2.2 平方根(第二课时)

合集下载

北师大版八年级数学2.2平方根(2)教案

北师大版八年级数学2.2平方根(2)教案

优秀教育教学资源
附件2:
微课教学设计模板
优秀教育教学资源
优秀教育教学资源 2)2(22-=-)( 〔 〕
2)2(32-=-)( 〔 〕
2)2(42-=--)( 〔 〕
设计:通过本环节的设置,加深学生对结论1、结论2的理解、记忆和稳固.
第六环节 课堂小结
平方根的概念与性质;
平方根与算术平方根的区别与联系
第七环节课堂练习
1. 4的平方根是〔 〕
A. ±2
B. 2
C. -2 D . 16
2.以下表达正确的是〔 〕
A.任何数都有两个平方根
B.只有正数才有平方根
C.一个正数的平方根的平方就是这个正数
D.不是正数的数都没有平方根
2
16 D. 的平方根 93 B. 4-2 C. 1的平方根是 1 A. )
是(3.±±的平方根是是的平方根是下列说法正确的.
4.一个数的算术平方根是它本身,则这个数是〔 〕
A . 0
B . 1
C . 0或1
D . 0或±1
5. 以下各式中,正确的是〔 〕
A.
33-2±=)( C.332-=- B. 332±=±)( D.
332±=
6.一个正数M 的平方根为 2a +1 和 3-a ,则M =________.
7. 实数a 在数轴上的位置如下图,则化简
22(1)a a -+-的结果是________.
8. ()363132=-x ,求x 的值.。

2.2平方根第二课时

2.2平方根第二课时

根号

a
被开方数 (a是非负数)
想一想
通过这些题目的解答,你能发现什么? 问题:(1)正数有几个平方根? (2)0有几个平方根? (3)负数呢?
试一试
1. 144的平方根是什么? 2. 0的平方根是什么? 0
4 3.25
12
2 5
的平方根是什么?
4. -4有没有平方根?为什么? 没有,因为一个数的平方不可能是负数
(× ) (× ) (√ ) (√ )
议一议:如何区别 ( a ) 与
( a )2
2
a2 ?
a2
从运算顺序看 从取值范围看
先开方,后平方 a≥ 0
先平方,后开方 a取任何实数
从运算结果看
a
∣ a∣
课后作业
祝同学们学习 进步天天√心!
归纳总结
平方根与算术平方根的联系与区别: 1.包含关系:平方根包含算术平方根,算术
联系:
平方根是平方根的一种. 2. 0的平方根是0,算术平方根也是0.
区别: 一个正数有两个平方根,但只有一个算术 平方根.
求下列各数的平方根:
( 1 ) 81
2 (2) - 25
(3) 2
1 4
当堂练习
课堂小结
平方根的概念
平方根
平方根的性质
开平方及相关运算
随堂练习 第一题
3
2
9
思考2:根据前面得出的性质填一填,
并说明理由.
2 2 2 2 2 2 0.1 2 = ; 0.1 = ; ( )= 3 ; 02 =
3
0
.
计算下面各题:
(1) 16
解:(1)
(2) ( 5) 2

2019秋上册8数学北师版第2章实数第2课时平方根习题课件

2019秋上册8数学北师版第2章实数第2课时平方根习题课件
返回
2.(中考•恩施州)16的平方根是___±__4___.
3.(-3)2的平方根是( C )
A.3 B.-3
C.±3 D.3
返回
4.下列说法错误的是( D ) A.4是16的平方根 B.16的平方根是±4 C.-5是25的平方根 D.25的平方根是5
返回
知识点 2 平方根的性质
5.正数有___两_____个平方根,它们____互__为__相__反__数____; 0的平方根是0;负数____没__有__平__方__根_____.正数a的
D. a2 =|a|
返回
15.下列结论正确的是( A )
A.- -62 =-6
2
B.- 2 =4
C. -32 =±3
D.--
4 9


4 9
返回
16.(中考•枣庄)有理数a,b在数轴上对应的点的位置如
图所示,化简|a|+ a-b2 的结果是( A )
A.-2a+b
算.
10. 36 的平方根是( D )
A.6
B.±6
C. 6 D. 6
返回
11.(中考•南京)若方程(x-5)2=19的两根为a和b,且
a>b,则下列结论中正确的是( C )
A.a是19的算术平方根
B.b是19的平方根
C.a-5是19的算术平方根
D.b+5是19的平方根
返回
12.若有理数x,y满足y= x-2 + 2-x +1,则
平方根表示为______a__.
返回
6.下列说法正确的是( C ) A.任何数都有平方根 B.一个正数的平方根有两个,它们互为倒数 C.只有非负数才有平方根 D.不是正数就没有平方根
返回

2.2平方根-平方根、算术平方根(教案)

2.2平方根-平方根、算术平方根(教案)
2.提升学生的逻辑推理能力:在教学过程中,引导学生通过平方根的性质推导出相关结论,培养他们的逻辑推理能力。
3.增强学生的数学建模和数学应用意识:将平方根和算术平方根与现实生活中的问题相结合,让学生在实际情境中运用所学知识解决问题,提高数学建模和数学应用能力。
这些核心素养目标将有助于学生更好地理解和掌握平方根与算术平方根的概念,为后续数学学习打下坚实基础。
-算术平方根的单一性:学生可能会混淆算术平方根和平方根的概念,认为每个正数有两个算术平方根。
-负数没有平方根:学生需要理解为什么负数没有平方根,这涉及到实数范围的拓展。
-实际问题的应用:将平方根和算术平方根应用于实际问题,如何从问题中抽象出数学模型,是学生可能遇到的难点。
举例:针对平方根的双重性,可以让学生通过具体的例子(如4的平方根是2和-2)进行操作和讨论,以加深理解。对于算术平方根的单一性,可以通过强调“非负”一词来帮助学生区分。至于负数没有平方根,可以通过图像(如抛物线y=x²)来展示,说明在实数范围内没有平方后得到负数的点。在实际问题应用方面,可以设计一些与生活相关的题目,如计算正方形边长,让学生学会将实际问题转化为数学模型。
三、教学难点与重点
1.教学重点
-平方根的定义:平方根是解决乘法问题的逆运算,是本节课的核心内容。学生需要理解平方根表示的意义,掌握求一个数的平方根的方法。
-算术平方根的定义:算术平方根是平方根的特殊情况,学生需要明确算术平方根的概念,学会计算一个正数的算术平方根。
-平方根和算术平方根的性质:包括正数的平方根有两个,互为相反数;0的平方根是0;负数没有平方根;正数的算术平方根只有一个,为非负数等。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《平方根-平方根、算术平方根》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要求解一个数的平方根的情况?”(如求解一个正方形场地的面积)。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平方根的奥秘。

