(精品)将军饮马问题的11个模型及例题
将军饮马模型(终稿)-将军饮马最大值模型
将军饮马模型一、背景知识:【传说】早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“将军饮马”的问题便流传至今.【问题原型】将军饮马造桥选址费马点【涉及知识】两点之间线段最短,垂线段最短;三角形两边三边关系;轴对称;平移;【解题思路】找对称点,实现折转直二、将军饮马问题常见模型1.两定一动型:两定点到一动点的距离和最小例1:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB 最小.作法:连接AB,与直线l的交点Q,Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB最小,且最小值等于AB.原理:两点之间线段最短。
证明:连接AB,与直线l的交点Q,P为直线l上任意一点,在⊿PAB中,由三角形三边关系可知:AP+PB≧AB(当且仅当PQ重合时取﹦)例2:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB的和最小.关键:找对称点作法:作定点B关于定直线l的对称点C,连接AC,与直线l的交点Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB和最小,且最小值等于AC.原理:两点之间,线段最短证明:连接AC,与直线l的交点Q,P为直线l上任意一点,在⊿PAC中,由三角形三边关系可知:AP+PC≧AC(当且仅当PQ重合时取﹦)2.两动一定型例3:在∠MON的内部有一点A,在OM上找一点B,在ON上找一点C,使得△BAC周长最短.作法:作点A关于OM的对称点A’,作点A关于ON的对称点A’’,连接A’ A’’,与OM 交于点B,与ON交于点C,连接AB,AC,△ABC即为所求.原理:两点之间,线段最短例4:在∠MON的内部有点A和点B,在OM上找一点C,在ON上找一点D,使得四边形ABCD周长最短.作法:作点A关于OM的对称点A’,作点B关于ON的对称点B’,连接A’ B’,与OM交于点C,与ON交于点D,连接AC,BD,AB,四边形ABCD即为所求.原理:两点之间,线段最短3.两定两动型最值例5:已知A、B是两个定点,在定直线l上找两个动点M与N,且MN长度等于定长d(动点M位于动点N左侧),使AM+MN+NB的值最小.提示:存在定长的动点问题一定要考虑平移作法一:将点A向右平移长度d得到点A’,作A’关于直线l的对称点A’’,连接A’’B,交直线l于点N,将点N向左平移长度d,得到点M。
(完整版)将军饮马问题的11个模型及例题
AP+PQ取得最小值AQ,根据垂线段最短,当
AQ⊥ON时,AQ最小.
2. 已知:如图,A为锐角∠MON内一定点;
要求:在射线OM上找一点P,在射线ON上找一点Q,使
AP+PQ的值最小.
解:作点A关于OM的对称点A′,过点A′作AQ⊥ON
于点Q,A′Q交OM于点P,此时AP+PQ最小;
点到l的距离不相等)
要求:在直线l上找一点P,使︱PA-PB︱的值最大
解:作点B关于直Байду номын сангаасl的对称点B´,连接B´A并延长交
于点P,点P即为所求;
理由:根据对称的性质知l为线段BB´的中垂线,由中垂
线的性质得:PB=PB´,要使︱PA-PB︱最大,则需
︱PA-PB´︱值最大 ,从而转化为模型3.
典型例题1-1
∴PM=OE= ,∵OE=OE′,∴PM=OE′,PM∥OE′,
(a为定值)的线段PQ在l上移动(P在Q左边)
要求:确定PQ的位置,使得AP+PQ+QB最小
分析:PQ为定值,只需AP+QB的值最小,可通过平移,
使P、Q“接头”,转化为基本模型
解:将点A沿着平行于l的方向,向右移至A´,使
AA´=PQ=a,连接A´B交直线l于点Q,在l上截取
PQ=a(P在Q左边),则线段PQ即为所求,此时
AP+PQ+QB的最小值为A´B+PQ,即A´B+a
理由:易知四边形APQA´为平行四边形,则PA=QA´,
当A´、Q、B三点共线时,QA´+QB最小,即PA+QB
最小,又PQ长为定值此时PA+PQ+QB值最小.
(完整word版)将军饮马问题的11个模型及例题
将军饮马问题问题概述路径最短、线段和最小、线段差最大、周长最小等一系列最值问题方法原理1.两点之间,线段最短;2.三角形两边之和大于第三边,两边之差小于第三边;3.中垂线上的点到线段两端点的距离相等;4.垂线段最短.基本模型1.已知:如图,定点A、B分布在定直线l两侧;要求:在直线l上找一点P,使PA+PB的值最小解:连接AB交直线l于点P,点P即为所求,PA+PB的最小值即为线段AB的长度理由:在l上任取异于点P的一点P´,连接AP´、BP´,在△ABP’中,AP´+BP´>AB,即AP´+BP´>AP+BP∴P为直线AB与直线l的交点时,PA+PB最小.2.已知:如图,定点A和定点B在定直线l的同侧要求:在直线l上找一点P,使得PA+PB值最小(或△ABP的周长最小)解:作点A关于直线l的对称点A´,连接A´B交l于P,点P即为所求;理由:根据轴对称的性质知直线l为线段AA´的中垂线,由中垂线的性质得:PA=PA´,要使PA+PB最小,则需PA´+PB值最小,从而转化为模型1.3.已知:如图,定点A、B分布在定直线l的同侧(A、B两点到l的距离不相等)要求:在直线l上找一点P,使︱PA-PB︱的值最大解:连接BA并延长,交直线l于点P,点P即为所求;理由:此时︱PA-PB︱=AB,在l上任取异于点P的一点P´,连接AP´、BP´,由三角形的三边关系知︱P´A-P´B︱<AB,即︱P´A-P´B︱<︱PA-PB︱4. 已知:如图,定点A、B分布在定直线l的两侧(A、B两点到l的距离不相等)要求:在直线l上找一点P,使︱PA-PB︱的值最大解:作点B关于直线l的对称点B´,连接B´A并延长交于点P,点P即为所求;理由:根据对称的性质知l为线段BB´的中垂线,由中垂线的性质得:PB=PB´,要使︱PA-PB︱最大,则需︱PA-PB´︱值最大,从而转化为模型3.典型例题1-1如图,直线y=2x+4与x轴、y轴分别交于点A和点B,点C、D分3别为线段AB、OB的中点,点P为OA上一动点,当PC+PD最小时,点P的坐标为_________,此时PC+PD的最小值为_________.【分析】符合基本模型2的特征,作点D关于x轴的对称点D',连接CD'交x轴于点P,此时PC+PD值最小,由条件知CD为△BAO的中位线,OP为△CDD'的中位线,易求OP长,从而求出P点坐标;PC+PD的最小值即CD'长,可用勾股定理(或两点之间的距离公式,实质相同)计算.【解答】连接CD,作点D关于x轴的对称点D′,连接CD′交x轴于点P ,此时PC+PD 值最小.令y=23x+4中x=0,则y=4, ∴点B 坐标(0,4);令y=23x+4中y=0,则23x+4=0,解得:x=﹣6,∴点A 的坐标为(﹣6,0).∵点C 、D 分别为线段AB 、OB 的中点,∴CD 为△BAO 的中位线, ∴CD ∥x 轴,且CD=21AO=3,∵点D ′和点D 关于x 轴对称,∴O 为DD ′的中点,D ′(0,-1),∴OP 为△CDD ′的中位线,∴OP=21CD=23,∴点P 的坐标为(﹣32,0).在Rt △CDD ′中,CD ′=22D D CD '+=2243+=5,即PC+PD 的最小值为5.【小结】还可用中点坐标公式先后求出点C 、点P 坐标;若题型变化,C 、D 不是AB 和OB 中点时,则先求直线CD ′的解析式,再求其与x 轴的交点P 的坐标.典型例题1-2如图,在平面直角坐标系中,已知点A 的坐标为(0,1),点B的坐标为(32,﹣2),点P 在直线y=﹣x 上运动,当|PA ﹣PB|最 大时点P 的坐标为_________,|PA ﹣PB|的最大值是_________.【分析】符合基本模型4的特征,作A 关于直线y=﹣x 对称点C ,连接BC ,可得直线BC 的方程;求得BC 与直线y=﹣x 的交点P 的坐标;此时|PA ﹣PB|=|PC ﹣PB|=BC 取得最大值,再用两点之间的距离公式求此最大值.【解答】作A 关于直线y=﹣x 对称点C ,易得C 的坐标为(﹣1,0);连接BC ,可得直线BC的方程为y=﹣54x ﹣54,与直线y=﹣x 联立解得交点坐标P 为(4,﹣4);此时|PA﹣PB|=|PC ﹣PB|=BC 取得最大值,最大值BC=2223)2()1(-++=241;【小结】“两点一线”大多考查基本模型2和4,需作一次对称点,连线得交点.变式训练1-1已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A (5,0),OB=4√5,点P 是对角线OB 上的一个动点,D (0,1),当CP+DP 最短时,点P 的坐标为( )A .(0,0)B .(1,12)C .(65,35)D .(107,57)变式训练1-2如图,菱形ABCD 中,对角线AC 和BD 交于点O ,AC=2,BD=2√3,E 为AB 的中点,P 为对角线AC 上一动点,则PE+PB 的最小值为__________.变式训练1-3如图,已知直线y=12x+1与y 轴交于点A ,与x 轴交于点D ,抛物线y=12x 2+bx+c 与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为(1,0).(1)求该抛物线的解析式;(2)在抛物线的对称轴上找一点M ,使|AM ﹣MC|的值最大,求出点M 的坐标.拓展模型1. 已知:如图,A 为锐角∠MON 外一定点;要求:在射线OM 上找一点P ,在射线ON 上找一点Q ,使AP+PQ 的值最小.解:过点A 作AQ ⊥ON 于点Q ,AQ 与OM 相交于点P ,此时,AP+PQ 最小;理由:AP+PQ ≧AQ ,当且仅当A 、P 、Q 三点共线时,AP+PQ 取得最小值AQ ,根据垂线段最短,当AQ ⊥ON 时,AQ 最小.2. 已知:如图,A 为锐角∠MON 内一定点;要求:在射线OM 上找一点P ,在射线ON 上找一点Q ,使AP+PQ 的值最小.解:作点A关于OM的对称点A′,过点A′作AQ⊥ON于点Q,A′Q交OM于点P,此时AP+PQ最小;理由:由轴对称的性质知AP=A′P,要使AP+PQ最小,只需A′P+PQ最小,从而转化为拓展模型13.已知:如图,A为锐角∠MON内一定点;要求:在射线OM上找一点P,在射线ON上找一点Q,使△APQ的周长最小解:分别作A点关于直线OM的对称点A1,关于ON的对称点A 2,连接 A1A2交OM于点P,交ON于点Q,点P和点Q即为所求,此时△APQ周长最小,最小值即为线段A1A2的长度;理由:由轴对称的性质知AP=A1P,AQ=A2Q,△APQ的周长AP+PQ+AQ=A1P+PQ+A2Q,当A1、P、Q、A2四点共线时,其值最小.4. 已知:如图,A、B为锐角∠MON内两个定点;要求:在OM上找一点P,在ON上找一点Q,使四边形APQB的周长最小解:作点A关于直线OM的对称点A´,作点B关于直线ON的对称点B´,连接A´B´交OM于P,交ON于Q,则点P、点Q即为所求,此时四边形APQB周长的最小值即为线段AB和A´B´的长度之和;理由:AB长为定值,由基本模型将PA转化为PA´,将QB转化为QB´,当A´、P、Q、B´四点共线时,PA´+PQ+ QB´的值最小,即PA+PQ+ QB的值最小.5.搭桥模型已知:如图,直线m∥n,A、B分别为m上方和n下方的定点,(直线AB不与m垂直)要求:在m、n之间求作垂线段PQ,使得AP+PQ+BQ最小.分析:PQ为定值,只需AP+BQ最小,可通过平移,使P、Q“接头”,转化为基本模型解:如图,将点A沿着平行于PQ的方向,向下平移至点A′,使得AA′=PQ,连接A′B交直线n于点Q,过点Q作PQ⊥n,交直线m于点P,线段PQ即为所求,此时AP+PQ+BQ最小.理由:易知四边形QPAA′为平行四边形,则QA′=PA,当B、Q、A′三点共线时,QA′+BQ最小,即AP+BQ最小,PQ长为定值,此时AP+PQ+BQ最小.6.已知:如图,定点A、B分布于直线l两侧,长度为a(a为定值)的线段PQ在l上移动(P在Q左边)要求:确定PQ的位置,使得AP+PQ+QB最小分析:PQ为定值,只需AP+QB的值最小,可通过平移,使P、Q“接头”,转化为基本模型解:将点A沿着平行于l的方向,向右移至A´,使AA´=PQ=a,连接A´B交直线l于点Q,在l上截取PQ=a(P在Q左边),则线段PQ即为所求,此时AP+PQ+QB的最小值为A´B+PQ,即A´B+a理由:易知四边形APQA´为平行四边形,则PA=QA´,当A´、Q、B三点共线时,QA´+QB最小,即PA+QB最小,又PQ长为定值此时PA+PQ+QB值最小.7.已知:如图,定点A、B分布于直线l的同侧,长度a(a为定值)的线段PQ在l上移动(P在Q左边)要求:确定PQ 的位置,使得四边形APQB 周长最小分析:AB 长度确定,只需AP+PQ+QB 最小,通过作A 点关于l 的对称点,转化为上述模型3解:作A 点关于l 的对称点A ´,将点A ´沿着平行于l的方向,向右移至A ´´,使A ´A ´´=PQ=a ,连接A ´´B交l 于Q ,在l 上截取QP=a (P 在Q 左边),线段PQ 即为所求,此时四边形APQB 周长的最小值为A ´´B+AB+PQ ,即A ´´B+AB+a典型例题2-1如图,在矩形ABCD 中,AB=10,BC=5,若点M 、N 分别是线段AC 、AB 上的两个动点,则BM+MN 的最小值为 .【分析】符合拓展模型2的特征,作点B 关于AC 的对称点E ,再过点E 作AB 的垂线段,该垂线段的长即BM+MN 的最小值,借助等面积法和相似可求其长度.【解答】作点B 关于AC 的对称点E ,再过点E 作EN ⊥AB 于N ,则BM+MN=EM+MN ,其最小值即EN 长;∵AB=10,BC=5,∴AC=22BC AB +=55,等面积法求得AC 边上的高为55510⨯=25,∴BE=45, 易知△ABC ∽△ENB ,∴,代入数据解得EN=8. 即BM+MN 的最小值为8.【小结】该类题的思路是通过作对称,将线段转化,再根据定理、公理连线或作垂线;可作定点或动点关于定直线的对称点,有些题作定点的对称点易解,有些题则作动点的对称点易解.典型例题2-2如图,∠AOB=60°,点P 是∠AOB 内的定点且OP=,点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A .B .C .6D .3【分析】符合拓展模型3的特征;作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,此时△PMN周长最小,其值为CD长;根据对称性连接OC、OD,分析条件知△OCD是顶角为120°的等腰三角形,作底边上高,易求底边CD. 【解答】作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,则MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,∴PN+PM+MN=ND+MN+NC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,则CH=DH,∵∠OCH=30°,∴OH=OC=,CH=OH=,∴CD=2CH=3.即△PMN周长的最小值是3;故选:D.【小结】根据对称的性质,发现△OCD是顶角为120°的等腰三角形,是解题的关键,也是难点.典型例题2-3如图,已知平行四边形ABCO,以点O为原点,OC所在的直线为x轴,建立直角坐标系,AB交y轴于点D,AD=2,OC=6,∠A=60°,线段EF所在的直线为OD的垂直平分线,点P为线段EF上的动点,PM⊥x轴于点M点,点E与E′关于x轴对称,连接BP、E′M.(1)请直接写出点A坐标为,点B坐标为;(2)当BP+PM+ME′的长度最小时,请求出点P的坐标.【分析】(1)解直角三角形求出OD,BD的长即可解决;(2)符合“搭桥模型”的特征;首先证明四边形OPME′是平行四边形,可得OP=EM,PM是定值,PB+ME′=OP+PB的值最小时,BP+PM+ME′的长度最小,此时P点为直线OB与EF的交点,结合OB的解析式可得P点坐标;【解答】(1)在Rt△ADO中,∵∠A=60°,AD=2,∴OD=2•tan60°=2,∴A(﹣2,2),∵四边形ABCO是平行四边形,∴AB=OC=6,∴DB=6﹣2=4,∴B(4,2)(2)如图,连接OP.∵EF垂直平分线段OD,PM⊥OC,∴∠PEO=∠EOM=∠PMO=90°,∴四边形OMPE是矩形,∴PM=OE=,∵OE=OE′,∴PM=OE′,PM∥OE′,∴四边形OPME′是平行四边形,∴OP=EM,∵PM是定值,∴PB+ME′=OP+PB的值最小时,BP+PM+ME′的长度最小,∴当O、P、B共线时,BP+PM+ME′的长度最小,∵直线OB的解析式为y=x,∴P(2,).【小结】求没有公共端点的两条线段之和的最小值,一般通过作对称和平移(构造平行四边形)的方法,转化为基本模型.典型例题2-4如图所示,在平面直角坐标系中,Rt△AOB的顶点坐标分别为A(﹣2,0),O(0,0),B(0,4),把△AOB绕点O按顺时针方向旋转90°,得到△COD.(1)求C、D两点的坐标;(2)求经过A、B、D三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上取两点E、F(点E在点F的上方),且EF=1,使四边形ACEF的周长最小,求出E、F两点的坐标.【分析】符合拓展模型7的特征,通过作对称、平移、连线,可找出E、F点,结合直线的解析式和抛物线的对称轴可解出E、F坐标.【解答】(1)由旋转的性质可知:OC=OA=2,OD=OB=4,∴C点的坐标是(0,2),D点的坐标是(4,0),(2)设所求抛物线的解析式为y=ax2+bx+c,4a-2b+c=0由题意,得 16a+4b+c=0c=4解得a=-12,b=1,c=4,∴所求抛物线的解析式为y=-12x²+x+4;(3)只需AF+CE最短,抛物线y=-12x²+x+4的对称轴为x=1,将点A向上平移至A1(﹣2,1),则AF=A1E,作A1关于对称轴x=1的对称点A2(4,1),连接A2C,A2C与对称轴交于点E,E为所求,可求得A2C的解析式为y=-14x+2,当x=1时,y=74,∴点E的坐标为(1,74),点F的坐标为(1,34).【小结】解决此类题的套路是“对称、平移、连线”;其中,作对称和平移的顺序可互换.变式训练2-1几何模型:条件:如图1,A,B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA+PB的值最小.方法:作点A关于直线l的对称点A’,连接A’B交l于点P,即为所求.(不必证明)模型应用:(1)如图2,已知平面直角坐标系中两定点A(0,﹣1)和B(2,﹣1),P为x轴上一动点,则当PA+PB的值最小是点P的横坐标是,此时PA+PB= .(2)如图3,正方形ABCD的边长为4,E为AB的中点,P是AC上一动点,连接BD,由正方形对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是.(3)如图4,在菱形ABCD中,AB=10,∠DAB=60°,P是对角线AC上一动点,E,F分别是线段AB和BC上的动点,则PE+PF的最小值是.(4)如图5,在菱形ABCD中,AB=6,∠B=60°,点G是边CD边的中点,点E.F分别是AG,AD上的两个动点,则EF+ED的最小值是.变式训练2-2如图,矩形ABCD中,AD=15,AB=10,E为AB边上一点,且DE=2AE,连接CE与对角线BD交于F;若P、Q分别为AB边和BC边上的动点,连接EP、PQ和QF;则四边形EPQF周长的最小值是___________.变式训练2-3如图,已知直线l 1∥l2,l1、l2之间的距离为8,点P到直线l1的距离为6,点Q到直线l2的距离为4,PQ=4,在直线l1上有一动点A,直线l2上有一动点B,满足AB⊥l2,且PA+AB+BQ最小,此时PA+BQ= .变式训练2-4如图,已知在平面直角坐标系xOy中,直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于点E和F.(1)求经过A、B、C三点的抛物线的解析式;(2)当BE经过(1)中抛物线的顶点时,求CF的长;(3)在抛物线的对称轴上取两点P、Q(点Q在点P的上方),且PQ=1,要使四边形BCPQ 的周长最小,求出P、Q两点的坐标.中考真题1.要在街道旁建奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使A、B到它的距离之和最短?小聪以街道为x轴,建立了如图所示的平面直角坐标系,A点坐标为(0,3),B点坐标为(6,5),则A、B两点到奶站距离之和的最小值是.2.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A .(0,)B .(0,)C .(0,2)D .(0,)3.如图,在矩形ABCD 中,AB=5,AD=3,动点P 满足S △PAB =31S 矩形ABCD ,则点P 到A 、B 两点距离之和PA+PB 的最小值为( )A .B .C .5D .4.已知抛物线y=x 2+1具有如下性质:该抛物线上任意一点到定点F (0,2)的距离与到x轴的距离始终相等,如图,点M 的坐标为(,3),P 是抛物线y=x 2+1上一个动点,则△PMF 周长的最小值是( )A .3B .4C .5D .65.如图,点A (a ,3),B (b ,1)都在双曲线y=上,点C ,D ,分别是x 轴,y 轴上的动点,则四边形ABCD 周长的最小值为( )A .B .C .D .6.如图,在Rt △ABC 中,∠C=90°,AC=3,BC=4,D 、E 分别是AB 、BC 边上的动点,则AE+DE 的最小值为( )A .B .C .5D .7.如图,Rt △ABC 中,∠BAC=90°,AB=3,AC=6,点D ,E 分别是边BC ,AC 上的动点,则DA+DE 的最小值为 .8.如图,等腰△ABC 的底边BC=20,面积为120,点F 在边BC 上,且BF=3FC ,EG 是腰AC 的垂直平分线,若点D 在EG 上运动,则△CDF 周长的最小值为 .9.如图,菱形ABCD 的边长为6,∠ABC=120°,M 是BC 边的一个三等分点,P 是对角线AC 上的动点,当PB+PM 的值最小时,PM 的长是( )A.B.C.D.10.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠CAB交BC于D点,E,F分别是AD,AC上的动点,则CE+EF的最小值为()A.B.C.D.611.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N 两点.△OMN的面积为10.若动点P在x轴上,则PM+PN 的最小值是()A.6B.10 C.2D.212.如图,△ABC中,AC=BC=2,AB=1,将它沿AB翻折得到△ABD,则四边形ADBC的形状是形,P、E、F分别为线段AB、AD、DB上的任意点,则PE+PF的最小值是.13.如图,已知抛物线y=x2+bx+c与直线y=x+3交于A,B两点,交x轴于C、D两点,连接AC、BC,已知A(0,3),C(﹣3,0).(1)求此抛物线的解析式;(2)在抛物线对称轴l上找一点M,使|MB﹣MD|的值最大,并求出这个最大值;(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P,使得以A,P,Q为顶点的三角形与△ABC相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.14.如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.(1)用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法);(2)在(1)的条件下,①证明:AE⊥DE;②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值.15.如图,抛物线y=ax2+bx+c(a≠0)经过点A(﹣1,0),B(3,0),C(0,3)三点.(1)求抛物线的解析式及顶点M的坐标;(2)连接AC、BC,N为抛物线上的点且在第四象限,当S△NBC=S△ABC时,求N点的坐标;(3)在(2)问的条件下,过点C作直线l∥x轴,动点P(m,3)在直线l上,动点Q(m,0)在x轴上,连接PM、PQ、NQ,当m为何值时,PM+PQ+QN的和最小,并求出 PM+PQ+QN 和的最小值.16.如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x+c的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND 长度的最大值;(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴、y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F,E的坐标.17.如图1,已知抛物线y=(x﹣2)(x+a)(a>0)与x轴从左至右交于A,B两点,与y轴交于点C.(1)若抛物线过点T(1,﹣),求抛物线的解析式;(2)在第二象限内的抛物线上是否存在点D,使得以A、B、D三点为顶点的三角形与△ABC相似?若存在,求a的值;若不存在,请说明理由.(3)如图2,在(1)的条件下,点P的坐标为(﹣1,1),点Q(6,t)是抛物线上的点,在x轴上,从左至右有M、N两点,且MN=2,问MN在x轴上移动到何处时,四边形PQNM 的周长最小?请直接写出符合条件的点M的坐标.18.如图,对称轴为直线x=2的抛物线经过A(﹣1,0),C(0,5)两点,与x轴另一交点为B.已知M(0,1),E(a,0),F(a+1,0),P是第一象限内抛物线上的动点.(1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标;(3)若△PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?请说明理由.19.探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1(x1,y1),P2(x2,y2),可通过构造直角三角形利用图1得到结论:P1P2=他还利用图2证明了线段P1P2的中点P(x,y)P的坐标公式:x=,y=.(1)请你帮小明写出中点坐标公式的证明过程;运用:(2)①已知点M(2,﹣1),N(﹣3,5),则线段MN长度为;②直接写出以点A(2,2),B(﹣2,0),C(3,﹣1),D为顶点的平行四边形顶点D的坐标:;拓展:(3)如图3,点P(2,n)在函数y=x(x≥0)的图象OL与x轴正半轴夹角的平分线上,请在OL、x轴上分别找出点E、F,使△PEF的周长最小,简要叙述作图方法,并求出周长的最小值.20.如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C.(1)求直线y=kx+b的函数解析式;(2)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;(3)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值.21.如图①,在平面直角坐标系中,OA=6,以OA为边长作等边三角形ABC,使得BC∥OA,且点B、C落在过原点且开口向下的抛物线上.(1)求这条抛物线的解析式;(2)在图①中,假设一动点P从点B出发,沿折线BAC的方向以每秒2个单位的速度运动,同时另一动点Q从O点出发,沿x轴的负半轴方向以每秒1个单位的速度运动,当点P 运动到A点时,P、Q都同时停止运动,在P、Q的运动过程中,是否存在时间t,使得PQ⊥AB,若存在,求出t的值,若不存在,请说明理由;(3)在BC边上取两点E、F,使BE=EF=1个单位,试在AB边上找一点G,在抛物线的对称轴上找一点H,使得四边形EGHF的周长最小,并求出周长的最小值.本人所著《初中几何模型与解题通法》已发行,可在当当、淘宝和京东搜索购买特色:1.由一线名师编写,更专业权威,各地历年中考压轴题几乎都能在书中找到对应的模型和方法,甚至出现大量高度类似题。
