞的支撑、定向和信号传递。

其中,ECM信号转导机制研究是目前生命科学领域的研究热点之一。

细胞外基质信号转导机制主要通过细胞膜上的受体进行。

一般来说,细胞膜上受体分为两类:一类为整合素受体(integrin receptor),它们通过与细胞外基质的蛋白质结合来发挥生物功能;另一类为七次跨膜结构的G蛋白偶联受体(G protein coupled receptor,GPCR),它们通过活化蛋白激酶(protein kinase)来激活由代谢物产生的信号通路。

在ECM信号传导中,一些关键的蛋白质通过与ECM的相互作用来介导增殖、质量分化、细胞迁移和细胞凋亡等生物学过程。

这些蛋白质包括:成纤维细胞生长因子(fibroblast growth factor,FGF)、表皮生长因子(epidermal growth factor,EGF)、转化生长因子β(transforming growth factor β,TGF-β)等多种生长因子家族成员。

ECM信号传导通过受体和各种细胞内信号分子(包括蛋白激酶、蛋白激酶磷酸酶、磷脂酰肌醇激酶等等)进行复杂的交互作用,最终在细胞内激发出多种生物效应。

其中,最常见、最重要的效应是细胞骨架动态变化和细胞质酶活性变化。

ECM信号转导机制的研究对于了解生命科学中许多疾病(如肿瘤、糖尿病、哮喘等)的发病机制、筛选新药物和开发创新型治疗方法具有重要的意义。

当前的研发潮流主要集中在ECM结构与生物活性交互作用的分子机制以及刺激ECM生物效应的黑箱问题上。

目前,许多新技术已经应用于基于ECM的生物材料的设计和制造中,其中包括具有多种功能的材料、纳米粒子、分子印迹技术等。

这些技术正在为我们进一步理解ECM生物学过程和疾病机制提供新的策略和方法,并且在医疗领域的应用前景也非常广泛。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Rheumatol IntDOI 10.1007/s00296-014-3137-5Role of integrins and their ligands in osteoarthritic cartilageJian Tian · Fang‑Jie Zhang · Guang‑Hua LeiReceived: 25 May 2014 / Accepted: 17 September 2014 © Springer-Verlag Berlin Heidelberg 2014[1]. Radiographic evidence of OA occurs in the majority of people by 65 years of age, and among them about 80 % in people who aged over 75 years [2]. However, the pathogen-esis of this disease is not fully elucidated.Cartilage damage is one of the major pathological changes in OA. Articular cartilage is an avascular, a neu-ral, alymphatic, and viscoelastic connective tissue that functions autonomously to bear loads and provide almost friction-free movement of diarthrodial joints [3]. Chondro-cytes, the only cell population of adult articular cartilage, are strongly involved in maintaining the dynamic equi-librium between synthesis and degradation of the extra-cellular matrix (ECM) [4]. Collagens represent the major structural components of the articular cartilage. Cartilage is made up of two main ECM macromolecules: type II collagen and aggrecan, a large aggregating proteoglycan [5, 6]. Cartilage destruction is thought to be mediated by two main enzyme families: the matrix metalloproteinases (MMPs) are responsible for the cartilage collagen break-down, whereas enzymes from disintegrin and metallopro-teinase domain with thrombospondin motifs (ADAMTS) family mediate cartilage aggrecan loss [7]. Activation of biochemical pathways involves the production of proin-flammatory cytokines, inflammation, degradation of the ECM by MMPs and ADAMTS, and cessation of ECM syn-thesis via dedifferentiation and apoptosis of chondrocytes [8, 9]. Therefore, the ECM is a vital cellular environment, and interactions between the cell and ECM are important in regulating many biological processes, which include cell growth, differentiation, and survival [10, 11].Cell–matrix interactions control cell function and behav-ior by signal transduction through a variety of cell sur-face receptors. The integrins are the major family of ECM receptors, which can transmit information from the matrix to the cell. Integrin binding of ECM ligands results in theAbstract Osteoarthritis (OA) is a degenerative disease, which is characterized by articular cartilage destruction, and mainly affects the older people. The extracellular matrix (ECM) provides a vital cellular environment, and interactions between the cell and ECM are important in reg-ulating many biological processes, including cell growth, differentiation, and survival. However, the pathogenesis of this disease is not fully elucidated, and it cannot be cured totally. Integrins are one of the major receptors in chondro-cytes. A number of studies confirmed that the chondrocytes express several integrins including α5β1, αV β3, αV β5, α6β1, α1β1, α2β1, α10β1, and α3β1, and some integrins ligands might act as the OA progression biomarkers. This review focuses on the functional role of integrins and their extracellular ligands in OA progression, especially OA car-tilage. Clear understanding of the role of integrins and their ligands in OA cartilage may have impact on future develop-ment of successful therapeutic approaches to OA.Keywords Chondrocyte · Integrin · Fibronectin · Tenascin C · Osteopontin · Osteoarthritis · CartilageIntroductionOsteoarthritis (OA) is a degenerative disease and is char-acterized by articular cartilage destruction along with changes occurring in other joint components including bone, menisci, synovium, ligaments, capsule, and musclesRheumatologyINTERNATIONALJ. Tian · F.