平面直角坐标系(讲义及答案)
第七讲:平面直角坐标系(部分含答案).doc
第七讲:平面直角坐标系一、知识要点:1、特殊位置的点的特征(1)各个象限的点的横、纵坐标符号(2)坐标轴上的点的坐标:兀轴上的点的坐标为(x,0),即纵坐标为0;y轴上的点的坐标为(0,y),即横坐标为0;2、具有特殊位置的点的坐标特征设片Gw】)、笃(兀2』2)P]、戶2两点关丁'兀轴对称O兀]=兀2,且儿=-歹2;P\、巴两点关于)'轴对称0%]=-兀2,口兀=『2;片、£两点关于原点轴对称O兀1=-£,且丿1=-$2。
3、距离(1)点A (x, y)到轴的距离:点A到兀轴的距离为ly I;点A到y轴的距离为1兀1;(2)同一坐标轴上两点Z间的距离:A(心,0)、B(勺,0),则AB =\x A-x B\; A(0,儿)、B(0,yJ,贝\\AB=\y A-y B I;二、典型例题1、已知点M的坐标为(x, y),如果xy<0 ,则点M的位置( )(A)第二、第三象限(B)第三、第四象限(C)第二、第四象限(D)第一、第四象限2•点P (m, 1)在第二彖限内,则点Q (-m, 0)在( )A. x轴正半轴上B. x轴负半轴上C・y轴正半轴上D・y轴负半轴上3.已知点A (a, b)在第四象限,那么点B (b, a)在( )A.第一象限B.第二象限C.第三象限D.第四象限4•点P (1, -2)关于y轴的对称点的坐标是( )A. (-1, -2)B. (1, 2)C. (—1, 2)D. (—2, 1)5.__________________________________________________________ 如果点M (1-x, 1-y) 在第二象限,那么点N (l・x, y-1)在第____________________ 象限,点Q (x-1, 1-y) 在第 __________________ 象限。
6.如图是中国象棋的一盘残局,如果用(4, o)表示帅的位置, 用(3, 9)表示将的位置,那么炮的位置应表示为A. (8, 7)B. (7, 8)C. (8, 9)D・(8, 8)\7.在平面直角坐标系中,平行四边形ABCD的顶点A、B、D的坐标分别为(0, 0),(5, 0), (2, 3)则顶点C的坐标为()A. (3, 7)B. (5, 3)C. (7, 3)D. (8, 2)8.已知点P (x, x ),则点P—定 ( )A.在第一象限B.在第一或第四象限C.在x轴上方D.不在x轴下方9.已知长方形ABCD中,AB=5, BC=8,并且AB〃x轴,若点A的坐标为(一2, 4),则点C的坐标为(3, -4) (-7, -4) (3, 12) (-7, 12) 。
数学六年级下册第七章-平面直角坐标系(1)——点的坐标-课件与答案
-3
3.点(x,y)到x轴的距离是|y|,到y轴的距离是
,纵坐标
|x|
.
7.1
数学
七年级 下册
配RJ版
第七章
7.1
基础过关
1.点C的横坐标是-4,纵坐标是1,则点C的坐标记作 (-4,1)
2.如图是标准围棋盘的一部分,棋盘上有三枚黑子A,B,C.若
棋子A所处位置的坐标为(0,8),棋子B所处位置的坐标为(3,3),则棋子C所处位置的坐标为 (3,1) .
.
数学
七年级 下册
配RJ版
第七章
7.1
4.原点O的坐标是( 0 , 0 ),横轴上的点的坐标为(x, 0 ),
纵轴上的点的坐标为( 0 ,y).
5.已知点P(3,a),并且点P到x轴的距离是2个单位长度,则点P
(3,2)或(3,-2)
的坐标为
.
6.点A在x轴上,距离原点4个单位长度,则A点的坐标是
7.1
数学
七年级 下册
配RJ版
第七章
7.1
A组
1.如图是一片枫叶标本,其形状呈“掌状五裂型”,裂片具有少
数突出的齿.将其放在平面直角坐标系中,表示叶片“顶
部”A,B两点的坐标分别为(-2,2),(-3,0),则叶杆“底部”点C的
坐标为 ( B )
A.(2,-2)
B.(2,-3)
C.(3,-2)
D.(3,-3)
分别写出点A,B,C的坐标.
解:点A的坐标为(3,3);点B的坐
标为(-3,4);点C的坐标为(5,-2).
数学
七年级 下册
配RJ版
第七章
7.1
【变式1】点A,B,C,D在平面直角坐标系中的位置如图所示.
平面直角坐标系例题讲解及答案
平面直角坐标系一. 重点、难点:1. 重点:认识并画出平面直角坐标系;建立适当的直角坐标系,描述物体的位置,能根据点的位置写出坐标,根据坐标描出点的位置。
2. 难点:根据具体问题建立合适的平面直角坐标系,确定点的位置或描述点的坐标。
二. 教学知识要点:1. 平面直角坐标系:在平面内画两条互相垂直且有公共原点的数轴,这样就组成了平面直角坐标系。
说明:一般把一条画成水平的,取向右的方向为正方向,称它为x 轴或横轴。
一条画成铅直的且取向上的方向为正方向,称它为y 轴或纵轴。
2. 坐标轴上的点及各种对称点的坐标特征。
(1)坐标轴上的点的坐标特征:x 轴上的点,纵坐标为0,可记为(x ,0)y 轴上的点,横坐标为0,可记为(0,y )原点O 的坐标为(0,0)(2)对称点的坐标特征:点P (a ,b )关于x 轴的对称点坐标为P 1(a ,-b )点P (a ,b )关于y 轴的对称点坐标为P 1(-a ,b )点P (a ,b )关于y 轴的对称点坐标为P 1(-a ,-b )(3)平行于坐标轴的直线的坐标特征:平行于x 轴的直线上的任意两点,纵坐标相同。
平行于y 轴的直线上的任意两点,横坐标相同。
3. 坐标平面内的点与有序实数对的一一对应关系有序实数对(x ,y )与平面内的点构成一一对应的关系。
4. 坐标平移公式若M 点的坐标为(x ,y ),将M 点平移到M'点的坐标为(x',y'),则 其中,当a >0时,M 点向右平移a 个单位到M'当a <0时,M 点向左平移|a|个单位到M'当b >0时,M 点向上平移b 个单位到M'当b <0时,M 点向下平移|b|个单位到M'【典型例题】例1. 已知两点A (0,2),B (4,1),点P 是x 轴上一点,求PA +PB 的最小值。
解:如图1,作B 点关于x 轴的对称点B',连AB',交x 轴于点P ,又作B'C ⊥y 轴于Cx x a y y b ''=+=+⎧⎨⎩图1 图2 图3由平面几何知识知,这时PA +PB 最小,且等于AB'的长度∵B 与B'关于x 轴对称∴B'的坐标为(4,-1)∴PA +PB 的最小值为5说明:若在Rt △ABC 中,两直角边长为a ,b ,斜边长为c ,则有c 2=a 2+b 2。
专题03 平面直角坐标系(专题详解)(解析版)
专题03 平面直角坐标系专题03 平面直角坐标系 (1)7.1 平面直角坐标系 (2)知识框架 (2)一、基础知识点 (2)知识点1 有序数对 (2)知识点2 平面直角坐标系 (2)知识点3 点的坐标特点 (3)二、典型题型 (6)题型1 有序数对 (6)题型2 平面直角坐标系的概念 (6)题型3 点的坐标的特征 (6)一、点的位置与坐标 (7)二、点的坐标与距离 (8)三、点的坐标与平行于坐标轴的直线(数形结合思想) (8)四、点的坐标与图形的面积 (9)(1)知坐标,求面积 (9)(2)知面积,求坐标(方程思想) (10)(3)分类讨论 (12)三、难点题型 (14)题型1 确定点所在的象限 (14)题型2 点到坐标轴的距离 (14)题型3 探究平面直角坐标系坐标的变化规律 (15)7.2 坐标系的简单运用 (17)知识框架 (17)一、基础知识点 (17)知识点1 用坐标表示地理位置 (17)知识点2 用坐标表示平移 (18)二、典型题型 (20)题型1 用坐标表示地理位置 (20)题型2 用坐标表示平移 (21)一、点的平移 (21)(1)已知点和平移方式,求对应点 (21)(2)已知点和对应点,求平移方式 (21)二、图形的平移 (22)三、难点题型 (23)题型1 动点问题 (23)7.1 平面直角坐标系知识框架{基础知识点{有序数对平面直角坐标系点的坐标的特点典型题型{ 有序数对平面直角坐标系的概念点的坐标的特征{ 点的位置与坐标点的坐标与距离点的坐标与平行于坐标轴的直线(数形结合思想)点的坐标与图形的面积{知坐标,求面积知面积,求坐标(方程思想)分类讨论难点题型{确定点所在的象限点到坐标轴的距离探究平面直角坐标系坐标的变化规律 一、基础知识点知识点1 有序数对1)我们把有顺序的两个数a 与b 组成的数对,用于表示平面中某一确定位置的,叫作有序数对,记作(a ,b )注:①(a ,b )与(b ,a )表达的含义不同,注意有序数对的顺序②在表达有序数对时,一般行在前,列在后。
平面直角坐标系综合讲义
平面直角坐标系综合讲义一、【知识点拨】1.坐标平面内的点与有序实数对一一对应;2.点P (a ,b )到x 轴的距离为│b │,• 到y 轴距离为│a │, 到原点距离为22a b +;3.各象限内点的坐标的符号特征:P (a ,b ), P 在第一象限⇔a>0且b>0, P 在第二象限⇔a<0,b>0, P 在第三象限⇔a<0,b<0, P 在第四象限⇔a>0,b<0;4.点P (a ,b ):若点P 在x 轴上⇔a 为任意实数,b=0;P 在y 轴上⇔a=0,b 为任意实数;P 在一,三象限坐标轴夹角平分线上⇔a=b ; P 在二,四象限坐标轴夹角平分线上⇔a=-b ; 5.点A (x 1,y 1),B (x 1,y 2):A ,B 关于x 轴对称⇔x 1=x 2,y 1=-y 2; A 、B 关于的y 轴对称⇔x 1=-x 2,y 1=y 2; A ,B 关于原点对称⇔x 1=-x 2,y 1=-y 2; AB ∥x 轴⇔y 1=y 2且x 1≠x 2;AB ∥y 轴⇔x 1=x 2且y 1≠y 2(A ,B 表示两个不同的点). 6点的平移:在平面直角坐标系中,教师寄语:对那些有自信心而不介意于暂时成败的人,没有所谓失败!对怀着百折不挠的坚定意志的人,没有所谓失败!对别人放手,而他仍然坚持;别人后退,而他仍然前冲的人,没有所谓失败!对每次跌倒,而立刻站起来;每次坠地,反会像皮球一样跳得更高的人,没有所谓失败!——雨果将点(x,y)向右平移a个单位长度,可以得到对应点(x+a ,y);将点(x,y)向左平移a个单位长度,可以得到对应点(x-a,y)将点(x,y)向上平移b个单位长度,可以得到对应点(x,y+b);将点(x,y)向下平移b个单位长度,可以得到对应点(x,y-b)。
二、【例题评析】例1(2011贵州贵阳,10分)【阅读】在平面直角坐标系中,以任意两点P(x1,y1)、Q(x2,y2)为端点的线段中点坐标为(x1+x22,y1+y22).【运用】如图,矩形ONEF的对角线交于点M,ON、OF分别在x轴和y轴上,O为坐标原点,点E的坐标为(4,3),则点M的坐标为______;例2,在直角坐标系中,点A,B的坐标分别是(0,6),(-8,0),求Rt△ABO 的内心的坐标.三【综合能力训练】1.如图所示,在平面直角坐标系中,点A的坐标是(10,0),•点B的坐标为(8,0),点C,D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,•求点C的坐标.2.如图所示,在直角坐标系中,矩形ABCD的边AD在x轴上,•点A在原点,AB=3,AD=5,矩形以每秒2个单位长度沿x轴正方向做匀速运动.同时点P从A点出发以每秒1个单位长度沿A─B─C─D的路线做匀速运动.当P点运动到D点时停止运动,矩形ABCD也随之停止运动.(1)求P点从A点运动到D点所需的时间;(2)设P点运动时间为t(s);①当t=5时,求出点P的坐标;②若△DAP的面积为S,试求出S与t之间的函数关系式(并写出相应的自变量t•的取值范围).3.将一矩形纸片OABC放在直角坐标系中,O为原点,C在x轴上,•OA=6,OC=10.(1)如图所示,在OA上取一点E,将△EOC沿EC折叠,使O点落在AB 边上的D点,求E点的坐标;(2)如图所示,将矩形变为矩形OA′B′C′,在OA′,OC′边上选择取适当的点E′,F′,将△E′OF沿E′F折叠,使O点落在A′B′边上的D′点,过D′作D′G•∥A′O交E′F于T点,交OC′于G点,求证:TG=A′E′.(3)在图的条件下,设T(x,y):探求:y与x之间的函数关系式。