将军饮马问题地11个模型及例题
将军饮马问题问题概述路径最短、线段和最小、线段差最大、周长最小等一系列最值问题方法原理1.两点之间,线段最短;2.三角形两边之和大于第三边,两边之差小于第三边;3.中垂线上的点到线段两端点的距离相等;4.垂线段最短.基本模型1.已知:如图,定点A、B分布在定直线l两侧;要求:在直线l上找一点P,使PA+PB的值最小解:连接AB交直线l于点P,点P即为所求,PA+PB的最小值即为线段AB的长度理由:在l上任取异于点P的一点P´,连接AP´、BP´,在△ABP’中,AP´+BP´>AB,即AP´+BP´>AP+BP∴P为直线AB与直线l的交点时,PA+PB最小.2.已知:如图,定点A和定点B在定直线l的同侧要求:在直线l上找一点P,使得PA+PB值最小(或△ABP的周长最小)解:作点A关于直线l的对称点A´,连接A´B交l于P,点P即为所求;理由:根据轴对称的性质知直线l为线段AA´的中垂线,由中垂线的性质得:PA=PA´,要使PA+PB最小,则需PA´+PB值最小,从而转化为模型1.3.已知:如图,定点A、B分布在定直线l的同侧(A、B两点到l的距离不相等)要求:在直线l上找一点P,使︱PA-PB︱的值最大解:连接BA并延长,交直线l于点P,点P即为所求;理由:此时︱PA-PB︱=AB,在l上任取异于点P的一点P´,连接AP´、BP´,由三角形的三边关系知︱P´A-P´B︱<AB,即︱P´A-P´B︱<︱PA-PB︱4. 已知:如图,定点A、B分布在定直线l的两侧(A、B两点到l的距离不相等)要求:在直线l上找一点P,使︱PA-PB︱的值最大解:作点B关于直线l的对称点B´,连接B´A并延长交于点P,点P即为所求;理由:根据对称的性质知l为线段BB´的中垂线,由中垂线的性质得:PB=PB´,要使︱PA-PB︱最大,则需︱PA-PB´︱值最大,从而转化为模型3.典型例题1-1如图,直线y=2x+4与x轴、y轴分别交于点A和点B,点C、D分3别为线段AB、OB的中点,点P为OA上一动点,当PC+PD最小时,点P的坐标为_________,此时PC+PD的最小值为_________.【分析】符合基本模型2的特征,作点D关于x轴的对称点D',连接CD'交x轴于点P,此时PC+PD值最小,由条件知CD为△BAO的中位线,OP为△CDD'的中位线,易求OP长,从而求出P点坐标;PC+PD的最小值即CD'长,可用勾股定理(或两点之间的距离公式,实质相同)计算.【解答】连接CD,作点D关于x轴的对称点D′,连接CD′交x轴于点P ,此时PC+PD 值最小.令y=23x+4中x=0,则y=4, ∴点B 坐标(0,4);令y=23x+4中y=0,则23x+4=0,解得:x=﹣6,∴点A 的坐标为(﹣6,0).∵点C 、D 分别为线段AB 、OB 的中点,∴CD 为△BAO 的中位线, ∴CD ∥x 轴,且CD=21AO=3,∵点D ′和点D 关于x 轴对称,∴O 为DD ′的中点,D ′(0,-1),∴OP 为△CDD ′的中位线,∴OP=21CD=23,∴点P 的坐标为(﹣32,0).在Rt △CDD ′中,CD ′=22D D CD '+=2243+=5,即PC+PD 的最小值为5.【小结】还可用中点坐标公式先后求出点C 、点P 坐标;若题型变化,C 、D 不是AB 和OB 中点时,则先求直线CD ′的解析式,再求其与x 轴的交点P 的坐标.典型例题1-2如图,在平面直角坐标系中,已知点A 的坐标为(0,1),点B的坐标为(32,﹣2),点P 在直线y=﹣x 上运动,当|PA ﹣PB|最 大时点P 的坐标为_________,|PA ﹣PB|的最大值是_________.【分析】符合基本模型4的特征,作A 关于直线y=﹣x 对称点C ,连接BC ,可得直线BC 的方程;求得BC 与直线y=﹣x 的交点P 的坐标;此时|PA ﹣PB|=|PC ﹣PB|=BC 取得最大值,再用两点之间的距离公式求此最大值.【解答】作A 关于直线y=﹣x 对称点C ,易得C 的坐标为(﹣1,0);连接BC ,可得直线BC的方程为y=﹣54x ﹣54,与直线y=﹣x 联立解得交点坐标P 为(4,﹣4);此时|PA﹣PB|=|PC ﹣PB|=BC 取得最大值,最大值BC=2223)2()1(-++=241;【小结】“两点一线”大多考查基本模型2和4,需作一次对称点,连线得交点.变式训练1-1已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A (5,0),OB=4√5,点P 是对角线OB 上的一个动点,D (0,1),当CP+DP 最短时,点P 的坐标为( )A .(0,0)B .(1,12)C .(65,35)D .(107,57)变式训练1-2如图,菱形ABCD 中,对角线AC 和BD 交于点O ,AC=2,BD=2√3,E 为AB 的中点,P 为对角线AC 上一动点,则PE+PB 的最小值为__________.变式训练1-3如图,已知直线y=12x+1与y 轴交于点A ,与x 轴交于点D ,抛物线y=12x 2+bx+c 与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为(1,0).(1)求该抛物线的解析式;(2)在抛物线的对称轴上找一点M ,使|AM ﹣MC|的值最大,求出点M 的坐标.拓展模型1. 已知:如图,A 为锐角∠MON 外一定点;要求:在射线OM 上找一点P ,在射线ON 上找一点Q ,使AP+PQ 的值最小.解:过点A 作AQ ⊥ON 于点Q ,AQ 与OM 相交于点P ,此时,AP+PQ 最小;理由:AP+PQ ≧AQ ,当且仅当A 、P 、Q 三点共线时,AP+PQ 取得最小值AQ ,根据垂线段最短,当AQ ⊥ON 时,AQ 最小.2. 已知:如图,A 为锐角∠MON 一定点;要求:在射线OM 上找一点P ,在射线ON 上找一点Q ,使AP+PQ 的值最小.解:作点A关于OM的对称点A′,过点A′作AQ⊥ON于点Q,A′Q交OM于点P,此时AP+PQ最小;理由:由轴对称的性质知AP=A′P,要使AP+PQ最小,只需A′P+PQ最小,从而转化为拓展模型13.已知:如图,A为锐角∠MON一定点;要求:在射线OM上找一点P,在射线ON上找一点Q,使△APQ的周长最小解:分别作A点关于直线OM的对称点A1,关于ON的对称点A 2,连接 A1A2交OM于点P,交ON于点Q,点P和点Q即为所求,此时△APQ周长最小,最小值即为线段A1A2的长度;理由:由轴对称的性质知AP=A1P,AQ=A2Q,△APQ的周长AP+PQ+AQ=A1P+PQ+A2Q,当A1、P、Q、A2四点共线时,其值最小.4. 已知:如图,A、B为锐角∠MON两个定点;要求:在OM上找一点P,在ON上找一点Q,使四边形APQB的周长最小解:作点A关于直线OM的对称点A´,作点B关于直线ON的对称点B´,连接A´B´交OM于P,交ON于Q,则点P、点Q即为所求,此时四边形APQB周长的最小值即为线段AB和A´B´的长度之和;理由:AB长为定值,由基本模型将PA转化为PA´,将QB转化为QB´,当A´、P、Q、B´四点共线时,PA´+PQ+ QB´的值最小,即PA+PQ+ QB的值最小.5.搭桥模型已知:如图,直线m∥n,A、B分别为m上方和n下方的定点,(直线AB不与m垂直)要求:在m、n之间求作垂线段PQ,使得AP+PQ+BQ最小.分析:PQ为定值,只需AP+BQ最小,可通过平移,使P、Q“接头”,转化为基本模型解:如图,将点A沿着平行于PQ的方向,向下平移至点A′,使得AA′=PQ,连接A′B交直线n于点Q,过点Q作PQ⊥n,交直线m于点P,线段PQ即为所求,此时AP+PQ+BQ最小.理由:易知四边形QPAA′为平行四边形,则QA′=PA,当B、Q、A′三点共线时,QA′+BQ最小,即AP+BQ最小,PQ长为定值,此时AP+PQ+BQ最小.6.已知:如图,定点A、B分布于直线l两侧,长度为a(a为定值)的线段PQ在l上移动(P在Q左边)要求:确定PQ的位置,使得AP+PQ+QB最小分析:PQ为定值,只需AP+QB的值最小,可通过平移,使P、Q“接头”,转化为基本模型解:将点A沿着平行于l的方向,向右移至A´,使AA´=PQ=a,连接A´B交直线l于点Q,在l上截取PQ=a(P在Q左边),则线段PQ即为所求,此时AP+PQ+QB的最小值为A´B+PQ,即A´B+a理由:易知四边形APQA´为平行四边形,则PA=QA´,当A´、Q、B三点共线时,QA´+QB最小,即PA+QB最小,又PQ长为定值此时PA+PQ+QB值最小.7.已知:如图,定点A、B分布于直线l的同侧,长度a(a为定值)的线段PQ在l上移动(P在Q左边)要求:确定PQ 的位置,使得四边形APQB 周长最小分析:AB 长度确定,只需AP+PQ+QB 最小,通过作A 点关于l 的对称点,转化为上述模型3解:作A 点关于l 的对称点A ´,将点A ´沿着平行于l的方向,向右移至A ´´,使A ´A ´´=PQ=a ,连接A ´´B交l 于Q ,在l 上截取QP=a (P 在Q 左边),线段PQ 即为所求,此时四边形APQB 周长的最小值为A ´´B+AB+PQ ,即A ´´B+AB+a典型例题2-1如图,在矩形ABCD 中,AB=10,BC=5,若点M 、N 分别是线段AC 、AB 上的两个动点,则BM+MN 的最小值为 .【分析】符合拓展模型2的特征,作点B 关于AC 的对称点E ,再过点E 作AB 的垂线段,该垂线段的长即BM+MN 的最小值,借助等面积法和相似可求其长度.【解答】作点B 关于AC 的对称点E ,再过点E 作EN ⊥AB 于N ,则BM+MN=EM+MN ,其最小值即EN 长;∵AB=10,BC=5,∴AC=22BC AB +=55,等面积法求得AC 边上的高为55510⨯=25,∴BE=45, 易知△ABC ∽△ENB ,∴,代入数据解得EN=8. 即BM+MN 的最小值为8.【小结】该类题的思路是通过作对称,将线段转化,再根据定理、公理连线或作垂线;可作定点或动点关于定直线的对称点,有些题作定点的对称点易解,有些题则作动点的对称点易解.典型例题2-2如图,∠AOB=60°,点P 是∠AOB 的定点且OP=,点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A .B .C .6D .3【分析】符合拓展模型3的特征;作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,此时△PMN周长最小,其值为CD长;根据对称性连接OC、OD,分析条件知△OCD是顶角为120°的等腰三角形,作底边上高,易求底边CD. 【解答】作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,则MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,∴PN+PM+MN=ND+MN+NC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,则CH=DH,∵∠OCH=30°,∴OH=OC=,CH=OH=,∴CD=2CH=3.即△PMN周长的最小值是3;故选:D.【小结】根据对称的性质,发现△OCD是顶角为120°的等腰三角形,是解题的关键,也是难点.典型例题2-3如图,已知平行四边形ABCO,以点O为原点,OC所在的直线为x轴,建立直角坐标系,AB交y轴于点D,AD=2,OC=6,∠A=60°,线段EF所在的直线为OD的垂直平分线,点P为线段EF上的动点,PM⊥x轴于点M点,点E与E′关于x轴对称,连接BP、E′M.(1)请直接写出点A坐标为,点B坐标为;(2)当BP+PM+ME′的长度最小时,请求出点P的坐标.【分析】(1)解直角三角形求出OD,BD的长即可解决;(2)符合“搭桥模型”的特征;首先证明四边形OPME′是平行四边形,可得OP=EM,PM是定值,PB+ME′=OP+PB的值最小时,BP+PM+ME′的长度最小,此时P点为直线OB与EF的交点,结合OB的解析式可得P点坐标;【解答】(1)在Rt△ADO中,∵∠A=60°,AD=2,∴OD=2•tan60°=2,∴A(﹣2,2),∵四边形ABCO是平行四边形,∴AB=OC=6,∴DB=6﹣2=4,∴B(4,2)(2)如图,连接OP.∵EF垂直平分线段OD,PM⊥OC,∴∠PEO=∠EOM=∠PMO=90°,∴四边形OMPE是矩形,∴PM=OE=,∵OE=OE′,∴PM=OE′,PM∥OE′,∴四边形OPME′是平行四边形,∴OP=EM,∵PM是定值,∴PB+ME′=OP+PB的值最小时,BP+PM+ME′的长度最小,∴当O、P、B共线时,BP+PM+ME′的长度最小,∵直线OB的解析式为y=x,∴P(2,).【小结】求没有公共端点的两条线段之和的最小值,一般通过作对称和平移(构造平行四边形)的方法,转化为基本模型.典型例题2-4如图所示,在平面直角坐标系中,Rt△AOB的顶点坐标分别为A(﹣2,0),O(0,0),B(0,4),把△AOB绕点O按顺时针方向旋转90°,得到△COD.(1)求C、D两点的坐标;(2)求经过A、B、D三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上取两点E、F(点E在点F的上方),且EF=1,使四边形ACEF的周长最小,求出E、F两点的坐标.【分析】符合拓展模型7的特征,通过作对称、平移、连线,可找出E、F点,结合直线的解析式和抛物线的对称轴可解出E、F坐标.【解答】(1)由旋转的性质可知:OC=OA=2,OD=OB=4,∴C点的坐标是(0,2),D点的坐标是(4,0),(2)设所求抛物线的解析式为y=ax2+bx+c,4a-2b+c=0由题意,得 16a+4b+c=0c=4解得a=-12,b=1,c=4,∴所求抛物线的解析式为y=-12x²+x+4;(3)只需AF+CE最短,抛物线y=-12x²+x+4的对称轴为x=1,将点A向上平移至A1(﹣2,1),则AF=A1E,作A1关于对称轴x=1的对称点A2(4,1),连接A2C,A2C与对称轴交于点E,E为所求,可求得A2C的解析式为y=-14x+2,当x=1时,y=74,∴点E的坐标为(1,74),点F的坐标为(1,34).【小结】解决此类题的套路是“对称、平移、连线”;其中,作对称和平移的顺序可互换.变式训练2-1几何模型:条件:如图1,A,B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA+PB的值最小.方法:作点A关于直线l的对称点A’,连接A’B交l于点P,即为所求.(不必证明)模型应用:(1)如图2,已知平面直角坐标系中两定点A(0,﹣1)和B(2,﹣1),P为x轴上一动点,则当PA+PB的值最小是点P的横坐标是,此时PA+PB= .(2)如图3,正方形ABCD的边长为4,E为AB的中点,P是AC上一动点,连接BD,由正方形对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是.(3)如图4,在菱形ABCD中,AB=10,∠DAB=60°,P是对角线AC上一动点,E,F分别是线段AB和BC上的动点,则PE+PF的最小值是.(4)如图5,在菱形ABCD中,AB=6,∠B=60°,点G是边CD边的中点,点E.F分别是AG,AD上的两个动点,则EF+ED的最小值是.变式训练2-2如图,矩形ABCD中,AD=15,AB=10,E为AB边上一点,且DE=2AE,连接CE与对角线BD交于F;若P、Q分别为AB边和BC边上的动点,连接EP、PQ和QF;则四边形EPQF周长的最小值是___________.变式训练2-3如图,已知直线l 1∥l2,l1、l2之间的距离为8,点P到直线l1的距离为6,点Q到直线l2的距离为4,PQ=4,在直线l1上有一动点A,直线l2上有一动点B,满足AB⊥l2,且PA+AB+BQ最小,此时PA+BQ= .变式训练2-4如图,已知在平面直角坐标系xOy中,直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于点E和F.(1)求经过A、B、C三点的抛物线的解析式;(2)当BE经过(1)中抛物线的顶点时,求CF的长;(3)在抛物线的对称轴上取两点P、Q(点Q在点P的上方),且PQ=1,要使四边形BCPQ 的周长最小,求出P、Q两点的坐标.中考真题1.要在街道旁建奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使A、B到它的距离之和最短?小聪以街道为x轴,建立了如图所示的平面直角坐标系,A点坐标为(0,3),B点坐标为(6,5),则A、B两点到奶站距离之和的最小值是.2.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A .(0,)B .(0,)C .(0,2)D .(0,)3.如图,在矩形ABCD 中,AB=5,AD=3,动点P 满足S △PAB =31S 矩形ABCD ,则点P 到A 、B 两点距离之和PA+PB 的最小值为( )A .B .C .5D .4.已知抛物线y=x 2+1具有如下性质:该抛物线上任意一点到定点F (0,2)的距离与到x轴的距离始终相等,如图,点M 的坐标为(,3),P 是抛物线y=x 2+1上一个动点,则△PMF 周长的最小值是( )A .3B .4C .5D .65.如图,点A (a ,3),B (b ,1)都在双曲线y=上,点C ,D ,分别是x 轴,y 轴上的动点,则四边形ABCD 周长的最小值为( )A .B .C .D .6.如图,在Rt △ABC 中,∠C=90°,AC=3,BC=4,D 、E 分别是AB 、BC 边上的动点,则AE+DE 的最小值为( )A .B .C .5D .7.如图,Rt △ABC 中,∠BAC=90°,AB=3,AC=6,点D ,E 分别是边BC ,AC 上的动点,则DA+DE 的最小值为 .8.如图,等腰△ABC 的底边BC=20,面积为120,点F 在边BC 上,且BF=3FC ,EG 是腰AC 的垂直平分线,若点D 在EG 上运动,则△CDF 周长的最小值为 .9.如图,菱形ABCD 的边长为6,∠ABC=120°,M 是BC 边的一个三等分点,P 是对角线AC 上的动点,当PB+PM 的值最小时,PM 的长是( )A.B.C.D.10.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠CAB交BC于D点,E,F分别是AD,AC上的动点,则CE+EF的最小值为()A.B.C.D.611.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N 两点.△OMN的面积为10.若动点P在x轴上,则PM+PN 的最小值是()A.6B.10 C.2D.212.如图,△ABC中,AC=BC=2,AB=1,将它沿AB翻折得到△ABD,则四边形ADBC的形状是形,P、E、F分别为线段AB、AD、DB上的任意点,则PE+PF的最小值是.13.如图,已知抛物线y=x2+bx+c与直线y=x+3交于A,B两点,交x轴于C、D两点,连接AC、BC,已知A(0,3),C(﹣3,0).(1)求此抛物线的解析式;(2)在抛物线对称轴l上找一点M,使|MB﹣MD|的值最大,并求出这个最大值;(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P,使得以A,P,Q为顶点的三角形与△ABC相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.14.如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.(1)用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法);(2)在(1)的条件下,①证明:AE⊥DE;②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值.15.如图,抛物线y=ax2+bx+c(a≠0)经过点A(﹣1,0),B(3,0),C(0,3)三点.(1)求抛物线的解析式及顶点M的坐标;(2)连接AC、BC,N为抛物线上的点且在第四象限,当S△NBC=S△ABC时,求N点的坐标;(3)在(2)问的条件下,过点C作直线l∥x轴,动点P(m,3)在直线l上,动点Q(m,0)在x轴上,连接PM、PQ、NQ,当m为何值时,PM+PQ+QN的和最小,并求出 PM+PQ+QN 和的最小值.16.如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x+c的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND 长度的最大值;(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴、y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F,E的坐标.17.如图1,已知抛物线y=(x﹣2)(x+a)(a>0)与x轴从左至右交于A,B两点,与y轴交于点C.(1)若抛物线过点T(1,﹣),求抛物线的解析式;(2)在第二象限的抛物线上是否存在点D,使得以A、B、D三点为顶点的三角形与△ABC 相似?若存在,求a的值;若不存在,请说明理由.(3)如图2,在(1)的条件下,点P的坐标为(﹣1,1),点Q(6,t)是抛物线上的点,在x轴上,从左至右有M、N两点,且MN=2,问MN在x轴上移动到何处时,四边形PQNM 的周长最小?请直接写出符合条件的点M的坐标.18.如图,对称轴为直线x=2的抛物线经过A(﹣1,0),C(0,5)两点,与x轴另一交点为B.已知M(0,1),E(a,0),F(a+1,0),P是第一象限抛物线上的动点.(1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标;(3)若△PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?请说明理由.19.探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系任意两点P1(x1,y1),P2(x2,y2),可通过构造直角三角形利用图1得到结论:P1P2=他还利用图2证明了线段P1P2的中点P(x,y)P的坐标公式:x=,y=.(1)请你帮小明写出中点坐标公式的证明过程;运用:(2)①已知点M(2,﹣1),N(﹣3,5),则线段MN长度为;②直接写出以点A(2,2),B(﹣2,0),C(3,﹣1),D为顶点的平行四边形顶点D的坐标:;拓展:(3)如图3,点P(2,n)在函数y=x(x≥0)的图象OL与x轴正半轴夹角的平分线上,请在OL、x轴上分别找出点E、F,使△PEF的周长最小,简要叙述作图方法,并求出周长的最小值.20.如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C.(1)求直线y=kx+b的函数解析式;(2)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;(3)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值.21.如图①,在平面直角坐标系中,OA=6,以OA为边长作等边三角形ABC,使得BC∥OA,且点B、C落在过原点且开口向下的抛物线上.(1)求这条抛物线的解析式;(2)在图①中,假设一动点P从点B出发,沿折线BAC的方向以每秒2个单位的速度运动,同时另一动点Q从O点出发,沿x轴的负半轴方向以每秒1个单位的速度运动,当点P 运动到A点时,P、Q都同时停止运动,在P、Q的运动过程中,是否存在时间t,使得PQ⊥AB,若存在,求出t的值,若不存在,请说明理由;(3)在BC边上取两点E、F,使BE=EF=1个单位,试在AB边上找一点G,在抛物线的对称轴上找一点H,使得四边形EGHF的周长最小,并求出周长的最小值.本人所著《初中几何模型与解题通法》已发行,可在当当、淘宝和京东搜索购买特色:1.由一线名师编写,更专业权威,各地历年中考压轴题几乎都能在书中找到对应的模型和方法,甚至出现大量高度类似题。