-J. Zhang · G.-H. Lei (*)Department of Orthopaedics, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha 410008, Hunan, Chinae-mail: gh.lei9640@; lgh9640@Rheumatol Intformation of signaling complexes, which play a key role in the regulation of cell survival, adhesion, proliferation, dif-ferentiation, and matrix remodeling [11, 12]. To develop new and successful approaches for the treatment for OA, it is essential to elucidate the role of integrins and their ligands in the pathogenesis of OA. In this study, we have reviewed the role of integrins and their ligands on the OA cartilage, consequently which contributes to OA progression. Integrins structure and functionThe first integrin was identified almost 30 years ago; “integrin” was named for this protein complex because of its role as an integral membrane complex involved in the transmembrane association between the ECM and the cytoskeleton [13]. The first integrin of which cDNA was sequenced encodes a polypeptide of 89 kD, with the pres-ence of a large N-terminal extracellular domain, a single transmembrane segment, and a small C-terminal cytoplas-mic domain. The extracellular domain contains a threefold repeat of a novel 40 residue cysteine-rich segment, and the cytoplasmic domain contains a tyrosine residue that is a potential site for phosphorylation by tyrosine kinases [13]. So far, it is well known as a family of heterodimeric trans-membrane receptors consisting of an α and a β subunit, which each have a large ectodomain, a single transmem-brane domain, and a generally short cytoplasmic tail. All of the different 18 α and 8 β subunits are known in humans, which can be combined to 24 different integrin receptors [14, 15]. Multiple α subunits can combine with single βsubunits (and vice versa), giving rise to “combinatorial” ligand specificity, as shown in Fig. 1.The 24 known integrin heterodimers can be classified as arginine–glycine–aspartate (RGD)-binding, the α4 family, leukocyte adhesion integrins, laminin-binding, and I-domain collagen-binding, as shown in the Table 1. All of these integ-rins can be further segregated into two groups, either contain-ing or the other lacking an extra von Willebrand factor type A domain (known as αA or αI in integrins) in their α subunits. The I-domain subunits contain α1, α2, α10, α11, αL, αM, αX, αD, and αE, and non-I-domain subunits are α3, α4, α5, α6, α7, α8, α9, αV, and α IIb, as shown in Fig. 1. In I-domain integ-rins, the I-domains play a central role in ligand binding and intercellular adhesion, whereas in integrins, which lack the αI domain, the binding site in the integrin “head” is formed by structural contributions of both the α and β chains [16].Although the 24 heterodimers can be defined into different groups, different heterodimers can also be expressed on a sin-gle cell and each can interact with multiple intracellular sign-aling cascades. Depending on the cellular microenvironment, the biological effect of ligating or activating an integrin can vary dramatically [15, 17]. The regulation of integrin activ-ity is complex. Integrin affinities for their cognate extracellu-lar ligands, such as fibronectin, fibrinogen, and collagen, are regulated by cellular signaling, resulting in integrin activation through “inside–out” signaling [15, 18] leading to conforma-tional changes that result in increased affinity for extracellu-lar ligands [18]. Inside–out signaling controls the adhesion strength and enables sufficiently strong interactions between integrins and ECM proteins to allow integrins to transmit the forces required for cell migration and ECM remodeling and assembly [18]. Integrins have no intrinsic enzymatic activity but, following binding to extracellular ligands, they become activated, can cluster on the cell surface, and undergo con-formational changes that propagate across the membraneFig. 