2.2算术平方根(教案)

2.2算术平方根(教案)
-算术平方根的应用:能够将算术平方根应用于解决实际问题的情境中,如计算面积、体积等。
2.教学难点
-无理数算术平方根的理解:解释无理数算术平方根的存在,如√2、√3等,并理解它们不能表示为两个整数的比。
-估算无理数算术平方根的精确度:如何通过近似计算得到一个无理数算术平方根的近似值,并理解误差的概念。
1.讨论主题:学生将围绕“算术平方根在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
首先,算术平方根的定义对于一些学生来说可能还是有点抽象。虽然通过正方形边长的例子帮助他们理解了算术平方根的实际意义,但在抽象出数学概念的过程中,部分学生仍然感到困惑。在今后的教学中,我需要更多地借助直观模型和实际例子,让学生更好地理解算术平方根的定义。
其次,无理数算术平方根这一部分是学生们的一个明显难点。他们对无理数的概念本身就感到陌生,更不用说理解无理数算术平方根了。在讲解这一部分时,我意识到需要更耐心地引导学生们去感受无理数的无限不循环小数特性,以及如何估算无理数算术平方根的精确度。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了算术平方根的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对算术平方根的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学中,我发现学生们对算术平方根的概念和计算方法掌握得还不错,但确实存在一些难点需要我们去关注和解决。