专题14 将军饮马问题(解析版)
专题14将军饮马问题模型的概述:唐朝诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题:将军在观望烽火之后从山脚下的A点出发,走到河边让战马饮水后再到B点宿营。
问如何行走才能使总的路程最短。
模型一(两点在河的异侧):将军在观望烽火之后从山脚下的A点出发,走到河边让战马饮水后再到B点宿营,将在何处渡河使行走距离最短并求最短距离。
方法:如右图,连接AB,与线段L交于点M,在M处渡河距离最短,最短距离为线段AB的长。
模型二(两点在河的同侧):将军在观望烽火之后从山脚下的A点出发,需先走到河边让战马饮水后再到B 点宿营,将在何处渡河使行走距离最短并求最短距离。
方法:如右图,作点B关于直线L的对称点B’,连接AB’,与直线L的交点即为所求的渡河点,最短距离为线段AB’的长。
模型三:如图,将军同部队行驶至P处,准备在此驻扎,但有哨兵发现前方为两河AB、BC的交汇处,为防止敌军在对岸埋伏需派侦察兵到河边观察,再返回P处向将军汇报情况,问侦察兵在AB、BC何处侦查才能最快完成任务并求最短距离。
数学描述:如图在直线AB、BC上分别找点M、N,使得∆PMN周长最小。
方法:如右图,分别作点P关于直线AB、BC的对称点P’、P’’,连接P’P’’,与两直线的交点即为所求点M、N,最短距离为线段P’P’’的长。
模型四如图,深夜为防止敌军在对岸埋伏,将军又派一队侦察兵到河边观察,并叮嘱观察之后先去存粮位置点Q处查看再返回P处向将军汇报情况,问侦察在AB、BC何处侦查才能最快完成任务并求最短距离。
数学描述:如图在直线AB、BC上分别找点M、N,使得四边形PQNM周长最小。
方法:如右图,分别作点P、点Q关于直线AB、BC的对称点P’、Q’,连接P’Q’,与两直线的交点即为所求点M、N,最短距离为线段(PQ+P’Q’)的长。
模型一-模型四的理论依据:两点之间线段最短。
模型五:已知点P在直线AB、BC的外侧,在直线AB和BC上分别取一点M、N,求PM+PN的最小值方法:如右图,过点P作PN⊥BC,垂足为点N,PN与AB相交于点M,与两直线的交点即为所求点M、N,最短距离为线段PN的长。
专题07 最值模型之将军饮马精讲练(11大模型)(解析版)
专题07最值模型之将军饮马精讲练(11大模型)学校:___________姓名:___________班级:___________考号:___________模型背景【模型来历】早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“将军饮马”的问题便流传至今.【考点】两点之间线段最短,垂线段最短;三角形两边三边关系;轴对称;平行四边形--平移;【解题思路】学会化归,移花接木,化折为直【核心思想】共线与垂线段最短。
模型精讲一、两动一定型(2种模型):两定点到直线上一动点的距离和最小。
例1-1:如图1-1在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB最小.【证明】图1-2。
PA+PB的最小值即为线段AB的长度理由:在l上任取异于点P的一点P´,连接AP´、BP´,在△ABP’中,AP´+BP´>AB,即AP´+BP´>AP+BP ∴P为直线AB与直线l的交点时,PA+PB最小.图1-2lPABP'lAB图1-1反思:解决本题很简单,但却点明了将军饮马的解题思路。
【变式】例1-2 如图1-3,如图,定点A 和定点B 在定直线l 的同侧 要求:在直线l 上找一点P ,使得PA+PB 值最小 。
作法:图1-41.作A 关于直线CD 对称点A’。
2.连A’B 。
3.交点P 就是要求点。
连线长A’B 就是PA+PB 最小值。
【证明】:图1-5在l 上任取异于点P 的一点P´,连接AP´、BP´, 在△ABP’中,AP´+BP´>AB ,即AP´+BP´>AP+BP ∴P 为直线AB 与直线l 的交点时,PA+PB 最小.二、造桥选址,移花接木。
将军饮马18道典型习题
将军饮马18道典型习题将军饮马"是一个古希腊数学问题,源于2000多年前。
当时,一位将军向城里的著名数学家海伦请教:他每天早上都要骑马到河边让马喝水,然后到河岸同一侧的一块草地上让马吃草。
将军想知道,在河岸的哪个具体位置让马喝水,可以让他和马儿走的路程最短。
经过思考,海伦给出了答案,这就是"将军饮马"问题。
以下是"将军饮马"问题的五种常见模型:1.一动两定(和最小)模型:假设点A是将军和马儿居住的营帐,点B是指定的草地,小河L在两点之间流过。
问题是,将军和马儿在哪个具体位置喝水,可以让他们走的路程最短?解决方法是,做A点关于L的对称点A',连接A'B,与L的交点即为P点。
这时,PA+PB最小。
为什么呢?因为在L 上任意取一点M(不与P重合),根据几何原理,PA+PB=A'P+PB=A'B,AM+MB>A'B,所以动点P在A'B与L 交点处时,PA+PB最小。
2.一定两动模型:假设点A和小河L1与第一种模型一样,但是这次,草地不是指定的点,而是由L2代表的一片草地。
问题是,在哪个具体位置喝水和吃草,可以让将军和马儿走的路程最短?解决方法是,做A点关于L1的对称点A',做A点关于L2的对称点A'',连接A'A'',与L1和L2的交点即为P、Q。
这时,AP+PQ+QA的和最小。
为什么呢?因为在L1上取点M(不与P重合),在L2上取点N(不与Q重合),根据几何原理,AP+PQ+AQ=A'P+PQ+A''Q=A'A'',AM+MN+AN>A'A'',所以动点P和Q在A'A''与L1、L2的交点处时,AP+PQ+QA的和最小。
3.两动一定模型:假设点A和小河L1与第一种模型一样,但是这次,将军要骑马到L2代表的一片草地吃草,然后再回到营帐。
中考数学:'将军饮马'所有模型及变式——终极篇
中考数学:'将军饮马'所有模型及变式——终极篇以微课堂初中精品微课,数学奥林匹克国家一级教练执教。
一、模型展现(1)直线型模型1:在直线l上求作点P,使PA+PB最小.原理:两点之间,线段最短.PA+PB最小值即为AB长.模型2:在直线l上求作点P,使PA+PB最小.原理:和最小,同侧转异侧.两点之间,线段最短.模型3:在直线l上求作点P,使|PA-PB|最大.原理:两边之差小于第三边,|PA-PB|最大值即为AB长.模型4:在直线l上求作点P,使|PA-PB|最大.原理:差最大,异侧转同侧.两边之差小于第三边.变式:在直线l上求作点P,使l平分∠APB,与此作法相同.模型5:在直线l上求作点P,使|PA-PB|最小.原理:|PA-PB|最小为0,中垂线上的点到线段两端的距离相等.(2)角型模型6:在OA,OB上求作点M,N,使△PMN周长最小.原理:作两次对称,两点之间,线段最短.模型7:在OA,OB上求作点M,N,使四边形PQMN周长最小.原理:P,Q分别作对称,两点之间,线段最短.模型8:在OA,OB上求作点M,N,(1)使PM+MN最小.(2)使PN+MN最小.原理:先连哪个点,就先做关于那个点所在射线的对称点.垂线段最短.模型9:P,Q为OA,OB的定点,在OA,OB上求作点M,N,使PN+NM +MQ最小.原理:两点之间,线段最短,PN+NM+MQ最小值即为P’Q’的长.(3)平移型模型10:在直线l上求作点M,N,使MN=a,且AM+MN+NB最小.原理:将l上的MN转化到B’B.(问题情境:将军从军营A出发,去河边l饮马,饮马完在河边牵马散步a米,回军营B.可以转化为饮完马,直接去军营B,在到达之前散步.)模型11(造桥选址):直线l1∥l2,在l1上求作点M,在l2上求作点N,使MN⊥l1,且AM+MN +NB最小.原理:将MN转化为AA’.(可以理解为在A处先走过桥的路,再直达点B.)二、典型例题例1:(模型2)从点A(0,2)发出的一束光线,经x轴反射,过点B(4,3),求从点A到点B所经过的路径长.解析:例2:(模型4)已知点A(1,3)、B(3,-1),点M在x轴上,当AM-BM最大时,点M的坐标为______解析:例3:(模型10)如图,当四边形PABN的周长最小时,a=______解析:例4:(模型11)解析:例5:(结合勾股)如图,在等边△ABC中,AB=6,N为AB上一点,且AN=2,∠BAC的平分线交BC于点D,M是AD上的动点,连结BM、MN,则BM+MN的最小值是_____解析:小结:所有类型已归纳完,更多内容,详见八上11讲期中专题一将军饮马类题型全覆盖暑假特辑10《轴对称》之“将军饮马”(上)暑假特辑11《轴对称》之“将军饮马”(下)本讲思考题:已知点A(-3,-4)和B(-2,1).(1)试在y轴上求一点P,使PA+PB的值最小(2)试在y轴上求一点P,使|QA-QB|的值最大(3)若C(0,m),D(0,m-2),当m为何值时,四边形ABCD的周长最小.答案:(1) P (0,-1)(2) Q (0,11)(3) m = -0.2End欢迎收看《以微课堂》微课,欢迎收看《以微课堂》微课,作者简介:四星级重点中学高级教师、数学名师。
关于将军饮马难题的练习10题
关于将军饮马难题的练习10题
1. 将军饮马难题是著名的逻辑难题之一,以下是10个练题帮助理解和解决这个难题。
2. 题目一:题目一:
- 将军饮马难题描述了将军通过一条连续的河流骑马前行的情景。
- 请阐述将军饮马难题的具体要求和条件。
3. 题目二:题目二:
- 给定一个车辆的行驶速度、将军饮马的速度以及将军饮马的间隔时间,请计算将军饮马时车辆与将军的距离。
4. 题目三:题目三:
- 假设将军饮马的路径有所改变,如何调整速度和时间间隔,才能保持将军和车辆的固定距离?
5. 题目四:题目四:
- 假设将军饮马时遇到突发情况,需要停下来处理,重新上路后可以追上车辆吗?
6. 题目五:题目五:
- 若车辆的速度变化,将军饮马的速度还能保持不变吗?请解释为什么?
7. 题目六:题目六:
- 假设将军饮马的速度变化,车辆的速度保持不变,将军和车辆之间的相对距离如何变化?
8. 题目七:题目七:
- 将军饮马难题中是否有其他影响将军和车辆距离的因素?请列举并解释。
9. 题目八:题目八:
- 假设将军饮马的速度快于车辆的速度,将军和车辆之间的相对距离会怎样变化?
10. 题目九:题目九:
- 将军饮马难题中的数学模型是什么?使用该模型可以解决哪些相关问题?
11. 题目十:题目十:
- 将军饮马难题中是否存在法律或道德层面的问题?请阐述你的观点和理由。
以上是关于将军饮马难题的练习10题,希望能帮助你更好地理解和解决这个难题。
将军饮马问答的11个模型及例题
将军饮马问题问题概述路径最短、线段和最小、线段差最大、周长最小等一系列最值问题方法原理1.两点之间,线段最短;2.三角形两边之和大于第三边,两边之差小于第三边;3.中垂线上的点到线段两端点的距离相等;4.垂线段最短.基本模型1.已知:如图,定点A、B分布在定直线l两侧;要求:在直线l上找一点P,使PA+PB的值最小解:连接AB交直线l于点P,点P即为所求,PA+PB的最小值即为线段AB的长度理由:在l上任取异于点P的一点P´,连接AP´、BP´,在△ABP’中,AP´+BP´>AB,即AP´+BP´>AP+BP∴P为直线AB与直线l的交点时,PA+PB最小.2.已知:如图,定点A和定点B在定直线l的同侧要求:在直线l上找一点P,使得PA+PB值最小(或△ABP的周长最小)解:作点A关于直线l的对称点A´,连接A´B交l于P,点P即为所求;理由:根据轴对称的性质知直线l为线段AA´的中垂线,由中垂线的性质得:PA=PA´,要使PA+PB最小,则需PA´+PB值最小,从而转化为模型1.3.已知:如图,定点A、B分布在定直线l的同侧(A、B 两点到l的距离不相等)要求:在直线l上找一点P,使︱PA-PB︱的值最大解:连接BA并延长,交直线l于点P,点P即为所求;理由:此时︱PA-PB︱=AB,在l上任取异于点P的一点P´,连接AP´、BP´,由三角形的三边关系知︱P´A-P´B︱<AB,即︱P´A-P´B︱<︱PA-PB︱4. 已知:如图,定点A、B分布在定直线l的两侧(A、B两点到l的距离不相等)要求:在直线l上找一点P,使︱PA-PB︱的值最大解:作点B关于直线l的对称点B´,连接B´A并延长交于点P,点P即为所求;理由:根据对称的性质知l为线段BB´的中垂线,由中垂线的性质得:PB=PB´,要使︱PA-PB︱最大,则需︱PA-PB´︱值最大,从而转化为模型3.典型例题1-1x+4与x轴、y轴分别交于点A和点B,点C、D如图,直线y=23分别为线段AB、OB的中点,点P为OA上一动点,当PC+PD最小时,点P的坐标为_________,此时PC+PD的最小值为_________.【分析】符合基本模型2的特征,作点D关于x轴的对称点D',连接CD'交x轴于点P,此时PC+PD值最小,由条件知CD为△BAO的中位线,OP为△CDD'的中位线,易求OP长,从而求出P点坐标;PC+PD的最小值即CD'长,可用勾股定理(或两点之间的距离公式,实质相同)计算.【解答】连接CD ,作点D 关于x 轴的对称点D ′,连接CD ′交x 轴于点P ,此时PC+PD 值最小.令y=23x+4中x=0,则y=4, ∴点B 坐标(0,4);令y=23x+4中y=0,则23x+4=0,解得:x=﹣6,∴点A 的坐标为(﹣6,0).∵点C 、D 分别为线段AB 、OB 的中点,∴CD 为△BAO 的中位线, ∴CD ∥x 轴,且CD=21AO=3,∵点D ′和点D 关于x 轴对称,∴O 为DD ′的中点,D ′(0,-1),∴OP 为△CDD ′的中位线,∴OP=21CD=23, ∴点P 的坐标为(﹣32,0).在Rt △CDD ′中, CD ′=22D D CD '+=2243+=5,即PC+PD 的最小值为5.【小结】还可用中点坐标公式先后求出点C 、点P 坐标;若题型变化,C 、D 不是AB 和OB 中点时,则先求直线CD ′的解析式,再求其与x 轴的交点P 的坐标.典型例题1-2如图,在平面直角坐标系中,已知点A 的坐标为(0,1),点B的坐标为(32,﹣2),点P 在直线y=﹣x 上运动,当|PA ﹣PB|最大时点P 的坐标为_________,|PA ﹣PB|的最大值是_________.【分析】符合基本模型4的特征,作A 关于直线y=﹣x 对称点C ,连接BC ,可得直线BC 的方程;求得BC 与直线y=﹣x 的交点P 的坐标;此时|PA ﹣PB|=|PC ﹣PB|=BC 取得最大值,再用两点之间的距离公式求此最大值.【解答】作A 关于直线y=﹣x 对称点C ,易得C 的坐标为(﹣1,0);连接BC ,可得直线BC 的方程为y=﹣54x ﹣54,与直线y=﹣x 联立解得交点坐标P 为(4,﹣4);此时|PA ﹣PB|=|PC ﹣PB|=BC 取得最大值,最大值BC=2223)2()1(-++=241;【小结】“两点一线”大多考查基本模型2和4,需作一次对称点,连线得交点.变式训练1-1已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A (5,0),OB=4√5,点P 是对角线OB 上的一个动点,D (0,1),当CP+DP最短时,点P 的坐标为( )A .(0,0)B .(1,12)C .(65,35)D .(107,57)变式训练1-2如图,菱形ABCD 中,对角线AC 和BD 交于点O ,AC=2,BD=2√3,E 为AB 的中点,P 为对角线AC 上一动点,则PE+PB的最小值为__________.变式训练1-3如图,已知直线y=12x+1与y 轴交于点A ,与x 轴交于点D ,抛物线y=12x 2+bx+c 与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为(1,0).(1)求该抛物线的解析式;(2)在抛物线的对称轴上找一点M,使|AM﹣MC|的值最大,求出点M的坐标.拓展模型1.已知:如图,A为锐角∠MON外一定点;要求:在射线OM上找一点P,在射线ON上找一点Q,使AP+PQ的值最小.解:过点A作AQ⊥ON于点Q,AQ与OM相交于点P,此时,AP+PQ最小;理由:AP+PQ≧AQ,当且仅当A、P、Q三点共线时,AP+PQ取得最小值AQ,根据垂线段最短,当AQ⊥ON时,AQ最小.2.已知:如图,A为锐角∠MON内一定点;要求:在射线OM上找一点P,在射线ON上找一点Q,使AP+PQ的值最小.解:作点A关于OM的对称点A′,过点A′作AQ⊥ON于点Q,A′Q交OM于点P,此时AP+PQ最小;理由:由轴对称的性质知AP=A′P,要使AP+PQ最小,只需A′P+PQ最小,从而转化为拓展模型13.已知:如图,A为锐角∠MON内一定点;要求:在射线OM上找一点P,在射线ON上找一点Q,使△APQ的周长最小解:分别作A点关于直线OM的对称点A1,关于ON的对称点A2,连接A1A2交OM于点P,交ON于点Q,点P和点Q即为所求,此时△APQ周长最小,最小值即为线段A1A2的长度;理由:由轴对称的性质知AP=A1P,AQ=A2Q,△APQ的周长AP+PQ+AQ=A1P+PQ+A2Q,当A1、P、Q、A2四点共线时,其值最小.4. 已知:如图,A、B为锐角∠MON内两个定点;要求:在OM上找一点P,在ON上找一点Q,使四边形APQB的周长最小解:作点A关于直线OM的对称点A´,作点B关于直线ON的对称点B´,连接A´B´交OM于P,交ON于Q,则点P、点Q即为所求,此时四边形APQB周长的最小值即为线段AB和A´B´的长度之和;理由:AB长为定值,由基本模型将PA转化为PA´,将QB转化为QB´,当A´、P、Q、B´四点共线时,PA´+PQ+ QB´的值最小,即PA+PQ+ QB的值最小.5.搭桥模型已知:如图,直线m∥n,A、B分别为m上方和n下方的定点,(直线AB不与m垂直)要求:在m、n之间求作垂线段PQ,使得AP+PQ+BQ最小.分析:PQ为定值,只需AP+BQ最小,可通过平移,使P、Q“接头”,转化为基本模型解:如图,将点A沿着平行于PQ的方向,向下平移至点A′,使得AA′=PQ,连接A′B交直线n于点Q,过点Q作PQ⊥n,交直线m于点P,线段PQ即为所求,此时AP+PQ+BQ最小.理由:易知四边形QPAA′为平行四边形,则QA′=PA,当B、Q、A′三点共线时,QA′+BQ最小,即AP+BQ最小,PQ长为定值,此时AP+PQ+BQ 最小.6.已知:如图,定点A、B分布于直线l两侧,长度为a(a为定值)的线段PQ在l上移动(P在Q左边)要求:确定PQ的位置,使得AP+PQ+QB最小分析:PQ为定值,只需AP+QB的值最小,可通过平移,使P、Q“接头”,转化为基本模型解:将点A沿着平行于l的方向,向右移至A´,使AA´=PQ=a,连接A´B交直线l于点Q,在l上截取PQ=a(P在Q左边),则线段PQ即为所求,此时AP+PQ+QB的最小值为A´B+PQ,即A´B+a理由:易知四边形APQA´为平行四边形,则PA=QA´,当A´、Q、B三点共线时,QA´+QB最小,即PA+QB最小,又PQ长为定值此时PA+PQ+QB值最小.7.已知:如图,定点A、B分布于直线l的同侧,长度a(a为定值)的线段PQ在l上移动(P在Q左边)要求:确定PQ的位置,使得四边形APQB周长最小分析:AB长度确定,只需AP+PQ+QB最小,通过作A点关于l的对称点,转化为上述模型3解:作A点关于l的对称点A´,将点A´沿着平行于l的方向,向右移至A´´,使A´A´´=PQ=a,连接A´´B交l于Q,在l上截取QP=a(P在Q左边),线段PQ即为所求,此时四边形APQB周长的最小值为A´´B+AB+PQ,即A´´B+AB+a典型例题2-1如图,在矩形ABCD中,AB=10,BC=5,若点M、N分别是线段AC、AB上的两个动点,则BM+MN的最小值为.【分析】符合拓展模型2的特征,作点B关于AC的对称点E,再过点E作AB的垂线段,该垂线段的长即BM+MN的最小值,借助等面积法和相似可求其长度.【解答】作点B 关于AC 的对称点E ,再过点E 作EN ⊥AB 于N ,则BM+MN=EM+MN ,其最小值即EN 长;∵AB=10,BC=5, ∴AC=22BC AB +=55, 等面积法求得AC 边上的高为55510⨯=25,∴BE=45, 易知△ABC ∽△ENB ,∴,代入数据解得EN=8.即BM+MN 的最小值为8.【小结】该类题的思路是通过作对称,将线段转化,再根据定理、公理连线或作垂线;可作定点或动点关于定直线的对称点,有些题作定点的对称点易解,有些题则作动点的对称点易解.典型例题2-2如图,∠AOB=60°,点P 是∠AOB 内的定点且OP=,点M 、N分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( ) A .B .C .6D .3【分析】符合拓展模型3的特征;作P 点分别关于OA 、OB 的对称点C 、D ,连接CD 分别交OA 、OB 于M 、N ,此时△PMN 周长最小,其值为CD 长;根据对称性连接OC 、OD ,分析条件知△OCD 是顶角为120°的等腰三角形,作底边上高,易求底边CD.【解答】作P 点分别关于OA 、OB 的对称点C 、D ,连接CD 分别交OA 、OB 于M 、N ,如图,则MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,∴PN+PM+MN=ND+MN+NC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,则CH=DH,∵∠OCH=30°,∴OH=OC=,CH=OH=,∴CD=2CH=3.即△PMN周长的最小值是3;故选:D.【小结】根据对称的性质,发现△OCD是顶角为120°的等腰三角形,是解题的关键,也是难点.典型例题2-3如图,已知平行四边形ABCO,以点O为原点,OC所在的直线为x轴,建立直角坐标系,AB交y轴于点D,AD=2,OC=6,∠A=60°,线段EF所在的直线为OD的垂直平分线,点P为线段EF上的动点,PM⊥x轴于点M点,点E与E′关于x轴对称,连接BP、E′M.(1)请直接写出点A坐标为,点B坐标为;(2)当BP+PM+ME′的长度最小时,请求出点P的坐标.【分析】(1)解直角三角形求出OD,BD的长即可解决;(2)符合“搭桥模型”的特征;首先证明四边形OPME′是平行四边形,可得OP=EM,PM是定值,PB+ME′=OP+PB的值最小时,BP+PM+ME′的长度最小,此时P点为直线OB与EF的交点,结合OB的解析式可得P点坐标;【解答】(1)在Rt△ADO中,∵∠A=60°,AD=2,∴OD=2•tan60°=2,∴A(﹣2,2),∵四边形ABCO是平行四边形,∴AB=OC=6,∴DB=6﹣2=4,∴B(4,2)(2)如图,连接OP.∵EF垂直平分线段OD,PM⊥OC,∴∠PEO=∠EOM=∠PMO=90°,∴四边形OMPE是矩形,∴PM=OE=,∵OE=OE′,∴PM=OE′,PM∥OE′,∴四边形OPME′是平行四边形,∴OP=EM,∵PM是定值,∴PB+ME′=OP+PB的值最小时,BP+PM+ME′的长度最小,∴当O、P、B共线时,BP+PM+ME′的长度最小,∵直线OB的解析式为y=x,∴P(2,).【小结】求没有公共端点的两条线段之和的最小值,一般通过作对称和平移(构造平行四边形)的方法,转化为基本模型.典型例题2-4如图所示,在平面直角坐标系中,Rt△AOB的顶点坐标分别为A(﹣2,0),O(0,0),B(0,4),把△AOB绕点O按顺时针方向旋转90°,得到△COD.(1)求C、D两点的坐标;(2)求经过A、B、D三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上取两点E、F(点E在点F的上方),且EF=1,使四边形ACEF的周长最小,求出E、F两点的坐标.【分析】符合拓展模型7的特征,通过作对称、平移、连线,可找出E、F点,结合直线的解析式和抛物线的对称轴可解出E、F坐标.【解答】(1)由旋转的性质可知:OC=OA=2,OD=OB=4,∴C点的坐标是(0,2),D点的坐标是(4,0),(2)设所求抛物线的解析式为y=ax2+bx+c,4a-2b+c=0由题意,得16a+4b+c=0c=4解得a=-12,b=1,c=4,∴所求抛物线的解析式为y=-12x²+x+4;(3)只需AF+CE最短,抛物线y=-12x²+x+4的对称轴为x=1,将点A向上平移至A1(﹣2,1),则AF=A1E,作A1关于对称轴x=1的对称点A2(4,1),连接A2C,A2C与对称轴交于点E,E为所求,可求得A2C的解析式为y=-14x+2,当x=1时,y=74,∴点E的坐标为(1,74),点F的坐标为(1,34).【小结】解决此类题的套路是“对称、平移、连线”;其中,作对称和平移的顺序可互换.变式训练2-1几何模型:条件:如图1,A,B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA+PB的值最小.方法:作点A关于直线l的对称点A’,连接A’B交l于点P,即为所求.(不必证明)模型应用:(1)如图2,已知平面直角坐标系中两定点A(0,﹣1)和B(2,﹣1),P为x轴上一动点,则当PA+PB的值最小是点P的横坐标是,此时PA+PB= .(2)如图3,正方形ABCD的边长为4,E为AB的中点,P是AC上一动点,连接BD,由正方形对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE 的最小值是.(3)如图4,在菱形ABCD中,AB=10,∠DAB=60°,P是对角线AC上一动点,E,F 分别是线段AB和BC上的动点,则PE+PF的最小值是.