人教版初中数学三角形知识点总复习有答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版初中数学三角形知识点总复习有答案

一、选择题

1.如图,在△ABC 中,AC=BC ,∠ACB=90°,点D 在BC 上,BD=3,DC=1,点P 是AB 上的动点,则PC+PD 的最小值为( )

A .4

B .5

C .6

D .7

【答案】B

【解析】 试题解析:过点C 作CO ⊥AB 于O ,延长CO 到C ′,使OC ′=OC ,连接DC ′,交AB 于P ,连接CP .

此时DP +CP =DP +PC ′=DC ′的值最小.∵DC =1,BC =4,∴BD =3,连接BC ′,由对称性可知∠C ′BE =∠CBE =45°,∴∠CBC ′=90°,∴BC ′⊥BC ,∠BCC ′=∠BC ′C =45°,∴BC =BC ′=4,根据勾股定理可得DC ′=22'BC BD +=2234+=5.故选B .

2.如图,在矩形ABCD 中, 3,4,AB BC ==将其折叠使AB 落在对角线AC 上,得到折痕,AE 那么BE 的长度为( )

A .1

B .2

C .32

D .85

【答案】C

【解析】

【分析】

由勾股定理求出AC 的长度,由折叠的性质,AF=AB=3,则CF=2,设BE=EF=x ,则CE=4x -,利用勾股定理,即可求出x 的值,得到BE 的长度.

【详解】

解:在矩形ABCD 中,3,4AB BC ==,

∴∠B=90°, ∴22345AC =+=,

由折叠的性质,得AF=AB=3,BE=EF ,

∴CF=5-3=2,

在Rt △CEF 中,设BE=EF=x ,则CE=4x -,

由勾股定理,得:2222(4)x x +=-,

解得:32x =

; ∴32

BE =. 故选:C .

【点睛】

本题考查了矩形的折叠问题,矩形的性质,折叠的性质,以及勾股定理的应用,解题的关键是熟练掌握所学的性质,利用勾股定理正确求出BE 的长度.

3.如图,△ABC 中,AB =AC =10,BC =12,D 是BC 的中点,DE ⊥AB 于点E ,则DE 的长为( )

A .65

B .85

C .125

D .245

【答案】D

【解析】

【分析】

连接AD ,根据已知等腰三角形的性质得出AD ⊥BC 和BD=6,根据勾股定理求出AD ,根据三角形的面积公式求出即可.

【详解】

解:连接AD

∵AB=AC,D为BC的中点,BC=12,

∴AD⊥BC,BD=DC=6,

在Rt△ADB中,由勾股定理得:AD=2222

1068

AB BD=+=,

∵S△ADB=1

2

×AD×BD=

1

2

×AB×DE,

∴DE=

8624

105 AD BD

AB

⨯⨯

==,

故选D.

【点睛】

本题考查了等腰三角形的性质(等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合)、勾股定理和三角形的面积,能求出AD的长是解此题的关键.

4.把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为()

A.115°B.120°

C.145°D.135°

【答案】D

【解析】

【分析】

由三角形的内角和等于180°,即可求得∠3的度数,又由邻补角定义,求得∠4的度数,然后由两直线平行,同位角相等,即可求得∠2的度数.

【详解】

在Rt△ABC中,∠A=90°,

∵∠1=45°(已知),

∴∠3=90°-∠1=45°(三角形的内角和定理),

∴∠4=180°-∠3=135°(平角定义),

∵EF∥MN(已知),

∴∠2=∠4=135°(两直线平行,同位角相等).

故选D.

【点睛】

此题考查了三角形的内角和定理与平行线的性质.注意两直线平行,同位角相等与数形结合思想的应用.

5.如图,在菱形ABCD 中,AB =10,两条对角线相交于点O ,若OB =6,则菱形面积是( )

A .60

B .48

C .24

D .96

【答案】D

【解析】

【分析】 由菱形的性质可得AC ⊥BD ,AO =CO ,BO =DO =6,由勾股定理可求AO 的长,即可求解.

【详解】

解:∵四边形ABCD 是菱形,

∴AC ⊥BD ,AO =CO ,BO =DO =6,

∴AO =22100368AB OB -=-=,

∴AC =16,BD =12, ∴菱形面积=

12162⨯=96, 故选:D .

【点睛】

本题考查了菱形的性质,勾股定理,掌握菱形的对角线互相垂直平分是本题的关键.

6.如图,直线a b ∥,点A 、B 分别在直线a 、b 上,145∠︒=,若点C 在直线b 上,105BAC ∠︒=,且直线a 和b 的距离为3,则线段AC 的长度为( )

A .32

B .33

C .3

D .6

【答案】D

【解析】

【分析】

过C 作CD ⊥直线a ,根据30°角所对直角边等于斜边的一半即可得到结论.

【详解】

过C 作CD ⊥直线a ,∴∠ADC =90°.

∵∠1=45°,∠BAC =105°,∴∠DAC =30°.

∵CD =3,∴AC =2CD =6.

故选D .

【点睛】

本题考查了平行线间的距离,含30°角的直角三角形的性质,正确的理解题意是解题的关键.

7.如图,在四边形ABCD 中,,90,5,10AD BC ABC AB BC ∠=︒==P ,连接,AC BD ,以BD 为直径的圆交AC 于点E .若3DE =,则AD 的长为( )

A .55

B .45

C .35

D .25

【答案】D

【解析】

【分析】

先判断出△ABC 与△DBE 相似,求出BD ,最后用勾股定理即可得出结论.

【详解】

如图1,

在Rt △ABC 中,AB=5,BC=10,

∴AC=55,

连接BE ,

∵BD 是圆的直径,

相关文档
最新文档