七年级下册《平方根》第二课时教案

七年级下册《平方根》第二课时教案

七年级下册《平方根》第二课时教案涓冨勾绾т?1锛庡唴瀹?---鐢ㄦ湁鐞嗘暟浼扮畻銆佺敤璁$畻鍣ㄦ眰鍊硷紟2锛庡唴瀹硅В鏋?锛?()鏃犵悊鏁扮殑澶ц渶瑕佺殑涓€绉嶈兘鍔涳紟浣跨敤璁$畻鍣ㄥ彲浠ユ眰浠讳綍姝f暟鐨勫钩鏂规牴锛屼絾涓嶅悓鍝佺墝鐨?及璁′竴涓??鏃犵悊鏁扮殑澶ц嚧鑼冨洿锛?瀽1锛庢暀瀛︾洰鏍?锛?锛?В琚(鎴栫缉灏?(鎴栫缉灏?鐨勮2锛庣洰鏍囪В鏋?锛?氬埄鐢ㄤ及绠楁瘮杈冨ぇ灏忥紱浜嗚В澶归€兼硶锛岄噰鐢ㄤ笉瓒宠繎浼煎€煎拰杩囧墿杩戜技鍊兼潵锛?圭殑绋嬪簭(鎸夐敭鐨勯『搴?В琚2浣嶏紝瀹冪殑绠楁湳骞虫柟鏍瑰氨鐩稿簲鍦板悜鍙虫垨鍚戝乏绉诲姩1浣嶏紝鍗宠?鎴栫缉灏?100鍊嶏紝瀹冪殑绠楁湳骞虫柟鏍瑰氨鎵╁ぇ(鎴栫缉灏?10鍊嶏紟???鏃犵悊鏁扮殑澶цц滃す閫兼硶鈥濊繘琛屼及璁★紝鍗冲埄鐢ㄥ叾涓€绯诲垪涓嶈冻杩戜技鍊煎拰у€涓??鏃犵悊鏁扮殑澶ц嚧鑼冨洿鐨勮繃绋嬶紝??11 锛?锛変粈涔堟槸绠楁湳骞虫柟鏍?鎬庢牱琛ㄧず?锛?锛夎礋鏁版湁绠楁湳骞虫柟鏍瑰悧锛?甯堢敓娲诲姩銆€瀛︾敓鍥炵瓟锛屾?4锛涗絾瀹為??2锛庨棶棰樻帰绌讹紝瀛︿範鏂扮煡21dm2dm堝睍绀哄壀鎷兼柟娉曪紟杩介棶锛?锛?2dm鐨勫ぇ姝f柟褰㈢殑杈归暱搴旇?В绛旓紝鏁欏笀瀵硅В熻繘琛屾寚瀵硷紟杩介棶锛?锛??dm锛?檯鐢熸Н鏋佹€э紝杩介棶锛?锛変富瑕佷负鍚庨潰浠嬬粛鐢ㄦ暟杞翠笂鐨勭偣琛ㄧず浣滃噯澶囷紟3у?фэ紝鐢辩洿瑙傚彲鐭ュぇ浜?鑰屽皬浜?欏笀鏉夸功鎺ㄧ悊杩囩▼锛?杩介棶锛?锛?閭d箞鏄?鍥达紵?涓旀渶鎺ヨ繎鐨?浣嶅皬鏁版槸1锛?锛岃€屽钩鏂规暟澶т簬2涓旀渶鎺ヨ繎鐨?浣嶅皬鏁版槸1锛?锛屾墍浠ュぇ浜?锛?鑰屽皬浜?锛??杩介棶锛?锛?у皬鐨勬柟娉曪?у皬鐨勬柟娉2锛変富瑕佷负鍙婃椂宸╁浐浼扮畻鏂规硶锛?3渚?锛?锛夛紱锛?锛?绮剧‘鍒?锛?01)В绛斿畬锛?у屼綋浼氬す閫兼硶鐨勫彲琛屾€э??锛夛紟?缁冧範44椤电粌涔?锛???4?鐜板湪鎴戜滑鏉ヨВ?4銆€锛?锛変綘浼氳〃绀哄嚭, 鍚楋紵锛?锛夌敤璁$畻鍣ㄦ眰, 锛??屼唬鍏ワ紝鍒╃敤璁$畻鍣ㄦ眰鍑? 锛?旂敤锛?5鈥?鈥?鈥?鈥?杩介棶锛?锛?暟鐨勫皬鏁扮偣鍚戝彸鎴栧悜宸︾Щ鍔?浣嶏紝瀹冪殑绠楁湳骞虫柟鏍圭殑灏忔暟鐐瑰氨鐩稿簲鍦板悜鍙虫垨鍚戝乏绉诲姩1浣嶏紟杩介棶锛?锛?浣犺兘璇村嚭鍏朵腑鐨勯亾鐞嗗悧锛?规暟鎵╁ぇ鐨勫€嶆暟涓庡叾绠楁湳骞虫柟鏍规墿澶х殑鍊嶆暟鎬濊€冨洖绛(鎴栫缉灏?100鍊嶏紝10000鍊嶁€︽椂锛屽叾绠楁湳骞虫柟鏍圭浉搴斿湴鎵╁ぇ(鎴栫缉灏?10鍊嶏紝100鍊嶁€︼紟杩介棶锛?锛?(绮剧‘鍒?锛?01)锛屽苟鍒╃敤鍒氭墠鐨勫緱锛岀殑杩戜技鍊硷紟杩介棶锛?锛?30涓??渚? 400cm鐨勯暱鏂瑰舰绾哥墖锛屾部鐫€杈300cm鐨勯暱鏂瑰舰绾哥墖锛屼娇瀹冪殑涓?:2槑瑙佷簡璇?甯堢敓娲诲姩锛氭暀甯堝嚭绀洪棶棰橈紝瀛︾敓鐞嗚В: 锛??锛??锛?锛夐暱鏂瑰舰鐨勯暱鍜у皬鍏崇郴鏈€鍚庣粰鍑哄畬鏁寸殑瑙g瓟杩囩▼锛?5锛庡綊绾冲皬缁擄細?锛?涔堬紵锛?浼煎€煎悧锛?锛?(鎴栫缉灏?(鎴栫缉灏?鎬庢牱鐨勫憿锛?锛??6?锛?绗?銆?銆?0棰橈紟?1锛庢眰鐨勬暣鏁伴儴鍒嗭紟2锛庢瘮杈冧笅鍒楀悇缁勬暟鐨勫ぇ灏忥紟锛?锛変笌锛涳紙2锛変笌12锛涳紙3锛変笌锛?у皬鐨勮兘鍔涳紟3锛庤嫢锛岋紝閭d箞_______锛沖______锛?鏈夊叧瑙勫緥鐨勭悊瑙o紟4锛庡浗闄呮瘮璧涚殑瓒崇悆鍦虹殑闀垮湪100m鍒?10m涔嬮棿, 瀹藉湪64m鍒?5m涔嬮棿, ?锛?鍊? 闈㈢Н涓?560m,В鍐冲疄闄呴棶棰樼殑鑳藉姏锛?。

北师大版八上数学2.2平方根知识精讲

北师大版八上数学2.2平方根知识精讲

知识点总结平方根1. 概念:若果一个数的平方等于a,那么这个数叫做a的平方根或二次方根。

即如果x2=a,那么x叫做a的平方根,记作+-√a(a≧0)(有些同学容易弄混,所以直接可以理解为,一个非负数开平方出来,其中的正数就是算术平方根,例:+-√36=+-6,其中6就是算术平方根,+-6整体就是平方根)2. 平方根的性质:一、正数有两个平方根,它们互为相反数注意:一、根号下面的整体必须大于等于0(例子:√x-3(根号下x-3)中隐含着x-3≧0,)二、0的平方根是0三、负数没有平方根知识点汇总1基本概念1、平方根如果x的平方等于a,那么x叫做a的平方根.求一个数a的平方根的运算,叫做开平方,平方与开平方互为逆运算.a(a≥0)的平方根的符号表达为±√a(a≥0),其中√a是a的算术平方根。

(根号电脑无法输入,此处仅为示意,请以授课中的根号表示方法为准)【要点诠释】当式子√a有意义时,a一定表示一个非负数,即√a≥0,a≥0。

平方根和算术平方根的区别2、区别:(1)定义不同;(2)结果不同;3、联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.【要点诠释】(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根. 4.平方根的性质5.平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.例如:今日练习11.计算的结果是:A.2B.±2C.-2D.4【参考答案】1.根据22=4,即可得出4的算术平方根.考点:算术平方根点评:此题考查了算术平方根。