(4)如图5,在菱形ABCD中,AB=6,∠B=60°,点G是边CD边的中点,点E.F分别是AG,AD上的两个动点,则EF+ED的最小值是.变式训练2-2如图,矩形ABCD中,AD=15,AB=10,E为AB边上一点,且DE=2AE,连接CE与对角线BD交于F;若P、Q分别为AB边和BC边上的动点,连接EP、PQ和QF;则四边形EPQF周长的最小值是___________.变式训练2-3如图,已知直线l1∥l2,l1、l2之间的距离为8,点P到直线l1的距离为6,点Q到直线l2的距离为4,PQ=4,在直线l1上有一点A,直线l2上有一动点B,满足AB⊥l2,且PA+AB+BQ最小,此时PA+BQ= .变式训练2-4如图,已知在平面直角坐标系xOy中,直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于点E和F.(1)求经过A、B、C三点的抛物线的解析式;(2)当BE经过(1)中抛物线的顶点时,求CF的长;(3)在抛物线的对称轴上取两点P、Q(点Q在点P的上方),且PQ=1,要使四边形BCPQ 的周长最小,求出P、Q两点的坐标.中考真题1.要在街道旁建奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使A、B到它的距离之和最短?小聪以街道为x轴,建立了如图所示的平面直角坐标系,A点坐标为(0,3),B点坐标为(6,5),则A、B两点到奶站距离之和的最小值是.2.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A.(0,)B.(0,)C.(0,2)D.(0,)1S矩形ABCD,则点P到A、3.如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=3B两点距离之和PA+PB的最小值为()A.B.C.5D.4.已知抛物线y=x2+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x轴的距离始终相等,如图,点M的坐标为(,3),P是抛物线y=x2+1上一个动点,则△PMF周长的最小值是()A.3 B.4 C.5 D.65.如图,点A(a,3),B(b,1)都在双曲线y=上,点C,D,分别是x轴,y轴上的动点,则四边形ABCD周长的最小值为()A.B.C.D.6.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,D、E分别是AB、BC边上的动点,则AE+DE的最小值为()A.B.C.5 D.7.如图,Rt△ABC中,∠BAC=90°,AB=3,AC=6,点D,E分别是边BC,AC上的动点,则DA+DE的最小值为.8.如图,等腰△ABC的底边BC=20,面积为120,点F在边BC上,且BF=3FC,EG是腰AC的垂直平分线,若点D在EG上运动,则△CDF周长的最小值为.9.如图,菱形ABCD的边长为6,∠ABC=120°,M是BC边的一个三等分点,P是对角线AC上的动点,当PB+PM的值最小时,PM的长是()A.B.C.D.10.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠CAB交BC于D点,E,F分别是AD,AC上的动点,则CE+EF的最小值为()A.B.C.D.611.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是6的正方形OABC 的两边AB,BC分别相交于M,N 两点.△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是()A.6B.10 C.2D.212.如图,△ABC中,AC=BC=2,AB=1,将它沿AB翻折得到△ABD,则四边形ADBC的形状是形,P、E、F分别为线段AB、AD、DB上的任意点,则PE+PF的最小值是.13.如图,已知抛物线y=x2+bx+c与直线y=x+3交于A,B两点,交x轴于C、D两点,连接AC、BC,已知A(0,3),C(﹣3,0).(1)求此抛物线的解析式;(2)在抛物线对称轴l上找一点M,使|MB﹣MD|的值最大,并求出这个最大值;(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P,使得以A,P,Q为顶点的三角形与△ABC相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.14.如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.(1)用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法);(2)在(1)的条件下,①证明:AE⊥DE;②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值.15.如图,抛物线y=ax2+bx+c(a≠0)经过点A(﹣1,0),B(3,0),C(0,3)三点.(1)求抛物线的解析式及顶点M的坐标;(2)连接AC、BC,N为抛物线上的点且在第四象限,当S△NBC=S△ABC时,求N点的坐标;(3)在(2)问的条件下,过点C作直线l∥x轴,动点P(m,3)在直线l上,动点Q(m,0)在x轴上,连接PM、PQ、NQ,当m为何值时,PM+PQ+QN的和最小,并求出PM+PQ+QN和的最小值.16.如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x+c 的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND长度的最大值;(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴、y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F,E的坐标.17.如图1,已知抛物线y=(x﹣2)(x+a)(a>0)与x轴从左至右交于A,B两点,与y轴交于点C.(1)若抛物线过点T(1,﹣),求抛物线的解析式;(2)在第二象限内的抛物线上是否存在点D,使得以A、B、D三点为顶点的三角形与△ABC相似?若存在,求a的值;若不存在,请说明理由.(3)如图2,在(1)的条件下,点P的坐标为(﹣1,1),点Q(6,t)是抛物线上的点,在x轴上,从左至右有M、N两点,且MN=2,问MN在x轴上移动到何处时,四边形PQNM的周长最小?请直接写出符合条件的点M的坐标.18.如图,对称轴为直线x=2的抛物线经过A(﹣1,0),C(0,5)两点,与x轴另一交点为B.已知M(0,1),E(a,0),F(a+1,0),P是第一象限内抛物线上的动点.(1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标;(3)若△PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?请说明理由.19.探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1(x1,y1),P2(x2,y2),可通过构造直角三角形利用图1得到结论:P1P2=他还利用图2证明了线段P1P2的中点P(x,y)P的坐标公式:x=,y=.(1)请你帮小明写出中点坐标公式的证明过程;运用:(2)①已知点M(2,﹣1),N(﹣3,5),则线段MN长度为;②直接写出以点A(2,2),B(﹣2,0),C(3,﹣1),D为顶点的平行四边形顶点D的坐标:;拓展:(3)如图3,点P(2,n)在函数y=x(x≥0)的图象OL与x轴正半轴夹角的平分线上,请在OL、x轴上分别找出点E、F,使△PEF的周长最小,简要叙述作图方法,并求出周长的最小值.20.如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C.(1)求直线y=kx+b的函数解析式;(2)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;(3)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF 的最小值.21.如图①,在平面直角坐标系中,OA=6,以OA为边长作等边三角形ABC,使得BC∥OA,且点B、C落在过原点且开口向下的抛物线上.(1)求这条抛物线的解析式;(2)在图①中,假设一动点P从点B出发,沿折线BAC的方向以每秒2个单位的速度运动,同时另一动点Q从O点出发,沿x轴的负半轴方向以每秒1个单位的速度运动,当点P运动到A点时,P、Q都同时停止运动,在P、Q的运动过程中,是否存在时间t,使得PQ⊥AB,若存在,求出t的值,若不存在,请说明理由;(3)在BC边上取两点E、F,使BE=EF=1个单位,试在AB边上找一点G,在抛物线的对称轴上找一点H,使得四边形EGHF的周长最小,并求出周长的最小值.本人所著《初中几何模型与解题通法》已发行,可在当当、淘宝和京东搜索购买特色:1.由一线名师编写,更专业权威,各地历年中考压轴题几乎都能在书中找到对应的模型和方法,甚至出现大量高度类似题。
专题07 将军饮马模型(解析版)
专题07.将军饮马模型将军饮马模型在考试中,无论是解答题,还是选择、填空题,都是学生感觉有困难的地方,也恰是学生能力区分度最重要的地方,主要考查转化与化归等的数学思想。
在各类考试中都以中高档题为主。
在解决几何最值问题主要依据是:①两点之间,线段最短;②垂线段最短,涉及的基本方法还有:利用轴对称变换化归到“三角形两边之和大于第三边”、“三角形两边之差小于第三边”等。
希望通过本专题的讲解让大家对这类问题有比较清晰的认识。
··模型1、将军饮马--两定一动求线段和的最小值【模型探究】A,B为定点,m为定直线,P为直线m上的一个动点,求AP+BP的最小。
(1)如图1,点A、B在直线m两侧:辅助线:连接AB交直线m于点P,则AP+BP的最小值为AB.(2)如图2,点A、B在直线同侧:辅助线:过点A作关于定直线m的对称点A’,连接A’B交直线m于点P,则AP+BP的最小值为A’B.图1图2例1.(2022·江苏·八年级专题练习)要在街道旁修建一个奶站,向居民区A、B提供牛奶,小聪根据实际情况,以街道旁为x轴,测得A点的坐标为(0,3),B点的坐标为(6,5),则从A、B两点到奶站距离之和的最小值是____.【答案】10【分析】作A点关于x轴的对称点A',连接A'B与x轴交于点P,连接AP,则A'B即为所求.【详解】解:作A点关于x轴的对称点A',连接A'B与x轴交于点P,连接AP,∵AP=A'P,∴AP+BP∵A(0,3),∴A'(0∴P点到A、B的距离最小值为【点睛】本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的方法,会根据两点坐标求两点间距离例2.(2022·江苏·八年级专题练习)如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是边AC上一点,若AE=2,则EM+CM的最小值为()C.D.A B.【点睛】本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的方法,灵活运用勾股定理是解题关键.例3.(2022·江苏·八年级专题练习)如图所示,在ABC 中,AB AC =,直线EF 是AB 的垂直平分线,D 是BC 的中点,M 是EF 上一个动点,ABC 的面积为12,4BC =,则BDM 周长的最小值是_________.【点睛】本题主要考查了线段垂直平分线的性质,三线合一定理,解题的关键在于能够根据题意得到当A、M、D三点共线时,AM+DM最小,即为AD.例4.(2023·湖北洪山·八年级期中)如图,将△ABC沿AD折叠使得顶点C恰好落在AB边上的点M处,D 在BC上,点P在线段AD上移动,若AC=6,CD=3,BD=7,则△PMB周长的最小值为___.【答案】18【分析】首先明确要使得△PMB周长最小,即使得PM+PB最小,再根据翻折的性质可知PM=PC,从而可得满足PC+PB最小即可,根据两点之间线段最短确定BC即为最小值,从而求解即可.【详解】解:由翻折的性质可知,AM=AC,PM=PC,∴M点为AB上一个固定点,则BM长度固定,∵△PMB周长=PM+PB+BM,∴要使得△PMB周长最小,即使得PM+PB最小,∵PM=PC,∴满足PC+PB最小即可,显然,当P、B、C三点共线时,满足PC+PB最小,如图所示,此时,P点与D点重合,PC+PB=BC,∴△PMB周长最小值即为BC+BM,此时,作DS⊥AB于S点,DT⊥AC延长线于T点,AQ⊥BC延长线于Q点,由题意,AD为∠BAC的角平分线,∴DS=DT,∵1122ACDS AC DT CD AQ==,1122ABDS AB DS BD AQ==,∴11221122ABDACDAB DS BD AQSS AC DT CD AQ==,即:AB BDAC CD=,∴763AB=,解得:AB=14,∵AM=AC=6,∴BM=14-6=8,∴△PMB周长最小值为BC+BM=3+7+8=18,故答案为:18.【点睛】本题考查翻折的性质,以及最短路径问题等,掌握翻折的基本性质,利用角平分线的性质进行推理求解,理解并熟练运用两点之间线段最短是解题关键.例5.(2023·江阴市八年级月考)某班级在探究“将军饮马问题”时抽象出数学模型:直线l 同旁有两个定点A 、B ,在直线l 上存在点P ,使得PA PB +的值最小.解法:如图1,作点A 关于直线l 的对称点A ',连接A B ',则A B '与直线l 的交点即为P ,且PA PB +的最小值为A B '.请利用上述模型解决下列问题:(1)几何应用:如图2,ABC ∆中,90C ∠=︒,2AC BC ==,E 是AB 的中点,P 是BC 边上的一动点,则PA PE +的最小值为;(2)几何拓展:如图3,ABC ∆中,2AC =,30A ∠=︒,若在AB 、AC 上各取一点M 、N 使CM MN +的值最小,画出图形,求最小值并简要说明理由.【答案】(110;(23【分析】(1)作点A 关于BC 的对称点A′,连接A′E 交BC 于P ,此时PA+PE 的值最小.连接BA′,先根据勾股定理求出BA′的长,再判断出∠A′BA=90°,根据勾股定理即可得出结论;(2)作点C 关于直线AB 的对称点C′,作C′N ⊥AC 于N 交AB 于M ,连接AC′,根据等边三角形的性质解答.【详解】解:(1)如图2所示,作点A 关于BC 的对称点A′,连接A′E 交BC 于P ,此时PA+PE 的值最小.连接BA′.由勾股定理得,22BC AC +2222+2,∵E 是AB 的中点,∴BE=122,∵90C ∠=︒,2AC BC ==,∴∠A′BC=∠ABC=45°,∴∠A′BA=90°,∴PA+PE 的最小值=A′E=22'A B BE +()()22222+1010;(2)如图3,作点C关于直线AB的对称点C′,作C′N⊥AC于N交AB于M,连接AC′,则C′A=CA=2,∠C′AB=∠CAB=30°,∴△C′AC为等边三角形,∴∠AC′N=30°,∴AN=12C′A=1,∴CM+MN的最小值为2221 3.【点睛】本题考查的是轴对称--最短路线问题、勾股定理、等边三角形的判定和性质、含30°角的直角三角形的性质、垂线段最短,解这类问题的关键是将所给问题抽象或转化为数学模型,把两条线段的和转化为一条线段.模型2、将军饮马--两动一定求线段和的最小值【模型探究】已知定点A位于定直线m,n的内侧,在直线m、n分别上求点P、Q点PA+PQ+QA周长最短.辅助线:过点A作关于定直线m、n的对称点A’、A’’,连接A’A’’交直线m、n于点P、Q,则PA+PQ+QA 的最小值为A’A’’.例1.(2022·江苏·无锡市八年级期末)如图,已知∠AOB的大小为α,P是∠AOB内部的一个定点,且OP =4,点E、F分别是OA、OB上的动点,若△PEF周长的最小值等于4,则α=()A.30°B.45°C.60°D.90°【答案】A【分析】设点P关于OA的对称点为C,关于OB的对称点为D,当点E、F在CD上时,△PEF的周长为PE+EF+FP=CD,此时周长最小,根据CD=4可得出△COD是等边三角形,进而可求出α的度数.【详解】解:如图,作点P关于OA的对称点C,关于OB的对称点D,连接CD,交OA于E,OB于F.此时,△PEF的周长最小.连接OC,OD,PE,PF.∵点P与点C关于OA对称,∴OA垂直平分PC,∴∠COA=∠AOP,PE=CE,OC=OP,同理,可得∠DOB=∠BOP,PF=DF,OD=OP.∴∠COA+∠DOB=∠AOP+∠BOP=∠AOB=α,OC=OD=OP=4,∴∠COD=2α.又∵△PEF的周长=PE+EF+FP=CE+EF+FD=CD=4,∴OC=OD=CD=4,∴△COD是等边三角形,∴2α=60°,∴α=30°.故选:A.【点睛】本题主要考查了最短路径问题,本题找到点E和F的位置是解题的关键.要使△PEF的周长最小,通常是把三边的和转化为一条线段,运用三角形三边关系解决.例2.(2022·江苏九年级一模)如图,Rt△ABC中,∠C=90°,AC=3,BC=4,D,E,F分别是AB,BC,AC边上的动点,则△DEF的周长的最小值是()A.2.5B.3.5C.4.8D.6【答案】C【分析】如图作D关于直线AC的对称点M,作D关于直线BC的对称点N,连接CM,CN,CD,EN,FM,DN,DM.由∠MCA=∠DCA,∠BCN=∠BCD,∠ACD+∠BCD=90°,推出∠MCD+∠NCD=180°,可得M、B、N 共线,由DF+DE+EF=FM+EN+EF,FM+EN+EF≥MN,可知当M、F、E、N共线时,且CD⊥AB时,DE+EF+FD的值最小,最小值=2CD,求出CD的值即可解决问题.【详解】解:如图,作D关于直线AC的对称点M,作D关于直线BC的对称点N,连接CM,CN,CD,EN,FM,DN,DM.∴DF =FM ,DE =EN ,CD =CM ,CD =CN ,∴CD =CM =CN ,∵∠MCA =∠DCA ,∠BCN =∠BCD ,∠ACD +∠BCD =90°,∴∠MCD +∠NCD =180°,∴M 、C 、N 共线,∵DF +DE +EF =FM +EN +EF ,∵FM +EN +EF ≥MN ,∴当M 、F 、E 、N 共线时,且CD ⊥AB 时,DE +EF +FD 的值最小,最小值为MN =2CD ,∵CD ⊥AB ,∴12•AB •CD =12•AB•AC ,∴CD =•AB AC AB =125=2.4,∴DE +EF +FD 的最小值为4.8.故选:C .【点睛】本题考查了轴对称-最短问题、两点之间线段最短、垂线段最短等知识,解题的关键是灵活运用轴对称以及垂线段最短解决最短问题,属于中考选择题中的压轴题.例3.(2023春·贵州毕节·七年级统考期末)如图所示,30AOB ∠= ,点P 为AOB ∠内一点,8OP =,点,M N 分别在,OA OB 上,求PMN ∆周长的最小值.【答案】PMN ∆周长的最小值为8【分析】作P 关于OA 、OB 的对称点12P P 、,连结1OP、2OP ,即可快速找到解题思路.【详解】如图,作P 关于OA 、OB 的对称点12P P 、,连结1OP、2OP ,12PP 交OA 、OB 于M 、N ,此时PMN ∆周长最小,根据轴对称性质可知1PM PM =,2P N PN =,1212PM N PM M N PN PP ∴∆=++=,且1AO P AO P ∠=∠,2BO P BO P ∠=∠,12260POP AOB ∠=∠=︒,128O P O P O P ===,12PPO ∆为等边三角形,1218PP OP ==即PMN ∆周长的最小值为8.【点睛】本题应用知识比较隐晦,分别考查了轴对称图形和等边三角形,需要认真分析,充分联系所学知识,方可正确解答.例4.(2023.山东八年级期末)如图所示,在四边形ABCD中,∠A=90º,∠C=90º,∠D=60º,AD=3,AB=,若点M、N分别为边CD,AD上的动点,则△BMN的周长最小值为()A. B. C.6 D.3【答案】C【解析】作点B关于CD、AD的对称点分别为点B'和点B'',连接B'B''交DC和AD于点M和点N,连接MB、NB;再DC和AD上分别取一动点M’和N’(不同于点M和N),连接M'B,M'B',N’B和N'B'',如图1所示:∵B'B''<M'B'+M'N'+N'B",B'M'=BM',B"N'=BN',∴BM'+M'N'+BN'>B'B",又∵B'B"=B'M+MN+NB",MB=MB',NB=NB'',∴NB+NM+BM<BM'+M’N'+BN'NB+NM+BM时周长最小;连接DB,过点B'作B'H⊥DB''于B’’D的延长线于点H,如图示2所示:在Rt△ABD中,AD=3,AB=,,∴∠2=30º,∴∠5=30º,DB=DB'',又∵∠ADC=∠1+∠2=60º,∴∠1=30º,∴∠7=30º,DB'=DB,∴∠B'DB''=∠1+∠2+∠5+∠7=120º,DB'=DB''=DB,又∵∠B'DB"+∠6=180º,∴∠6=60º,∴HD=,HB'=3,在Rt △B'HB''中,由勾股定理得:B'B"=,NB +NM +BM =6,故选C.模型3、将军饮马--两动两定求线段和的最小值【模型探究】A ,B 为定点,在定直线m 、n 上分别找两点P 、Q ,使PA +PQ +QB 最小。
中考复习讲义:将军饮马所有模型及变式——终极篇(直线型 角型 平移型)(练习无答案)
将军饮马所有模型及变式——终极篇一、模型展现(1)直线型模型1:在直线l上求作点P,使PA+PB最小.原理:两点之间,线段最短.PA+PB最小值即为AB长.模型2:在直线l上求作点P,使PA+PB最小.原理:和最小,同侧转异侧.两点之间,线段最短.模型3:在直线l上求作点P,使|PA-PB|最大.原理:两边之差小于第三边,|PA-PB|最大值即为AB长.模型4:在直线l上求作点P,使|PA-PB|最大.原理:差最大,异侧转同侧.两边之差小于第三边.模型5:在直线l上求作点P,使|PA-PB|最小.原理:|PA-PB|最小为0,中垂线上的点到线段两端的距离相等.(2)角型模型6:在OA,OB上求作点M,N,使△PMN周长最小.原理:作两次对称,两点之间,线段最短.模型7:在OA,OB上求作点M,N,使四边形PQMN周长最小.原理:P,Q分别作对称,两点之间,线段最短.模型8:在OA,OB上求作点M,N,(1)使PM+MN最小.(2)使PN+MN最小.原理:先连哪个点,就先做关于那个点所在射线的对称点.垂线段最短.模型9:P,Q为OA,OB的定点,在OA,OB上求作点M,N,使PN+NM+MQ最小.原理:两点之间,线段最短,PN+NM+MQ最小值即为P’Q’的长.(3)平移型模型10:在直线l上求作点M,N,使MN=a,且AM+MN+NB最小.原理:将l上的MN转化到B’B.(问题情境:将军从军营A出发,去河边l饮马,饮马完在河边牵马散步a米,回军营B.可以转化为饮完马,直接去军营B,在到达之前散步.)模型11(造桥选址):直线l1∥l2,在l1上求作点M,在l2上求作点N,使MN⊥l1,且AM+MN+NB 最小.原理:将MN转化为AA’.(可以理解为在A处先走过桥的路,再直达点B.)二、典型例题例1:(模型4)已知点A(1,3)、B(3,-1),点M在x轴上,当AM-BM最大时,点M的坐标为______解析:例2:(模型11)解析:例3:(结合勾股)解析:练习反馈:1.在直线l上求作点P,使l平分∠APB,与此作法相同.2. 从点A(0,2)发出的一束光线,经x轴反射,过点B(4,3),求从点A到点B 所经过的路径长.3.已知点A(-3,-4)和B(-2,1).(1)试在y轴上求一点P,使PA+PB的值最小(2)试在y轴上求一点P,使|QA-QB|的值最大(3)若C(0,m),D(0,m-2),当m为何值时,四边形ABCD的周长最小.4. 如图,在等边△ABC中,AB=6,N为AB上一点,且AN=2,∠BAC的平分线交BC于点D,M是AD上的动点,连结BM、MN,则BM+MN的最小值是_____5.如图,当四边形PABN的周长最小时,a=______。
将军饮马问题的11个模型及例题