1 Integrins superfamily. All 18 different α and 8 dif-ferent β subunits are known in humans, which can combine to24 different integrin receptorsRheumatol Int(“outside–in”) to activate cytoplasmic kinase- and cytoskele-tal-signaling cascades. These in turn control cell attachment, movement, growth and differentiation, and survival [15, 17]. Therefore, integrin activation can increase ligand binding, resulting in outside–in signaling. Converse ligand binding can generate signals that cause inside–out signaling [18].Expression of integrins in chondrocytesPrevious studies confirmed that the chondrocytes express several integrins including α5β1, αV β3, αV β5, α6β1, α1β1,α2β1, and α10β1 [18–23], while α3β1 was expressed by occasional cells only [24]. The expression level of above-mentioned integrins was in different percentages and in dif-ferent zones. Fetal chondrocytes strongly expressed β1 and β5 chains [24, 25]. Chondrocytes from osteoarthritic car-tilage expressed high levels of β1 integrin and all of the α chains. The α1 was the most frequently expressed α chain, followed by α3, α5, α2, αv. Integrin expression decreased from the least to the most damaged zone of articular car-tilage, and cell cycle analysis showed that proliferating chondrocytes (S phase) were prevalent in the latter zone. The expression of β2, β3, β2, and β5 is usually very lowTable 1 24 human integrin heterodimers and their ligands ADAMs a disintegrin and metalloproteinases, ICAM intercellular adhesion molecules, VCAM vascular adhesion molecules, TGF β LAP trans-forming growth factor β latency-associated peptide, MadCaM mucosal address in cell adhesion molecule, VEGF vascular endothelial growth factorHuman integrins Ligands Cellular and tissue distributionRGD -binding α5β1FibronectinChondrocytes , endothelial cellsα8β1Fibronectin, vitronectin, tenascin C, osteopontin, nefronectin Smooth muscle cells αV β1Fibronectin, vitronectin Smooth muscle cells, fibroblasts, osteoclasts, tumor cells αV β3Fibrinogen, fibronectin, vitronectin, tenascin C, osteopontin, bone sialoprotein, MMP-2Smooth muscle cells, fibroblasts, osteoclasts, tumor cells, Chondrocytes, endothelial cells, platelets, epithelial cells,leukocytesαV β5Vitronectin Smooth muscle cells, fibroblasts, osteoclasts, Chondrocytes,platelets, leukocytes, epithelial cellsαV β6Fibronectin, TGF-β LAP Epithelial cells, carcinoma cells αV β8Vitronectin Melanoma, kidney, brian, ovary, uterus, placenta αIIb β3Fibrinogen Fibronectin, vitronectinPlatelets The α4 family α4β1Fibronectin, VCAMLeukocytes, endothelial cells,α4β7Fibronectin, VCAM, MadCaMLeukocytes,α9β1Tenascin C, osteopontin, ADAMs, factor XIII, VCAM, VEGF-C, VEGF-DEndothelial cells, keratinocytesLeukocyte adhesion integrins αD β2ICAM, VCAM Leukocytes αM β2ICAM, VCAM, iC3b, factor X, fibrinogen Leukocytes αL β2ICAM Leukocytes αX β2Fibrinogen, plasminogen, heparin, iC3b Leukocytes αE β7E-cadherin Leukocytes,Laminin -binding α3β1Laminins (collagens)Keratinocytesα6β1Laminins, ADAMs Endothelial cells, Chondrocytes α6β4Laminins Endothelial cellsα7β1LamininsDifferentiated muscle cells I -domain collagen -binding α1β1Collagens, semaphorin7A, (laminins)Endothelial cells, Chondrocytesα2β1Collagens, tenascin C, (laminins)Keratinocytes, endothelial cells, Chondrocytes, platelets α10β1Collagens Chondrocytesα11β1CollagensMesenchymal non-muscle cellsRheumatol Int[25]. With immunohistochemical methods using monoclo-nal and polyclonal antibodies, the integrin pattern in joint cartilage from rats corresponded largely to integrin expres-sion described for human cartilage tissue: β1, α1, α3, and αv subunits and the α5β1 and αvβ3 heterodimers were con-sistently expressed [26]. Moreover, an inverse correlation was demonstrated between the severity of the anatomical changes found in the zones and the phenotypic/metabolic changes in the cells. These results, together with the well-known inside–out signaling function of the adhesion mol-ecules, highlight the key role of matrix interactions in the pathogenesis of the anatomic changes in OA cartilages [22, 27]. Expression of integrins on chondrocytes is