注意:一个正数的算术平方根为正数.教学设计:为什么要学习平方根?首先是出于解决实际问题的需要。

专题2_2 平方根【2022-2023北师大版八上数学精优课件】

专题2_2 平方根【2022-2023北师大版八上数学精优课件】
请你说一说解决问题的思路.
若正方形的面积如下,请填表:
正方形的
面积/dm2 4
9
25
正方形的
边长/dm2 2
3
5
4 36 25
2
6
5
都是已知一个正数的 平方,求这个正数.
讲授新课
知识点一 算术平方根的概念 请大家根据勾股定理,结合图形完成填空:
x2
2,
y2
3,
z2
4,
w2 5 . x, y, z, w中哪
第二章 实数 2.2 平方根
新课导入
讲授新课
当堂检测
课堂小结
学习目标
1、掌握并理解平方根的概念和意义; 2、掌握并理解算术平方根的概念和意义; 3、学会进行开平方的运算,并表示出结果; 4、可以求一个数的平方根或算术平方根;
导入新课
情境引入
学校要举行美术作品比赛,小明想裁出一块面积为 36 dm2的正方形画布,画上自己的得意之作参加比赛, 这块正方形画布的边长应取多少?
(5)14
解:(1)∵ 302=900, ∴ 900是30的算术平方根,即 900 30
(2)∵ 12=1, ∴ 1是1的算术平方根,即 1 1
解:(3)∵
(7) 8
2=
49 64
∴ 900是30的算术平方根,即 49 7
64 8
(4)∵ (0.2)2=0.04,
∴ 0.04是0.2的算术平方根,即 0.04 0.2
典例精析
例2:自由下落物体下落的距离h(米)与下落时间t (秒)的关系为 h 4.9t2 .有一铁球从19.6米高的建 筑物上自由下落,到达地面需要多长时间?
解:将h=19.6代入公式 h 4.9t2 ,

七年级下册《平方根》第二课时教案

七年级下册《平方根》第二课时教案

七年级下册《平方根》第二时教案一、内容和内容解析1.内容无限不循环小数;求算术平方根的更一般的方法---用有理数估算、用计算器求值.2.内容解析无限不循环小数的引入,教科书是通过用有理数估计的大小,得到的越来越精确的近似值,进而发现是一个无限不循环小数的结论.发现无限不循环小数的过程就是反复运用有理数估计无理数的大小的过程.用有理数估计无理数的大致范围,通常利用与被开方数比较接近的完全平方数的算术平方根来估计这个被开方数的算术平方根的大小,这种估算在生活中经常遇到,是学生生活中需要的一种能力.使用计算器可以求任何正数的平方根,但不同品牌的计算器,按键顺序可能不同,教学中,可以让学生根据计算器品牌,参考使用说明书,学习使用计算器求算术平方根的方法.这完全可以让学生自己完成.基于以上分析,确定本节的教学重点为:用有理数估计一个无理数的大致范围.二、目标和目标解析1.教学目标(1)通过估算,体验“无限不循环小数”的含义,能用估算求一个数的算术平方根的近似值.(2)会利用计算器求一个正数的算术平方根;理解被开方数扩大与它的算术平方根扩大的规律.2.目标解析(1)学生了解“无限不循环小数”是指小数位数无限,且小数部分不循环的小数,感受这是不同于有理数的一类新数;对于估算,学生要会利用估算比较大小;了解夹逼法,采用不足近似值和过剩近似值来估计一个数的范围.(2)学生会概述利用计算器求一个正数的算术平方根的程序;明白利用计算器求一个正数的算术平方根,计算器显示的结果可能是近似值;会利用作为工具的计算器探究算术平方根的规律,理解被开方数小数点向右或向左移动2位,它的算术平方根就相应地向右或向左移动1位,即被开方数每扩大100倍,它的算术平方根就扩大10倍.三、教学问题诊断分析用有理数估计一个无理数的大致范围,需要学生理解“算术平方根的被开方数越大,对应的算术平方根也越大”的性质,还要判断被开方数在哪两个相邻的整数平方数之间.为了让学生体验“无限不循环小数”的含义,还要多次采用“夹逼法”进行估计,即利用其一系列不足近似值和过剩近似值来估计它的大小,这些对学生综合运用知识的能力有较高的要求.基于以上分析,本的教学难点是:用有理数估计一个无理数的大致范围的过程,体验“无限不循环小数”的含义.四、教学过程设计1.梳理旧知,引出新问题1(1)什么是算术平方根?怎样表示?(2)负数有算术平方根吗?师生活动学生回答,教师说明:我们上节已经能求出一些平方数的算术平方根了,例如,=4;但实际生活中,我们还会遇到被开方数不是一个数的平方数的情况,这时,它的算术平方根又该怎祥求呢?设计意图:复习与本节相关的知识,通过设问,引出本节学习内容.2.问题探究,学习新知问题2 能否用两个面积为1d的小正方形拼成一个面积为2d的大正方形?师生活动:学生动手操作,在小组内讨论交流,教师展示剪拼方法.追问(1)拼成的这个面积为2d的大正方形的边长应该是多少呢?师生活动:学生自行解答,教师对解答有困难的学生进行指导.