将军饮马问题问题概述路径最短、线段和最小、线段差最大、周长最小等一系列最值问题方法原理1.两点之间,线段最短;2. 三角形两边之和大于第三边,两边之差小于第三边;3. 中垂线上的点到线段两端点的距离相等;4. 垂线段最短 .基本模型1.已知:如图,定点A、 B 分布在定直线l 两侧;要求:在直线l 上找一点 P,使 PA+PB的值最小解:连接AB 交直线 l 于点 P,点 P 即为所求 ,PA+PB的最小值即为线段AB的长度理由:在l 上任取异于点P 的一点 P′,连接 AP′、 BP′,在△ ABP’中, AP′+BP′>AB,即 AP′+BP′>AP+BP∴ P 为直线 AB与直线 l 的交点时, PA+PB最小 .2.已知:如图,定点 A 和定点 B 在定直线l 的同侧要求:在直线l 上找一点 P,使得 PA+PB值最小(或△ ABP的周长最小)解:作点 A关于直线l 的对称点A′,连接 A′B 交 l 于 P,点 P 即为所求;理由:根据轴对称的性质知直线l 为线段 AA′的中垂线,由中垂线的性质得:PA=PA′,要使 PA+PB最小,则需 PA′+PB值最小,从而转化为模型 1.3.已知:如图,定点A、 B 分布在定直线l 的同侧( A、B 两点到 l 的距离不相等)要求:在直线l 上找一点P,使︱ PA-PB︱的值最大解:连接 BA并延长,交直线 l 于点 P,点 P 即为所求;理由:此时︱ PA-PB︱ =AB,在 l 上任取异于点 P 的一点 P′,连接 AP′、BP′,由三角形的三边关系知︱ P′A-P′B︱<AB,即︱ P′A-P′B︱ <︱PA-PB︱4.已知:如图,定点 A、 B分布在定直线 l 的两侧( A、B 两点到 l 的距离不相等)要求:在直线 l 上找一点 P,使︱ PA-PB︱的值最大解:作点 B 关于直线 l的对称点 B′,连接 B′A 并延长交于点 P,点 P 即为所求;理由:根据对称的性质知l 为线段 BB′的中垂线,由中垂线的性质得: PB=PB′,要使︱ PA-PB︱最大,则需︱ PA-PB′︱值最大,从而转化为模型 3.典型例题 1-1如图,直线y= x+4 与 x 轴、 y 轴分别交于点A和点 B,点 C、 D 分别为线段AB、OB的中点,点 P 为 OA上一动点,当 PC+PD最小时,点P 的坐标为 _________,此时 PC+PD的最小值为 _________.【分析】符合基本模型 2 的特征,作点 D 关于 x 轴的对称点D' ,连接CD'交x 轴于点P,此时PC+PD值最小,由条件知CD为△BAO的中位线, OP为△ CDD'的中位线,易求 OP长,从而求出 P 点坐标; PC+PD的最小值即 CD'长,可用勾股定理(或两点之间的距离公式,实质相同)计算.【解答】连接 CD,作点 D 关于 x 轴的对称点D′,连接CD′交 x 轴于点 P,此时 PC+PD值最小.令y= x+4 中 x=0,则 y=4,∴点 B 坐标( 0, 4);令 y= x+4 中 y=0,则 x+4=0,解得: x=﹣6,∴点 A 的坐标为(﹣ 6, 0).∵点 C、 D 分别为线段AB、 OB 的中点,∴ CD为△ BAO的中位线,∴CD∥ x 轴,且 CD=12 AO=3,∵点 D′和点 D 关于 x 轴对称,∴ O为 DD′的中点,D′( 0, -1 ),∴ OP为△ CDD′的中位线,∴OP=12 CD=32,∴点 P 的坐标为(﹣,0).在Rt△ CDD′中,CD′ =CD 2 D D 2=3242=5,即PC+PD的最小值为5.【小结】还可用中点坐标公式先后求出点C、点 P 坐标;若题型变化, C、 D不是 AB 和 OB中点时,则先求直线 CD′的解析式,再求其与 x 轴的交点 P 的坐标 .典型例题 1-2如图,在平面直角坐标系中,已知点 A 的坐标为( 0, 1),点 B的坐标为(,﹣ 2),点 P 在直线 y=﹣ x 上运动,当 |PA﹣ PB| 最大时点 P 的坐标为 _________, |PA ﹣ PB|的最大值是 _________.【分析】符合基本模型 4 的特征,作 A 关于直线y=﹣ x 对称点 C,连接 BC,可得直线 BC的方程;求得 BC与直线 y=﹣ x 的交点 P 的坐标;此时 |PA ﹣ PB|=|PC ﹣ PB|=BC 取得最大值,再用两点之间的距离公式求此最大值.【解答】作 A 关于直线y=﹣ x 对称点 C,易得 C 的坐标为(﹣ 1, 0);连接 BC,可得直线BC 的方程为 y=﹣54 x﹣54,与直线 y= ﹣ x联立解得交点坐标P 为( 4,﹣ 4);此时 |PA﹣PB|=|PC ﹣PB|=BC取得最大值,最大值BC= (231)2( 2)2= 241;【小结】“两点一线”大多考查基本模型 2 和 4,需作一次对称点,连线得交点 .变式训练 1-1已知菱形OABC在平面直角坐标系的位置如图所示,顶点A( 5, 0),OB=4 ,点 P是对角线OB上的一个动点,D( 0,1),当 CP+DP最短时,点 P 的坐标为()A.(0,0)B.(1,)C.(,) D .(,)变式训练 1-2如图,菱形ABCD中,对角线AC和 BD交于点 O, AC=2,BD=2 ,E 为 AB的中点, P 为对角线 AC上一动点,则 PE+PB的最小值为 __________.变式训练 1-3如图,已知直线y= x+1 与 y 轴交于点 A,与 x 轴交于点 D,抛物线 y= x2+bx+c 与直线交于A、E 两点,与 x 轴交于 B、 C两点,且 B 点坐标为( 1, 0).(1)求该抛物线的解析式;(2)在抛物线的对称轴上找一点M,使 |AM﹣ MC|的值最大,求出点 M的坐标 .拓展模型1.已知:如图, A 为锐角∠ MON外一定点;要求:在射线OM上找一点 P,在射线 ON上找一点 Q,使AP+PQ的值最小 .解:过点 A 作 AQ⊥ ON于点 Q, AQ与 OM相交于点 P,此时, AP+PQ最小;理由: AP+PQ≧ AQ,当且仅当A、 P、 Q三点共线时,AP+PQ取得最小值AQ,根据垂线段最短,当AQ⊥ ON时, AQ最小 .2.已知:如图, A 为锐角∠ MON内一定点;要求:在射线OM上找一点 P,在射线 ON上找一点 Q,使AP+PQ的值最小 .解:作点 A 关于 OM的对称点A′,过点A′作 AQ⊥ ON于点 Q, A′ Q交 OM于点 P,此时 AP+PQ最小;理由:由轴对称的性质知AP=A′ P,要使 AP+PQ最小,只需 A′ P+PQ最小,从而转化为拓展模型13.已知:如图, A 为锐角∠ MON内一定点;要求:在射线OM上找一点 P,在射线 ON上找一点 Q,使△ APQ的周长最小解:分别作 A 点关于直线 OM的对称点 A1, 关于 ON的对称点 A2,连接 A 1A2交 OM于点 P,交 ON于点 Q,点P 和点 Q即为所求,此时△APQ周长最小,最小值即为线段 A1A2的长度;理由:由轴对称的性质知AP=AP, AQ=AQ,△ APQ的周12长AP+PQ+AQ=A1P+PQ+A2Q,当 A1、 P、 Q、 A2四点共线时,其值最小 .4.已知:如图, A、 B 为锐角∠ MON内两个定点;要求:在OM上找一点 P,在 ON上找一点Q,使四边形APQB的周长最小解:作点 A 关于直线OM的对称点A′,作点 B 关于直线ON的对称点B′,连接 A′B′交 OM于 P,交 ON于 Q,则点 P、点 Q即为所求,此时四边形APQB周长的最小值即为线段AB和 A′B′的长度之和;理由: AB 长为定值,由基本模型将PA转化为 PA′,将QB转化为 QB′,当 A′、 P、Q、 B′四点共线时,PA′+PQ+ QB′的值最小,即PA+PQ+ QB 的值最小 .5. 搭桥模型已知:如图,直线m∥ n,A、B分别为m上方和n下方的定点,(直线 AB 不与 m垂直)要求:在 m、n 之间求作垂线段PQ,使得 AP+PQ+BQ最小 .分析: PQ为定值,只需AP+BQ最小,可通过平移,使P、 Q“接头”,转化为基本模型解:如图,将点 A 沿着平行于PQ的方向,向下平移至点 A′,使得AA′ =PQ,连接 A′ B 交直线 n 于点Q,过点 Q作 PQ⊥n,交直线m于点 P,线段 PQ即为所求,此时AP+PQ+BQ最小 .理由:易知四边形QPAA′为平行四边形,则QA′ =PA,当 B、 Q、 A′三点共线时,QA′ +BQ最小,即AP+BQ最小, PQ长为定值,此时AP+PQ+BQ最小 .6.已知:如图,定点A、 B 分布于直线l 两侧,长度为a(a为定值 ) 的线段 PQ在 l 上移动( P 在 Q左边)要求:确定PQ的位置,使得AP+PQ+QB最小分析: PQ为定值,只需AP+QB的值最小,可通过平移,使 P、Q“接头”,转化为基本模型解:将点 A 沿着平行于l 的方向,向右移至A′,使AA′=PQ=a,连接 A′B 交直线 l 于点 Q,在 l 上截取PQ=a( P 在 Q左边),则线段PQ即为所求,此时AP+PQ+QB的最小值为A′B+PQ,即 A′B+a理由:易知四边形APQA′为平行四边形,则PA=QA′,当 A′、 Q、 B 三点共线时, QA′+QB最小,即PA+QB最小,又PQ长为定值此时PA+PQ+QB值最小 .7.已知:如图,定点A、 B 分布于直线l 的同侧,长度a(a 为定值 ) 的线段 PQ在 l 上移动( P 在 Q左边)要求:确定PQ的位置,使得四边形 APQB周长最小分析: AB长度确定,只需AP+PQ+QB最小,通过作A 点关于 l 的对称点,转化为上述模型3解:作 A 点关于 l 的对称点A′,将点 A′沿着平行于l的方向,向右移至A′′,使 A′A′′=PQ=a,连接 A′B交 l 于 Q,在 l 上截取 QP=a( P 在 Q左边),线段PQ即为所求,此时四边形APQB周长的最小值为A′B+AB+PQ,即 A′′B+AB+a典型例题 2-1如图,在矩形 ABCD中,AB=10,BC=5,若点 M、N 分别是线段AC、AB上的两个动点,则BM+MN的最小值为.【分析】符合拓展模型 2 的特征,作点 B 关于 AC的对称点E,再过点 E 作 AB的垂线段,该垂线段的长即BM+MN的最小值,借助等面积法和相似可求其长度.【解答】作点 B 关于 AC的对称点E,再过点 E 作 EN⊥ AB 于 N,则 BM+MN=EM+MN,其最小值即EN长;∵ AB=10, BC=5,∴ AC=AB2BC2=55,等面积法求得AC边上的高为10 5=25,∴BE=45,5 5易知△ ABC∽△ ENB,∴,代入数据解得EN=8.即BM+MN的最小值为 8.【小结】该类题的思路是通过作对称,将线段转化,再根据定理、公理连线或作垂线;可作定点或动点关于定直线的对称点,有些题作定点的对称点易解,有些题则作动点的对称点易解 .典型例题 2-2如图,∠ AOB=60°,点 P 是∠ AOB内的定点且 OP=,点M、N分别是射线 OA、OB上异于点O的动点,则△ PMN周长的最小值是()A.B.C.6D.3【分析】符合拓展模型 3 的特征;作P 点分别关于OA、OB的对称点C、 D,连接 CD分别交OA、 OB 于M、 N,此时△PMN周长最小,其值为CD长;根据对称性连接OC、OD,分析条件知△OCD是顶角为120°的等腰三角形,作底边上高,易求底边CD.【解答】作 P 点分别关于OA、 OB的对称点C、 D,连接 CD分别交 OA、 OB于 M、 N,如图,则MP=MC,NP=ND, OP=OD=OC= ,∠ BOP=∠ BOD,∠ AOP=∠ AOC,∴PN+PM+MN=ND+MN+NC=DC,∠COD=∠ BOP+∠ BOD+∠AOP+∠ AOC=2∠AOB=120°,∴此时△ PMN周长最小,作 OH⊥CD于 H,则 CH=DH,∵∠ OCH=30°,∴ OH= OC=,CH= OH= ,∴ CD=2CH=3.即△ PMN周长的最小值是3;故选: D.【小结】根据对称的性质,发现△OCD是顶角为 120°的等腰三角形,是解题的关键,也是难点.典型例题 2-3如图,已知平行四边形ABCO,以点 O为原点, OC所在的直线为x 轴,建立直角坐标系, AB 交 y 轴于点 D, AD=2, OC=6,∠ A=60°,线段 EF 所在的直线为 OD的垂直平分线,点 P 为线段 EF 上的动点, PM⊥ x 轴于点 M点,点 E 与 E′关于 x 轴对称,连接 BP、 E′ M.(1)请直接写出点 A 坐标为,点B坐标为;(2)当 BP+PM+ME′的长度最小时,请求出点P 的坐标 .【分析】( 1)解直角三角形求出OD, BD的长即可解决;(2)符合“搭桥模型” 的特征;首先证明四边形 OPME′是平行四边形,可得 OP=EM,PM是定值, PB+ME′=OP+PB的值最小时, BP+PM+ME′的长度最小,此时 P 点为直线OB与EF 的交点,结合OB的解析式可得P 点坐标;【解答】( 1)在 Rt △ ADO中,∵∠ A=60°, AD=2,∴ OD=2?tan60 ° =2,∴ A(﹣2,2),∵四边形ABCO是平行四边形,∴AB=OC=6,DB=6 2=4 B 42(2)如图,连接 OP.∵ EF 垂直平分线段 OD,PM⊥ OC,∴∠ PEO=∠ EOM=∠ PMO=90°,∴四边形 OMPE是矩形,∴ PM=OE= ,∵ OE=OE′,∴ PM=OE′, PM∥OE′,∴四边形 OPME′是平行四边形 ,∴OP=EM,∵ PM是定值,∴ PB+ME′ =OP+PB的值最小时, BP+PM+ME′的长度最小,∴当 O、 P、 B 共线时, BP+PM+ME′的长度最小,∵直线OB的解析式为y=x,∴ P(2,).【小结】求没有公共端点的两条线段之和的最小值,一般通过作对称和平移(构造平行四边形)的方法,转化为基本模型.典型例题 2-4如图所示,在平面直角坐标系中, Rt △ AOB的顶点坐标分别为A(﹣ 2, 0),O( 0, 0), B( 0,4),把△ AOB绕点 O按顺时针方向旋转 90°,得到△ COD.(1)求 C、 D 两点的坐标;(2)求经过 A、 B、D 三点的抛物线的解析式;(3)在( 2)中抛物线的对称轴上取两点E、 F(点 E 在点 F的上方),且 EF=1,使四边形ACEF的周长最小,求出 E、F 两点的坐标.【分析】符合拓展模型7 的特征,通过作对称、平移、连线,可找出E、 F 点,结合直线的解析式和抛物线的对称轴可解出E、F 坐标 .【解答】( 1)由旋转的性质可知:OC=OA=2, OD=OB=4,∴ C点的坐标是( 0, 2),D点的坐标是(4,0),(2)设所求抛物线的解析式为y=ax 2+bx+c,4a-2b+c=0由题意,得16a+4b+c=0c=4解得 a=-,b=1,c=4,∴所求抛物线的解析式为y=-2;(3)只需 AF+CE最短,抛物线y=-2的对称轴为x=1,将点 A 向上平移至A1(﹣ 2, 1),则 AF=A1E,作 A1关于对称轴x=1 的对称点A2( 4, 1),连接 A2C,A2C与对称轴交于点E,E 为所求,可求得A2C 的解析式为 y=-,当x=1时,y=,∴点E的坐标为(1,) ,点 F 的坐标为 (1,) .【小结】解决此类题的套路是“对称、平移、连线”;其中,作对称和平移的顺序可互换.变式训练 2-1几何模型:条件:如图1, A, B 是直线 l 同旁的两个定点.问题:在直线l 上确定一点P,使 PA+PB的值最小.方法:作点 A 关于直线l 的对称点A’,连接 A’ B 交 l 于点 P,即为所求 . (不必证明)模型应用:( 1)如图 2,已知平面直角坐标系中两定点A( 0,﹣ 1)和 B( 2,﹣ 1), P 为 x 轴上一动点,则当PA+PB的值最小是点P 的横坐标是,此时PA+PB=.(2)如图 3,正方形 ABCD的边长为 4, E 为 AB的中点, P 是 AC上一动点,连接 BD,由正方形对称性可知, B 与 D 关于直线 AC对称.连接 ED交 AC于 P,则 PB+PE的最小值是.( 3)如图 4,在菱形ABCD中, AB=10,∠ DAB=60°, P 是对角线AC上一动点, E, F 分别是线段AB和BC上的动点,则PE+PF的最小值是.( 4)如图 5,在菱形ABCD中, AB=6,∠ B=60°,点AG, AD上的两个动点,则EF+ED的最小值是G是边.CD边的中点,点E. F 分别是变式训练 2-2如图,矩形 ABCD中, AD=15, AB=10, E 为 AB边上一点,且DE=2AE,连接 CE与对角线 BD交于 F;若 P、 Q分别为 AB 边和BC边上的动点,连接 EP、 PQ和 QF;则四边形 EPQF周长的最小值是 ___________.变式训练 2-3如图,已知直线 l∥ l, l 、l2之间的距离为8,点 P 到直线 l的1211距离为 6,点 Q到直线 l 2的距离为 4, PQ=4 ,在直线 l 1上有一动点 A,直线l 2上有一动点B,满足AB⊥l 2,且PA+AB+BQ最小,此时PA+BQ= .变式训练 2-4如图,已知在平面直角坐标系xOy 中,直角梯形OABC的边 OA在 y 轴的正半轴上,OC在x 轴的正半轴上,OA=AB=2, OC=3,过点 B 作 BD⊥ BC,交 OA于点 D.将∠ DBC绕点 B 按顺时针方向旋转,角的两边分别交y 轴的正半轴、x 轴的正半轴于点E和 F.(1)求经过A、 B、C 三点的抛物线的解析式;(2)当 BE经过( 1)中抛物线的顶点时,求CF的长;(3)在抛物线的对称轴上取两点P、Q(点 Q 在点 P 的上方),且 PQ=1,要使四边形 BCPQ 的周长最小,求出 P、 Q两点的坐标.中考真题1. 要在街道旁建奶站,向居民区A、B 提供牛奶,奶站应建在什么地方,才能使A、B 到它的距离之和最短?小聪以街道为x 轴,建立了如图所示的平面直角坐标系, A 点坐标为(0,3), B 点坐标为( 6, 5),则 A、 B 两点到奶站距离之和的最小值是.2.如图,矩形 ABOC的顶点 A 的坐标为(﹣ 4, 5), D是 OB的中点, E 是 OC上的一点,当△ADE的周长最小时,点 E 的坐标是()A.( 0,)B.( 0,)C.( 0, 2)D.( 0,)3. 如图,在矩形ABCD中, AB=5, AD=3,动点P 满足S△PAB=1 S 矩形ABCD,则点P 到A、 B 两点距3离之和PA+PB的最小值为()A.B.C. 5D.4. 已知抛物线y=x2+1 具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x轴的距离始终相等,如图,点M的坐标为(, 3), P 是抛物线y=x2+1 上一个动点,则△ PMF周长的最小值是()A.3B.4C. 5D.65.如图,点 A( a,3),B(b,1)都在双曲线 y= 上,点 C,D,分别是 x 轴,y 轴上的动点,则四边形ABCD周长的最小值为()A.B.C. D .6.如图,在 Rt△ ABC中,∠ C=90°, AC=3, BC=4,D、E 分别是 AB、BC边上的动点,则 AE+DE的最小值为()A.B.C.5D.7. 如图, Rt△ ABC中,∠BAC=90°, AB=3, AC=6,点D, E 分别是边BC, AC 上的动点,则 DA+DE的最小值为.8.如图,等腰△ ABC的底边 BC=20,面积为 120,点 F 在边 BC上,且 BF=3FC,EG是腰 AC的垂直平分线,若点 D 在EG上运动,则△CDF周长的最小值为.9. 如图,菱形ABCD的边长为6,∠ ABC=120°, M 是上的动点,当PB+PM的值最小时,PM的长是(BC边的一个三等分点,)P 是对角线ACA.B.C.D.10.如图,在 Rt△ ABC中,∠ ACB=90°, AC=6, BC=8, AD平分∠ CAB交 BC于 D 点, E, F 分别是 AD, AC上的动点,则 CE+EF的最小值为()A.B.C.D.611.如图,在平面直角坐标系中,反比例函数 y=( x>0)的图象与边长是 6 的正方形 OABC的两边 AB,BC分别相交于 M,N 两点.△ OMN的面积为10.若动点 P 在 x 轴上,则 PM+PN的最小值是()A. 6B. 10C.2D.212. 如图,△ ABC中, AC=BC=2,AB=1,将它沿 AB翻折得到△ ABD,则四边形 ADBC的形状是形,P、E、F分别为线段AB、AD、 DB 上的任意点,则PE+PF的最小值是.13. 如图,已知抛物线y= x2+bx+c 与直线 y= x+3 交于 A,B 两点,交x 轴于 C、 D 两点,连接 AC、 BC,已知 A( 0,3), C(﹣ 3, 0).(1)求此抛物线的解析式;(2)在抛物线对称轴 l 上找一点 M,使 |MB﹣ MD|的值最大,并求出这个最大值;(3)点 P 为 y 轴右侧抛物线上一动点,连接PA,过点 P 作 PQ⊥ PA 交 y 轴于点 Q,问:是否存在点P,使得以A,P,Q为顶点的三角形与△ABC相似?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.14. 如图,在四边形ABCD中,∠ B=∠ C=90°, AB> CD, AD=AB+CD.(1)用尺规作∠ ADC的平分线 DE,交 BC于点 E,连接 AE(保留作图痕迹,不写作法);(2)在( 1)的条件下,①证明: AE⊥ DE;②若 CD=2, AB=4,点 M,N 分别是 AE, AB 上的动点,求B M+MN的最小值.15. 如图,抛物线y=ax2+bx+c ( a≠ 0)经过点A(﹣ 1, 0),B( 3, 0), C( 0,3)三点.(1)求抛物线的解析式及顶点M的坐标;(2)连接 AC、 BC,N 为抛物线上的点且在第四象限,当(3)在( 2)问的条件下,过点 C 作直线 l ∥ x 轴,动点S△NBC=S△ABC时,求 N点的坐标;P( m,3)在直线 l 上,动点 Q( m,0)在 x 轴上,连接 PM、PQ、NQ,当 m为何值时, PM+PQ+QN的和最小,并求出 PM+PQ+QN 和的最小值.16. 如图,直线 y=5x+5 交 x 轴于点 A,交 y 轴于点C,过 A, C 两点的二次函数2y=ax +4x+c的图象交 x 轴于另一点 B.(1)求二次函数的表达式;(2)连接 BC,点 N是线段 BC上的动点,作 ND⊥ x 轴交二次函数的图象于点D,求线段 ND 长度的最大值;(3)若点 H为二次函数 y=ax2+4x+c 图象的顶点,点M( 4,m)是该二次函数图象上一点,在 x 轴、 y 轴上分别找点F, E,使四边形 HEFM的周长最小,求出点 F,E 的坐标.17. 如图 1,已知抛物线y=(x﹣2)(x+a)(a>0)与x轴从左至右交于A, B 两点,与 y轴交于点C.(1)若抛物线过点 T( 1,﹣),求抛物线的解析式;(2)在第二象限内的抛物线上是否存在点D,使得以 A、B、D 三点为顶点的三角形与△ ABC相似?若存在,求 a 的值;若不存在,请说明理由.(3)如图 2,在( 1)的条件下,点 P 的坐标为(﹣ 1,1),点 Q(6, t )是抛物线上的点,在 x 轴上,从左至右有M、N 两点,且 MN=2,问 MN在 x 轴上移动到何处时,四边形PQNM的周长最小?请直接写出符合条件的点M的坐标.18. 如图,对称轴为直线x=2 的抛物线经过A(﹣ 1, 0), C( 0, 5)两点,与x 轴另一交点为 B.已知 M( 0, 1), E(a, 0), F(a+1, 0), P 是第一象限内抛物线上的动点.(1)求此抛物线的解析式;(2)当 a=1 时,求四边形MEFP的面积的最大值,并求此时点P 的坐标;(3)若△ PCM是以点 P 为顶点的等腰三角形,求 a 为何值时,四边形PMEF周长最小?请说明理由.19. 探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1( x1, y1), P2( x2, y2),可通过构造直角三角形利用图1 得到结论:P1P2= 他还利用图 2 证明了线段 P1P2的中点 P( x,y)P 的坐标公式:x=, y=.(1)请你帮小明写出中点坐标公式的证明过程;运用:( 2)①已知点M( 2,﹣ 1), N(﹣ 3, 5),则线段MN长度为;②直接写出以点A( 2,2),B(﹣ 2,0),C( 3,﹣ 1), D为顶点的平行四边形顶点D 的坐标:;拓展:(3)如图3,点P( 2, n)在函数y=x( x≥ 0)的图象OLx 轴正半轴夹角的平与E、 F,使△PEF 的周长最小,简要叙述作图分线上,请在OL、 x 轴上分别找出点方法,并求出周长的最小值.20.如图,直线 y=kx+b ( k、 b 为常数)分别与 x 轴、 y 轴交于点 A(﹣ 4,0)、B( 0,3),抛物线 y=﹣ x2+2x+1 与 y 轴交于点 C.(1)求直线y=kx+b 的函数解析式;(2)若点 P( x, y)是抛物线y=﹣ x2+2x+1 上的任意一点,设点P 到直线 AB 的距离为d,求 d 关于 x 的函数解析式,并求 d 取最小值时点P 的坐标;(3)若点 E 在抛物线 y= ﹣ x2 +2x+1 的对称轴上移动,点 F 在直线 AB上移动,求CE+EF的最小值.21.如图①,在平面直角坐标系中, OA=6,以 OA为边长作等边三角形 ABC,使得 BC∥ OA,且点B、C 落在过原点且开口向下的抛物线上.(1)求这条抛物线的解析式;(2)在图①中,假设一动点 P 从点 B 出发,沿折线 BAC的方向以每秒 2 个单位的速度运动,同时另一动点 Q从 O点出发,沿 x 轴的负半轴方向以每秒 1 个单位的速度运动,当点 P 运动到 A 点时, P、 Q都同时停止运动,在 P、Q的运动过程中,是否存在时间 t ,使得 PQ⊥ AB,若存在,求出 t 的值,若不存在,请说明理由;(3)在 BC边上取两点 E、 F,使 BE=EF=1个单位,试在 AB 边上找一点 G,在抛物线的对称轴上找一点 H,使得四边形 EGHF的周长最小,并求出周长的最小值.本人所著《初中几何模型与解题通法》已发行,可在当当、淘宝和京东搜索购买特色: 1.由一线名师编写,更专业权威,各地历年中考压轴题几乎都能在书中找到对应的模型和方法,甚至出现大量高度类似题。
将军饮马问题的11个模型及例题
将军饮马问题的11个模型及例题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(将军饮马问题的11个模型及例题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为将军饮马问题的11个模型及例题的全部内容。
将军饮马问题问题概述路径最短、线段和最小、线段差最大、周长最小等一系列最值问题方法原理1。
两点之间,线段最短;2。
三角形两边之和大于第三边,两边之差小于第三边;3。
中垂线上的点到线段两端点的距离相等;4。
垂线段最短。
基本模型1.已知:如图,定点A、B分布在定直线l两侧;要求:在直线l上找一点P,使PA+PB的值最小解:连接AB交直线l于点P,点P即为所求,PA+PB的最小值即为线段AB的长度理由:在l上任取异于点P的一点P´,连接AP´、BP´,在△ABP’中,AP´+BP´>AB,即AP´+BP´〉AP+BP∴P为直线AB与直线l的交点时,PA+PB最小.2.已知:如图,定点A和定点B在定直线l的同侧要求:在直线l上找一点P,使得PA+PB值最小(或△ABP的周长最小)解:作点A关于直线l的对称点A´,连接A´B交l于P,点P即为所求;理由:根据轴对称的性质知直线l为线段AA´的中垂线,由中垂线的性质得:PA=PA´,要使PA+PB最小,则需PA´+PB值最小,从而转化为模型1.3.已知:如图,定点A、B分布在定直线l的同侧(A、B两点到l的距离不相等)要求:在直线l上找一点P,使︱PA—PB︱的值最大解:连接BA并延长,交直线l于点P,点P即为所求;理由:此时︱PA—PB︱=AB,在l上任取异于点P的一点P´,连接AP´、BP´,由三角形的三边关系知︱P´A-P´B︱<AB,即︱P´A—P´B︱〈︱PA—PB︱4。
(完整版)将军饮马问题的11个模型及例题
如图,菱形ABCD中,对角线AC和BD交于点O,AC=2,
BD=2 ,E为AB的中点,P为对角线AC上一动点,则PE+PB的
最小值为__________.