correlated with the degree of cartilage damage in human OA [22].All of the α5β1, αVβ3, and αVβ5 contain the RGD-binding domain; α6β1 and α3β1 contain the laminin-binding domain, while α1β1, α2β1, and α10β1 contain the I-domain collagen-binding motif. The α5β1 integrin serves as the primary chondrocyte fibronectin (FN) receptor [28], while αV-containing integrins bind to vitronectin [29] and osteopontin (OPN) [30], and may serve as alternative FN receptors. αVβ3 integrin binds to tenascin C [31]. All of the α1β1, α2β1, and α10β1 integrins can serve as receptors for collagens [32–34], and α6β1 and α3β1 integrins could bind to certain cartilage extracellular matrix proteins such as laminin [35–37]. The aforementioned integrins and their corresponding ligands all played the important roles in OA pathologic changes.Important roles of integrins in OA cartilageIntegrins mediate cells adhesionThe cartilage surface defect is a common change in OA. The initial adhesion of transplanted chondrocytes to sur-rounding host cartilage may be important in the repair of articular defects [38]. Adhesion may set position for cells to secrete molecules that fill the defect and integrate repair tissue with host tissue, while chondrocytes are known to become increasingly adherent to cartilage with time. It is well known that Annexins (mainly A5), CD44, and integ-rins are the important molecules involved in chondrocyte adhesion with ECM.In vitro experiments, under the conditions in which chondrocytes were cultured in high-density monolayer, released with trypsin, and allowed to recover in suspen-sion for 2 h at 37 °C, β1-integrins appear to mediate chon-drocyte adhesion to a cut cartilage surface. Delineation of the mechanisms of adhesion may have clinical impli-cations by allowing cell manipulations or matrix treat-ments to enhance chondrocyte adhesion and retention at a defect site [39]. Under the culture and seeding conditions in high-density or low-density monolayer, β1, α5β1, and αVβ5 integrins mediate human chondrocyte adhesion to cartilage [19]. These chondrocyte integrins have a potential role in the initial adhesion and retention of chondrocytes at a cartilage defect site following clinical procedures of chondrocyte transplantation [19]. In an experiment about the chondrocytes attached to hyaline or calcified carti-lage and bone, freshly isolated (primary) or passaged (P1) chondrocytes were seeded on the top of bone plugs having either a surface composed of mid-deep zone hyaline carti-lage or calcified cartilage or bone only. Both primary and passaged chondrocytes attached efficiently to all of the three surfaces (over 88 % of seeded cells). The chondro-cytes showed a punctate distribution of β1-integrin and vin-culin, which are colocalized with actin, suggesting that the cells formed focal adhesions. Blocking either β1-integrin or αVβ5 integrin partially inhibited (between 27–48 and 26–37 %, respectively) attachment of both primary and pas-saged chondrocytes to all surfaces. Blocking αVβ3 had no effect on adhesion [38].Besides cell adhesion, integrins also mediate chondro-cytes adhesion to their extracellular ligands. Cell adhesion assays revealed that both α1β1 and α2β1 can serve as chon-drocyte adhesion receptors for types II and VI collagen. In cell lines expressing both integrins, α1β1 was the preferen-tial receptor for type VI collagen, while α2β1 was the pref-erential receptor for type II collagen [23]. Thus, α1β1 and α2β1 integrins play the roles to mediate chondrocyte adhe-sion to types II and VI collagen, respectively [23]. α1β1 also mediates chondrocyte adhesion to type VI collagen [40]. Integrins also mediate attachment of chondrocytes to fibronectin and matrix Gla protein (MGP) [41].Integrins in chondrocytes mechanotransductionIn OA, mechanical forces play an important role in tissue homeostasis and remodeling [42]. Chondrocytes are poten-tially exposed to a variety of different mechanical forces including stretch, shear, or compressive forces in vivo [42]. Matrix synthesis and chondrocyte proliferation are up-regulated by the physiological levels of mechanical forces [43]. It is