追问(2)小正方形的对角线的长是多少呢?师生活动:学生根据图形,不难回答,小正方形的对角线的长就是大正方形的边长d.设计意图:通过实际问题的操作探究,说明实际生活中确实存在被开方数不是一个数的平方数的情况,激发学生学习积极性,追问(2)主要为后面介绍用数轴上的点表示作准备.问题3 有多大呢?为了弄清这个问题,请同学们探究“在哪两个整数之间呢?”师生活动:先让学生思考讨论并估计大概有多大,由直观可知大于1而小于2,教师引导学生利用“被开方数越大,对应的算术平方根也越大”说明理由,教师板书推理过程.追问(1)那么是1点几呢?你能不能得到的更精确的范围?师生活动:学生用试验的方法可得到平方数小于2且最接近的1位小数是1.4,而平方数大于2且最接近的1位小数是1.,所以大于1.4而小于1.……,在此基础上教师按教科书上的推理进行讲解并板书.说明是一个无限不循环小数,以及什么是无限不循环小数.并要求学生回忆以前学过的数,进行比较.追问(2)实际上,许多正有理数的算术平方根,如,,等都是无限不循环小数.根据估计的大小的方法,请你估计的整数部分是多少?设计意图:通过对大小的估计,初步掌握利用的一系列不足近似值和过剩近似值来估计它的大小的方法,并从中体会是一个无限不循环小数.让学生回忆以前学过的数,通过比较,了解无限不循环小数的特征,为后面学习无理数打下基础.追问(2)主要为及时巩固估算方法.3.用计算器,求算术根例1 用计算器求下列各式的值:(1);(2)师生活动:教师指导学生操作,获得问题答案.解答完(2)后,让学生与上面所估计的的大小进行比较,体会夹逼法的可行性.说明用计算器可以求出任意一个正数的算术平方根,但不同品牌的计算器,按键顺序可能有所不同.用计算器求出的算术平方根,有的是准确值,如题(1),有的是近似值,如题(2).设计意图:使学生会使用计算器求算术平方根.练习教科书第44页练习1.师生活动:学生独立完成后交流.设计意图:巩固计算器求算术平方根.4.综合应用,巩固所学现在我们来解决本章引言中的问题.问题4 (1)你会表示出,吗?(2)用计算器求,.师生活动:学生理解题意,根据公式,可得,,将,代入,利用计算器求出,.设计意图:让学生体会计算器在解决实际问题中的应用.问题利用计算器计算下表中的算术平方根,并将计算结果填在表中.…………师生活动:学生计算填表.追问(1)你发现了什么规律?师生活动:学生思考、讨论,教师归纳:被开方数的小数点向右或向左移动2位,它的算术平方根的小数点就相应地向右或向左移动1位.追问(2)你能说出其中的道理吗?师生活动:学生讨论,交流,教师引导学生从被开方数扩大的倍数与其算术平方根扩大的倍数思考回答.即当被开方数扩大100倍,10000倍…时,其算术平方根相应地扩大10倍,100倍….追问(3)用计算器计算,并利用刚才的得到规律说出,,的近似值.师生活动:学生计算,并根据所获规律回答.追问(4)你能根据的值说出是多少吗?师生活动:学生回答,因为被开方数30与3不符合上述规律,所以无法由的值说出是多少.设计意图:巩固用计算器求算术平方根以及其在探究规律中的应用.例2小丽想用一块面积为400的长方形纸片,沿着边的方向剪出一块面积为300的长方形纸片,使它的长宽之比为3:2.她不知能否裁得出来,正在发愁.小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?小丽能用这块纸片裁出符合要求的纸片吗?师生活动:教师出示问题,学生理解题意,学生可能会和小明有同样的想法,此时教师进行如下引导:(1)你能将这个问题转化为数学问题吗?(2)如何求出长方形的长和宽?(3)长方形的长和宽与正方形的边长之间的大小关系是什么?最后给出完整的解答过程.设计意图:让学生体验估算的实际应用..归纳小结:师生共同回顾本节所学内容,并请学生回答以下问题:(1)利用夹逼法来求算术平方根的近似值的依据是什么?(2)利用计算器可以求出任意正数的算术平方根或近似值吗?(3)被开方数扩大与它的算术平方根扩大的规律是怎样的呢?(4)怎样的数是无限不循环小数?设计意图:让学生对本节知识进行梳理,同时也帮助学生养成良好的习惯.6.布置作业:教科书习题6.1第6、9、10题.五、目标检测设计1.求的整数部分.【设计意图】主要考查学生的估算能力.2.比较下列各组数的大小.(1)与;(2)与12;(3)与.【设计意图】主要考查学生的估算和比较大小的能力.3.若,,那么_______;_______.【设计意图】主要考查学生对算术平方根概念以及有关规律的理解.4.国际比赛的足球场的长在100到110之间,宽在64到7之间,现有一个长方形的足球场其长是宽的1.倍,面积为760,问:这个足球场能用作国际比赛吗?【设计意图】主要考查学生运用算术平方根解决实际问题的能力.。

