中考数学总复习第26讲统计试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第26讲统计
一、选择题
1.(2016·重庆A)下列调查中,最适合采用全面调查(普查)方式的是(B)
A.对重庆市辖区内长江流域水质情况的调查
B.对乘坐飞机的旅客是否携带违禁物品的调查
C.对一个社区每天丢弃塑料袋数量的调查
D.对重庆电视台“天天630”栏目收视率的调查
2.(2016·苏州)一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是(A)
A.0.1 B.0.2 C.0.3 D.0.4
3.(2016·滨州)某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是(D)
A.15.5,15.5 B.15.5,15
C.15,15.5 D.15,15
4.(2016·沈阳)已知一组数据:3,4,6,7,8,8,下列说法正确的是(B)
A.众数是2 B.众数是8
C.中位数是6 D.中位数是7
5.(2016·南宁)某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是(D)
A.80分B.82分C.84分D.86分
6.(2016·苏州)根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从2016年1月1日起对居民生活用水按新的“阶梯水价”标准收费,某中学研究学习小组的同学们在社会实践活动中调查了30户家庭某月的用水量,如表所示:
用水量(吨) 15 20 25 30 35
户数 3 6 7 9 5
则这30户家庭该月用水量的众数和中位数分别是()
A.25,27 B.25,25 C.30,27 D.30,25
7.(2016·株洲)甲、乙、丙、丁四名射击队员考核赛的平均成绩(环)及方差统计如表,现要根据这些数据,从中选出一人参加比赛,如果你是教练员,你的选择是(C)
队员平均成绩方差
甲9.7 2.12
乙9.6 0.56
丙9.7 0.56
丁9.6 1.34
A.甲B.乙C.丙D.丁
二、填空题
8.(2016·连云港)在新年晚会的投飞镖游戏环节中,7名同学的投掷成绩(单位:环)分别是:7,9,9,4,9,8,8,则这组数据的众数是9.
9.(2016·大庆)甲乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是甲(填“甲”或“乙”).
10.(2016·呼和浩特)如图是某市电视台记者为了解市民获取新闻的主要途径,通过抽样调查绘制的一个条形统计图.若该市约有230万人,则可估计其中将报纸和手机上网作为获取新闻的主要途径的总人数大约为151.8万人.
11.(2016·济南)某学习小组在“世界读书日”这天统计了本组5名同学在上学期阅读课外书籍的册数,数据是18,x,15,16,13,若这组数据的平均数为16,则这组数据的中位数是16.
12.(2016·黄冈)需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,-2,+1,0,+2,-3,0,+1,则这组数据的方差是2.5.
三、解答题
13.(2016·舟山)为落实省新课改精神,我市各校都开设了“知识拓展类”、“体艺特长类”、“实践活动类”三类拓展性课程,某校为了解在周二第六节开设的“体艺特长类”中各门课程学生的参与情况,随机调查了部分学生作为样本进行统计,绘制了如图所示的统计图(部分信息未给出).
根据图中信息,解答下列问题:
(1)求被调查学生的总人数;
(2)若该校有200名学生参加了“体艺特长类”中的各门课程,请估计参加棋类的学生人数;
(3)根据调查结果,请你给学校提一条合理化建议.
解:(1)被调查学生的总人数为:12÷30%=40(人).
(2)被调查参加C舞蹈类的学生人数约为:40×10%=4(人),
被调查参加E棋类的学生人数为:40-12-10-4-6=8(人),
200名学生中参加棋类的学生人数约为:200×8
40
=40(人);
(3)因为参加A球类的学生人数最多,故建议学校增加球类课时量,希望学校多开展拓展性课程等.
14.(2016·陕西)某校为了进一步改进本校七年级数学教学,提高学生学习数学的兴趣,校教务处在七年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查.我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A-非常喜欢”、“B-比较喜欢”、“C-不太喜欢”、“D-很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计,现将统计结果绘制成如下两幅不完整的统计图.
请你根据以上提供的信息,解答下列问题:
(1)补全上面的条形统计图和扇形统计图;
(2)所抽取学生对数学学习喜欢程度的众数是比较喜欢(或B);
(3)若该校七年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?
解:(1)由题意可得,
调查的学生有:66÷55%=120(人),
选C的学生有:120-18-66-6=30(人),
A所占的百分比是:18÷120×100%=15%,
C所占的百分比是:30÷120×100%=25%,
故补全的条形统计图与扇形统计图如图所示,
(3)由(1)中补全的扇形统计图可得,
960×25%=240(人),
答:估计该年级学生中对数学学习“不太喜欢”的有240人.