well know that integrins as mechanoreceptors regulate the cellular response to both changes in the ECM and mechanical stresses that chondrocytes are subjected to [44–46]. Integrin activity is important in the early cel-lular responses to mechanical stimulation, regulating the activation of a number of intracellular cascades that induce changes in gene expression and tissue remodeling. In nor-mal human articular chondrocytes, integrin activation, con-sequent to mechanical stimulation in vitro, results in tyros-ine phosphorylation of regulatory proteins and subsequent secretion of autocrine and paracrine acting soluble media-tors including substance P and interleukin 4 [47]. NormalRheumatol Intchondrocytes in monolayer exposed to 0.33-Hz mechanical stimulation for 20 min resulted in increased GAG synthesis that was blocked by the presence of antibodies to α5 and αVβ5 integrins and CD47. These studies suggested that αVβ5 integrin plays a role in the regulation of chondrocyte responses to biomechanical stimulation [48]. In vitro stud-ies showed that the primary monolayer cultures of human chondrocytes have an electrophysiological response after intermittent pressure-induced strain characterized by a membrane hyperpolarization of approximately 40 %. The cultured chondrocyte’s hyperpolarization was found to be inhibited by RGD peptides and antibodies to the α5 and β1 integrin subunits [49], and the hyperpolarization response was associated with opening of small conductance (SK) calcium-dependent K+ channels via α5β1 integrin stretch activated ion channels and a number of integrin-associated signaling molecules including the involvement of the actin cytoskeleton and tyrosine phosphorylation [50]. Thus, α5β1 is an important chondrocyte mechanoreceptor and a potential regulator of chondrocyte function [49]. Integrin α1β1 is a key participant in chondrocyte transduction of a hypo-osmotic stress. Furthermore, integrin α1β1 influences osmotransduction is independent of matrix binding, but likely dependent on the chondrocyte osmosensor transient receptor potential vanilloid-4 [51].Treatment of chondrocytes with interleukin-1 (IL-1) resulted in diminished synthesis and enhanced catabolism of matrix proteoglycans [52]. Within chondrocytes, expo-sure of interleukin-1β (IL-1β) induces the release of nitric oxide (NO) and prostaglandin E2 (PGE2) via activation of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2) enzymes, independently of integrins [53, 54]. This effect can be reversed by integrin with the applica-tion of dynamic compression three-dimension agarose con-structs. Mechanical loading and IL-1β influence the release of NO and PGE2 from articular chondrocytes. The integ-rin-binding peptide, GRGDSP, abolishes or reverses the compression-induced alterations in the presence or absence of IL-1β. Thus, integrins act abrogating the NO and PGE2 release by directly influencing the expression levels of iNOS and COX-2 in the presence and absence of IL-1β in three-dimension agarose constructs [55, 56].In the mechanical stress stimuli situation, integrins regu-late responses of human articular chondrocytes to mechani-cal stimulation via several pathway or downstream com-ponents. For example, mechanical signals control SOX-9, VEGF, and c-Myc expression and cell proliferation dur-ing inflammation via integrin-linked kinase, B-Raf, and ERK1/2-dependent signaling in articular chondrocytes [43]. Integrin-associated protein (CD47/IAP) is necessary for chondrocyte mechanotransduction. Through interac-tions with α5β1 integrin and thrombospondin, CD47/IAP may modulate chondrocyte responses to mechanical signals [57]. Furthermore, ankle joint chondrocytes appeared to show significant differences in levels of the integrin-asso-ciated proteins CD98, CD147, and galectin 3, PKC gamma, and differences in responses to glutamate were seen. This might be related to modified integrin-dependent mecha-notransduction as a result of changes in the expression of integrin regulatory molecules such as CD98 or differen-tial expression and function of downstream components of the mechanotransduction pathway such