北师大数学八年级上册第二章2.2平方根讲义

北师大数学八年级上册第二章2.2平方根讲义

2.2平方根(解析)知识点定义如果一个数的平方等于a,那么这个数叫做a的平方根.表示若2x a=,则x就叫做a的平方根,例:25=25±(),25的平方根就是5±.一个非负数a的平方根可用符号表示为“a±”.特征1.正数有两个平方根,且互为相反数,和为0;2.0的平方根只有一个,是它本身;3.负数没有平方根.概念如果一个非负数x的平方等于a,即2x a=,那么非负数x是a的算术平方根.表示a的算术平方根用a表示.a叫做被开方数(0a≥).例:9=3,9叫做被开方数,3是9的算术平方根.性质双重非负性,在x a=中有0x≥,0a≥.概念求一个非负数的平方根的运算,叫做开平方.意义开平方与平方是互逆运算,可以通过平方运算来求一个数的平方根或算术平方根,以及检验一个数是不是另一个数的平方根或算术平方根.性质1.当被开方数扩大(或缩小)2n倍,它的算术平方根相应地扩大(或缩小)n 倍(0n≥).例:1扩大100倍为100,它的平方根相应的变为10. 2.平方根和算术平方根与被开方数之间的关系:若0a≥,则2()a a=;不管a为何值,总有2(0)||(0)a aa aa a≥⎧==⎨-<⎩注意二者之间的区别及联系.四.易错点:1.只有非负数才有平方根,负数没有平方根;2.正数的平方根有两个,且互为相反数;3.0的平方根和算术平方根都是0;4.计算.例如,求164,应该是2;5.求一个带分数的平方根时,必须把带分数化为假分数.重点、难点一.考点:算术平方根、平方根.二.重难点:算术平方根的双重非负性,常见平方数.三.易错点:只有非负数才有平方根;正数的平方根有两个,且互为相反数;0的平方根和算术平方根都是0.平方根例题1、16________.【答案】±2【解析】16±2.例题2、若|x|=2,y2=9,且xy<0,则x-y等于()A.1或-1B.5或-5C.1或5D.-1或-5【答案】B【解析】因为|x|=2,y2=9,所以x=±2,y=±3,因为xy<0,所以x=2,y=-3,所以x-y=2+3=5;所以x=-2,y=3,所以x-y=-2-3=-5.例题3、一个正数的两个平方根分别是2a-1与-a+2,则a的值为()A.1B.-1C.2D.-2【答案】B【解析】由题意得:2a-1-a+2=0,解得:a=-1.随练1、5x-与(y+4)2互为相反数,则x+y的平方根为________.【答案】±1【解析】5x-与(y+4)2互为相反数,25(4)0x y-+=,∴x-5=0,y+4=0,解得x=5,y=-4,∴x+y=5+(-4)=1,∴x+y的平方根为±1.随练2、()28-的平方根为()A.8-B.8C.8±D.8±【答案】D【解析】该题考查的是平方根的概念和根式的性质.一个正数有两个平方根.()288-=,8的平方根有两个,8.所以本题的答案是D.算术平方根例题1、4的算术平方根是()A.2B.±22 D.2【答案】C【解析】4,而2242,例题2、一个自然数的平方根为a,则它的相邻的下一个自然数的算术平方根是()1a+ B.a+1 C.a2+121a+【答案】D【解析】设这个自然数为x,∵x 平方根为a ,∴x=a 2,∴与之相邻的下一个自然数为a 2+121a +例题3、 下列各组数,互为相反数的是( )A.-238-B.|2-2C.-2与2(2)D.22(2)-【答案】 C【解析】 -2与2(2)-互为相反数.例题4、 下列各式计算正确的是( ) A.282-- B.2(2)4-= 2(3)3-- 164= 【答案】 D【解析】 A 、28-B 、2(2)2=,故此选项不合题意;C 2(3)3-=,故此选项不合题意;D 164=,正确,符合题意.随练1、 我们可以利用计算器求一个正数a 的算术平方根,其操作方法是按顺序进行按键输入:.小明按键输入显示结果为4,则他按键输入显示结果应为________. 【答案】 40【解析】 164, 16001610040⨯=.随练2、 8 )A.8 826= 822± D.8最接近的整数是3 【答案】 D【解析】 A 8B 826≠,故选项错误;C 822=D 8最接近的整数是3,故选项正确.开平方例题1、 4x =,则x =________.【答案】 16【解析】 两边平方,得:x =16.例题2、 7【答案】 2和3之间【解析】 479,即273<<例题3、 1.718721 1.311,17.197609 4.147,那么0.0001718721-, 1719760900.【答案】 0.01311-,41470【解析】 被开方数扩大(或缩小)2n 倍,它的算术平方根相应地扩大(或缩小)n 倍(0n ≥).随练1、 16________.【答案】 ±2【解析】 16±2.随练2、 已知x 10y 101(10)x y -的平方根为________.【答案】 ±3【解析】 由题意可得:3910=∴x =3,103y =, 则12(10)39x y --==,而9的平方根为±3.课后习题1、 下列说法正确的是( )A.1的立方根是±1 4C.0.09的平方根是±0.3D.0没有平方根【答案】 C【解析】 A .1的立方根是1,故A 错误;B 4=2,故B 错误,C .0.09的平方根是±0.3,故C 正确.D .0的平方根是0,故D 错误.2、 54.037.35=,则0.005403的算术平方根是( )A. 0.735B. 0.0735C. 0.000735D. 0.0000735【答案】 B【解析】 0.0735.3、 已知21a -的平方根是3±,4是31a b +-的算术平方根,求2a b +的值.【答案】 9【解析】 该题考查的是平方根的定义及代数式求值.∵21a -的平方根是3±,∴2213a -=,∴5a =,∵4是31a b +-的算术平方根,∴2314a b +-=,将5a =代入等式中,得,23514b ⨯+-=,∴2b =,∴25229a b +=+⨯=.4、 10 )A.2B.3C.4D.5【答案】 B【解析】 10 3.16, 103.5、 已知a ,b 21(1)0a b +-=,求a 2015-b 2016=________.【答案】 -2【解析】 21(1)0a b +-=,∴1+a =0、1-b =0,解得:a =-1、b =1,则原式=(-1)2015-12016=-1-1=-2.6、 2的平方根是________25的绝对值是________.【答案】 252【解析】 2的平方根是:2±25的绝对值是:52-.7、在下列各式中正确的是()A.2= B.3=2=8=±【答案】A【解析】A2,正确;B、3=±,故本选项错误;C4=,故本选项错误;D2=,故本选项错误.。

2.2平方根(教案)

2.2平方根(教案)
4.培养学生的创新意识:鼓励学生在学习平方根的过程中,敢于提出问题、探索新知,培养创新思维和解决问题的能力。
5.培养学生的合作交流能力:通过小组讨论、合作完成练习,使学生学会倾听、表达、沟通,提高合作解决问题的能力。
三、教学难点与重点
1.教学重点
(1)平方根的定义:理解正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
突破方法:设计贴近生活的实际问题,引导学生运用平方根知识解决问题。
(4)平方根的估算:如何快速准确地估算平方根的值,是学生需要掌握的难点。
突破方法:介绍牛顿迭代法等估算方法,让学生通过实际操作,学会估算平方根。
(5)平方根与算术平方根的区别:学生容易混淆平方根和算术平方根的概念。
突破方法:明确平方根是针对所有实数的,而算术平方根只针对非负实数。通过对比练习,加深学生对两者区别的理解。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平方根的基本概念。平方根是指一个数的平方等于给定数的非负实数解。它是解决几何、物理等学科问题的有力工具。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了平方根在计算面积、体积等实际问题中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调平方根的定义和性质这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
2.2平方根(教案)
一、教学内容
本节课选自教材七年级下册第二章《数的开方》中的2.2节“平方根”。教学内容主要包括以下两个方面:
1.理解平方根的定义:引导学生通过实际操作,探索一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
2.掌握平方根的性质与运算:使学生掌握平方根的性质,如平方根的乘法、除法法则,以及平方根的分配律等。并能运用这些性质解决实际问题,如计算平方根的近似值等。同时,通过例题和练习,让学生熟练运用平方根进行简单的数学运算。