变式训练1-3
如图,已知直线y= x+1与y轴交于点A,与x轴交于点D,抛物线y= x2+bx+c与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0).
点到l的距离不相等)
要求:在直线l上找一点P,使︱PA-PB︱的值最大
解:作点B关于直线l的对称点B´,连接B´A并延长交
于点P,点P即为所求;
理由:根据对称的性质知l为线段BB´的中垂线,由中垂
线的性质得:PB=PB´,要使︱PA-PB︱最大,则需
︱PA-PB´︱值最大 ,从而转化为模型3.
典型例题1-1
【解答】作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,
则MP=MC,NP=ND,OP=OD=OC= ,∠BOP=∠BOD,∠AOP=∠AOC,
∴PN+PM+MN=ND+MN+NC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,
∴此时△PMN周长最小,作OH⊥CD于H,
如图,直线y= x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,当PC+PD最小时,点P的坐标为_________,此时PC+PD的最小值为_________.
【分析】符合基本模型2的特征,作点D关于x轴的对称点D',连接CD'交x轴于点P,此时PC+PD值最小,由条件知CD为△BAO的中位线,OP为 △CDD'的中位线,易求OP长,从而求出P点坐标;PC+PD的最小值即CD'长,可用勾股定理(或两点之间的距离公式,实质相同)计算.
完整word版将军饮马问题的11个模型及例题
将军饮马问题问题概述路径最短、线段和最小、线段差最大、周长最小等一系列最值问题方法原理2.三角形两边之和大于第三边,两边之差小于第三边;1.两点之间,线段最短;.垂线段最短3.中垂线上的点到线段两端点的距离相等;4.基本模型1.已知:如图,定点A、B分布在定直线l两侧;要求:在直线l上找一点P,使PA+PB的值最小, 即为所求,点PP解:连接AB交直线l于点PA+PB的最小值即为线段AB的长度理由:在l上任取异于点P的一点P′,连接AP′、BP′,在△ABP'中,AP′+BP′>AB,即AP′+BP′>AP+BP∴P为直线AB与直线l的交点时,PA+PB最小.2.已知:如图,定点A和定点B在定直线l的同侧要求:在直线l上找一点P,使得PA+PB值最小(或△ABP的周长最小)解:作点A关于直线l的对称点A′,连接A′B交l于P,点P即为所求;理由:根据轴对称的性质知直线l为线段AA′的中垂线,由中垂线的性质得:PA=PA′,要使PA+PB最小,则需PA′+PB值最小,从而转化为模型1.3.两的同侧(A、B已知:如图,定点A、B分布在定直线l 的距离不相等)点到l︱的值最大P,使PA-PB︱要求:在直线l上找一点 P,点P即为所求;解:连接BA并延长,交直线l于点的一点P′,︱=AB,在l上任取异于点P此时︱理由:PA-PB ︱<AB,,由三角形的三边关系知︱P′A-P′B′连接AP、BP′︱PA-PB︱′A-P′B︱<即︱P两B分布在定直线l的两侧(A、已知:如图,定点A、B 4.的距离不相等)点到l︱的值最大上找一点P,使︱PA-PB要求:在直线l 并延长交连接B′A解:作点B关于直线l的对称点B′,P于点,点P即为所求;为线段BB′的中垂线,由中垂理由:根据对称的性质知l ′,要使︱PA-PB︱最大,则需线的性质得:PB=PB3.′︱值最大,从而转化为模型︱PA-PB1-1典型例题2分DA和点B,点Cx+4如图,直线y=与x轴、y轴分别交于点3最小时,为OA上一动点,当PC+PD、别为线段ABOB的中点,点P_________. _________,此时的最小值为PC+PD点P的坐标为,连轴的对称点D'的特征,作点【分析】符合基本模型2D关于x为CDx轴于点P,此时PC+PD 值最小,由条件知CD'接交长,从OPCDD'的中位线,易求△的中位线,△BAOOP为长,可用勾股定理CD'PC+PD而求出P点坐标;的最小值即.(或两点之间的距离公式,实质相同)计算轴x′交CD′,连接D轴的对称点x关于D,作点CD】连接解答【.2x=0,则y=4,于点P,此时PC+PD值最小.令y=x+4中322的坐标,∴点Ay=0∴点B坐标(0,4);令y=x+4中,则x+4=0,解得:x=﹣633的中位线,BAO的中点,∴CD为△为(﹣6,0).∵点C、D分别为线段AB、OB1AO=3CD=,∴CD∥x轴,且2′的中点,O为DDD∵点′和点D关于x轴对称,∴31OP=CD=-1D′(0,),∴OP为△CDD′的中位线,∴,223△CDD′中,∴点P的坐标为(﹣,0).在Rt22222?4DDCD3??5.CD′=的最小值为=5,即=PC+PD 坐标;若题型变、点P【小结】还可用中点坐标公式先后求出点C CD′的解析不是化,C、DAB和OB中点时,则先求直线.P的坐标式,再求其与x轴的交点1-2典型例题B ,点1)如图,在平面直角坐标系中,已知点A的坐标为(0,3最,点的坐标为(,﹣2)P在直线y=﹣x上运动,当|PA﹣PB|2_________. PB|的最大值是P大时点的坐标为_________,|PA﹣,y=【分析】符合基本模型4的特征,作A关于直线﹣x 对称点C x连接BC,可得直线BC的方程;求得BC与直线y=﹣的交点P的坐标;此时|PA﹣PB|=|PC﹣PB|=BC取得最大值,.再用两点之间的距离公式求此最大值BCBC,可得直线;连接的坐标为(﹣1,0)C解答【】作A 关于直线y=﹣x对称点,易得C44|PA);此时4P为(4,﹣的方程为y=﹣xy=﹣,与直线﹣x联立解得交点坐标552241)(?2(?1)?3 PB|=|PC﹣PB|=BCBC==取得最大值,最大值;﹣22.,需作一次对称点,连线得交点2和4】【小结“两点一线”大多考查基本模型1-1变式训练),,已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(50最短0D(,1),当CP+DPOBOB=45,点P是对角线上的一个动点,√时,点P的坐标为()510361,.)1. 00.A(,) B(,C((.) D,)77552.1-2变式训练AC=2,和如图,菱形ABCD中,对角线ACBD交于点O,的上一动点,则PE+PB3,E为AB的中点,P为对角线BD=2AC√__________. 最小值为1-3变式训练112与直线交于x+bx+cD,抛物线y=x+1如图,已知直线y=与y轴交于点A,与x轴交于点22.01,)A、E两点,与x轴交于B、C两点,且B点坐标为()求该抛物线的解析式;(1. 的值最大,求出点MC|M的坐标(2)在抛物线的对称轴上找一点M,使|AM﹣拓展模型1.已知:如图,A为锐角∠MON外一定点;,使上找一点Q上找一点P,在射线ON要求:在射线OM. AP+PQ的值最小解:过点A作AQ⊥ON于点Q,AQ与OM相交于点P,此时,AP+PQ最小;理由:AP+PQ≧AQ,当且仅当A、P、Q三点共线时,AP+PQ取得最小值AQ,根据垂线段最短,当AQ⊥ON时,AQ最小.2.已知:如图,A为锐角∠MON内一定点;,使上找一点ONQ,在射线上找一点要求:在射线OMP.的值最小 AP+PQ.ONAQ⊥的对称点A′,过点A′作解:作点A关于OM AP+PQ最小;交OM于点P,此时于点Q,A′QAP+PQ最小,AP=A′P,要使理由:由轴对称的性质知1 P+PQ最小,从而转化为拓展模型只需A′为锐角∠MON内一定点;已知:如图,A 3.,使,在射线ON上找一点Q要求:在射线OM上找一点P 的周长最小△APQ的对,关于ON 解:分别作A点关于直线OM的对称点A1于点ONQ,点A交OM于点P,交称点A,连接 A221即为所求,此时△APQ周长最小,最小值P和点Q AA的长度;即为线段21,△APQ的周AP=AP,AQ=AQ理由:由轴对称的性质知21 A四点共线、P、Q、P+PQ+A长AP+PQ+AQ=AQ,当A2112. 时,其值最小内两个定点;B为锐角∠MON、已知:如图,A 4.四边形上找一点Q,使要求:在OM上找一点P,在ON APQB的周长最小,作点B关于直线A 关于直线OM的对称点A′解:作点 Q,P,交ON于交的对称点ONB′,连接A′B′OM于周长的、点Q即为所求,此时四边形APQB则点P′′B的长度之和;最小值即为线段AB和A ,将PA理由:AB长为定值,由基本模型将PA转化为′ B′四点共线时,、、′QB转化为QB,当A′P、Q . QBPQPA′+′+PAPQ QB的值最小,即++的值最小下方的定分别为m上方和n已知:如图,直线m∥n,A、B5.搭桥模型垂直)(直线AB不与m点,. 最小PQ,使得AP+PQ+BQ之间求作垂线段要求:在m、n 最小,可通过平移,使PQ为定值,只需AP+BQ分析:,转化为基本模型、Q“接头”P 的方向,向下平移至A沿着平行于PQ解:如图,将点交直线n于点′AA′=PQ,连接AB点A′,使得,线段PQ即⊥n,交直线m于点PQ,过点Q作PQ.为所求,此时AP+PQ+BQ最小′=PA,理由:易知四边形QPAA′为平行四边形,则QA +BQ最小,即、A′三点共线时,QA′当B、Q.AP+PQ+BQ最小AP+BQ最小,PQ长为定值,此时al两侧,长度为A、B分布于直线6.已知:如图,定点左边)上移动(P在Q (a为定值)的线段PQ在l最小要求:确定PQ的位置,使得AP+PQ+QB的值最小,可通过平移,PQ为定值,只需AP+QB 分析:,转化为基本模型、Q“接头”使P A′,使解:将点A沿着平行于l的方向,向右移至l上截取交直线Bl于点Q,在AA′=PQ=a,连接A′ PQ即为所求,此时在Q左边),则线段PQ=a (PB+a ′′B+PQ,即AAP+PQ+QB的最小值为A ′为平行四边形,则PA=QA,理由:易知四边形APQA′PA+QB +QB最小,即、QB三点共线时,QA′A当′、.值最小最小,又PQ长为定值此时PA+PQ+QBal的同侧,长度、7. 已知:如图,定点AB分布于直线左边)Q在P上移动(l在PQ的线段)为定值(a周长最小要求:确定PQ的位置,使得四边形APQB点分析:AB长度确定,只需AP+PQ+QB最小,通过作A3的对称点,转化为上述模型关于llAl的对称点A′,将点′沿着平行于解:作A点关于B ′A′′=PQ=a,连接A′′的方向,向右移至A′′,使A (P在Q左边),线段交l于Q,在l上截取QP=a APQB周长的最小值为PQ即为所求,此时四边形B+AB+aA′′′′B+AB+PQ,即A2-1典型例题、AC、N分别是线段如图,在矩形ABCD中,AB=10,BC=5,若点M .上的两个动点,则ABBM+MN 的最小值为,再过EAC的对称点关于【分析】符合拓展模型2的特征,作点B的最小值,借BM+MNAB的垂线段,该垂线段的长即点E作.助等面积法和相似可求其长度,BM+MN=EM+MN作EN⊥AB于N,则E解答【】作点B关于AC的对称点E,再过点,其最小值即EN长;∵AB=10,BC=522BCAB?5,∴=5AC=510?55, =2等面积法求得ACBE=4边上的高为,∴55,∴∽△ABCENBEN=8.易知△,代入数据解得 8.即BM+MN的最小值为】该类题的思路是通过作对称,将线段转化,再根据定理、公理连线或作垂线;可作【小结有些题则作动点的定点或动点关于定直线的对称点,有些题作定点的对称点易解,.对称点易解2-2典型例题分别、NAOB内的定点且OP=,点MP如图,∠AOB=60°,点是∠)(的动点,OB上异于点O则△PMN周长的最小值是、是射线OAC..AB..6 D3分别交D,连接CDOA、OB的对称点C、【分析】符合拓展模型3的特征;作P点分别关于,OC、OD,此时△PMN周长最小,其值为CD长;根据对称性连接OA、OB于M、NCD.是顶角为120°的等腰三角形,作底边上高,易求底边分析条件知△OCD N,如图,、OB于M、的对称点OA、OBC、D,连接CD分别交OA【解答】作P点分别关于,BOD,∠AOP=∠AOC则MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠°,∠AOC=2∠AOB=120PN+PM+MN=ND+MN+NC=DC,∠COD=∠BOP+∠BOD+∠AOP+∴,⊥CD于H∴此时△PMN周长最小,作OHOC=OH=,则CH=DH,∵∠OCH=30°,∴CD=2CH=3.CH=OH=,∴即△PMN周长的最小值是3;故选:D.【小结】根据对称的性质,发现△OCD是顶角为120°的等腰三角形,是解题的关键,也是难点.2-3典型例题所在的直线为原点,OCABCO,以点O如图,已知平行四边形,,OC=6D,AD=2轴于点为x轴,建立直角坐标系,AB交y为点P所在的直线为OD的垂直平分线,∠A=60°,线段EF轴x与E′关于线段EF上的动点,PM⊥x轴于点M点,点E ′M.对称,连接BP、E ;(1)请直接写出点A坐标为,点B坐标为. 的坐标BP+PM+ME′的长度最小时,请求出点P(2)当的长即可解决;,BD【分析】(1)解直角三角形求出OD,可得OP=EM符合(2)“搭桥模型”的特征;首先证明四边形OPME′是平行四边形,点为P′的长度最小,此时PM是定值,PB+ME′=OP+PB的值最小时,BP+PM+ME 点坐标;OB与EF的交点,结合OB的解析式可得P直线 ADO中,∵∠A=60°,AD=2,(【解答】1)在Rt △,)°OD=2?tan60=2,∴A(﹣2,2∴,∵四边形ABCO是平行四边形,∴AB=OC=6)4B(,22=4∴DB=6﹣,∴,,∵如图,(2)连接OP.EF垂直平分线段ODPM⊥OC PEO=是矩形,°,∴四边形∠∠EOM=PMO=90OMPE∴∠′,∴,∵∴PM=OE=OE=OEPM=OE′,OE∥′,PM,′是平行四边形OPME∴四边形.′的长度最小,∴OP=EM,∵PM是定值,∴PB+ME′=OP+PB的值最小时,BP+PM+MEB共线时,BP+PM+ME′的长度最小,∵直线OB的解析式为y=,x∴当O、P、.2,)(∴P(构造平行四边求没有公共端点的两条线段之和的最小值,一般通过作对称和平移【小结】.形)的方法,转化为基本模型2-4典型例题的顶点坐标分△AOB如图所示,在平面直角坐标系中,RtOAOB4),把△绕点)(﹣2,0,O(0,0),B(0,别为A 90°,得到△COD.按顺时针方向旋转C、D两点的坐标;(1)求三点的抛物线的解析式;、D(2)求经过A、BFE在点E(3)在(2)中抛物线的对称轴上取两点、F(点、求出E的上方),且EF=1,使四边形ACEF的周长最小,两点的坐标.F点,结合直线的F【分析】符合拓展模型7的特征,通过作对称、平移、连线,可找出E、、解析式和抛物线的对称轴可解出EF坐标. 解答】(1)由旋转的性质可知:OC=OA=2,OD=OB=4,∴C点的坐【,0)D),点的坐标是(4,标是(0,22,(2)设所求抛物线的解析式为y=ax+bx+c 4a-2b+c=016a+4b+c=0由题意,得 c=41,,b=1,c=4解得a=-21+4;x2+x y=-∴所求抛物线的解析式为21,+x+4的对称轴为x=1x2y=-最短,抛物线3)只需AF+CE(2A关于对称轴x=1的对称点,作2将点A向上平移至A(﹣,1),则AF=AE111的解析式,与对称轴交于点EE为所求,可求得ACCC1(A4,),连接A,A22223771y=+x2,当x=1时, )的坐标为,点)为y=-(1,E,∴点的坐标为F(1,.4444. 】解决此类题的套路是“对称、平移、连线”【小结;其中,作对称和平移的顺序可互换2-1变式训练几何模型: l同旁的两个定点.条件:如图1,A,B是直线的值最小.P问题:在直线l上确定一点,使PA+PB (不必证明)B交l于点P,即为所求.方法:作点A关于直线l的对称点A',连接A' 模型应用:轴上一动1),P为xA)如图2,已知平面直角坐标系中两定点(0,﹣1)和B(2,﹣(1 ,此时PA+PB= .点,则当PA+PB的值最小是点P的横坐标是,由BD的中点,P是AC上一动点,连接)如图3,正方形ABCD的边长为4,E为AB2(的最小PB+PEAC于P,则正方形对称性可知,B与D关于直线AC对称.连接ED交值是.分别F上一动点,E,DAB=60中,AB=10,∠°,P是对角线AC3()如图4,在菱形ABCD .的最小值是是线段AB和BC上的动点,则PE+PF分别是FE.°,点B=60G是边CD边的中点,点)如图(45,在菱形ABCD中,AB=6,∠.AD上的两个动点,则EF+ED的最小值是AG,变式训练2-2如图,矩形ABCD中,AD=15,AB=10,E为AB边上一点,且DE=2AE,连接CE与对角线BD交于F;若P、Q分别为AB边和BC边上的动点,连接EP、PQ和QF;则四边形EPQF周长___________.的最小值是2-3变式训练的P到直线l,l、l之间的距离为8,点如图,已知直线l∥l11212距上有一动PQ=4l的距离为4,,在直线l离为6,点Q到直线12最小,此时,满足AB⊥l,且PA+AB+BQ点A,直线l上有一动点B22.PA+BQ=2-4变式训练在OC的边OA在y轴的正半轴上,中,直角梯形如图,已知在平面直角坐标系xOyOABC 按顺BD.将∠DBC绕点作OC=3,过点BBD⊥BC,交OA于点x轴的正半轴上,OA=AB=2, E和F.x 时针方向旋转,角的两边分别交y轴的正半轴、轴的正半轴于点 B、C三点的抛物线的解析式;(1)求经过A、)中抛物线的顶点时,求CF的长;(2)当BE经过(1BCPQPQ=1,要使四边形(点Q在点P的上方),且Q(3)在抛物线的对称轴上取两点P、 Q两点的坐标.的周长最小,求出P、中考真题1.要在街道旁建奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使A、B到它的距离之和最短?小聪以街道为x轴,建立了如图所示的平面直角坐标系,A点坐标为(0,3),B点坐标为(6,5),则A、B两点到奶站距离之和的最小值是.2.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△)的坐标是(E的周长最小时,点ADE.,)(0,2) D.(0(A.(0,) B.0,) C.1两点距、满足S=BS,则点P到A3.如图,在矩形ABCD中,AB=5,AD=3,动点P ABCDPAB△矩形3)离之和PA+PB的最小值为(.5C. DA. B.,2)的距离与到4.已知抛物线y=x+1具有如下性质:该抛物线上任意一点到定点F2x0(M的坐标为(y=,3),P是抛物线x+1 PMF周长2上一个动点,轴的距离始终相等,如图,点的最小值是()则△6DC..A.3 B45 .轴上的动点,轴,分别是xyD1B),(b,)都在双曲线y=上,点C,,,点5.如图,A(a3 )ABCD则四边形周长的最小值为(.CB.. D A.AE+DE边上的动点,则ABDAC=3中,在6.如图,Rt△ABC∠C=90°,,BC=4,、E分别是、BC 的最小值为().5DCA.B..上的动点,,中,∠如图,7.Rt△ABCBAC=90°,AB=3AC=6,点D,分别是边EBCAC,的最小值为则DA+DE .8.如图,等腰△ABC的底边BC=20,面积为120,点F在边BC上,且BF=3FC,EG是腰AC的垂直平分线,若点D在EG上运动,则△CDF周长的最小值为.9.如图,菱形ABCD的边长为6,∠ABC=120°,M是BC边的一个三等分点,P是对角线AC )的长是(PM的值最小时,PB+PM上的动点,当..D. B. C. A分F交BC于D点,E,,10.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8AD平分∠CAB AC,上的动点,则CE+EF的最小值为()别是AD6. D.A. B. COABC6的正方形11.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是PM+PNP 两点.△OMN的面积为10.若动点在x轴上,则N 的两边AB,BC分别相交于M,的最小值是()2.2 D..A.6 B10 CADBC则四边形翻折得到△ABD,AC=BC=212.如图,△ABC中,,AB=1,将它沿ABPE+PF上的任意点,则、形,的形状是 P、E、F分别为线段ABAD、DB .的最小值是D轴于,AB两点,交xC、y=y=13.如图,已知抛物线x+bx+c与直线x+3交于).,,0BC 2两点,连接AC、,已知A(,3)C(﹣30)求此抛物线的解析式;(1的值最大,并求出这个最(2)在抛物线对称轴MD||MB上找一点M,使﹣l 大值;轴y交⊥作,过点轴右侧抛物线上一动点,连接为)点(3PyPAPPQPAABC于点QP,AP,问:是否存在点Q,使得以,为顶点的三角形与△请说的坐标;若不存在,P相似?若存在,请求出所有符合条件的点.明理由.14.如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.(1)用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法);(2)在(1)的条件下,①证明:AE⊥DE;②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值.,3),C(03A(﹣1,0),B(,0y=ax15.如图,抛物线+bx+c(a≠0)经过点的坐标;)2)三点.求抛物线的解析式及顶点M(1 N点的坐标;时,求N为抛物线上的点且在第四象限,当S=S(2)连接AC、BC,ABCNBC△△,(ml上,动点QPx轴,动点(m,3)在直线2(3)在()问的条件下,过点C作直线l∥ PM+PQ+QN的和最小,并求出m为何值时,PM+PQ+QNPM轴上,连接、PQ、NQ,当0)在x 和的最小值.,过A,两点的二次函数A16.如图,直线y=5x+5交x轴于点,交y轴于点C .的图2+4x+cy=axC象交x轴于另一点B )求二次函数的表达式;(1NDD,求线段⊥BC上的动点,作NDx轴交二次函数的图象于点是线段)连接(2BC,点N 长度的最大值;2)是该二次函数图象上一点,4,m图象的顶点,点H(3)若点为二次函数y=ax+4x+cM(的坐标.E,F的周长最小,求出点HEFM,使四边形E,F轴上分别找点y轴、x在.yB两点,与A0)与x轴从左至右交于,(x﹣2)(x+a)(a>y=17.如图1,已知抛物线 C.轴交于点,求抛物线的解析式;T(1,﹣)(1)若抛物线过点△ B、D三点为顶点的三角形与(2)在第二象限内的抛物线上是否存在点D,使得以A、 ABC相似?若存在,求a的值;若不存在,请说明理由.)是抛物线上的点,6,t1的坐标为(﹣1,),点Q(2(3)如图,在(1)的条件下,点PPQNM轴上移动到何处时,四边形MN=2,问MN在x两点,在x轴上,从左至右有M、N且 M 的坐标.的周长最小?请直接写出符合条件的点轴另一交点x5)两点,与((﹣1,0),C0,A18.如图,对称轴为直线x=2的抛物线经过),P是第一象限内抛物线上的动点.0F,,0(,1)E(a0),(a+1,MB为.已知)求此抛物线的解析式;(1 的面积的最大值,并求此时点)当2a=1时,求四边形MEFPP的坐标;(周长最小?请说为顶点的等腰三角形,求是以点)若△(3PCMPaPMEF为何值时,四边形明理由.P探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点19.1=P:P1得到结论三过构造直角角形利用图,(x(,y),Px,y)可通2112221的坐标公式:)P(x,y他还利用图2证明了线段PP的中点P21.,y=x=1)请你帮小明写出中点坐标公式的证明过程;( MN长度为;(﹣M2)①已知点(2,﹣1),N3,5),则线段运用:(为顶点的平行四边形顶点D),3(﹣B2,0),C(,﹣12A②直接写出以点(2,),;的坐标:D轴正半轴夹角的平≥x(x0)的图象OL与xy=n2P33拓展:()如图,点(,)在函数的周长最小,简要叙述作图FExOL分线上,请在、轴上分别找出点、,使△PEF 方法,并求出周长的最小值.20.如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛2物线y=﹣x+2x+1与y轴交于点C.(1)求直线y=kx+b的函数解析式;2)若点P(x,y)是抛物线y=﹣x+2x+1上的任意一点,设点P到直线AB的距离为d,求d 2(关于x的函数解析式,并求d取最小值时点P的坐标;3)若点E在抛物线y=﹣x+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小2(值.,且OA∥ABC,使得BC21.如图①,在平面直角坐标系中,OA=6,以OA为边长作等边三角形落在过原点且开口向下的抛物线上.B、C点)求这条抛物线的解析式;(1个单位的速度运动,2BAC 的方向以每秒P从点B出发,沿折线在图①中,(2)假设一动点P个单位的速度运动,当点沿点出发,x轴的负半轴方向以每秒1同时另一动点Q从O,使得tQP、的运动过程中,是否存在时间A运动到点时,P、Q都同时停止运动,在的值,若不存在,请说明理由;AB,若存在,求出tPQ⊥,在抛物线的对称边上找一点G,使BE=EF=1个单位,试在ABE3()在BC边上取两点、F 的周长最小,并求出周长的最小值.H,使得四边形EGHF轴上找一点本人所著《初中几何模型与解题通法》已发行,可在当当、淘宝和京东搜索购买1.特色:由一线名师编写,更专业权威,各地历年中考压轴题几乎都能在书中找到对应的模型和方法,甚至出现大量高度类似题。