中考数学冲刺专题讲义 平面直角坐标系下的图形变化(含答案)
2020中考数学冲刺专题平面直角坐标系下的图形变化(含答案)1. 如图,在平面直角坐标系中,点A(3,0),B(0,-4),C是x轴上一动点,过C作CD∥AB 交y轴于点D.(∥)求OCOD的值;(∥)若以A,B,C,D为顶点的四边形的面积等于54,求点C的坐标;(∥)将∥AOB绕点A按顺时针方向旋转90°得到∥AO′B′,设D的坐标为(0,n),当点D落在∥AO′B′内部(包括边界)时,求n的取值范围.(直接写出答案即可)第1题图解:(∥)∥点A的坐标是(3,0),B的坐标是(0,-4),∥OA=3,OB=4.∥CD∥AB,∥∥AOB∥∥COD,∥OCOD=OAOB=34;(∥)设OC=3x,则OD=4x,则AC=3+3x,BD=4+4x,当点C 在x 轴负半轴上时: ∥四边形ABCD 的面积是54,∥12AC ·BD =54,即12(3+3x )(4+4x )=54, 解得:x =2或-4(舍去). 则点C 的坐标是(-6,0); 当点C 在x 轴的正半轴上时, S 四边形ABCD =12×3x ·4x -12×3×4=54, 解得:x =10或x =-10(舍去). 则点C 的坐标是(310,0); (∥)O ′的坐标是(3,3),则O ′B ′与y 轴的交点坐标是(0,3); 则B ′的坐标是(-1,3).设直线AB ′的解析式是y =kx +b , 根据题意得:⎩⎪⎨⎪⎧3k +b =0-k +b =3,解得:⎩⎪⎨⎪⎧k =-34,b =94,则直线AB ′的解析式是y =-34x +94, 当x =0时,y =94.即直线AB′与y轴的交点是(0,94).则n的范围是94≤n≤3.第1题解图2. 在平面直角坐标系中,点A(-2,0),B(2,0),C(0,2),点D,点E分别是AC,BC的中点,将∥CDE绕点C逆时针旋转得到∥CD′E′,旋转角为α,连接AD′,BE′.(∥)如图∥,若0°<α<90°,当AD′∥CE′时,求α的大小;(∥)如图∥,若90°<α<180°,当点D′落在线段BE′上时,求sin∥CBE′的值;(∥)若直线AD′与直线BE′相交于点P,求点P的横坐标m的取值范围.第2题图解:(∥)∥A(-2,0),B(2,0),C(0,2),∥OA=OB=OC,∥∥ACB=90°,∥∥CD′E′是∥CDE旋转得到的,∥∥D ′CE ′=90°,∥AD ′∥CE ′,∥∥AD ′C =∥D ′CE ′=90°, ∥D 为AC 的中点,∥CD =12AC , ∥CD =CD ′,∥CD ′=12AC , 在Rt∥ACD ′中,cos α=CD ′AC =12, ∥α=60°;(∥)设F 为D ′E ′的中点,连接CF ,如解图∥, ∥CD ′=CE ′,∥E ′CD ′=90°, ∥CF ∥BE ′,CF =12D ′E ′=1, 又∥BC =OB 2+OC 2=22,∥在Rt∥BCF 中,sin∥CBE ′=CF BC =24;(∥)如解图∥,以C 为圆心,CD ′为半径作∥C ,当AD ′与∥C 相切时AP 最长,易得四边形CD ′PE ′是正方形,作PH ∥AB 于点H . ∥CD ′=CD =12AC =2, ∥∥C 的半径为2, ∥在Rt ∥ACD ′中,AD ′=(22)2-(2)2=6,∥AP =AD ′+PD ′=6+2,∥cos∥P AB=APAB=AHAP,∥AH=2+3,∥点P横坐标的最大值为 3.如解图∥,当BE′与∥C相切时AP最短,易得四边形CD′PE′是正方形,作PH∥AB于点H.根据对称性可知OH=3,∥点P横坐标的最小值为-3,∥点P横坐标的取值范围为-3≤m≤ 3.图∥ 图∥ 图∥第2题解图3. 在平面直角坐标系中,一张矩形纸片OBCD按图∥所示放置,已知OB=10,BC=6,将这张纸片折叠,使点O落在边CD上,记作点A,折痕与边OD(含端点)交于点E,与边OB(含端点)或其延长线交于点F.(∥)如图∥,若点E的坐标为(0,4),求点A的坐标;(∥)将矩形沿直线y=-12x+n折叠,求点A的坐标;(∥)将矩形沿直线y=kx+n折叠,点F在边OB上(含端点),直接写出k的取值范围.第3题图解:(∥)∥点E的坐标为(0,4),∥OE=AE=4,∥四边形OBCD是矩形,∥OD=BC=6,∥DE=2,∥AD=AE2-DE2=23,∥点A的坐标为(23,6);(∥)由于直线EF解析式是y=-12x+n,∥OE=n,点F的坐标为(2n,0),连接OA,如解图∥,则EF垂直平分OA,易得∥AOD∥∥EFO,∥ADOD =OEOF=12,则AD=12OD=3,∥点A的坐标为(3,6);(∥)-1≤k≤-1 3.【解法提示】当点F与点B重合时,AB=OB=10,∥AC=102-62=8,则AD=2,易得∥ADE∥∥BCA,则ADBC =DEAC,即26=DE8,∥DE=83,∥OE=103,∥n=103,直线EF的解析式为y=kx+103,令x=10,则y=0,即0=10k+103,∥k=-13;当点E与点D重合时,如解图∥,点F(6,0),易得直线EF的解析式为y=-x+6,此时k=-1,综上所述,k的取值范围是-1≤k≤-13.第3题解图4. 如图,在平面直角坐标系xOy中,O为坐标原点,直线y=-x+4与x轴交于点A,与y轴交于点B.(∥)求点A,B的坐标;(∥)在直线AB上是否存在点P,使∥OAP是以OA为底边的等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.(∥)若将Rt∥AOB折叠,使OB边落在AB上,点O与点D重合,折痕为BC,求折痕BC所在直线的解析式.第4题图解:(∥)在y=-x+4中,令x=0可得y=4,令y=0可求得x=4,∥A(4,0),B(0,4);(∥)如解图∥,作线段OA的垂直平分线,交x轴于点E,交AB于点P,则OP=P A,即P点即为满足条件的点,∥OA=4,∥OE=2,在y=-x+4中,当x=2时,可得y=2,∥P点坐标为(2,2);(∥)如解图∥,设C(t,0),则AC=OA-OC=4-t,∥OA=OB=4,∥AB=42,由折叠的性质可得BD=OB=4,CD=OC=t,∥ADC=∥BOC=90°,∥AD =AB -BD =42-4,在Rt∥ACD 中,由勾股定理可得AC 2=AD 2+CD 2,即(4-t )2=t 2+(42-4)2,解得t =42-4, ∥C (42-4,0),设直线BC 解析式为y =kx +b , ∥⎩⎪⎨⎪⎧b =4(42-4)k +b =0, 解得⎩⎪⎨⎪⎧k =-1-2b =4,∥折痕BC 的解析式为y =-(1+2)x +4.第4题解图5. 如图,在平面直角坐标系中,O 是坐标原点,点A 的坐标为(-8,0),直线BC 经过点B (-8,6),C (0,6),将四边形OABC 绕点O ,按顺时针方向旋转α度得到四边形OA ′B ′C ′,此时直线OA ′,直线B ′C ′分别与直线BC 相交于点P 、Q .(∥)如图∥,当四边形OA ′B ′C ′的顶点B ′落在y 轴正半轴上时,求BPBQ 的值; (∥)如图∥,当四边形OA ′B ′C ′的顶点B ′落在直线BC 上时,求∥OPB ′的面积:(∥)在四边形OABC 旋转过程中,当0°<a ≤180°时,是否存在这样的点P 和点Q ,使BP =12BQ ?若存在,请直接写出....点P 的坐标;若不存在,请说明理由.第5题图解:(∥)∥∥POC=∥B′OA′,∥PCO=∥B′A′O=90°,∥∥POC∥∥B′OA′,∥CPA′B′=OCOA′,即CP6=68,∥CP=92,BP=BC-CP=8-92=72,同理∥B′CQ∥∥B′C′O,∥CQC′O=B′CB′C′,即CQ6=10-68,∥CQ=3,BQ=BC+CQ=11,∥BPBQ=7211=722;(∥)在∥COP和∥A′B′P中,∥∥CPO=∥A′PB′,∥OCP=∥A′=90°,OC=B′A′,∥∥COP∥∥A′B′P(AAS),∥OP=B′P,设B′P=OP=x,在Rt∥COP中,CP2+CO2=OP2,即(8-x)2+62=x2,解得x =254,∥S ∥OPB ′=12×254×6=754;(∥)存在这样的点P 和点Q ,使BP =12BQ ,点P 的坐标是(-9-362,6),(-74,6). 【解法提示】过点Q 作QH ∥OA ′于点H ,连接OQ , 则QH =OC ′=OC ,∥S ∥POQ =12PQ ·OC ,S ∥POQ =12OP ·QH , ∥PQ =OP .设BP =x ,∥BP =12BQ ,∥BQ =2x ,∥如解图∥,当点P 在点B 左侧时,OP =PQ =BP +BQ =3x , 在Rt∥COP 中,PC 2+CO 2=OP 2,即(8+x )2+62=(3x )2, 解得x 1=1+362,x 2=1-362(舍去), ∥PC =BP +BC =9+362, ∥P (-9-362,6);∥如解图∥,当点P 在点B 的右侧时, OP =PQ =BQ -BP =x ,PC =8-x , 在Rt∥COP 中,PC 2+CO 2=PO 2, 即(8-x )2+62=x 2,解得x =254,∥PC=BC-BP=8-254=74,∥P(-74,6),综上所述,存在点P(-9-362,6),P(-74,6),使BP=12BQ.图∥ 图∥第5题解图6. 如图,在平面直角坐标系中,已知∥AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连接AP,并把∥AOP绕着点A按逆时针方向旋转,使边AO 与AB重合,得到∥ABD.(∥)求点B的坐标;(∥)当点P运动到点(t,0)时,试用含t的式子表示点D的坐标;(∥)是否存在点P,使∥OPD的面积等于34,若存在,请求出符合条件的点P的坐标(直接写出结果即可).第6题图解:(∥)如解图∥,过点B作BE∥y轴于点E,作BF∥x轴于点F,由已知得BF=OE=2,OF=42-22=23,∥点B的坐标是(23,2);第6题解图∥(∥)∥∥ABD由∥AOP旋转得到,∥∥ABD∥∥AOP,∥AP=AD,∥DAB=∥P AO,∥∥DAP=∥BAO=60°,∥∥ADP是等边三角形,∥DP=AP=16+t2,如解图∥,过点D作DH∥x轴于点H,延长EB交DH于点G,则BG∥DH,∥在Rt∥BDG中,∥BGD=90°,∥DBG=60°,∥BG=BD·cos60°=t×12=t2,DG=BD·sin60°=t×32=32t,∥OH=EG=23+t2,DH=2+32t,∥点D的坐标为(23+t2,2+32t);第6题解图∥(∥)存在,点P 的坐标为(21-233,0),(-33,0),(-3,0),(-21-233,0).【解法提示】假设存在点P ,使∥OPD 的面积等于34,设点P 为(t ,0),下面分三种情况讨论: ∥当t >0时, BD =OP =t ,DG =32t , ∥DH =2+32t ,∥∥OPD 的面积等于34, ∥12t (2+32t )=34, 解得t 1=21-233,t 2=-21-233(舍去),∥点P 1的坐标为(21-233,0 );∥当-433<t ≤0时,BD =OP =-t ,BG =-32t , ∥DH =2-(-32t )=2+32t , ∥∥OPD 的面积等于34, ∥-12t (2+32t )=34, 解得t 1=-33,t 2=-3,∥点P 2的坐标为(-33,0),点P 3的坐标为(-3,0); ∥当t ≤-433时,BD =OP =-t ,DG =-32t , ∥DH =-32t -2, ∥∥OPD 的面积等于34, ∥12t (2+32t )=34,解得t 1=21-233(舍去),t 2=-21-233,∥点P 4的坐标为(-21-233,0)综上所述,点P 的坐标分别为P 1(21-233,0)、P 2(-33,0)、P 3(-3,0)、P 4(-21-233,0).7. 