北师大版八年级数学上册:2.2《平方根》说课稿2

北师大版八年级数学上册:2.2《平方根》说课稿2

北师大版八年级数学上册:2.2《平方根》说课稿2一. 教材分析平方根是八年级数学上册第二章第二节的内容,本节课主要介绍了平方根的概念、性质以及求一个数的平方根的方法。

平方根是数学中的一个基本概念,它在解决实际问题中有着广泛的应用。

通过学习平方根,学生可以加深对有理数和实数的理解,提高解决问题的能力。

二. 学情分析学生在学习平方根之前,已经学习了有理数、实数等基础知识,具备了一定的逻辑思维和运算能力。

但平方根的概念和性质较为抽象,学生可能存在一定的理解困难。

因此,在教学过程中,需要关注学生的学习情况,针对学生的特点进行引导和讲解。

三. 说教学目标1.知识与技能:理解平方根的概念,掌握求一个数的平方根的方法,能熟练运用平方根解决实际问题。

2.过程与方法:通过观察、分析、归纳等方法,引导学生发现平方根的性质,培养学生的逻辑思维能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自主学习能力,使学生感受到数学在生活中的应用。

四. 说教学重难点1.重点:平方根的概念、性质以及求一个数的平方根的方法。

2.难点:平方根性质的推导和运用。

五. 说教学方法与手段1.引导发现法:通过观察、分析、归纳等方法,引导学生自主发现平方根的性质。

2.实例讲解法:结合具体例子,讲解平方根的应用,提高学生的解决问题的能力。

3.练习法:通过课堂练习和课后作业,巩固所学知识,提高学生的运算能力。

4.多媒体辅助教学:利用多媒体课件,形象直观地展示平方根的概念和性质,提高学生的学习兴趣。

六. 说教学过程1.导入新课:回顾实数的概念,引入平方根的概念。

2.讲解平方根:讲解平方根的定义,举例说明平方根的求法。

3.发现平方根性质:引导学生观察、分析、归纳平方根的性质。

4.应用平方根:结合实例,讲解平方根在实际问题中的应用。

5.课堂练习:布置练习题,巩固所学知识。

6.小结:总结本节课的主要内容,强调平方根的概念和性质。

7.布置作业:布置课后作业,提高学生的运算能力。

秋八年级数学上册 2.2 平方根 2.2.2 平方根说课稿 (新版)北师大版-(新版)北师大版初中八

秋八年级数学上册 2.2 平方根 2.2.2 平方根说课稿 (新版)北师大版-(新版)北师大版初中八

2.2.2 平方根教材分析《平方根》是北师版初中数学八年级上第二章第二节。

在此之前,学生已经学习了有理数、有理数的乘方、用字母表示数等知识,这为过渡到本节起着铺垫作用。

本节主要学习平方根和算术平方根的概念和性质,在运算方面,引入了开方运算,使学生掌握的代数运算由原来的加、减、乘、除、乘方五种扩展到六种,建立起较完善的代数运算体系。

本节内容既是对前面所学知识的深化和发展,也是今后学习二次根式、实数的预备知识,还是用直接开平方法、公式法解一元二次方程的重要依据。

因此,本节处于非常重要的地位,起着承前启后的作用。

学生分析八年级的学生已经能从具体事例中归纳问题的本质,通过观察、类比等活动抽象出问题的规律,同时学生在前面的学习中已经熟练掌握算术平方根的知识,具备了用所学知识来分析平方根性质的基础。

教学目标【知识与技能】掌握平方根与算术平方根的概念,能及时通过开方运算求一个非负数的平方根及算术平方根,理解平方与开平方互为逆运算。

【过程与方法】通过对平方根概念及性质的探究,渗透分类讨论和数形结合的数学思想方法,提高数学探究能力和归纳表达能力。

【情感、态度与价值观】鼓励学生积极主动地参与教与学的整个过程,激发学生求知的欲望,增加学生学习数学的兴趣与信心。

教学重、难点本节课的重点是平方根与算术平方根的概念和性质。

因为平方根与算术平方根的概念和性质始终贯穿本章,正确理解这两个概念是学好本章的关键。

本节课的难点是平方根与算术平方根的区别与联系。

因为平方根与算术平方根这两个概念容易引起学生理解上的偏差和意义上的混淆,如处理不当将直接影响以后的学习。

说教法与学法【教法】学生在七年级学过乘方运算,但由于间隔时间长,他们会有不同程度的遗忘,为了实现新旧教学方式和学习方式的接轨,我利用情景教学激发学生的兴趣,利用对比教学让学生掌握概念的本质,完善学生的知识结构。

【学法】学生才是学习的主人,教师本节的学法我定为小组交流合作法和自主学习法。

北师大版八年级数学上册2.2平方根(第二课时)

北师大版八年级数学上册2.2平方根(第二课时)