as PKC or NMDA receptors [58]. RACK1-mediated translocation of activated PKCα to the cell membrane and modulation of integrin-associated signaling are likely to be important in regula-tion of downstream signaling cascades controlling chon-drocyte responses to mechanical stimuli [59]. Recently, Whitney et al. [60] found that ultrasound (US) has emerged as a technique to deliver mechanical stress, and their find-ings suggested US signals through integrin receptors to the MAPK/Erk pathway via a mechanotransduction pathway involving FAK, Src, p130Cas, and CrkII.Integrins regulate cells proliferation and differentiationCell–cell interactions play an important role in the develop-ment of cartilage. Heterologous and homologous cell–cell interactions are critical for chondrogenic differentiation during development. Chondrocyte survival and in situ dif-ferentiation are integrin-mediated [61]. Integrin β1, β5, and α5 might be involved in signal transmission for the chon-drocyte survival and dedifferentiation [62, 63]. The lack of β1 integrins on chondrocytes leads to severe chondrodys-plasia associated with high mortality rate around birth [64]. Deletion of β1 integrins in the limb bud results in multi-ple abnormalities of the knee joints; however, it neither accelerate articular cartilage destruction, perturb cartilage metabolism, nor influence intracellular mitogen-activated proteins kinase (MAPK) signaling pathways [64]. When β1 integrin gene is inactivated in the mutant mice chondro-cytes, chondrodysplasia of various severity is developed in mice. β1-deficient chondrocytes have an abnormal shape, and they are failed to arrange into columns in the growth plate [65]. This is caused by the lack of motility, which is in turn caused by a loss of adhesion to collagen type II, reduced binding to and impaired spreading on fibronectin, and an abnormal F-actin organization. In addition, mutant chondrocytes show decreased proliferation caused by a defect in G1/S transition and cytokinesis. Altogether, these findings establish that β1-integrin-dependent motility and proliferation of chondrocytes are mandatory events for endochondral bone formation to occur [65].Cell–cell interactions between articular chondrocytes and synovial fibroblasts have enhanced binding between these two cell types compared to background binding of the labeled cells to the tissue culture plastic surface andRheumatol Intchondrocytes, specifically bound to synovial fibroblasts through RGD-dependent receptors. Therefore, β1 integrins are involved in this adhesion process, and these heterolo-gous cell interactions appear to have a negative influence on chondrogenic differentiation [66]. Articular chondrocytes undergo an obvious phenotypic change when cultured in monolayers. During this change, or dedifferentiation, α5β1 integrin was found to be involved in the induction of type I and type III pro-collagen expression. Elated RAS viral (r-ras) oncogene homolog (RRAS) was considered to regu-late the progression of dedifferentiation by modulating the affinity and avidity of α5β1 integrin to ligands. Echistatin (a potent disintegrin) inhibits dedifferentiation of monolayer-cultured chondrocytes [67]. In chondrocytes, during expan-sion for tissue engineering, a candidate for signal transmis-sion during dedifferentiation is integrin α5β1 in conjunction with its ligand fibronectin [68]. Other receptors, like vitron-ectin and OPN (αVβ3) or laminin (α6β1) or their ligands, do not seem to be involved in signal transmission for dedi-fferentiation. In addition, the GPIIb/IIIa receptor seems to assist the process of dedifferentiation. Intracellularly, ILK, ICAP1, and CD47 might assist the transduction of the inte-grin-dependent signals [68]. In tissue engineering research, it was confirmed that the mesenchymal stem cells (MSCs) with high chondrogenic differentiation potential are highly α10 positive and propose α10 as a potential marker to pre-dict the differentiation state of MSCs [69].The signaling cascades involved in these processes of integrin regulating cells proliferation and differentiation mainly were MAPK, and GTPases as Ras