如图∥,等腰直角∥ABC 的斜边AB 长为4,矩形ODEF 的边OD 长为2,DE 长为4,将等腰直角∥ABC 沿x 轴向右平移得到等腰直角∥A ′B ′C ′.(∥)当线段A ′C ′所在直线经过点E 时,求此时直线A ′C ′的解析式;(∥)连接C ′F ,C ′E ,当线段C ′F 和线段C ′E 之和最短时,求矩形ODEF 和等腰直角∥A ′B ′C ′重叠部分的面积;(∥)当矩形ODEF 和等腰直角∥A ′B ′C ′重叠部分的面积为2.5时,求直线A ′C ′与y 轴交点的坐标(直接写出答案即可).第7题图解:(∥)当A ′C ′所在直线经过点E ,如解图∥. ∥∥CAB =45°, ∥∥C ′A ′B ′=45°, 在Rt∥EA ′D 中,DE =4, ∥A ′D =4, ∥OD =2, ∥A ′O =2, ∥A ′(-2,0),设直线A ′C ′的解析式为y =kx +b ,将两点A ′(-2,0),E (2,4)代入 得⎩⎪⎨⎪⎧-2k +b =02k +b =4,解得⎩⎪⎨⎪⎧k =1b =2. ∥A ′C ′此时的解析式为y =x +2;第7题解图∥(∥)∥点C的运动轨迹为直线y=2.∥点E关于点C′的运动轨迹的对称点为点D.连接FD,如解图∥,当C运动到FD的中点时,FC′+C′D最小,即FD的长,即FC′+EC′最小.∥此时A′C′与OF交于M,B′C′与DE交于N,∥OA′=OM=1,B′D=DN=1,即S∥B′DN=S∥A′OM=1.则S五边形ODNC′M=S∥A′B′C′-S∥B′DN-S∥A′OM=4×2×12-1×1×12-1×1×12=4-1=3.第7题解图∥(∥)直线A′C′与y轴交点的坐标为(0,2+22)或(0,2-22).【解法提示】当C在y轴上时,此时B′与D重合,∥矩形ODEF与∥A′B′C′重合部分为∥COB.∥S ∥COB =12×2×2=2<2.5,故当重叠部分面积为2.5时,C ′必在矩形ODEF 内部,此时重合部分面积S =S ∥A ′B ′C ′-S ∥B ′DN -S ∥A ′OM =2.5,∥4-S ∥B ′DN -S ∥A ′OM =2.5, 即12OM 2+12DN 2=1.5, ∥OM 2+DN 2=3, 而OM =OA ′,DN =DB ′, OA ′+DB ′=A ′B ′-OD =2, ∥OM +DN =2,DN =2-OM , ∥OM 2+(2-OM )2=3, OM 2+OM 2-4OM +4-3=0, 2OM 2-4OM +1=0,解得OM =2+22或OM =2-22, 故当重合部分面积为2.5时,直线A ′C ′与y 轴交点的坐标为(0,2+22)或(0,2-22).8. 在平面直角坐标系中,O 为原点,四边形OABC 是矩形,点A 、C 的坐标分别为(3,0)、(0,1),点D 是边BC 上的动点(与端点B 、C 不重合),过点D 作直线y =-12x +b 交边OA 于点E . (∥)如图∥,求点D 和点E 的坐标(用含b 的式子表示);(∥)如图∥,若矩形OABC关于直线DE的对称图形为矩形O1A1B1C1,试探究矩形O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出重叠部分的面积;若改变,请说明理由;(∥)矩形OABC绕着它的对称中心旋转,如果重叠部分的形状是菱形,请直接写出这个菱形的面积的最小值和最大值.第8题图解:(∥)∥四边形OABC是矩形,∥CB∥x轴,由点A、C的坐标分别为(3,0)、(0,1)可得点D的纵坐标为1,当y=1时,-12x+b=1,解得:x=2b-2,∥点D的坐标为(2b-2,1),当y=0时,-12x+b=0,解得:x=2b,∥点E的坐标为(2b,0);(∥)如解图,设CB与O1A1的交点为点M,C1B1与OA的交点为点N,∥四边形OABC,四边形O1A1B1C1是矩形,∥CB∥OA,C1B1∥O1A1,∥四边形DMEN是平行四边形,∥矩形OABC关于直线DE的对称图形为矩形O1A1B1C1,∥∥1=∥2,∥CB∥OA,∥∥2=∥3,∥∥1=∥3,∥DM=ME,∥平行四边形DMEN是菱形,过点D作DH∥OA于点H,由D(2b-2,1),E(2b,0)可知CD=2b-2,OE=2b,OH=CD=2b-2,DH=1,∥EH=OE-OH=2b-(2b-2)=2,设菱形DMEN的边长为m,在Rt∥DHN中,DH=1,HN=EH-NE=2-m,DN=m,由DH2+HN2=DN2,得:12+(2-m)2=m2,解得m=54,∥S菱形DMEN=NE·DH=54×1=54,∥重叠部分菱形DMEN 的面积不变,为54;第8题解图(∥)当NE =1时,菱形面积的最小值是1; 当NE =53时,菱形面积的最大值是53.(D 与C 重合,A 与E 重合,设DN =AN =x , 在Rt∥DNO 中利用勾股定理列出方程计算)9. 如图,在平面直角坐标系中,已知点A 的坐标为(0,2),∥ABO 为等边三角形,P 是x 轴上的一个动点(不与O 点重合),将线段AP 绕A 点按逆时针方向旋转60°,P 点的对应点为点Q . (∥)求点B 的坐标;(∥)当点P 在x 轴负半轴运动时,求证:∥ABQ =90°;(∥)连接OQ ,在点P 运动的过程中,当OQ ∥AB 时,求点P 的坐标.第9题图解:(∥)如解图∥,过点B 作BC ∥x 轴于点C ,∥∥AOB 为等边三角形,且OA =2, ∥∥AOB =60°,OB =OA =2, ∥∥BOC =30°,而∥OCB =90°, ∥BC =12OB =1,OC =3, ∥点B 的坐标为B (3,1);(∥)由题意得AP =AQ, AO =AB, ∥P AQ =∥OAB , ∥∥P AO =∥QAB=60°.在∥APO 与∥AQB 中,⎩⎪⎨⎪⎧AP =AQ ∥P AO =∥QAB AO =AB ,∥∥APO ∥∥AQB , ∥∥ABQ =∥AOP =90°; (∥)当点P 在x 轴正半轴上时, ∥∥OAB =60°,∥将AP 绕点A 逆时针旋转60°时,点Q 在点B 上方, ∥OQ 和AB 必相交,当点P 在x 轴负半轴上时,点Q 在点B 的下方, ∥AB ∥OQ ,∥BQO =90°,∥BOQ =∥ABO =60°. 在Rt∥BOQ 中,OB =2,∥OBQ =90°-∥BOQ =30°, ∥BQ =3,由(∥)可知,∥APO∥∥AQB,∥OP=BQ=3,∥此时点P的坐标为(-3,0).第9题解图10. 如图∥,平面直角坐标系中,矩形OABC,B(5,4),将矩形沿过点C的直线翻折,使点B 落在线段OA上的点D处,折痕交AB于点E,P(m,0)是射线OA上一动点过点P作x轴的垂线,分别交直线CE和直线CB于点Q和点R.(∥)求点E的坐标;(∥)在点P的运动过程中,求CRQR的值;(∥)设直线CE交x轴于点F,直线PR交直线CD于点K,连接KE,当∥CKE=∥CFO时,求出m的值和线段CQ的长.图∥ 备用图第10题图解:(∥)设E(5,y),∥AE =y ,BE =4-y ,由旋转得CD =BC =5,DE =BE =4-y , 在Rt∥COD 中,CO =4,OD =CD 2-CO 2=3,∥AD =AO -DO =5-3=2, 在Rt∥DAE 中,DE 2=AD 2+AE 2, ∥(4-y )2=22+y 2, 解得y =32, ∥E (5,32);(∥)如解图∥,∥PQ ∥x 轴, ∥PQ ∥AB , ∥∥CQR ∥∥CEB , ∥CR QR =CB EB =54-32=2;图∥ 图∥第10题解图(∥)如解图∥,∥∥CKE =∥CFO ,∥KCE =∥FCD ,∥∥KCE∥∥FCD,∥CKCF=CECD.∥C(0,4),E(5,3 2),∥直线CE的解析式为y=-12x+4,CE=52+(4-32)2=552.∥F(8,0).∥CF=CO2+FO2=4 5.∥C(0,4),D(3,0),∥直线CD的解析式为y=-43x+4.设K(m,-43m+4),∥KR=|-43m+4-4|=43m,∥CR=m,∥CK=CR2+KR2=m2+(43m)2=53m,∥CKCF=CECD,∥53m45=5525,解得m=6;∥Q在直线CE上,∥Q(6,1),∥CQ=CR2+QR2=62+(4-1)2=3 5.。
平面直角坐标系讲义
平面直角坐标系知识梳理1.有序数对:我们把这种有顺序的两个数a与b组成的数队,叫做________。
2.平面直角坐标系:我们可以在平面内画两条________、________的数轴,组成____________。
水平的数轴称为x轴或____,习惯上取____为正方向;竖直的数轴称为y轴或____,取____方向为正方向;两坐标轴的交战为平面直角坐标系的____。
3.象限:坐标轴上的点不属于任何象限第一象限:x>0,y>0 第二象限:x<0,y>0第三象限:x<0,y<0 第四象限:x>0,y<0横坐标轴上的点:(x,0)纵坐标轴上的点:_______4.距离问题:点(x,y)距x轴的距离为y的绝对值,距y轴的距离为x的______。
坐标轴上两点间距离:点A(x1,0)点B(x2,0),则AB距离为 x1-x2的绝对值;点A(0,y1)点B(0,y2),则AB距离为 y1-y2的绝对值。
5.绝对值相等的代数问题:a与b的绝对值相等,可推出a=b或者________。
6.角平分线问题:若点(x,y)在一、三象限角平分线上,则x=y若点(x,y)在二、四象限角平分线上,则______7.对称问题:一点关于x轴对称,则x同y反;关于y轴对称,则y同x反;8.平移:在平面直角坐标系中,将点(x,y)向右平移a个单位长度,可以得到对应点(x+a,y);向左平移a个单位长度,可以得到对应点________;向上平移b个单位长度,可以得到对应点(x,y+b);向下平移b个单位长度,可以得到对应点________。
经典例题1.有序数对【例1】电影院中“2排5号”记作(2,5),则(10,18)的意义为_______________ 练1.根据下列条件,能确定位置的有哪些?①座位是2排4号;②某城市在东经118°,北纬39°;③家住前进路20号;④甲地距乙地20km ;⑤沉船距A 港50km2.平面直角坐标系相关概念【例2】写出图中A 、B 、C 、D 、E 、F 、O 各点坐标,并说明个点在哪个象限练2.下列各点中,在第二象限的点是( )A. (2,3)B. (2,-3)C. (-2,-3)D. (-2,3) B. 练3.已知点M (,)在第二象限,则的值是 。
平面直角坐标系复习讲义(知识点+典型例题)
D、第四象限.
【例 3】点 P(m,1)在第二象限内,则点 Q(-m,0)在( )
A.x 轴正半轴上 B.x 轴负半轴上 C.y 轴正半轴上 D.y 轴负半轴上
【例 4】(1)在平面直角坐标系内,已知点(1-2a,a-2)在第三象限的角平分线上,则 a= ,点的坐标为
。
(2)当 b=______时,点 B(-3,|b-1|)在第二、四象限角平分线上.
电量为 8 千瓦时,则应交电费 4.4 元;④若所交电费为 2.75 元,则用电量为 6 千瓦时,其中正确的有( )
A.4 个 B.3 个 C.2 个 D.1 个
【例 7】小明骑自行车上学,开始以正常速度匀速行驶,途中自行车出了故障,他只好停下来修车.车修好后,因怕
耽误上课,故加快速度继续匀速行驶赶往学校.如图是行驶路程 S(米)与时间 t(分)的函数图象,那么符合小明骑
D. .
11、星期天,小明从家里出发到图书馆去看书,再回到家.他离家的距离 y(千米)与时间 t(分钟)的关系如图所示.根 据图象回答下列问题:
2
2
巩固练习
5
1、下列 各曲线中表示 y 是 x 的函数的是( )
A.
B.
C.
D.
2、下列平面直角坐标系中的图象,不能表示 y 是 x 的函数的是( )
A.
B.
C.
D.
3、下列四个选项中,不是 y 关于 x 的函数的是( )
A.|y|=x﹣1 B.y=
C.y=2x﹣7 D.y=x2
4、下列四个关系式:(1)y=x;(2) y x2 ;(3) y x3 ;(4) y x ,其中 y 不是 x 的函数的是( )
.