(1 )9 ;
16 (4 ) 9
; (3)0.36;
1 (6) 2 4

(5) 81
注意:(1)带分数作被开方数ቤተ መጻሕፍቲ ባይዱ化成假分数; (2)个别式子须计算或化简后再求平方根; (3)正数的平方根是正负两个值,不能漏写
2014年9月11日11时58分
填一填
-7 7
x2
49 ? 256 ?
16 -16 5? -5 ?
2014年9月11日11时58分
说出 9, - 9, 9各自的意 义.
2014年9月11日11时58分
求下列各式的值:
(1) 144 12
(2) 0.81 -0.9 121 11 (3) 14 196
2014年9月11日11时58分
例题解析

求下列各数的平方根:
1 (2 ) 4
A.正数
2014年9月11日11时58分
B.
负数
C. 非负数
D. 非正数
判断题 1. 2.
16
的平方根是±16. a 一定是正数.
(a) 2 5 ,
(× ) (×) (× )
3.a2的算术平方根是a.
4.若 则a=-5. 5. 9 3 6.-6是(-6)2的平方根. 7.若x2=36,则x= 36 6
2
2 3、求下列各式的 x
(1) x 25
2014年9月11日11时58分
2014年9月11日11时58分
2014年9月11日11时58分
巩固练习 5、求下列各式的值:
(1) ( 9 ) 2 (3) ( 7 ) 2 ; ; ( 2) ( 16 ) 2 ( 4) ( 15 )

北师大版初二数学上册2.2 平方根(第2课时)

北师大版初二数学上册2.2 平方根(第2课时)

第二章实数2. 平方根(第2课时)灞源初中:祝娟娟一、教学目标:①了解平方根、开平方的概念,明确算术平方根与平方根的区别和联系.②进一步明确平方与开平方是互逆的运算关系.③经历平方根概念的形成过程,让学生不仅掌握概念,而且提高和巩固所学知识的应用能力.二、教学重难点:教学重点:①了解平方根、开平方的概念.②了解开方与乘方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根和平方根.③了解平方根与算术平方根的区别与联系.教学难点:①平方根与算术平方根的区别和联系.②负数没有平方根,即负数不能进行开平方的运算.三、教学过程:第一环节复习旧知引入新知1)9的算术平方根是3,也就是说,3的平方是9还有其它的数,它的平方也是9吗?4的数有几个?平方等于0.64的数呢?(2)平方等于25第二环节: 新课学习(一)形成概念一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根.而把正的平方根叫做a的算术平方根..表达式为:若x2=a,那么x叫做a的平方根.记作a例如:(±4)2=16,则+4和-4都是16的平方根;即16的平方根是±4;4是16的算术平方根.(三)探索平方与开平方的关系:给出几组具体的数据,由平方探知开平方与平方的互逆关系.(四)概念辨析平方根与算术平方根的联系与区别联系 1.包含关系 平方根包含算术平方根,算术平方根是平方根的一种.2.只有非负数才有平方根和算术平方根.3. 0的平方根是0,算术平方根也是0.区别 1.个数不同:一个正数有两个平方根,但只有一个算术平方根.2.表示法不同:平方根表示为 a ± ,而算术平方根表示为a . 第三环节 例题和新知巩固(一)例题示范求下列各数的平方根:(1)64;(2)49121;(3) 0.0004;(4)()225-;(5) 11 解 (1)()2648=±,648∴±的平方根是,8±=±即;(2)()24949771211211111,=∴±±的平方根为,711±=±即;(3)()20.0004,0.00040.020.02=∴±±的平方根是,0.02=±即;(4)()()()22,25252525=∴±±--2的平方根是, 25=±即;(5)11±的平方根是(二)思考提升()()?a a ,???等于多少对于正数等于多少等于多少等于多少2222)3(2.7)2(12149)64)(1(⎪⎪⎭⎫ ⎝⎛(三)巩固练习1、 求下列各数的平方根:(1)81 (2)0.49(3) 2 (4)16/25(5)8 (6)27(7)(-4)2 (8)10-22、你能求出下列各式中的未知数x吗?(1)x2=49(2)(x-1)2=25第四环节课堂小结引导学生总结本课时的知识、方法.第五环节作业布置习题2.4四、教学设计反思本节课是八年级上册第二章《平方根》的第二课时.主要知识是平方根的学习和运用.类比概念“平方根”和“算术平方根”的区别和联系,“平方”和“开平方”运算,深刻理解两个概念的区别。

2.2 平方根(2)课件

2.2 平方根(2)课件
2. 平方根(二)
小测:
求下列各数的算术平方根
361 14 1 11 0.000324 2250000 108
81
289
25
若一个数的算术平方根为m ,则比这个数大2的数的算术
平方根是

回顾 & 思考 ☞
1.什么叫算术平方根?
若一个正数的平方等于 a 则这个数叫做 a 的算术
平方根,表示为a (a 0) . 0的平方根是0,即 0 0 .
(1)一个正数有几个平方根? (2)0 有几个平方根? (3)负数呢?
议一议 (1)一个正数有几个平方根?
(2)0 有几个平方根? (3)负数呢? 1、一个正数有两个平方根,0只有一个平 方根,它是0本身;负数没有平方根.
一个正数有两个平方根,它们又有何关系?
2、一个正数有两个平方根,它们互为相 反数!
乘方有没有逆运算?
9的平方等于多少?
9的平方根等于多少?
求一个数a的平方根的运算,叫做开平方. ( a叫做被开方数)
探索平方与开平方的关系
平方
+1 -1
1
开平方
1
+1 -1
+2 -2
4
+3 -3
9
4
+2 -2
9
+3 -3
平方与开平方互逆运算.
辨析概念
平方根与算术平方根的联系与区别:
联系:1.包含关系:平方根包含算术平方根, 算术平方根是平方根的一种.
定义
求一个数a的平方根的运算, 叫做开平方(extraction of square root)其中a叫做被开方数.
巩固新知
1.求下列各数的平方根和算术平方根:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档