and Raf, and subsequent apoptosis in human articular chondrocytes. Ras activation stimulates the extracellular signal-regulated kinase (ERK) MAPK cascade [70]. Loss of chondrogenic potential is accompanied by reduced expression in key signaling proteins of the MAPK pathway and apoptosis [71]. Activation of the chondrogenic transcription factor Sox-9 seems to be mediated by the MAPK pathway [72]. Ras-activated Raf–MEK–ERK signaling pathway can specifically control the expression of individual integrin subunits in a variety of human and mouse cell lines [73]. In articular chondrocytes, the affinity of αVβ5 integrin for ligands was regulated by the small GTPase R-Ras. R-Ras was gradually activated in monolayer-cultured chondro-cytes after plating, which caused a gradual decline in the cartilage matrix gene expression through enhanced Vβ5 integrin activation and the subsequent increase in ERK signaling [74].Integrins in cartilage homeostasisOsteoarthritis-affected cartilage exhibits enhanced expres-sion of FN and OPN mRNA. Ligation of α5β1 using acti-vating mAb JBS5 (which acts as agonist similar to FN N-terminal fragment) up-regulates the inflammatory medi-ators such as NO and PGE2, as well as the cytokines, IL-6, and IL-8. In contrast, αVβ3 complex-specific function-blocking mAb (LM609), which acts as an agonist similar to OPN, attenuates the production of IL-1β, NO, and PGE2 in a dominant negative fashion by osteoarthritis-affected carti-lage and activated bovine chondrocytes. These demonstrate a cross talk in signaling mechanisms among integrins and show that integrin-mediated “outside–in” and “inside–out” signaling very likely influences cartilage homeostasis, and its deregulation may play a role in the pathogenesis of oste-oarthritis [75]. In the α1-KO mice, more severe cartilage degradation, glycosaminoglycan depletion, and synovial hyperplasia were found as compared with the wild-type (WT) mice [76]. MMP-2 and MMP-3 expressions were increased in the OA-affected areas. In cartilage from α1-KO mice, the cellularity was reduced and the frequency of apoptotic cells was increased. Therefore, deficiency in the α1 integrin subunit is associated with an earlier deregula-tion of cartilage homeostasis and an accelerated, aging-dependent development of OA [76].Integrin α1β1 plays a vital role in mediating chondrocyte responses to two contrasting factors that are critical play-ers in the onset and progression of OA—inflammatory IL-1 and anabolic TGF-β [77]. In a rat OA experimental model, an increased expression of α5 and α2 integrins was found at OA late stages, which was correlated with the changes in the ECM content, as a consequence of the increased MMPs activity. In addition, in the rat OA experimental model, the presence of α4 integrin since OA early stages was corre-lated with the loss of proteoglycans and clusters formation [78]. However, at late OA stages, the increased expression of α4 integrin in the middle and deep zones of the cartilage was also correlated with the abnormal endochondral ossi-fication of the cartilage through its interaction with OPN. Finally, these findings concluded that ECM–chondrocytes interaction through specific cell receptors is essential to maintain the cartilage homeostasis. However, as the integ-rins cell signaling is ligand-dependent, changes in the ECM contents may induce the activation of either anabolic or catabolic processes, which limits the reparative capacity of chondrocytes, favoring OA severity [78].Fibroblast growth factor (FGF) and insulin-like growth factor (IGF) have been implicated as contributing factors in cartilage homeostasis [79, 80]. FGF-18 most likely exerts anabolic effects in human articular chondrocytes by induc-ing ECM formation, chondrogenic cell differentiation, and inhibiting cell proliferation [79, 81]. The role of FGF-8 has been identified as a catabolic mediator in rat and rab-bit articular cartilage [82]. IGF-1 is a major growth factor involved in cartilage matrix synthesis and repair. IGF-1 promotes synthesis of collagen type II, proteoglycans, and other matrix components [83]. Chondrocytes from。

相关文档
最新文档