【例 8】在坐标系内,点 P(2,-2)和点 Q(2,4)之间的距离等于
平面直角坐标系--专题 讲义
平面直角坐标系-位置认识1.小义同学给如图建立平面直角坐标系,使医院的坐标为(0,0),火车站的坐标为(2,2).(1)写出体育场、文化馆、超市、宾馆、市场的坐标;(2)在图中标出小义家(3,﹣1),小锐家(﹣1,﹣1)和学校(﹣1,1)的位置.(3)小义从家途径小锐家到学校最近的路是个单位长度.平面直角坐标系-密码组合1.如图是一组密码的一部分,为了保密,许多情况下可采用不同的密码,请你运用所学的知识找到破译密码的“钥匙”.目前,已破译出“今天考试”的真实意思是“努力发挥”,若“今”所处的位置是(x,y),你找到的密码钥匙是(,),破译“正做数学”的真实意思是“”.平面直角坐标系-诗词调整1.如图,我们从唐代诗人韩愈的《早春呈水部张十八员外》和刘禹锡的《浪淘沙•其一》中各选取一句整齐排列放在平面直角坐标系中,“浪”的坐标是(1,1).(1)“曲”和“酥”的坐标依次是和.(2)将第2行与第3行对调,再将第4列与第7列对调,“河”由开始的坐标最终变换为.(3)“雨”开始的坐标是,使它的坐标变换到(5,3),应该哪两行对调,同时哪两列对调?1.如图是一个平面直角坐标系.(1)请在图中描出以下6个点:A(0,2)、B(4,2)、C(3,4)A′(﹣4,﹣4)、B'(0,﹣4)、C′(﹣1,﹣2)(2)分别顺次连接A、B、C和A′、B'、C',得到三角形ABC和三角形A′B′C′;(3)观察所画的图形,判断三角形A′B′C′能否由三角形ABC平移得到,如果能,请说出三角形A′B′C′是由三角形ABC怎样平移得到的;如果不能,说明理由.1.如图,△DEF是△ABC经过某种变换得到的图形,点A与点D,点B 与点E,点C与点F分别是对应点,观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A与点D,点B与点E,点C与点F的坐标,并说说对应点的坐标有哪些特征;(2)若点P(a+3,4﹣b)与点Q(2a,2b﹣3)也是通过上述变换得到的对应点,求a、b的值.平面直角坐标系-面积求解1.△ABC与△A'B'C'在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:A';B';C';(2)说明△A'B'C'由△ABC经过怎样的平移得到?.(3)若点P(a,b)是△ABC内部一点,则平移后△A'B'C'内的对应点P'的坐标为;(4)求△ABC的面积.1.已知:如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′.(1)写出A′、B′、C′的坐标;(2)求出△ABC的面积;(3)点P在y轴上,且△BCP与△ABC的面积相等,求点P的坐标.1.如图,在平面直角坐标系中,点A(﹣3b,0)为x轴负半轴上一点,点B(0,4b)为y轴正半轴上一点,其中b满足方程3(b+1)=6.(1)求点A,B的坐标;(2)点C为y轴负半轴上一点,且△ABC的面积为12,求点C的坐标;1.已知点P(a﹣2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点Q的坐标为(1,5),直线PQ∥y轴;(4)点P到x轴、y轴的距离相等.1.已知,点P(2m﹣6,m+2).(1)若点P在y轴上,P点的坐标为;(2)若点P的纵坐标比横坐标大6,求点P在第几象限?(3)若点P和点Q都在过A(2,3)点且与x轴平行的直线上,PQ=3,求Q点的坐标.平面直角坐标系-文字叙述求解3 1.已知在平面直角坐标系中有一点M(2m﹣1,m﹣3).(1)当点M到y轴的距离为1时,求点M的坐标;(2)当点M到x轴的距离为2时,求点M的坐标.1.在平面直角坐标系中,已知点M(m,2m+3).(1)若点M在x轴上,求m的值;(2)若点M在第二象限内,求m的取值范围;(3)若点M在第一、三象限的角平分线上,求m的值.1.已知点P(3m﹣6,m+1),试分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P在x轴上;(3)点P的纵坐标比横坐标大5;(4)点P在过点A(﹣1,2),且与x轴平行的直线上.1.如图所示,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,b满足|a+2|+=0,点C的坐标为(0,3).(1)求a,b的值及SABC;△(2)若点M在x轴上,且SACM=S△ABC,试求点M的坐标.△1.如图,A(﹣1,0),C(1,4),点B在x轴上,且AB=3.(1)求点B的坐标;(2)求△ABC的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标;若不存在,请说明理由.1.如图在直角坐标系中,已知A(0,a),B(b,0)C(3,c)三点,若a,b,c满足关系式:|a﹣2|+(b﹣3)2+=0.(1)求a,b,c的值.(2)求四边形AOBC的面积.(3)是否存在点P(x,﹣x),使△AOP的面积为四边形AOBC 的面积的两倍?若存在,求出点P的坐标,若不存在,请说明理由.1.已知:如图,△ABC的三个顶点位置分别是A(1,0)、B(﹣2,3)、C(﹣3,0).(1)求△ABC的面积是多少?(2)若点A、C的位置不变,当点P在y轴上时,且SACP=2S△ABC,△求点P的坐标?(3)若点B、C的位置不变,当点Q在x轴上时,且SBCQ=2S△ABC△求点Q的坐标?1.已知点A(a,0)和B(0,b)满足(a﹣4)2+|b﹣6|=0,分别过点A、B作x轴、y轴的垂线交于点C,如图所示,点P从原点出发,以每秒1个单位长度的速度沿着O﹣B﹣C﹣A﹣O的路线移动.(1)写出A、B、C三点的坐标;A,B,C;(2)点P在运动过程中,当△OAP的面积为6时,求点P的坐标;(3)当P运动14秒时,连接O、P两点,将线段OP向上平移h个单位(h>0),得到O'P',若O'P'将四边形OACB的面积分成相等的两部分,求h的值.1.如图,在平面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a、b、c满足关系式|a﹣2|+(b﹣3)2=0,(c﹣4)2≤0(1)求a、b、c的值;(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标,若不存在,请说明理由.1.在平面直角坐标系中,O为坐标原点,过点A(8,6)分别作x轴、y轴的平行线,交y轴于点B,交x轴于点C,点P是从点B出发,沿B→A→C以2个单位长度/秒的速度向终点C运动的一个动点,运动时间为t(秒).(1)直接写出点B和点C的坐标B(,)、C(,);(2)当点P运动时,用含t的式子表示线段AP的长,并写出t的取值范围;(3)点D(2,0),连接PD、AD,在(2)条件下是否存在这样的t值,使SAPD=S四边形ABOC,若存在,请求出t值,若不存在,请说明理由.△1.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次平移,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A2022的坐标为.2.在平面直角坐标系中,点A1(1,0),A2(2,3),A3(3,8),A4(4,15),…,用你发现的规律确定点A n的坐标为.1.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位长度,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,-1),P5(2,-1),P6(2,0)…,则P2020的坐标是2.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(﹣1,1),第2次接着运动到点(﹣2,0),第3次接着运动到点(﹣3,2),…,按这样的运动规律,经过第2022次运动后,动点P的坐标是1.点A在y轴正半轴上,OA=a,点B位于第二象限,且点B到两坐标轴的距离均为b,其中a、b满足b=++4.(1)a=,b=;(2)点C在x轴的负半轴上,射线CD∥AB.①如图1,过C作射线CE交y轴于点E,使∠DCE=3∠ECO,过A作射线AF交CE于点F,使∠BAF=3∠OAF,求∠AFE的度数;1.如图,在平面直角坐标系中,点O(0,0),A(0,a),C(b,0)满足+|b﹣2|=0.(1)直接写出A、C两点的坐标.(2)如图2,点G是第二象限上的点,连OG,且OG∥AC,点F是线段AC上一点,满足∠AOG=∠AOF.点E是射线OA上一动点,连CE交直线OF于点H,当点E在射线OA上运动的过程中,请确定∠OHC,∠ACE 和∠OEC的数量关系,并说明理由.平面直角坐标---动点和面积压轴1.如图,在平面直角坐标系中,点O(0,0),A(0,a),C(b,0)满足+|b﹣2|=0.(1)直接写出A、C两点的坐标.(2)如图1,已知坐标轴上有两动点P、Q同时从O点出发,P点沿x轴正方向以2个单位长度每秒的速度匀速移动,Q点以1个单位长度每秒的速度沿y轴正方向移动,点D(1,2)为线段AC上一点,设运动时间为t(t>0)秒.问:是否存在这样的t,使SDPC=S三角形DQO,若存在,请求出t的值;三角形若不存在,请说明理由.。
平面直角坐标系讲义
平面直角坐标系讲义1、数轴2、有序数对有序数对:有顺序的两个数a 与b 组成的数对。
① 记作(a ,b );② 注意:a 、b 的先后顺序对位置的影响。
【典型例题】如果用有序数对(3,2)表示课室里第3列第2排的座位,则位于第5列第4排的座位应记作( )A 、(4,5)B 、(5,4)C 、(5、4)D 、(4、5) 3、平面直角坐标系1、历史:法国数学家笛卡儿最早引入坐标系, 用代数方法研究几何图形 ;2、构成坐标系的各种名称:如右图4.坐标系中常用的几个距离公式 ---“点求距”(1)如图,轴上的点M (0,y )、N (x,0)到原点的距离: MO=|y|; NO=|x|.(2)如图,轴上两点M 、N 之间的距离:MN=|x1-x2|=x 大-x 小 , PQ=|y1-y2|=y 大-y 小 .(3)如图, 象限上的点M (x,y ):到y 轴距离:dy=|x|; 到x 轴距离: dx=|y|;※22yx r +=到原点的距离:.(4)如图,平面上任意两点M (x2,y2)、N (x2,y2)之间的距离: .)()(221221y y x x d -+-=5.坐标系中点的平移:(1)点向右平移 <=> 横加正、纵不变; 点向左平移 <=> 横减正、纵不变; 点向上平移 <=> 纵加正、横不变; 点向下平移 <=> 纵减正、横不变;(21、已知点A (x ,A.原点 B.x2、已知点P (x ,A.原点 B.x3、已知点A (-3,2m+3)在x 轴上,点B (n-4,4)在y 轴上,则点C (m ,n )在 ( )A.第一象限B.第二象限C.第三象限D.第四象限 4、如果点B (x -1,x +3)在y 轴上,那么x= ( )A.1B.-1C.3D.-3 5、点P (m +3, m +1)在直角坐标系的x 轴上,则点P 坐标为 ( )xyo M(x ,y)r xyoM (x ,y)N(x ,y)C(2)A.(0,-2) B.( 2,0) C.( 4,0) D.(0,-4)题型二:各个象限内点的特征各象限中的点的坐标特征:平面内一点P(x,y),如位于第一象限,则x>0,y>0;如位于第二象限,则x<0,y>0;如位于第三象限,则x<0,y<0;如位于第四象限,则x>0,y<0。
平面直角坐标系(详解版)
1(2(3(4(5(②③④ C.①④ D.①②③④坐标系基础>题型:坐标系内坐标的特征6(街与大道的十字路口,点表示街与大道的十字路口,如果用表示由到的一条路径,那么你能用同样的方式写出由到7(8(9(10(∵,轴,∴点在直线上,由垂线段最短,可得,线段的最小值为,此时点综合类问题>最短路径问题>题型:垂线段最短11(12(13(14(人玩的一盘棋,若白的位置是,黑的位置是∵白的位置是,黑的位置是15(>平面直角坐标系>坐标系综合>.如图所示:,即为所求.级16(17(点坐标的对称规律:关于哪个轴对称,哪个值不变,另一个变成相反数.18(19(20(21(22(四点的位置,并顺次连接、、、;;(直接写出结果)>平面直角坐标系>坐标系综合>题型:坐标系中的平移四边形的面积是:故答案为:.B. C. D.(分)如图,在直角坐标系中,、两点的坐标分别为23..题型:坐标系内坐标的特征24(是平面内一动点,且的面积为25已知:26(27(.28(函数>平面直角坐标系D.(29点的竖线为对称轴,以正方形的竖对称轴分别做对称各一个格点三角形.(分)在平面直角坐标系中,一个智能机器人接到如下命令:从原点出发,按向右,向上,向右,向下的方向依次不断移动,每次移动,其行走路线如图所示,第次移动到,第次移动,…,第次移动到3031(32(33(。