将军饮马18道典型习题
“将军饮马”常见模型及18道典型习题何为将军饮马?2000多年以前。
古希腊的亚历山大城里住着一位睿智的数学家海伦。
一天,城里来了一位将军,听闻海伦盛名,特来向他请教一个问题。
将军说,每天早上,他都骑着马儿从营帐出发,到河边让马儿饮水,然后,再去河岸同一侧的一块草地上带着马儿去吃草,问题时,在河岸的哪个具体位置喝水,行程最短?海伦略做沉思,给出了将军最佳方案。
此之谓“将军饮马”。
最佳方案为何?且阅下文:一、将军饮马常见的5种模型:1、一动两定(和最小):如图,点A是将军和马居住的营帐,点B是一块指定的草地,一条小河L潺潺流过,P是将军带着马儿喝水的地方,P点在何处时,将军和马儿走过的路PA+PB的值最小?解析:做A点关于L的对称点A’,连接A’B,与L的交点即为P点。
为什么这时PA+PB最小?假设L上有一点M(与P点不重合)。
∵A点与A’关于L对称∴AP=A’P;AM=A’M;∴AP + BP =A’P +BP =A’B而AM + BM = A’M +MB在△A’MB中,两边之和大于第三边∴A’B < A’M +MB;而M为L上任一点(与P点不重合)。
∴动点P在A’B与L交点处时AP+BP最小。
2、一定两动:如图,点A是将军和马居住的营帐,小河L1依然像上题中一样潺潺流过,P是将军带着马儿喝水的地方,不同的是,这次吃草的地方不在是一个指定的点,而是L2所代表的一片草地,Q则是将军骑马吃草的地方,水足草饱以后,将军和马儿会再回到营帐。
那么,P点、Q点在何处时,将军走过的路AP+PQ+QA的值最小?解析:做A点关于L1的对称点A’;做A点关于L2的对称点A‘’;连接A’A‘’,与L1和L2的交点即为P、Q。
为什么此时,AP+PQ+AQ的和最小?假设L1上有点M(不与P重合)、L2上有点N(不与Q重合)。
∵A点与A’关于L1对称;A点与A‘’关于L2对称。
∴AP=A’P;AQ=A”Q;AM=A’M;AN=A”N;∴AP+PQ+AQ = A’P+PQ+A”Q =A’A”;AM+MN+AN = A’M+MN+A”N在四边形A’MNA”中:A’M+MN+A”N >A’A”∴P、Q位于A’A”与L1和L2的交点处时,AP+PQ+AQ的和最小。
将军饮马问题的11个模型与例题
将军饮马问题问题概述路径最短、线段和最小、线段差最大、周长最小等一系列最值问题方法原理1.两点之间,线段最短;2.三角形两边之和大于第三边,两边之差小于第三边;3.中垂线上的点到线段两端点的距离相等;4.垂线段最短.基本模型1.已知:如图,定点A、B分布在定直线l两侧;要求:在直线 l上找一点P,使PA+PB的值最小解:连接 AB交直线l于点P,点P即为所求,PA+PB的最小值即为线段AB的长度理由:在 l上任取异于点P的一点P′,连接AP′、BP′,在△ABP’中,AP′+BP′>AB,即AP′+BP′>AP+BP∴P为直线AB与直线l的交点时,PA+PB最小.2.已知:如图,定点A和定点B在定直线l的同侧要求:在直线 l上找一点P,使得PA+PB值最小(或△ABP的周长最小)解:作点A关于直线l的对称点 A′,连接A′B交l于P,点P即为所求;理由:根据轴对称的性质知直线l为线段AA′的中垂线,由中垂线的性质得: PA=PA′,要使PA+PB最小,则需PA′+PB值最小,从而转化为模型 1.3.已知:如图,定点A、B分布在定直线l的同侧(A、B两点到l的距离不相等)要求:在直线 l上找一点 P,使︱PA-PB︱的值最大解:连接BA并延长,交直线l于点P,点P即为所求;理由:此时︱PA-PB︱=AB,在l上任取异于点P的一点P′,连接AP′、BP′,由三角形的三边关系知︱P′A-P′B︱<AB,即︱P′A-P′B︱<︱PA-PB︱4.已知:如图,定点A、B分布在定直线l的两侧(A、B两点到l的距离不相等)要求:在直线l上找一点P,使︱PA-PB︱的值最大解:作点B关于直线l 的对称点B′,连接B′A并延长交于点P,点P即为所求;理由:根据对称的性质知l为线段BB′的中垂线,由中垂线的性质得:PB=PB′,要使︱PA-PB︱最大,则需︱PA-PB′︱值最大,从而转化为模型3.典型例题1-1如图,直线 y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段 AB、OB的中点,点P为OA上一动点,当PC+PD最小时,点P的坐标为_________,此时PC+PD的最小值为_________.【分析】符合基本模型2的特征,作点D关于x轴的对称点D',连接CD'交x轴于点P,此时PC+PD值最小,由条件知CD为△BAO的中位线,OP为△CDD'的中位线,易求OP长,从而求出P点坐标;PC+PD的最小值即CD'长,可用勾股定理(或两点之间的距离公式,实质相同)计算.【解答】连接CD,作点D关于x轴的对称点D′,连接 CD′交x轴于点P,此时PC+PD值最小.令y=x+4中x=0,则y=4,∴点B坐标(0,4);令y=x+4中y=0,则x+4=0,解得:x=﹣6,∴点A的坐标为(﹣6,0).∵点C、D分别为线段AB、OB的中点,∴CD为△BAO的中位线,∴CD∥x轴,且CD=12AO=3,∵点D′和点D关于x轴对称,∴O为DD′的中点,D′(0,-1),∴OP为△CDD′的中位线,∴ OP=12CD=32,∴点P的坐标为(﹣,0).在Rt△CDD′中,CD′= CD2DD2= 3242=5,即PC+PD的最小值为 5.【小结】还可用中点坐标公式先后求出点C、点P坐标;若题型变化,C、D不是AB和OB中点时,则先求直线CD′的解析式,再求其与x轴的交点P的坐标.典型例题1-2如图,在平面直角坐标系中,已知点A的坐标为(0,1),点B的坐标为(,﹣2),点P在直线y=﹣x上运动,当|PA﹣PB|最大时点P的坐标为_________,|PA﹣PB|的最大值是_________.【分析】符合基本模型4的特征,作A关于直线 y=﹣x对称点C,连接BC,可得直线BC的方程;求得BC与直线y=﹣x的交点P的坐标;此时|PA﹣PB|=|PC﹣PB|=BC取得最大值,再用两点之间的距离公式求此最大值.【解答】作A关于直线y=﹣x对称点C,易得C的坐标为(﹣1,0);连接BC,可得直线 BC的方程为y=﹣54x﹣54,与直线y=﹣x 联立解得交点坐标P为(4,﹣4);此时|PA﹣PB|=|PC﹣PB|=BC取得最大值,最大值BC=(231)2(2)2=241;【小结】“两点一线”大多考查基本模型2和4,需作一次对称点,连线得交点.变式训练1-1已知菱形 OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4 ,点P是对角线 OB上的一个动点, D(0,1),当CP+DP最短时,点P的坐标为()A.(0,0) B .(1,)C.(,)D.(,)变式训练1-2如图,菱形 ABCD中,对角线AC和BD交于点O,AC=2,BD=2,E为AB的中点,P为对角线AC上一动点,则PE+PB的最小值为__________.变式训练1-3如图,已知直线y=x+1与y轴交于点A,与x轴交于点D,抛物线y=x2+bx+c与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0).(1)求该抛物线的解析式;(2)在抛物线的对称轴上找一点M,使|AM﹣MC|的值最大,求出点M的坐标.拓展模型1.已知:如图,A为锐角∠MON外一定点;要求:在射线OM上找一点P,在射线ON上找一点Q,使AP+PQ的值最小.解:过点A作AQ⊥ON于点Q,AQ与OM相交于点P,此时,AP+PQ最小;理由:AP+PQ≧AQ,当且仅当A、P、Q三点共线时,AP+PQ取得最小值AQ,根据垂线段最短,当AQ⊥ON时,AQ最小.2.已知:如图,A为锐角∠MON内一定点;要求:在射线OM上找一点P,在射线ON上找一点Q,使AP+PQ的值最小.解:作点 A关于OM的对称点A′,过点 A′作AQ⊥ON于点Q,A′Q交OM于点P,此时AP+PQ最小;理由:由轴对称的性质知AP=A′P,要使AP+PQ最小,只需A′P+PQ最小,从而转化为拓展模型 13.已知:如图,A为锐角∠MON内一定点;要求:在射线OM上找一点P,在射线ON上找一点Q,使△APQ的周长最小解:分别作A点关于直线OM的对称点A1,关于ON的对称点A2,连接A1A2交OM于点P,交ON于点Q,点P和点Q即为所求,此时△APQ周长最小,最小值即为线段A1A2的长度;理由:由轴对称的性质知AP=AP,AQ=AQ,△APQ的周1 2长AP+PQ+AQ=A1P+PQ+A2Q,当A1、P、Q、A2四点共线时,其值最小.4. 已知:如图,A、B为锐角∠MON内两个定点;要求:在 OM上找一点 P,在ON上找一点Q,使四边形APQB的周长最小解:作点A关于直线OM的对称点A′,作点B关于直线ON的对称点 B′,连接A′B′交OM于P,交ON于Q,则点P、点Q即为所求,此时四边形APQB周长的最小值即为线段AB和A′B′的长度之和;理由:AB长为定值,由基本模型将PA转化为PA′,将QB转化为QB′,当A′、P、Q、B′四点共线时,PA′+PQ+QB′的值最小,即P A+PQ+QB的值最小.5.搭桥模型已知:如图,直线m∥n,A、B分别为m上方和n下方的定点,(直线AB不与m垂直)要求:在m、n之间求作垂线段PQ,使得AP+PQ+BQ最小.分析:PQ为定值,只需AP+BQ最小,可通过平移,使P、Q“接头”,转化为基本模型解:如图,将点 A沿着平行于PQ的方向,向下平移至点A′,使得 AA′=PQ,连接A′B交直线n于点Q,过点Q作PQ⊥n,交直线m于点P,线段PQ即为所求,此时 AP+PQ+BQ最小.理由:易知四边形QPAA′为平行四边形,则QA′=PA,当B、Q、A′三点共线时, QA′+BQ最小,即AP+BQ最小,PQ长为定值,此时AP+PQ+BQ最小.6. 已知:如图,定点A、B分布于直线l两侧,长度为 a(a 为定值)的线段PQ在l上移动(P在Q左边)要求:确定 PQ的位置,使得AP+PQ+QB最小分析:PQ为定值,只需AP+QB的值最小,可通过平移,使P、Q“接头”,转化为基本模型解:将点 A沿着平行于l的方向,向右移至A′,使AA′=PQ=a,连接A′B交直线l于点Q,在l上截取PQ=a(P在Q左边),则线段 PQ即为所求,此时AP+PQ+QB的最小值为A′B+PQ,即A′B+a理由:易知四边形APQA′为平行四边形,则PA=QA′,当A′、Q、B三点共线时,QA′+QB最小,即PA+QB最小,又 PQ长为定值此时PA+PQ+QB值最小.7. 已知:如图,定点A、B分布于直线l的同侧,长度 a(a为定值)的线段PQ在l上移动(P在Q左边)要求:确定 PQ的位置,使得四边形APQB周长最小分析:AB长度确定,只需AP+PQ+QB最小,通过作A点关于l的对称点,转化为上述模型 3解:作A点关于l的对称点A′,将点A′沿着平行于l的方向,向右移至A′′,使A′A′′=PQ=a,连接A′B交l于Q,在l上截取QP=a(P在Q左边),线段PQ即为所求,此时四边形APQB周长的最小值为A′B+AB+PQ,即A′′B+AB+a典型例题2-1如图,在矩形ABCD中,AB=10,BC=5,若点M、N分别是线段AC、AB上的两个动点,则BM+MN的最小值为.【分析】符合拓展模型2的特征,作点 B关于AC的对称点E,再过点E作AB的垂线段,该垂线段的长即BM+MN的最小值,借助等面积法和相似可求其长度 .【解答】作点B关于AC的对称点E,再过点 E作EN⊥AB于N,则BM+MN=EM+MN,其最小值即 EN长;∵AB=10,BC=5,∴AC= AB2BC2=55,等面积法求得AC边上的高为105=25,∴BE=45,55易知△ABC∽△ENB,∴,代入数据解得EN=8.即BM+MN的最小值为8.【小结】该类题的思路是通过作对称,将线段转化,再根据定理、公理连线或作垂线;可作定点或动点关于定直线的对称点,有些题作定点的对称点易解,有些题则作动点的对称点易解.典型例题2-2如图,∠AOB=60°,点P是∠AOB内的定点且OP= ,点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()A.B.C.6 D .3【分析】符合拓展模型3的特征;作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,此时△PMN周长最小,其值为CD长;根据对称性连接OC、OD,分析条件知△OCD是顶角为120°的等腰三角形,作底边上高,易求底边CD.【解答】作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,则MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,∴PN+PM+MN=ND+MN+NC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,则CH=DH,∵∠OCH=30°,∴OH=OC= ,CH= OH=,∴CD=2CH=3.即△PMN周长的最小值是3;故选:D.【小结】根据对称的性质,发现△OCD是顶角为120°的等腰三角形,是解题的关键,也是难点.典型例题2-3如图,已知平行四边形ABCO,以点O为原点,OC所在的直线为x轴,建立直角坐标系,AB交y轴于点D,AD=2,OC=6,∠A=60°,线段EF所在的直线为OD的垂直平分线,点P为线段EF上的动点,PM⊥x轴于点M点,点E与E′关于x轴对称,连接BP、E′M.(1)请直接写出点A坐标为,点B坐标为;(2)当BP+PM+ME′的长度最小时,请求出点P的坐标.【分析】(1)解直角三角形求出 OD,BD的长即可解决;(2)符合“搭桥模型”的特征;首先证明四边形OPME′是平行四边形,可得OP=EM,PM是定值,PB+ME′=OP+PB的值最小时,BP+PM+ME′的长度最小,此时P点为直线OB与EF的交点,结合OB的解析式可得P点坐标;【解答】(1)在Rt△ADO中,∵∠A=60°,AD=2,∴OD=2?tan60°=2 ,∴A(﹣2,2 ),∵四边形 ABCO是平行四边形,∴ AB=OC=6,DB=6 2=4 B 4 2(2)如图,连接OP.∵EF垂直平分线段OD,PM⊥OC,∴∠PEO=∠EOM=∠PMO=90°,∴四边形OMPE是矩形,∴PM=OE=,∵OE=OE′,∴PM=OE′,PM∥OE′,∴四边形OPME′是平行四边形,∴OP=EM,∵PM是定值,∴PB+ME′=OP+PB的值最小时,BP+PM+ME′的长度最小,∴当O、P、B共线时,BP+PM+ME′的长度最小,∵直线OB的解析式为y= x,∴P(2,).【小结】求没有公共端点的两条线段之和的最小值,一般通过作对称和平移(构造平行四边形)的方法,转化为基本模型 .典型例题2-4如图所示,在平面直角坐标系中,Rt△AOB的顶点坐标分别为A(﹣2,0),O(0,0),B(0,4),把△AOB绕点O按顺时针方向旋转90°,得到△COD.(1)求C、D两点的坐标;(2)求经过A、B、D三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上取两点E、F(点E在点F的上方),且EF=1,使四边形ACEF的周长最小,求出E、F两点的坐标.【分析】符合拓展模型7的特征,通过作对称、平移、连线,可找出E、F点,结合直线的解析式和抛物线的对称轴可解出E、F坐标.【解答】(1)由旋转的性质可知:OC=OA=2,OD=OB=4,∴C点的坐标是(0,2),D点的坐标是(4,0),(2)设所求抛物线的解析式为y=ax2+bx+c,4a-2b+c=0由题意,得16a+4b+c=0c=4解得a=- ,b=1,c=4,∴所求抛物线的解析式为y=- 2 ;(3)只需AF+CE最短,抛物线y=- 2 的对称轴为x=1,将点A向上平移至A1(﹣2,1),则AF=A1E,作A1关于对称轴x=1的对称点A2(4,1),连接A2C,A2C与对称轴交于点E,E为所求,可求得A2C的解析式为y=- ,当x=1时,y=,∴点E的坐标为(1, ),点F的坐标为(1, ).【小结】解决此类题的套路是“对称、平移、连线”;其中,作对称和平移的顺序可互换.变式训练2-1几何模型:条件:如图 1,A,B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA+PB的值最小.方法:作点 A关于直线 l的对称点 A’,连接A’B交l于点P,即为所求.(不必证明)模型应用:(1)如图2,已知平面直角坐标系中两定点A(0,﹣1)和B(2,﹣1),P为x轴上一动点,则当 PA+PB的值最小是点P的横坐标是,此时PA+PB= .(2)如图3,正方形ABCD的边长为4,E为AB的中点,P是AC上一动点,连接BD,由正方形对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是.(3)如图4,在菱形ABCD中,AB=10,∠DAB=60°,P是对角线AC上一动点,E,F分别是线段AB和BC上的动点,则PE+PF的最小值是.(4)如图5,在菱形ABCD中,AB=6,∠B=60°,点AG,AD上的两个动点,则EF+ED的最小值是G是边.CD边的中点,点E.F分别是变式训练2-2如图,矩形ABCD中,AD=15,AB=10,E为AB边上一点,且DE=2AE,连接CE与对角线BD交于F;若P、Q分别为AB边和BC边上的动点,连接EP、PQ和QF;则四边形EPQF周长的最小值是___________.变式训练2-3如图,已知直线l ∥l ,l 、l 2 之间的距离为 8,点P 到直线l 的1 2 1 1距离为6,点Q 到直线l2的距离为4,PQ=4,在直线l1上有一动点A ,直线l2上有一动点B ,满足AB ⊥l2,且PA+AB+BQ 最小,此时PA+BQ=. 变式训练2-4如图,已知在平面直角坐标系 xOy 中,直角梯形 OABC 的边OA 在y 轴的正半轴上, OC 在 x 轴的正半轴上, OA=AB=2,OC=3,过点B 作BD ⊥BC ,交OA 于点D .将∠DBC 绕点B 按顺 时针方向旋转,角的两边分别交 y 轴的正半轴、 x 轴的正半轴于点 E 和F . (1)求经过 A 、B 、C 三点的抛物线的解析式;(2)当BE 经过(1)中抛物线的顶点时,求 CF 的长;(3)在抛物线的对称轴上取两点P 、Q (点Q 在点P 的上方),且PQ=1,要使四边形BCPQ 的周长最小,求出P 、Q 两点的坐标.中考真题1.要在街道旁建奶站,向居民区 A 、B 提供牛奶,奶站应建在什么地方,才能使 A 、B 到它的 距离之和最短?小聪以街道为 x 轴,建立了如图所示的平面直角坐标系, A 点坐标为(0, 3),B 点坐标为(6,5),则A 、B 两点到奶站距离之和的最小值是.2.如图,矩形ABOC 的顶点A 的坐标为(﹣4,5),D 是OB 的中点,E 是OC 上的一点,当△ADE 的周长最小时,点E 的坐标是()A.(0,)B.(0,)C.(0,2)D.(0,)3.如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=1S矩形ABCD,则点P到A、B两点距3离之和PA+PB的最小值为()A.B.C.5 D.4.已知抛物线y= x2+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x轴的距离始终相等,如图,点M的坐标为(,3),P是抛物线y= x2+1上一个动点,则△PMF周长的最小值是()A.3 B.4 C.5 D.65.如图,点A(a,3),B(b,1)都在双曲线y=上,点C,D,分别是x轴,y轴上的动点,则四边形 ABCD周长的最小值为()A.B.C.D.6.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,D、E分别是AB、BC边上的动点,则AE+DE的最小值为()A.B.C.5 D.7.如图,Rt△ABC中,∠BAC=90°,AB=3,AC=6 ,点D,E分别是边BC,AC上的动点,则DA+DE的最小值为.8.如图,等腰△ABC的底边BC=20,面积为120,点F在边BC上,且BF=3FC,EG是腰AC的垂直平分线,若点D在EG上运动,则△CDF周长的最小值为.9.如图,菱形ABCD的边长为6,∠ABC=120°,M是上的动点,当 PB+PM的值最小时, PM的长是(BC边的一个三等分点,)P是对角线ACA.B.C.D.10.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠CAB交BC于D点,E,F分别是AD,AC上的动点,则CE+EF的最小值为()A.B.C.D.611.如图,在平面直角坐标系中,反比例函数y= (x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N两点.△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是()A.6 B.10 C.2 D.212.如图,△ABC中,AC=BC=2,AB=1,将它沿AB翻折得到△ABD,则四边形ADBC的形状是形,P、E、F分别为线段AB、AD、DB上的任意点,则PE+PF的最小值是.13.如图,已知抛物线y= x2+bx+c与直线y= x+3交于A,B两点,交x轴于C、D两点,连接AC、BC,已知A(0,3),C(﹣3,0).(1)求此抛物线的解析式;(2)在抛物线对称轴l上找一点M,使|MB﹣MD|的值最大,并求出这个最大值;(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P,使得以 A,P,Q为顶点的三角形与△ ABC相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.14.如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.(1)用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法);(2)在(1)的条件下,①证明:AE⊥DE;②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值.15.如图,抛物线y=ax2+bx+c(a≠0)经过点A(﹣1,0),B(3,0),C(0,3)三点.(1)求抛物线的解析式及顶点M的坐标;(2)连接AC、BC,N为抛物线上的点且在第四象限,当(3)在(2)问的条件下,过点 C作直线l∥x轴,动点S△NBC=S△ABC时,求N点的坐标;P(m,3)在直线l上,动点Q(m,0)在x轴上,连接PM、PQ、NQ,当m为何值时,PM+PQ+QN的和最小,并求出PM+PQ+QN和的最小值.16.如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数2y=ax+4x+c的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND 长度的最大值;(3)若点H为二次函数y=ax 2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴、y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F,E的坐标.17.如图1,已知抛物线y= (x﹣2)(x+a)(a>0)与x轴从左至右交于A,B两点,与 y轴交于点 C.(1)若抛物线过点T(1,﹣),求抛物线的解析式;(2)在第二象限内的抛物线上是否存在点D,使得以A、B、D三点为顶点的三角形与△ABC相似?若存在,求a的值;若不存在,请说明理由.(3)如图2,在(1)的条件下,点P的坐标为(﹣1,1),点Q(6,t)是抛物线上的点,在x轴上,从左至右有M、N两点,且MN=2,问MN在x轴上移动到何处时,四边形PQNM的周长最小?请直接写出符合条件的点M的坐标.18.如图,对称轴为直线x=2的抛物线经过A(﹣1,0),C(0,5)两点,与x轴另一交点为B.已知M(0,1),E(a,0),F(a+1,0),P是第一象限内抛物线上的动点.(1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标;(3)若△PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?请说明理由.19.探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1(x1,y1),P2(x2,y2),可通过构造直角三角形利用图1得到结论:P1P2=他还利用图2证明了线段P1P2的中点P(x,y)P的坐标公式:x= ,y= .(1)请你帮小明写出中点坐标公式的证明过程;运用:(2)①已知点M(2,﹣1),N(﹣3,5),则线段MN长度为;②直接写出以点A(2,2),B(﹣2,0),C(3,﹣1),D为顶点的平行四边形顶点D的坐标:;拓展:(3)如图3,点P(2,n)在函数y= x(x≥0)的图象OL与x轴正半轴夹角的平分线上,请在OL、x轴上分别找出点方法,并求出周长的最小值.E、F,使△PEF的周长最小,简要叙述作图20.如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C.(1)求直线y=kx+b的函数解析式;(2)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;(3)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值.21.如图①,在平面直角坐标系中,OA=6,以OA为边长作等边三角形ABC,使得BC∥OA,且点B、C落在过原点且开口向下的抛物线上.(1)求这条抛物线的解析式;(2)在图①中,假设一动点P从点B出发,沿折线BAC的方向以每秒2个单位的速度运动,同时另一动点Q从O点出发,沿x轴的负半轴方向以每秒1个单位的速度运动,当点P运动到A点时,P、Q都同时停止运动,在P、Q的运动过程中,是否存在时间t,使得PQ⊥AB,若存在,求出t的值,若不存在,请说明理由;(3)在BC边上取两点E、F,使BE=EF=1个单位,试在AB边上找一点G,在抛物线的对称轴上找一点H,使得四边形EGHF的周长最小,并求出周长的最小值.本人所著《初中几何模型与解题通法》已发行,可在当当、淘宝和京东搜索购买特色:1.由一线名师编写,更专业权威,各地历年中考压轴题几乎都能在书中找到对应的模型和方法,甚至出现大量高度类似题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