平面直角坐标系(讲义及答案)
平面直角坐标系(讲义及答案)平面直角坐标系(讲义)➢课前预习1. 在电影票上,“3 排6座”与“6 排3座”(填“是”或“不是”)同一个座位,所以在电影院选择座位需要个数据.2.如图,在数轴上有A,B,C,D 四个点,回答下列问题C A B D-5 -4 -3 -2 -1 0 1 2 3 4 5(1)点C关于点A的对称点表示的数是;点D关于点B 的对称点表示的数是.(2)点C向右平移3个单位后表示的数是;点B向左平移2个单位后表示的数是.(3)点A关于点B的对称点向左平移2个单位后表示的数是.3.如图是某市的部分简图,每个小正方形的边长均为500 米,我们用(2,6)表示文化宫的位置,请回答下列问题:(1)说出体育场与超市的位置;(2)小明家在火车站以东 1 000米,再往北500米处;小聪家在超市以北500 米,再往西 1 500米处,在图中标出小明和小聪家的位置.(3)上周六,小华的活动路线是(1,8)→(2,6)→(7,7)→(7,2),说一说他这一天去了哪些地方.➢ 精讲精练1.写出图中的多边形 ABCDEF 各个顶点的坐标,并指出它们所在的象限.解:A ( , ),第_ 象限; B ( , ), 第 象 限 ; C ( , ), 第 象 限 ; D ( , ), 第 象 限 ; E ( ), 象限; F ( ), 象限.2.在平面直角坐标系中, 点(-2,-3)在第 象限;点(,)在第 象限;点( -1,1- )在第 象限;点(-2,a 2+1)在第 象限.3. 若 a <b <0,则点 A (a -b ,b )在第 象限.4. 在平面直角坐标系中,若点 P (a ,b )在第二象限,则点Q (1-a ,-b )在第 象限.5.在平面直角坐标系中描出下列各点,并将各组内这些点依次用线段连接起来.(1)A (-3,5),B (-7,3),C (1,3),A (-3,5); (2)D (-6,3),E (-6,0),F (0,0),G (0,3).6 5 4 3 观察所描出的图形,解答下列问题: ①坐标轴上的点有 ,且 x 轴上的点 坐标等于零,y 轴上的点 坐标等于零. ②线段 B C 与 x 轴 ,点 B 和点 C 坐标相同,线段 BC 上其他点的 坐标都相同. ③线段 D E 轴 ,点 E 坐标相同,线段 D E 上其他点的 坐标都相同.y21 - 7 - 6 - 5 - 4 - 3 -2 - 1O 1 x6.若点M(a+3,4-a)在x轴上,则点M的坐标为.7.若过A(1,m),B(n,-3)两点的直线与x轴平行,且A B=4,则m= ,n= .8.如图,正方形A BCD 在平面直角坐标系中,其中三个顶点的坐标分别为(-2,-2),(-2,3),(3,-2),则第四个顶点的坐标为.第8题图第9题图9.如图,若在象棋盘上建立直角坐标系,使“帅”位于点(-1,-“马”位于点(2,-2),则“兵”位于点( ,).10.如图,长方形ABCD 的长与宽分别是6,4,建立适当的平面直角坐标系,并写出各个顶点的坐标.D CA B11.如图,对于边长为4 的等边三角形ABC,建立适当的平面直角坐标系,写出各个顶点的坐标.CA B12.已知点P(-3,2),它到x轴的距离为,到y轴的距离为,到原点的距离为.13.在平面直角坐标系中,第二象限内有一点P,若点P到x轴的距离是4,到y轴的距离是5,则点P的坐标为.14.点M在x轴的上方,距离x轴4个单位长度,距离y轴3个单位长度,则点M的坐标为()A.(4,3) B.(-4,3)或(4,3)C.(3,4) D.(-3,4)或(3,4)15.若点A(x,4)到原点的距离为5,则x= .16.如图,△ABC 在平面直角坐标系中,则S△ABC= .17.已知点A(0,4),点B在x轴上,若A B 与坐标轴围成的三角形的面积为2,则点B的坐标为.18.(1)作图,将△ABC 各顶点的横坐标保持不变,纵坐标乘以-1,顺次连接这些点,所得三角形与△ABC 关于轴对称;(2)如图,△DEF 与△ABC 关于轴对称,它们相应顶点的横坐标、纵坐标.19.如果点A(a,b)与点B 关于x 轴对称,点B 与点C(2,3)关于y 轴对称,那么a= ,b= ,点A和点C的位置关系是.20.若点A(a,4),点B(3,b)关于x 轴对称,则(a+b)2 016 的值为21.若点P(b-3,-2b)在y轴上,则点P关于x轴对称的点的坐标为.22.若点A(a,b)沿x轴向左平移2个单位长度,再沿y轴向上平移1单位长度得到点A′(1,2),则点A的坐标为.23.如图,将三角形向右平移3个单位长度,再向上平移2个单位长度,则平移后三个顶点的坐标分别为()A.(-1,-1),(2,3),(5,1)B.(-1,1),(3,2),(5,1)C.(-1,1),(2,3),(5,1)D.(1,-1),(2,2),(5,1)24.如图,把图1 中的△ABC 经过一定的变换得到图2 中的△A′B′C′,如果图1中△ABC 上点P的坐标为(a,b),那么这个点在图2中的对应点P′的坐标为.图1 图2【参考答案】➢课前预习1. 不是,两2. (1)0;-2 (2)-1;-1 (3)23. (1)体育场(1,8),超市(7,2)(2)略(3)他这一天去的地方:体育场、文化宫、宾馆、超市➢知识点睛1.两2.互相垂直,公共原点,数轴x 轴,横轴,y 轴,纵轴,x 轴,y 轴3.作垂线,横坐标,纵坐标,有序实数对4. 四,(-,+),(-,-),(+,-)6. (1)纵;横(2)纵;横(3)相同,互为相反数,互为相反数,相同(4)左右,上下➢精讲精练1. (-1,3),二;(-2,-1),三;(-1,-2),三;(3,-2),四(3,1),第一;(2,3),第一2.三;一;四;二3.三4.四5.图形略①E,F,G,纵,横②平行,纵,纵③平行,横,横6. (7,0)7. -3,-3 或58. (3,3)9. (-3,1)10.略11.略12. 2,3,13. (-5,4)14. D15. 3 或-316. 917. (1,0)或(-1,0)18.(1)x;(2)y,互为相反数,相同19.-2,-3,关于原点中心对称20. 121. (0,6)22. (3,1)23. A24. (a+3,b+1)第 10 页。
2024年新八年级数学暑假提升精品讲义(北师大版)第14讲 解题技巧专题:平面直角坐标系
第14讲解题技巧专题:平面直角坐标系求面积、规律、新定义问题【题型一利用补形法或分割法求图形的面积】例1.(23-24七年级下·全国·课后作业)如图,在平面直角坐标系中,点,,,,求四边形的面积.【变式1-1】(2023上·安徽滁州·八年级统考期中)如图,在平面直角坐标系中,的顶点坐标分别为,,,过点作轴,过点作轴,轴,过点作轴,分别与和交于点和点,分别与和交于点和点.(1)直接写出下列点的坐标:点____,点____,点____;(2)利用图形求的面积.【变式1-2】如图所示,在平面直角坐标系中,已知,,(1)在平面直角坐标系中画出.(2)求的面积.【变式1-3】已知,在平面直角坐标系中的位置如图所示(1)写出A、B、C三点的坐标;(2)求的面积;(3)中任意一点经平移后对应点为,将作同样的平移得到,画出.【题型二与图形面积相关的点的存在性问题】例2.(23-24七年级上·黑龙江哈尔滨·阶段练习)如图,在平面直角坐标系中,轴,垂足为A,轴,垂足为C,已知,,其中a,c满足关系式,点P从O点出发沿折线的方向运动到点C停止,运动的速度为每秒2个单位长度,设点P的运动时间为t 秒.(1)求点A、C的坐标;(2)在运动过程中,当点P到的距离为2个单位长度时,_________;(3)点,在点P的运动过程中,是否存在这样的t值,使,若存在,请求出t值,若不存在,请说明理由.【变式2-1】(2024上·江西吉安·八年级统考期末)如图,在直角坐标平面内,已做,,(1)求的面积.(2)在y轴上找一点D,使,求点D的坐标.【变式2-2】(2023下·黑龙江牡丹江·七年级统考期末)如图,在平面直角坐标系中,点坐标为,点坐标为,点坐标为,且,,满足关系式(1)请求出、、三点的坐标:(2)如果在第三象限内有一点,请用含的式子表示四边形的面积;(3)在(2)的条件下,当时,在轴上是否存在点,使三角形的面积等于四边形面积的若存在,请直接写出点的坐标,若不存在,请说明理由.【变式2-3】(2023下·七年级课时练习)如图,在平面直角坐标系中,点的坐标分别为,且满足.同时将点分别向上平移2个单位长度,再向右平移1个单位长度,得到点的对应点,连接.(1)求点的坐标及四边形的面积;(2)在坐标轴上是否存在一点,连接,使?若存在,求出点的坐标;若不存在,试说明理由;(3)是线段上的一个动点,连接,当点在上移动时(不与点重合),给出下列结论:①的值不变;②的值不变.其中有且只有一个结论是正确的,请你找出这个结论并求其值.【题型三平面直角坐标系中新定义规律探究问题】例距离的较小值称为点点的若点的若,两点为点的若点是若点的长距为的坐标为,试说明:中的任意一点,给出如下定义:记,那么我们把点与点称为点和谐点”.例如,点的一对“和谐点是点与点点的一对“和谐点”坐标是与;若点的一对重合,则y的值为若点C的一个坐标为,求点“”(1)直接写出点A,B的“-”(2)若点A为B,C的“-3”系和点,求点(3)点D为A,B的“k”系和点.①求点D的坐标(结果用k含的式子表示);②若三角形ABD的面积为6,则符合条件的【题型四平面直角坐标系中点运动规律探究问题】例4. (23-24七年级下·重庆江北·阶段练习)如图,在平面直角坐标中,动点M从点出发,按图中箭头所示方向依次运动,第1次运动到点,第2次运动到点,第3次运动到点,…,按这样的运动规律,动点M第2024次运动到点()A.B.C.D.【变式4-1】(23-24七年级下·黑龙江哈尔滨·阶段练习)如图,动点在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点,第2次接着运动到点,第3次接着运动到点,按这样的运动规律,经过第47次运动后动点的坐标是【变式4-2】如图,在平面直角坐标系中,设一动点自处向下运动1个单位长度至处,然后向左运动2个单位长度至处,再向上运动2个单位长度至处,再向左运动2个单位长度至处,再向下运动2个单位长度至处,,如此继续运动下去,设,,2,3,,则的坐标是.【变式4-3】(23-24七年级上·山东东营·期末)如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点…,则点的坐标是.【题型五平面直角坐标系中图形变换规律探究问题】例5. (23-24九年级上·山东枣庄·阶段练习)如图,在平面直角坐标系中有一菱形且,点O,B在y轴上,,现在把菱形向右无滑动翻转,每次翻转,点B的落点依次为…,连续翻转2023次,则的坐标为()A.B.C.D.【变式5-1】(2024·云南·模拟预测)如图,将边长为的正方形沿轴正方向连续翻转次,点依次落在点、、、、、的位置上,则点的坐标为( )A.B.C.D.【变式5-2】(23-24七年级上·山东东营·期末)如图,在平面直角坐标系中有一边长为1的正方形,边分别在轴、轴上,如果以对角线为边作第二个正方形,再以对角线为边作第三个正方形……照此规律作下去,则的长为.【变式5-3】(23-24九年级上·四川广安·期末)如图,在平面直角坐标系中,矩形的边在轴上,点,点.将矩形绕点A顺时针旋转,每次旋转,当第2023次旋转结束时,点的对应点的坐标是.一、单选题1.(2024·山东淄博·二模)定义:两点关于某条直线对称,则称这条直线为这两个点的“幸福直线”·若点,幸福直线是,则点A关于这条幸福直线的对称点B的坐标是()A.B.C.D.2.(23-24七年级下·湖北武汉·期中)如图在平面直角坐标系中,点,点,点,则三角形的面积是()A.19B.20C.21D.21.53.(2024七年级下·北京·专题练习)如图,在平面直角坐标系中,已知点,,,,把一条长为2023个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点处,并按的规律紧绕在四边形的边上,则细线另一端所在位置的坐标是( )A.B.C.D.二、填空题4.(23-24七年级下·黑龙江绥化·期中)如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点,,,,…那么点的坐标为5.