将军饮马问题问题概述路径最短、线段和最小、线段差最大、周长最小等一系列最值问题方法原理1.两点之间,线段最短;2.三角形两边之和大于第三边,两边之差小于第三边;3.中垂线上的点到线段两端点的距离相等;4.垂线段最短.基本模型1.已知:如图,定点A、B分布在定直线l两侧;要求:在直线l上找一点P,使PA+PB的值最小解:连接AB交直线l于点P,点P即为所求,PA+PB的最小值即为线段AB的长度理由:在l上任取异于点P的一点P´,连接AP´、BP´,在△ABP’中,AP´+BP´>AB,即AP´+BP´>AP+BP∴P为直线AB与直线l的交点时,PA+PB最小.2.已知:如图,定点A和定点B在定直线l的同侧要求:在直线l上找一点P,使得PA+PB值最小(或△ABP的周长最小)解:作点A关于直线l的对称点A´,连接A´B交l于P,点P即为所求;理由:根据轴对称的性质知直线l为线段AA´的中垂线,由中垂线的性质得:PA=PA´,要使PA+PB最小,则需PA´+PB值最小,从而转化为模型1.3.已知:如图,定点A、B分布在定直线l的同侧(A、B两点到l的距离不相等)要求:在直线l上找一点P,使︱PA-PB︱的值最大解:连接BA并延长,交直线l于点P,点P即为所求;理由:此时︱PA-PB︱=AB,在l上任取异于点P的一点P´,连接AP´、BP´,由三角形的三边关系知︱P´A-P´B︱<AB,即︱P´A-P´B︱<︱PA-PB︱4. 已知:如图,定点A、B分布在定直线l的两侧(A、B两点到l的距离不相等)要求:在直线l上找一点P,使︱PA-PB︱的值最大解:作点B关于直线l的对称点B´,连接B´A并延长交于点P,点P即为所求;理由:根据对称的性质知l为线段BB´的中垂线,由中垂线的性质得:PB=PB´,要使︱PA-PB︱最大,则需︱PA-PB´︱值最大,从而转化为模型3.典型例题1-1如图,直线y=2x+4与x轴、y轴分别交于点A和点B,点C、D分3别为线段AB、OB的中点,点P为OA上一动点,当PC+PD最小时,点P的坐标为_________,此时PC+PD的最小值为_________.【分析】符合基本模型2的特征,作点D关于x轴的对称点D',连接CD'交x轴于点P,此时PC+PD值最小,由条件知CD为△BAO的中位线,OP为△CDD'的中位线,易求OP长,从而求出P点坐标;PC+PD的最小值即CD'长,可用勾股定理(或两点之间的距离公式,实质相同)计算.【解答】连接CD,作点D关于x轴的对称点D′,连接CD′交x轴于点P ,此时PC+PD 值最小.令y=23x+4中x=0,则y=4, ∴点B 坐标(0,4);令y=23x+4中y=0,则23x+4=0,解得:x=﹣6,∴点A 的坐标为(﹣6,0).∵点C 、D 分别为线段AB 、OB 的中点,∴CD 为△BAO 的中位线, ∴CD ∥x 轴,且CD=21AO=3,∵点D ′和点D 关于x 轴对称,∴O 为DD ′的中点,D ′(0,-1),∴OP 为△CDD ′的中位线,∴OP=21CD=23,∴点P 的坐标为(﹣32,0).在Rt △CDD ′中,CD ′=22D D CD '+=2243+=5,即PC+PD 的最小值为5.【小结】还可用中点坐标公式先后求出点C 、点P 坐标;若题型变化,C 、D 不是AB 和OB 中点时,则先求直线CD ′的解析式,再求其与x 轴的交点P 的坐标.典型例题1-2如图,在平面直角坐标系中,已知点A 的坐标为(0,1),点B的坐标为(32,﹣2),点P 在直线y=﹣x 上运动,当|PA ﹣PB|最 大时点P 的坐标为_________,|PA ﹣PB|的最大值是_________.【分析】符合基本模型4的特征,作A 关于直线y=﹣x 对称点C ,连接BC ,可得直线BC 的方程;求得BC 与直线y=﹣x 的交点P 的坐标;此时|PA ﹣PB|=|PC ﹣PB|=BC 取得最大值,再用两点之间的距离公式求此最大值.【解答】作A 关于直线y=﹣x 对称点C ,易得C 的坐标为(﹣1,0);连接BC ,可得直线BC的方程为y=﹣54x ﹣54,与直线y=﹣x 联立解得交点坐标P 为(4,﹣4);此时|PA﹣PB|=|PC ﹣PB|=BC 取得最大值,最大值BC=2223)2()1(-++=241;【小结】“两点一线”大多考查基本模型2和4,需作一次对称点,连线得交点.变式训练1-1已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A (5,0),OB=4√5,点P 是对角线OB 上的一个动点,D (0,1),当CP+DP 最短时,点P 的坐标为( )A .(0,0)B .(1,12)C .(65,35)D .(107,57)变式训练1-2如图,菱形ABCD 中,对角线AC 和BD 交于点O ,AC=2,BD=2√3,E 为AB 的中点,P 为对角线AC 上一动点,则PE+PB 的最小值为__________.变式训练1-3如图,已知直线y=12x+1与y 轴交于点A ,与x 轴交于点D ,抛物线y=12x 2+bx+c 与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为(1,0).(1)求该抛物线的解析式;(2)在抛物线的对称轴上找一点M ,使|AM ﹣MC|的值最大,求出点M 的坐标.拓展模型1. 已知:如图,A 为锐角∠MON 外一定点;要求:在射线OM 上找一点P ,在射线ON 上找一点Q ,使AP+PQ 的值最小.解:过点A 作AQ ⊥ON 于点Q ,AQ 与OM 相交于点P ,此时,AP+PQ 最小;理由:AP+PQ ≧AQ ,当且仅当A 、P 、Q 三点共线时,AP+PQ 取得最小值AQ ,根据垂线段最短,当AQ ⊥ON 时,AQ 最小.2. 已知:如图,A 为锐角∠MON 内一定点;要求:在射线OM 上找一点P ,在射线ON 上找一点Q ,使AP+PQ 的值最小.解:作点A关于OM的对称点A′,过点A′作AQ⊥ON于点Q,A′Q交OM于点P,此时AP+PQ最小;理由:由轴对称的性质知AP=A′P,要使AP+PQ最小,只需A′P+PQ最小,从而转化为拓展模型13.已知:如图,A为锐角∠MON内一定点;要求:在射线OM上找一点P,在射线ON上找一点Q,使△APQ的周长最小解:分别作A点关于直线OM的对称点A1,关于ON的对称点A 2,连接 A1A2交OM于点P,交ON于点Q,点P和点Q即为所求,此时△APQ周长最小,最小值即为线段A1A2的长度;理由:由轴对称的性质知AP=A1P,AQ=A2Q,△APQ的周长AP+PQ+AQ=A1P+PQ+A2Q,当A1、P、Q、A2四点共线时,其值最小.4. 已知:如图,A、B为锐角∠MON内两个定点;要求:在OM上找一点P,在ON上找一点Q,使四边形APQB的周长最小解:作点A关于直线OM的对称点A´,作点B关于直线ON的对称点B´,连接A´B´交OM于P,交ON于Q,则点P、点Q即为所求,此时四边形APQB周长的最小值即为线段AB和A´B´的长度之和;理由:AB长为定值,由基本模型将PA转化为PA´,将QB转化为QB´,当A´、P、Q、B´四点共线时,PA´+PQ+ QB´的值最小,即PA+PQ+ QB的值最小.5.搭桥模型已知:如图,直线m∥n,A、B分别为m上方和n下方的定点,(直线AB不与m垂直)要求:在m、n之间求作垂线段PQ,使得AP+PQ+BQ最小.分析:PQ为定值,只需AP+BQ最小,可通过平移,使P、Q“接头”,转化为基本模型解:如图,将点A沿着平行于PQ的方向,向下平移至点A′,使得AA′=PQ,连接A′B交直线n于点Q,过点Q作PQ⊥n,交直线m于点P,线段PQ即为所求,此时AP+PQ+BQ最小.理由:易知四边形QPAA′为平行四边形,则QA′=PA,当B、Q、A′三点共线时,QA′+BQ最小,即AP+BQ最小,PQ长为定值,此时AP+PQ+BQ最小.6.已知:如图,定点A、B分布于直线l两侧,长度为a(a为定值)的线段PQ在l上移动(P在Q左边)要求:确定PQ的位置,使得AP+PQ+QB最小分析:PQ为定值,只需AP+QB的值最小,可通过平移,使P、Q“接头”,转化为基本模型解:将点A沿着平行于l的方向,向右移至A´,使AA´=PQ=a,连接A´B交直线l于点Q,在l上截取PQ=a(P在Q左边),则线段PQ即为所求,此时AP+PQ+QB的最小值为A´B+PQ,即A´B+a理由:易知四边形APQA´为平行四边形,则PA=QA´,当A´、Q、B三点共线时,QA´+QB最小,即PA+QB最小,又PQ长为定值此时PA+PQ+QB值最小.7.已知:如图,定点A、B分布于直线l的同侧,长度a(a为定值)的线段PQ在l上移动(P在Q左边)要求:确定PQ 的位置,使得四边形APQB 周长最小分析:AB 长度确定,只需AP+PQ+QB 最小,通过作A 点关于l 的对称点,转化为上述模型3解:作A 点关于l 的对称点A ´,将点A ´沿着平行于l的方向,向右移至A ´´,使A ´A ´´=PQ=a ,连接A ´´B交l 于Q ,在l 上截取QP=a (P 在Q 左边),线段PQ 即为所求,此时四边形APQB 周长的最小值为A ´´B+AB+PQ ,即A ´´B+AB+a典型例题2-1如图,在矩形ABCD 中,AB=10,BC=5,若点M 、N 分别是线段AC 、AB 上的两个动点,则BM+MN 的最小值为 .【分析】符合拓展模型2的特征,作点B 关于AC 的对称点E ,再过点E 作AB 的垂线段,该垂线段的长即BM+MN 的最小值,借助等面积法和相似可求其长度.【解答】作点B 关于AC 的对称点E ,再过点E 作EN ⊥AB 于N ,则BM+MN=EM+MN ,其最小值即EN 长;∵AB=10,BC=5,∴AC=22BC AB +=55,等面积法求得AC 边上的高为55510⨯=25,∴BE=45, 易知△ABC ∽△ENB ,∴,代入数据解得EN=8. 即BM+MN 的最小值为8.【小结】该类题的思路是通过作对称,将线段转化,再根据定理、公理连线或作垂线;可作定点或动点关于定直线的对称点,有些题作定点的对称点易解,有些题则作动点的对称点易解.典型例题2-2如图,∠AOB=60°,点P 是∠AOB 内的定点且OP=,点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A .B .C .6D .3【分析】符合拓展模型3的特征;作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,此时△PMN周长最小,其值为CD长;根据对称性连接OC、OD,分析条件知△OCD是顶角为120°的等腰三角形,作底边上高,易求底边CD. 【解答】作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,则MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,∴PN+PM+MN=ND+MN+NC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,则CH=DH,∵∠OCH=30°,∴OH=OC=,CH=OH=,∴CD=2CH=3.即△PMN周长的最小值是3;故选:D.【小结】根据对称的性质,发现△OCD是顶角为120°的等腰三角形,是解题的关键,也是难点.典型例题2-3如图,已知平行四边形ABCO,以点O为原点,OC所在的直线为x轴,建立直角坐标系,AB交y轴于点D,AD=2,OC=6,∠A=60°,线段EF所在的直线为OD的垂直平分线,点P为线段EF上的动点,PM⊥x轴于点M点,点E与E′关于x轴对称,连接BP、E′M.(1)请直接写出点A坐标为,点B坐标为;(2)当BP+PM+ME′的长度最小时,请求出点P的坐标.【分析】(1)解直角三角形求出OD,BD的长即可解决;(2)符合“搭桥模型”的特征;首先证明四边形OPME′是平行四边形,可得OP=EM,PM是定值,PB+ME′=OP+PB的值最小时,BP+PM+ME′的长度最小,此时P点为直线OB与EF的交点,结合OB的解析式可得P点坐标;【解答】(1)在Rt△ADO中,∵∠A=60°,AD=2,∴OD=2•tan60°=2,∴A(﹣2,2),∵四边形ABCO是平行四边形,∴AB=OC=6,∴DB=6﹣2=4,∴B(4,2)(2)如图,连接OP.∵EF垂直平分线段OD,PM⊥OC,∴∠PEO=∠EOM=∠PMO=90°,∴四边形OMPE是矩形,∴PM=OE=,∵OE=OE′,∴PM=OE′,PM∥OE′,∴四边形OPME′是平行四边形,∴OP=EM,∵PM是定值,∴PB+ME′=OP+PB的值最小时,BP+PM+ME′的长度最小,∴当O、P、B共线时,BP+PM+ME′的长度最小,∵直线OB的解析式为y=x,∴P(2,).【小结】求没有公共端点的两条线段之和的最小值,一般通过作对称和平移(构造平行四边形)的方法,转化为基本模型.典型例题2-4如图所示,在平面直角坐标系中,Rt△AOB的顶点坐标分别为A(﹣2,0),O(0,0),B(0,4),把△AOB绕点O按顺时针方向旋转90°,得到△COD.(1)求C、D两点的坐标;(2)求经过A、B、D三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上取两点E、F(点E在点F的上方),且EF=1,使四边形ACEF的周长最小,求出E、F两点的坐标.【分析】符合拓展模型7的特征,通过作对称、平移、连线,可找出E、F点,结合直线的解析式和抛物线的对称轴可解出E、F坐标.【解答】(1)由旋转的性质可知:OC=OA=2,OD=OB=4,∴C点的坐标是(0,2),D点的坐标是(4,0),(2)设所求抛物线的解析式为y=ax2+bx+c,4a-2b+c=0由题意,得 16a+4b+c=0c=4解得a=-12,b=1,c=4,∴所求抛物线的解析式为y=-12x²+x+4;(3)只需AF+CE最短,抛物线y=-12x²+x+4的对称轴为x=1,将点A向上平移至A1(﹣2,1),则AF=A1E,作A1关于对称轴x=1的对称点A2(4,1),连接A2C,A2C与对称轴交于点E,E为所求,可求得A2C的解析式为y=-14x+2,当x=1时,y=74,∴点E的坐标为(1,74),点F的坐标为(1,34).【小结】解决此类题的套路是“对称、平移、连线”;其中,作对称和平移的顺序可互换.变式训练2-1几何模型:条件:如图1,A,B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA+PB的值最小.方法:作点A关于直线l的对称点A’,连接A’B交l于点P,即为所求.(不必证明)模型应用:(1)如图2,已知平面直角坐标系中两定点A(0,﹣1)和B(2,﹣1),P为x轴上一动点,则当PA+PB的值最小是点P的横坐标是,此时PA+PB= .(2)如图3,正方形ABCD的边长为4,E为AB的中点,P是AC上一动点,连接BD,由正方形对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是.(3)如图4,在菱形ABCD中,AB=10,∠DAB=60°,P是对角线AC上一动点,E,F分别是线段AB和BC上的动点,则PE+PF的最小值是.(4)如图5,在菱形ABCD中,AB=6,∠B=60°,点G是边CD边的中点,点E.F分别是AG,AD上的两个动点,则EF+ED的最小值是.变式训练2-2如图,矩形ABCD中,AD=15,AB=10,E为AB边上一点,且DE=2AE,连接CE与对角线BD交于F;若P、Q分别为AB边和BC边上的动点,连接EP、PQ和QF;则四边形EPQF周长的最小值是___________.变式训练2-3如图,已知直线l 1∥l2,l1、l2之间的距离为8,点P到直线l1的距离为6,点Q到直线l2的距离为4,PQ=4,在直线l1上有一动点A,直线l2上有一动点B,满足AB⊥l2,且PA+AB+BQ最小,此时PA+BQ= .变式训练2-4如图,已知在平面直角坐标系xOy中,直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于点E和F.(1)求经过A、B、C三点的抛物线的解析式;(2)当BE经过(1)中抛物线的顶点时,求CF的长;(3)在抛物线的对称轴上取两点P、Q(点Q在点P的上方),且PQ=1,要使四边形BCPQ 的周长最小,求出P、Q两点的坐标.中考真题1.要在街道旁建奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使A、B到它的距离之和最短?小聪以街道为x轴,建立了如图所示的平面直角坐标系,A点坐标为(0,3),B点坐标为(6,5),则A、B两点到奶站距离之和的最小值是.2.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A .(0,)B .(0,)C .(0,2)D .(0,)3.如图,在矩形ABCD 中,AB=5,AD=3,动点P 满足S △PAB =31S 矩形ABCD ,则点P 到A 、B 两点距离之和PA+PB 的最小值为( )A .B .C .5D .4.已知抛物线y=x 2+1具有如下性质:该抛物线上任意一点到定点F (0,2)的距离与到x轴的距离始终相等,如图,点M 的坐标为(,3),P 是抛物线y=x 2+1上一个动点,则△PMF 周长的最小值是( )A .3B .4C .5D .65.如图,点A (a ,3),B (b ,1)都在双曲线y=上,点C ,D ,分别是x 轴,y 轴上的动点,则四边形ABCD 周长的最小值为( )A .B .C .D .6.如图,在Rt △ABC 中,∠C=90°,AC=3,BC=4,D 、E 分别是AB 、BC 边上的动点,则AE+DE 的最小值为( )A .B .C .5D .7.如图,Rt △ABC 中,∠BAC=90°,AB=3,AC=6,点D ,E 分别是边BC ,AC 上的动点,则DA+DE 的最小值为 .8.如图,等腰△ABC 的底边BC=20,面积为120,点F 在边BC 上,且BF=3FC ,EG 是腰AC 的垂直平分线,若点D 在EG 上运动,则△CDF 周长的最小值为 .9.如图,菱形ABCD 的边长为6,∠ABC=120°,M 是BC 边的一个三等分点,P 是对角线AC 上的动点,当PB+PM 的值最小时,PM 的长是( )A.B.C.D.10.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠CAB交BC于D点,E,F分别是AD,AC上的动点,则CE+EF的最小值为()A.B.C.D.611.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N 两点.△OMN的面积为10.若动点P在x轴上,则PM+PN 的最小值是()A.6B.10 C.2D.212.如图,△ABC中,AC=BC=2,AB=1,将它沿AB翻折得到△ABD,则四边形ADBC的形状是形,P、E、F分别为线段AB、AD、DB上的任意点,则PE+PF的最小值是.13.如图,已知抛物线y=x2+bx+c与直线y=x+3交于A,B两点,交x轴于C、D两点,连接AC、BC,已知A(0,3),C(﹣3,0).(1)求此抛物线的解析式;(2)在抛物线对称轴l上找一点M,使|MB﹣MD|的值最大,并求出这个最大值;(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P,使得以A,P,Q为顶点的三角形与△ABC相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.14.如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.(1)用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法);(2)在(1)的条件下,①证明:AE⊥DE;②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值.15.如图,抛物线y=ax2+bx+c(a≠0)经过点A(﹣1,0),B(3,0),C(0,3)三点.(1)求抛物线的解析式及顶点M的坐标;(2)连接AC、BC,N为抛物线上的点且在第四象限,当S△NBC=S△ABC时,求N点的坐标;(3)在(2)问的条件下,过点C作直线l∥x轴,动点P(m,3)在直线l上,动点Q(m,0)在x轴上,连接PM、PQ、NQ,当m为何值时,PM+PQ+QN的和最小,并求出 PM+PQ+QN 和的最小值.16.如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x+c的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND 长度的最大值;(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴、y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F,E的坐标.17.如图1,已知抛物线y=(x﹣2)(x+a)(a>0)与x轴从左至右交于A,B两点,与y轴交于点C.(1)若抛物线过点T(1,﹣),求抛物线的解析式;(2)在第二象限内的抛物线上是否存在点D,使得以A、B、D三点为顶点的三角形与△ABC相似?若存在,求a的值;若不存在,请说明理由.(3)如图2,在(1)的条件下,点P的坐标为(﹣1,1),点Q(6,t)是抛物线上的点,在x轴上,从左至右有M、N两点,且MN=2,问MN在x轴上移动到何处时,四边形PQNM 的周长最小?请直接写出符合条件的点M的坐标.18.如图,对称轴为直线x=2的抛物线经过A(﹣1,0),C(0,5)两点,与x轴另一交点为B.已知M(0,1),E(a,0),F(a+1,0),P是第一象限内抛物线上的动点.(1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标;(3)若△PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?请说明理由.19.探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1(x1,y1),P2(x2,y2),可通过构造直角三角形利用图1得到结论:P1P2=他还利用图2证明了线段P1P2的中点P(x,y)P的坐标公式:x=,y=.(1)请你帮小明写出中点坐标公式的证明过程;运用:(2)①已知点M(2,﹣1),N(﹣3,5),则线段MN长度为;②直接写出以点A(2,2),B(﹣2,0),C(3,﹣1),D为顶点的平行四边形顶点D的坐标:;拓展:(3)如图3,点P(2,n)在函数y=x(x≥0)的图象OL与x轴正半轴夹角的平分线上,请在OL、x轴上分别找出点E、F,使△PEF的周长最小,简要叙述作图方法,并求出周长的最小值.20.如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C.(1)求直线y=kx+b的函数解析式;(2)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;(3)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值.21.如图①,在平面直角坐标系中,OA=6,以OA为边长作等边三角形ABC,使得BC∥OA,且点B、C落在过原点且开口向下的抛物线上.(1)求这条抛物线的解析式;(2)在图①中,假设一动点P从点B出发,沿折线BAC的方向以每秒2个单位的速度运动,同时另一动点Q从O点出发,沿x轴的负半轴方向以每秒1个单位的速度运动,当点P 运动到A点时,P、Q都同时停止运动,在P、Q的运动过程中,是否存在时间t,使得PQ⊥AB,若存在,求出t的值,若不存在,请说明理由;(3)在BC边上取两点E、F,使BE=EF=1个单位,试在AB边上找一点G,在抛物线的对称轴上找一点H,使得四边形EGHF的周长最小,并求出周长的最小值.本人所著《初中几何模型与解题通法》已发行,可在当当、淘宝和京东搜索购买特色:1.由一线名师编写,更专业权威,各地历年中考压轴题几乎都能在书中找到对应的模型和方法,甚至出现大量高度类似题。