(23-24七年级下·福建厦门·期中)如图,在平面直角坐标系中,已知点,,,.则四边形的面积(用含有k的式子表示)6.(23-24七年级下·天津·期中)在平面直角坐标系中,给出如下定义:点到轴、轴的距离的较大值称为点的“长距”,点到轴、轴的距离相等时,称点为“完美点”.(1)点的“长距”为;(2)若点是“完美点”,则的值为;三、解答题7.(23-24七年级下·重庆潼南·期中)如图,在平面直角坐标系中,,,,且满足,线段交y轴交于点F.(1)求点A、B的坐标;(2)求点F的坐标;(3)y轴上是否存在一点P,使的面积和的面积相等,若存在求出P点坐标,若不存在说明理由.8.(23-24七年级下·江西赣州·期中)在平面直角坐标系中,给出如下定义:点到轴、轴的距离的较大值称为点的“长距”,点到轴、轴的距离相等时,称点为“完美点”.(1)点的“长距”为______;(2)若点是“完美点”,求的值;(3)若点的长距为4,且点在第二象限内,点的坐标为,试说明:点是“完美点”.9.(2024七年级下·天津·专题练习)如图1,四边形各个顶点的坐标分别为,,,.(1)______,点到轴的距离为______.(2)求四边形的面积.(3)如图2,已知点为轴正半轴上的一个动点,点是否存在一个位置使得的面积是四边形面积的一半?若存在,请求出点的坐标;若不存在,请说明理由.10.(2024七年级下·全国·专题练习)如图,在直角坐标系中,第一次将变换成,第二次将变换成,第三次将变换成,已知,,,;,,,.(1)观察每次变换前后的三角形有何变化,找出规律,按此变化规律再将变换成,则的坐标是,的坐标是.(2)若按(1)找到的规律将进行了次变换,得到,比较每次变换中三角形顶点有何变化,找出规律,推测的坐标是,的坐标是.11.(23-24八年级上·北京丰台·期中)在平面直角坐标系中,对于任意图形G及直线,,给出如下定义:将图形G先沿直线翻折得到图形,再将图形沿直线翻折得到图形,则称图形是图形G的【】伴随图形,例如:点的【x轴,y轴】伴随图形是点.(1)点的【x轴,y轴】伴随图形点的坐标为_________;(2)已知,,,直线经过点.①当,且直线与轴平行时,点的【轴,】伴随图形点的坐标为_________;②当直线经过原点时,若的【轴,】伴随图形上只存在两个与轴的距离为1的点,求的取值范围.12.(23-24七年级下·吉林延边·期中)如图,在平面直角坐标系中,已知,两点,其中、、满足等式.动点从点出发,沿折线以每秒2个单位长度的速度向终点运动.设点运动时间为,当四边形为正方形时,解答下列问题.(1)__________,__________,__________;当点在线段上时,的长度为___________.(用含的代数式表示)(2)当时,求三角形的面积.(3)当时,三角形的面积为__________.(4)当时,直接写出的值.第14讲解题技巧专题:平面直角坐标系求面积、规律、新定义问题【题型一利用补形法或分割法求图形的面积】例1.(23-24七年级下·全国·课后作业)如图,在平面直角坐标系中,点,,,,求四边形的面积.【答案】15【分析】本题主要考查了利用直角坐标系求多边形的面积,过点B,C分别作x轴的垂线,垂足分别为点E,F,即可知,代入求解即可.【详解】解:如下图,过点B,C分别作x轴的垂线,垂足分别为点E,F.∵点,,,∴,,∴,,,,.所以四边形的面积是15.【变式1-1】(2023上·安徽滁州·八年级统考期中)如图,在平面直角坐标系中,的顶点坐标分别为,,,过点作轴,过点作轴,轴,过点作轴,分别与和交于点和点,分别与和交于点和点.(1)直接写出下列点的坐标:点____,点____,点____;(2)利用图形求的面积.【答案】(1),,(2)的面积为9.【分析】本题考查网格中求三角形的面积,坐标与图形.(1)根据点,点,点在坐标系中的位置,直接写出其坐标即可;(2)利用正方形的面积减去周围三个三角形的面积即可求解.【详解】(1)解:点,点,点;故答案为:,,;(2)解:的面积.【变式1-2】如图所示,在平面直角坐标系中,已知,,(1)在平面直角坐标系中画出.(2)求的面积.【答案】(1)见解析(2)15【分析】(1)根据点的坐标画出图形即可;(2)把三角形的面积看成长方形的面积减去周围的三个三角形面积即可.【详解】(1)如图,即为所求;(2)【点睛】本题考查作图-复杂作图,三角形的面积等知识,解题的关键是学会利用面积法解决问题.【变式1-3】已知,在平面直角坐标系中的位置如图所示(1)写出A、B、C三点的坐标;(2)求的面积;(3)中任意一点经平移后对应点为,将作同样的平移得到,画出.【答案】(1),,(2)11.5(3)见解析【分析】(1)根据平面坐标系得出A、B、C三点的坐标即可;(2)根据各点坐标,利用梯形面积与三角形面积公式求出即可;(3)根据点经平移后对应点为判断出平移方式,然后画出三个顶点的对应点即可.【详解】(1)如图所示:A、B、C三点的坐标分别为:,,;(2)的面积;(3)∵点经平移后对应点为,∴把向右平移4个单位,再向下平移3个单位得.如图,【点睛】此题考查了平移的性质,以及平移图形的画法和三角形面积求法,根据平移的性质正确平移对应顶点是解题关键.【题型二与图形面积相关的点的存在性问题】例2.(23-24七年级上·黑龙江哈尔滨·阶段练习)如图,在平面直角坐标系中,轴,垂足为A,轴,垂足为C,已知,,其中a,c满足关系式,点P从O点出发沿折线的方向运动到点C停止,运动的速度为每秒2个单位长度,设点P的运动时间为t 秒.(1)求点A、C的坐标;(2)在运动过程中,当点P到的距离为2个单位长度时,_________;(3)点,在点P的运动过程中,是否存在这样的t值,使,若存在,请求出t值,若不存在,请说明理由.【答案】(1),(2)2秒或8秒(3)当或时【分析】本题主要考查了坐标与图形的性质,平方和二次根式的非负性,一元一次方程的应用,(1)由平方和二次根式的非负性即可求出a,b的值,即可求出点A、C的坐标.(2)由点A,点C的坐标即可求出点B的坐标,然后根据当点P到的距离为2个单位长度时,分两种情况,即可求出t的值.(3)先根据已知条件,求出,然后根据P在上,P在上,P在上,P在上时,根据已知条件,建立关于t的一元一次方程,解方程即可求解.【详解】(1)解∵,∴,,∴,,∴,,∴,(2)由(1)可知,,∴,当点P到的距离为2个单位长度时,运动路程或者,∴秒或秒∴秒或秒,故答案为:2秒或8秒.(3)存在,理由如下:∵,∴,,∵,,轴,轴,∴,∴,,∴,∴,①当P在上时,,即时,,∴∴,解得,舍去②当P在上时,,即时,,∴∴,解得③当P在上时,,即时,∴,∴,解得,舍去④当P在上时,,即时,∴∴,解得综上,当或时【变式2-1】(2024上·江西吉安·八年级统考期末)如图,在直角坐标平面内,已做,,(1)求的面积.(2)在y轴上找一点D,使,求点D的坐标.【答案】(1)16(2)或【分析】本题考查的是坐标与图形面积,理解坐标系的特点是解本题的关键;(1)直接利用三角形的面积公式计算即可;(2)设点D的坐标为,再利用面积公式建立方程求解即可.【详解】(1)解:;(2)设点D的坐标为,.解得.∴满足条件的点D的坐标为或;【变式2-2】(2023下·黑龙江牡丹江·七年级统考期末)如图,在平面直角坐标系中,点坐标为,点坐标为,点坐标为,且,,满足关系式(1)请求出、、三点的坐标:(2)如果在第三象限内有一点,请用含的式子表示四边形的面积;(3)在(2)的条件下,当时,在轴上是否存在点,使三角形的面积等于四边形面积的若存在,请直接写出点的坐标,若不存在,请说明理由.【答案】(1)点坐标为,点坐标为,点坐标为;(2);(3)存在这样的点M,点M的坐标为或.【分析】本题考查非负数的性质,直角坐标系中的面积问题,三角形的面积公式等知识.(1)根据非负数的性质求解即可;(2)求出,,再用计算即可;(3)根据设为,则,,再结合题意列出绝对值方程,求解即可.【详解】(1)解:∵,∴,∴,,;∴点坐标为,点坐标为,点坐标为;(2)解:过点作于,则,∵,,∴,,∴,,∴;(3)解:存在,点M的坐标为或,理由如下:假设存在这样的点M,设为,则,∵,∴∵,由题意得解得:或,∴存在这样的点M,点M的坐标为或.【变式2-3】(2023下·七年级课时练习)如图,在平面直角坐标系中,点的坐标分别为,且满足.同时将点分别向上平移2个单位长度,再向右平移1个单位长度,得到点的对应点,连接.(1)求点的坐标及四边形的面积;(2)在坐标轴上是否存在一点,连接,使?若存在,求出点的坐标;若不存在,试说明理由;(3)是线段上的一个动点,连接,当点在上移动时(不与点重合),给出下列结论:①的值不变;②的值不变.其中有且只有一个结论是正确的,请你找出这个结论并求其值.【答案】(1),(2)存在,或(3)①正确,【详解】(1),.点,点.根据平移规律可得,.(2)坐标轴上存在点满足.当点在轴上时,,..点的坐标为或;当点在轴上时,,..点的坐标为或.综上,点的坐标为或或或.(3)如图,点在线段上(不与点,重合),作交于点,.....①正确.【题型三平面直角坐标系中新定义规律探究问题】例3.(2023上·安徽宿州·八年级统考期中)在平面直角坐标系中,给出如下定义:点A到x轴、y轴距离的较小值称为点A的“短距”,当点P的“短距”等于点Q的“短距”时,称P,Q两点为“等距点”.(1)点的“短距”为______;(2)若点的“短距”为3,求m的值;(3)若,两点为“等距点”,求k的值.【答案】(1)7(2)4或(3)或【分析】本题主要考查新定义下点到坐标轴的距离,(1)根据新定义,求得点B到坐标轴的距离即可;(2)根据新定义得到,求解即可;(3)根据新定义分别找到点C和点D到坐标轴的距离,再分类讨论与2的大小,列出对应的等式即可求得答案;【详解】(1)解:点到x轴、y轴距离分别为和7,根据定义得点的点的“短距,且,∴,解得或.(3)点C到x轴的距离为,到轴的距离为,到当时,,则或,解得或(舍).当时,,则或,解得或(舍).综上,k的值为或.2023上八年级统考期中)轴的距离的较大值称为点点的“长距”若点是若点的长距为的坐标为,试说明:【答案】(1)3(2)或见解析【分析】本题主要考查了平面直角坐标系的知识,属于阅读理解类型题目,关键是要读懂题目里定义的完美点”.)解:根据题意,得点到轴的距离为,到轴的距离为点是∴,∴或,解得或;)解:点的长距为∴,解得,∴,∴点D的坐标为,y轴的距离都是完美点”.中的任意一点,给出如下定义:记,那么我们把点与点称为点和谐点”.例如,点的一对“和谐点是点与点点的一对“和谐点”坐标是与;若点的一对重合,则y的值为若点C的一个坐标为,求点(1)(3)或【分析】(1)根据“2)根据和谐点”的含义及两点重合即可完成;的坐标为,根据)解:由题意得:,,所以点的一对坐标是与;故答案为:;)解:由题意得:,,所以点的一对“和谐点坐标是与;又点的一对重合,,,故答案为:6(3)解:设,的一个“和谐点坐标为,则,,;;若点C的另一个“和谐点”坐标为,则,,;;综上,点C的坐标为或.【点睛】本题是新定义问题,考查了坐标与图形,关键是理解题中“和谐点”的含义.【变式3-3】在平面直角坐标系中,点P(a,b),Q(c,d)给出如下定义:对于实数k(k≠0),我们称点M(ka+kc,kb+kd)为P,Q两点的“k”系和点.例如,点P(3,4),Q(1,-2),则点P.Q的“”系和点的坐标为:(2,1),如图,已知点A(4,-1),B(-2,-1).(1)直接写出点A,B的“-”系和点坐标为_________;(2)若点A为B,C的“-3”系和点,求点C的坐标:(3)点D为A,B的“k”系和点.①求点D的坐标(结果用k含的式子表示);②若三角形ABD的面积为6,则符合条件的k的值为_________(直接写出结果).【答案】(1)(-1,1)(2)(,)(3)①,②或【分析】(1)直接根据系和点的定义分别求出点的横坐标与纵坐标即可;(2)设出点C的坐标,根据系和点的定义列出方程,解方程即可得到答案;(3)①根据系和点的定义将k代入计算即可;②求出AB的长度,同时表示出AB边上的高,列出方程解出k的值即可.【详解】(1)解:∵点A(4,-1),B(-2,-1),∴点A,B的“-”系和点的横坐标为,纵坐标为,∴点A,B的“-”系和点坐标为(-1,1).(2)解:∵点A为B,C的“-3”系和点,设点C坐标为(m,n),∴,,解得,.∴点C的坐标为(,).(3)解:①∵点D为A,B的“k”系和点,设点D坐标为(a,b)则,,∴点D的坐标为;②∵点A(4,-1),B(-2,-1),∴.∵点D到AB的距离为,三角形ABD的面积为6,∴,解得或,∴符合条件的k的值为或.【点睛】本题考查新定义问题,图形与坐标,解题的关键是正确理解新定义的含义列出代数式表示出点的横纵坐标.【题型四平面直角坐标系中点运动规律探究问题】例4. (23-24七年级下·重庆江北·阶段练习)如图,在平面直角坐标中,动点M从点出发,按图中箭头所示方向依次运动,第1次运动到点,第2次运动到点,第3次运动到点,…,按这样的运动规律,动点M第2024次运动到点()A.B.C.D.【答案】D【分析】本题考查点的运动规律,能根据点的运动发现第次为正整数)运动后,动点的坐标是是解题的关键.依次求出前几次运动后点的坐标,再根据坐标的变化规律即可解决问题.【详解】解:由题知,第1次运动后,动点的坐标是;第2次运动后,动点的坐标是;第3次运动后,动点的坐标是;第4次运动后,动点的坐标是;第5次运动后,动点的坐标是;第6次运动后,动点的坐标是;第7次运动后,动点的坐标是;由此可见,第次为正整数)运动后,动点的坐标是.又,即第2024次运动后,动点的坐标是,即.故选:D【变式4-1】(23-24七年级下·黑龙江哈尔滨·阶段练习)如图,动点在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点,第2次接着运动到点,第3次接着运动到点,按这样的运动规律,经过第47次运动后动点的坐标是【答案】【分析】本题主要考查了点的坐标规律,从所给的数据和图形中寻求规律进行解题是解答本题的关键.根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数,纵坐标为1,0,2,0,每4次一轮这一规律,进而求出即可.【详解】解:根据动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点,第2次接着运动到点,第3次接着运动到点,第4次运动到点,第5次接着运动到点,…,∴点P的横坐标为运动次数,纵坐标为1,0,2,0,每4次一轮,∵,则经过第47次运动后,动点P的横坐标为47,纵坐标为2,即经过第47次运动后,动点P的坐标是∶,故答案为∶.【变式4-2】如图,在平面直角坐标系中,设一动点自处向下运动1个单位长度至处,然后向左运动2个单位长度至处,再向上运动2个单位长度至处,再向左运动2个单位长度至处,再向下运动2个单位长度至处,,如此继续运动下去,设,,2,3,,则的坐标是.【答案】【分析】本题考查点的坐标变化规律,根据点的运动方式,依次求出点的坐标,发现规律即可解决问题,能通过计算发现点坐标变化的规律是解题的关键.【详解】解:根据点的运动方式可知,点的坐标为;点的坐标为;点的坐标为;点的坐标为;点的坐标为;点的坐标为;点的坐标为;点的坐标为;点的坐标为;,由此可见,点的横坐标为,纵坐标为,当时,,,所以点的坐标为,所以点的坐标为,故答案为:.【变式4-3】(23-24七年级上·山东东营·期末)如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点…,则点的坐标是.【答案】【分析】本题属于平面直角坐标系中找点的规律问题,解答本题的关键是找到循环规律.先根据即可得到,再根据,则,可得.即可作答.【详解】解:由图可得,,,∵∴,即,∴,,故答案为:【题型五平面直角坐标系中图形变换规律探究问题】例5. (23-24九年级上·山东枣庄·阶段练习)如图,在平面直角坐标系中有一菱形且,点O,B在y轴上,,现在把菱形向右无滑动翻转,每次翻转,点B的落点依次为…,连续翻转2023次,则的坐标为()A.B.C.D.【答案】D【分析】连接交y轴于点D,根据条件可以求出,画出第5次、第6次、第7次翻转后的图形,容易发现规律:每翻转6次,图形向右平移4.由于,因此点向右平移1348(即)到点,即可求出点的坐标.【详解】连接交y轴于点D,如图所示,∵四边形是菱形,∴,,∴,,∴是等边三角形,∴,∴,∵,∴,∴,∴,画出第5次、第6次、第7次翻转后的图形,由图可知:每翻转6次,图形向右平移4,∵,∴点向右平移1348(即)到点,,∵的坐标为,∴的坐标为,故选:D.【点睛】本题考查点坐标规律探索,菱形的性质、等边三角形的判定与性质等知识,考查了操作、探究、发现规律的能力.发现“每翻转6次,图形向右平移4”是解决本题的关键.【变式5-1】(2024·云南·模拟预测)如图,将边长为的正方形沿轴正方向连续翻转次,点依次落在点、、、、、的位置上,则点的坐标为( )A.B.C.D.【答案】A【分析】此题主要考查了通过图形观察规律,根据题意分别求出、、、横坐标,再总结出规律即可得出,解题的关键是善于观察,总结规律.【详解】根据规律、、、、、、、、,;每个一个循环,,依次规律在次循环后与纵坐标一致,横坐标分别为:为、为、为、为;为、为、为、为;依次规律与横坐标为减,∴横坐标为,则坐标是,故选:.【变式5-2】(23-24七年级上·山东东营·期末)如图,在平面直角坐标系中有一边长为1的正方形,边分别在轴、轴上,如果以对角线为边作第二个正方形,再以对角线为边作第三个正方形……照此规律作下去,则的长为.【答案】【分析】首先求出的坐标,找出这些坐标之间的规律,然后根据规律计算出点的坐标.【详解】解:正方形边长为,,正方形是正方形的对角线为边,,点坐标为,同理可知,点坐标为,同理可知,点坐标为,点坐标为,点坐标为,,,,,由规律可以发现,每经过次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍,即,,的横纵坐标符号与点相同,横纵坐标相同,且都在第一象限,的坐标为,,故答案为:.【变式5-3】(23-24九年级上·四川广安·期末)如图,在平面直角坐标系中,矩形的边在轴上,点,点.将矩形绕点A顺时针旋转,每次旋转,当第2023次旋转结束时,点的对应点的坐标是.【答案】【分析】本题主要考查旋转的性质、坐标与图形等致死点,熟练根据旋转的知识确定旋转后的位置是解题的关键.先根据矩形的性质作出旋转后的图形,然后找到C点的坐标规律,并按照规律解答即可.【详解】解:如图:将矩形绕点A顺时针旋转,可知:,,则:每旋转4次则回到原位置,∵,∴第2023次旋转结束时,完成了505次循环,又旋转了3次,∴当第2023次旋转结束时,点C对应的坐标是.故答案为:.。
平面直角坐标系讲义
平面直角坐标系平面直角坐标系的知识点:1.有序数对有顺序的两个数a与b组成的数对,叫做有序数对.注:与时不同的两个有序数对.2.平面直角坐标系平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y 轴或纵轴取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。
平面上的任意一点都可以用一个有序数对来表示。
建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限。
坐标轴上的点不属于任何象限。
3.平面直角坐标系特殊点平行于坐标轴的直线的点的坐标特点:1.平行于x轴(或横轴)的直线上的点的纵坐标相同;2.平行于y轴(或纵轴)的直线上的点的横坐标相同。
各象限的角平分线上的点的坐标特点:1.第一、三象限角平分线上的点的横纵坐标相同;2.第二、四象限角平分线上的点的横纵坐标相反。
与坐标轴、原点对称的点的坐标特点:1.关于x轴对称的点的横坐标相同,纵坐标互为相反数;2.关于y轴对称的点的纵坐标相同,横坐标互为相反数;3.关于原点对称的点的横坐标、纵坐标都互为相反数.课堂练笔:1.若点P(2,3k-1)在第四象限,则k的取值范围是___________.2.如果点P(a,-b)在第二象限,则点Q(-a2 , 3b )在第_____象限.3.若点P(x ,y)的坐标满足xy>0,x+y<0,则P点在第____象限.4.如果点M(3x-9,1-x)是笫三象限内的点,且它的坐标都是整数,求M点的坐标.5.若点A(x,8y)在第二象限,则点B(-x,-y2-1)在第_____象限.6.已知点A(3-x,x+2)在y轴上,则x=______,点A的坐标为_________.7.点P(-3m,3m+2)在x轴上,则m=_______.8.已知点P(0,-5),则它的位置在__________轴上.9.已知点A(x,y).若xy=0,则点A在_______________;若xy>0,则点A在_______________;若xy<0,则点A在________________.10. 已知点A(x , 2), B(-3, y),若AB∥y轴, 则x =____________.11.已知A(-1,2), B(2,2),那么直线AB和x轴的位置关系是_________.12.已知点P(3a-8,a-1), Q点坐标为(3,-6),并且直线PQ∥x轴,则P点坐标为 .13.x轴上两点A(,0)、B(,0)的距离为AB=________;y轴上两点C(0,)、D(0,)的距离为CD= _________.14.点P到x轴的距离为5,到y轴的距离为2,则点P的坐标是__________.15.点P位于y轴左方,距y轴3个单位长度,位于x轴上方,距x轴4个单位长度,点P的坐标为 .16.已知点A(-4,0),点B在x轴上,且线段AB=3,则B点坐标为____________.17.已知线段PQ//y轴,且P(-2,2m-3),Q(m+3, 1),则m=___,PQ=________.18. 点A(a ,3)和点B(-2,b),关于y轴对称,则a=______b=________19.已知P(-3,a),Q(b,2)关于原点对称,则a=_____,b=______。
平面直角坐标系讲义(一)
一、知识要点例题设计:1.定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。
2.各个象限内点的特征:第一象限:(+,+)点P(x,y),则x>0,y>0;第二象限:(-,+)点P(x,y),则x<0,y>0;第三象限:(-,-)点P(x,y),则x<0,y<0;第四象限:(+,-)点P(x,y),则x>0,y<0;四个象限的特点:第一象限(正,正),第二象限(负,正),第三象限(负,负),第四象限(正,负)在x轴上:(x,0)点P(x,y),则y=0;在x轴的正半轴:(+,0)点P(x,y),则x>0,y=0;在x轴的负半轴:(-,0)点P(x,y),则x<0,y=0;在y轴上:(0,y)点P(x,y),则x=0;在y轴的正半轴:(0,+)点P(x,y),则x=0,y>0;在y轴的负半轴:(0,-)点P(x,y),则x=0,y<0;坐标原点:(0,0)点P(x,y),则x=0,y=0;3. 点到坐标轴的距离:点P (x ,y )到x 轴的距离为|y|,到y 轴的距离为|x|。
4.中点与两点间的距离: 已知点A ),(11y x ,B ),(22y x 中点P 的坐标为:)2,2(2121y y x x ++ 5.点的对称:点P(m ,n),关于x 轴的对称点坐标是(m ,-n), 关于y 轴的对称点坐标是(-m ,n) 关于原点的对称点坐标是(-m ,-n)例题1:点A (-1,2)关于y 轴的对称点坐标是 ;点A 关于原点的对称点的坐标是 。
点A 关于x 轴对称的点的坐标为 6.平行线:平行于x 轴的直线上的点的特征:纵坐标相等;如直线PQ ,P ),(n m Q ),(n p 平行于y 轴的直线上的点的特征:横坐标相等;如直线PQ ,P ),(n m Q ),(p m 例2:已知点)1,5(-m A ,点)1,4(+m B ,且直线y AB //轴,则m 的值为多少? 7.象限角的平分线:第一、三象限角平分线上的点横、纵坐标相等,可记作:),(m m P点P(a ,b)关于第一、三象限坐标轴夹角平分线的对称点坐标是(b , a) 第二、四象限角平分线上的点横纵坐标互为相反数,可记作:),(m m P - 点P(a ,b)关于第二、四象限坐标轴夹角平分线的对称点坐标是(-b ,-a)例3:在平面直角坐标系中,已知点),(y x P 横、纵坐标相等,在平面直角坐标系中表示出点P 的位置.例4:在平面直角坐标系中,已知点),(y x P 横、纵坐标互为相反数,在平面直角坐标系中表示出点P 的位置.例5:在平面直角坐标系中,已知点),(y x P 横、纵坐标满足|1|-=x y ,在平面直角坐标系中表示出点P 的位置.xyOxyOxyO6.点的平移:在平面直角坐标系中,将点(x ,y )向右平移a 个单位长度,可以得到对应点(x +a ,y ); 将点(x ,y )向左平移a 个单位长度,可以得到对应点( x -a ,y ); 将点(x ,y )向上平移b 个单位长度,可以得到对应点(x ,y +b ); 将点(x ,y )向下平移b 个单位长度,可以得到对应点(x ,y -b )。
平面直角坐标系讲义
1.有序数对有顺序的两个数a 与b 组成的数对叫做有序数对,记作(a ,b )。
利用有序数对,可以准确地表示出一个位置。
2.平面直角坐标系定义:平面直角坐标系是由两条互相垂直的数轴组成,且两轴的交点是原点,同一数轴上的单位长度是一样的,但两轴上的单位长度不一定相同。
注意数轴有三个要素——原点、正方向和单位长度。
我们规定水平的数轴叫做横轴,取向右为正方向;另一数轴叫纵轴,取向上为正方向。
3.象限和轴:横轴(x 轴)上的点(x ,y )的坐标满足:y =0;纵轴(y 轴)上的点(x ,y )的坐标满足:x =0;第一象限内的点(x ,y )的坐标满足:00x y >⎧⎨>⎩; 第二象限内的点(x ,y )的坐标满足:00x y <⎧⎨>⎩; 第三象限内的点(x ,y )的坐标满足:00x y <⎧⎨<⎩; 第四象限内的点(x ,y )的坐标满足:00x y >⎧⎨<⎩; 4.点的坐标:已知点P 分别向x 轴和y 轴作垂线,设垂足分别是A 、B ,这两点在x 轴、y 轴的坐标分别是a 、b ,则点P 的坐标为( a ,b )。
点的坐标是一对有序数,横坐标写在纵坐标前面,中间用“,”号隔开,再用小括号括起来。
平面直角坐标系的认识初步(上)5.特殊直线:与横轴平行的直线:直线y=m与纵轴平行的直线:直线x=n一、三象限角平分线:x=y二、四象限角平分线:x=-y ;【例1】(2009年新疆乌鲁木齐市改编)在平面直角坐标系中,点A(x-1,2-x)在第一象限,则x的取值范围是;【例2】点12a⎛⎫-⎪⎝⎭,在第二象限的角平分线上,则a=;【例3】(人大附09-10期中)如果点P(m,1-2m)在第四象限,那么m的取值范围是( )A.12m<< B.12m-<<C.0m<D.12 m>【例4】(人大附09-10期中)已知点A(a-2,3b)在第一象限,点B(4-a,b-3)在第四象限若a,b都为整数,则2a+b=。
平面直角坐标系(解析版)
第19讲-平面直角坐标系1.建立平面直角坐标系知识框架,熟练掌握点的运动变化规律;2.掌握与面积结合的几何综合题分析,熟练解题技巧灵活应用;3.掌握与等腰结合的几何综合题分析,熟练解题技巧灵活应用;(以提问的形式回顾)小练习:1.点M(a,b)在第二象限,则点N(b,a)在第________象限。
2.在第四象限内,且到x轴的距离为3,到y轴的距离为4,则该点的坐标为.3.点A坐标是(4,-2),若点A与点B关于原点对称,则点B坐标是_____________。
4.如果点P(-m,3)于点M(-5,n)关于y轴对称,则m=,n =.5.过点P(-1,3)且垂直于y轴的直线可表示为直线____________________。
6.把点A(4)向右平移_________个单位与点B(4)重合。
7.点B(2,-3)向平移个单位就会落到x轴上.8.已知点P(3,-2),Q(m,2m-1),并且PQ⊥x轴,则点Q的坐标为.答案:1、四;2、(4,-3);3、(-4,2);4、m=-5,=3;5、y=3;6、7、上,3;8、(3,5)知识梳理:1. 点P(x,y)各个象限内点的特征:第一象限:(+,+),则x>0,y>0;第二象限:(-,+),则x<0,y>0;第三象限:(-,-),则x<0,y<0;第四象限:(+,-),则x>0,y<0在x轴上:(x,0),则y=0;在y轴上:(0,y),则x=0;坐标原点:(0,0),则x=0,y=0;2. 点到坐标轴的距离:点P(x,y)到x轴的距离为,到y轴的距离为.3. 点P(m,n)的对称:关于x轴的对称点坐标是(,)关于y轴的对称点坐标是(,)关于原点的对称点坐标是(,)4. 点与坐标轴的平行:平行于x轴的直线上的点的特征:坐标相等;平行于y轴的直线上的点的特征:坐标相等;5. 点的平移:将点(x,y)向右平移a个单位长度,可以得到对应点(,);将点(x,y)向左平移a个单位长度,可以得到对应点(,);将点(x,y)向上平移b个单位长度,可以得到对应点(,);将点(x,y)向下平移b个单位长度,可以得到对应点(,).平移口诀:“左-右+、上+下-”(采用教师引导,学生轮流回答的形式)例1. 已知直角坐标系内点A(3,0),B(0,4),C(-3,0),D(0,-4)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面直角坐标系(讲义)
➢课前预习
1.在电影票上,“3排6座”与“6排3座”______(填“是”或“不是”)同一个
座位,所以在电影院选择座位需要____个数据.
2.如图,在数轴上有A,B,C,D四个点,回答下列问题
(1)点C关于点A的对称点表示的数是______;点D关于点B的对称点表示的数是______.
(2)点C向右平移3个单位后表示的数是______;点B向左平移2个单位后表示的数是______.
(3)点A关于点B的对称点向左平移2个单位后表示的数
是_______.
3.如图是某市的部分简图,每个小正方形的边长均为500米,我们用(2,6)表示文化
宫的位置,请回答下列问题:
北
东
(1)说出体育场与超市的位置;
(2)小明家在火车站以东1 000米,再往北500米处;小聪家在超市以北500
米,再往西1 500米处,在图中标出小明和小聪家的位置.
(3)上周六,小华的活动路线是(1,8)→(2,6)→(7,7)→(7,2),说一说他这一天去了哪些地方.
➢知识点睛
1.在平面内,确定一个物体的位置一般需要____个数据.
2. 在平面内,两条__________且有_________的_________组成平面直角坐标系.水
平的数轴叫_______或_______,铅直的数轴叫________或_______,________和______统称坐标轴.
3. 如图,对于平面内任意一点P ,过点P 分别向x 轴、y 轴________,垂足在x 轴、
y 轴上对应的数a ,b 分别叫做点P 的_______、_______,__________(a ,b )叫做点P 的坐标.
)
4. 两条坐标轴把坐标平面分成了_____个象限,第一象限内点的坐标特征是(+,+),
第二象限内点的坐标特征是__________,第三象限内点的坐标特征是
__________,第四象限内点的坐标特征是_________;坐标轴上的点不属于任何象限.
5. 在直角坐标系中,对于平面上的任意一点,都有唯一的一个有序实数对(即点的
坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上唯一的一点和它对应. 6. 坐标特点
(1)x 轴上的点____坐标等于零;
y 轴上的点____坐标等于零.
(2)平行于x 轴的直线上的点____坐标相同;
平行于y 轴的直线上的点____坐标相同.
(3)关于x 轴对称的两个点,横坐标_____,纵坐标______;
关于y 轴对称的两个点,横坐标________,纵坐标_____. (4)横坐标加减管______平移,纵坐标加减管______平移.
➢ 精讲精练
1. 写出图中的多边形ABCDEF 各个顶点的坐标,并指出它们所在的象限.
解:A(___,___),第___象限;
B(___,___),第___象限;
C(___,___),第___象限;
D(___,___),第___象限;
E( ),______象限;
F( ),______象限.2.在平面直角坐标系中,
点(-2,-3)在第____象限;点
)在第____象限;
点
1
,1在第___象限;点(-2,a2+1)在第___象限.
3.若a<b<0,则点A(a-b,b)在第________象限.
4.在平面直角坐标系中,若点P(a,b)在第二象限,则点
Q(1-a,-b)在第____象限.
5.在平面直角坐标系中描出下列各点,并将各组内这些点依次用线段连接起来.
(1)A(-3,5),B(-7,3),C(1,3),A(-3,5);
(2)D(-6,3),E(-6,0),F(0,0),G(0,3).
观察所描出的图形,解答下列问题:
①坐标轴上的点有_______________,且x轴上的点___坐标等于零,y轴上的点
___坐标等于零.
②线段BC与x轴_______,点B和点C____坐标相同,线段BC上其他点的____坐
标都相同.
③线段DE与y轴________,点D和点E____坐标相同,线段DE上其他点的____
坐标都相同.
6.若点M(a+3,4-a)在x轴上,则点M的坐标为
__________.
7. 若过A (1,m ),B (n ,-3)两点的直线与x 轴平行,且AB =4,则m =_____,n =_______________.
8. 如图,正方形ABCD 在平面直角坐标系中,其中三个顶点的坐标分别为(-2,-
2),
(-2,3),(3,-2),则第四个顶点的坐标为________.
马
帅
炮
兵
第9题图
9. 如图,若在象棋盘上建立直角坐标系,使“帅”位于点
(-1,-2),“马”位于点(2,-2),则“兵”位于点(___,___).
10. 如图,长方形ABCD 的长与宽分别是6,4,建立适当的平
面直角坐标系,并写出各个顶点的坐标.
D C
B
A
11. 如图,对于边长为4的等边三角形ABC ,建立适当的平面
直角坐标系,写出各个顶点的坐标.
A B
C
12. 已知点P (-3,2),它到x 轴的距离为_____,到y 轴的距离为_____,到原点的距离为_____.
13. 在平面直角坐标系中,第二象限内有一点P ,若点P 到x
轴的距离是4,到y 轴的距离是5,则点P 的坐标为________.
14. 点M 在x 轴的上方,距离x 轴4个单位长度,距离y 轴3
个单位长度,则点M 的坐标为( ) A .(4,3) B .(-4,3)或(4,3)
C .(3,4)
D .(-3,4)或(3,4)
15. 若点A (x ,4)到原点的距离为5,则x =____________.
16. 如图,△ABC 在平面直角坐标系中,则S △ABC =________.
17. 已知点A (0,4),点B 在x 轴上,若AB 与坐标轴围成的三
角形的面积为2,则点B 的坐标为______________.
18. (1)作图,将△ABC 各顶点的横坐标保持不变,纵坐标乘以-1,顺次连接这些
点,所得三角形与△ABC 关于_____轴对称;
(2)如图,△DEF与△ABC关于____轴对称,它们相应顶点的横坐标
___________、纵坐标____________.
19.如果点A(a,b)与点B关于x轴对称,点B与点C(2,3)关于y轴对称,那么
a=_______,b=_______,点A和点C的位置关系是__________________.
20.若点A(a,4),点B(3,b)关于x轴对称,则(a+b)2 016的值为______.
21.若点P(b-3,-2b)在y轴上,则点P关于x轴对称的点的坐标为__________.
22.若点A(a,b)沿x轴向左平移2个单位长度,再沿y轴向上平移1单位长度得到点
A′(1,2),则点A的坐标为_______.
23.如图,将三角形向右平移3个单位长度,再向上平移2个单位长度,则平移后三
个顶点的坐标分别为()
A.(-1,-1),(2,3),(5,1)
B.(-1,1),(3,2),(5,1)
C.(-1,1),(2,3),(5,1)
D.(1,-1),(2,2),(5,1)
24.如图,把图1中的△ABC经过一定的变换得到图2中的△A′B′C′,如果图1中
△ABC上点P的坐标为(a,b),那么这个点在图2中的对应点P′的坐标为______________.
图2
【参考答案】
➢课前预习
1.不是,两
2.(1)0;-2 (2)-1;-1 (3)2
3.(1)体育场(1,8),超市(7,2)
(2)略
(3)他这一天去的地方:体育场、文化宫、宾馆、超市
➢知识点睛
1.两
2.互相垂直,公共原点,数轴
x轴,横轴,y轴,纵轴,x轴,y轴
3.作垂线,横坐标,纵坐标,有序实数对
4.四,(-,+),(-,-),(+,-)
6.(1)纵;横
(2)纵;横
(3)相同,互为相反数,互为相反数,相同
(4)左右,上下
➢精讲精练
1.(-1,3),二;(-2,-1),三;(-1,-2),三;(3,-2),四
(3,1),第一;(2,3),第一
2.三;一;四;二
3.三
4.四
5.图形略
①E,F,G,纵,横
②平行,纵,纵
③平行,横,横
6.(7,0)
7.-3,-3或5
8.(3,3)
9.(-3,1)
10.略
11.略
12.2,3
13.(-5,4)
14.D
15.3或-3
16.9
17.(1,0)或(-1,0)
18.(1)x;(2)y,互为相反数,相同
19.-2,-3,关于原点中心对称
20.1
21.(0,6)
22.(3,1)
23.A
24.(a+3,b+1)。