2004年上海交通大学数学分析考研试题答案

合集下载

数学类考研上海交大陈纪修《数学分析》配套考研真题

数学类考研上海交大陈纪修《数学分析》配套考研真题

数学类考研上海交大陈纪修《数学分析》配套考研真题第一部分名校考研真题第1章集合与映射本章暂未编选名校考研真题,若有最新真题会及时更新。

第2章数列极限一、判断题1.对任意的p为正整数,如果,则存在。

()[重庆大学研]【答案】错查看答案【解析】根据数列收敛的Cauchy收敛准则,可举出反例:,虽然对任意的但(也可说明)。

2.对数列和若是有界数列,则是有界数列。

()[北京大学研]【答案】对查看答案【解析】设|S n|<M,则3.数列存在极限的充分必要条件是:对任一自然数p,都有()[北京大学研]【答案】错查看答案【解析】反例:,但不存在.二、解答题1.[暨南大学2013研]解:利用定积分的定义求解.2.设数列满足条件:,且,证明数列无界.[华东师范大学2009研]证明:用反证法.假若数列有界,即存在,使得,则由条件知.由得,对,存在正整数,当时,有,,令,则,且,,(1)对(1)式两边取上确界,有,所以,这与矛盾,所以数列无界.3.求极限.[华中科技大学2008研]解:一方面显然,另一方面,且由迫敛性可知.注:可用如下两种方式证明.(1)令,则,所以,从而.(2)由,得.4.证明不存在.[兰州大学2009研]证明:取,则由于,所以不存在.5.(1)设数列为正的单调递减数列,且收敛,证明:.(2)设数列为正的单调递减数列,且收敛,证明:.[南开大学2011研]证明:(1)因为为正的单调递减数列,由单调有界定理得存在,由收敛,可知必有(p为任意正整数),对任意存在正整数,使得对任意正整数,成立在上式中,令,取极限,则得由的任意性,则得显然故有.(2)因为为正的单调递减数列,由单调有界定理知存在,由收敛,可知必有;对任意存在正整数,使得对任意正整数,成立在上式中,令,取极限,则得由的任意性,则得显然故有.6.设证明收敛,并求极限。

[华中科技大学2007研]证明:很明显,假设则又因为所以单调递增有上界,故极限存在。

2004年考研数学试题答案与解析(数学一)

2004年考研数学试题答案与解析(数学一)

2004年考研数学试题答案与解析(数学一)一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为1-=x y .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标.【详解】 由11)(ln =='='xx y ,得x=1, 可见切点为)0,1(,于是所求的切线方程为)1(10-⋅=-x y , 即 1-=x y .【评注】 本题也可先设切点为)ln ,(00x x ,曲线y=lnx 过此切点的导数为110=='=x y x x ,得10=x ,由此可知所求切线方程为)1(10-⋅=-x y , 即 1-=x y .本题比较简单,类似例题在一般教科书上均可找到. (2)已知x x xe e f -=')(,且f(1)=0, 则f(x)=2)(ln 21x .【分析】 先求出)(x f '的表达式,再积分即可. 【详解】 令t e x =,则t x ln =,于是有 tt t f ln )(=', 即 .ln )(xx x f ='积分得 C x dx xx x f +==⎰2)(ln 21ln )(. 利用初始条件f(1)=0, 得C=0,故所求函数为f(x)=2)(ln 21x .【评注】 本题属基础题型,已知导函数求原函数一般用不定积分.(3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-Lydx xdy 2的值为π23 .【分析】 利用极坐标将曲线用参数方程表示,相应曲线积分可化为定积分. 【详解】 正向圆周222=+y x 在第一象限中的部分,可表示为.20:,s i n 2,c o s 2πθθθ→⎩⎨⎧==y x于是θθθθθπd y d x x d y L]s i n 2s i n 22c o s 2c o s 2[22⋅+⋅=-⎰⎰=.23sin 222πθθππ=+⎰d【评注】 本题也可添加直线段,使之成为封闭曲线,然后用格林公式计算,而在添加的线段上用参数法化为定积分计算即可.(4)欧拉方程)0(024222>=++x y dxdy xdxy d x的通解为 221xc xc y +=.【分析】 欧拉方程的求解有固定方法,作变量代换t e x =化为常系数线性齐次微分方程即可.【详解】 令t e x =,则dtdy x dtdy edxdt dtdy dxdy t1==⋅=-,][11122222222dtdy dty d xdxdt dty d x dtdy xdxy d -=⋅+-=,代入原方程,整理得02322=++y dtdy dty d ,解此方程,得通解为 .221221xc xc ec ec y tt+=+=--【评注】 本题属基础题型,也可直接套用公式,令t e x =,则欧拉方程)(222x f cy dxdy bxdx y d ax=++,可化为 ).(][22te f cy dtdy bdtdy dty d a =++-(5)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=10021012A ,矩阵B 满足E BA ABA +=**2,其中*A 为A 的伴随矩阵,E 是单位矩阵,则=B91 .【分析】 可先用公式E A A A =*进行化简 【详解】 已知等式两边同时右乘A ,得A A BA A ABA +=**2, 而3=A ,于是有A B AB +=63, 即 A B E A =-)63(,再两边取行列式,有 363==-A B E A ,而 2763=-E A ,故所求行列式为.91=B【评注】 先化简再计算是此类问题求解的特点,而题设含有伴随矩阵*A ,一般均应先利用公式E A AA A A ==**进行化简.(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >= e1 .【分析】 已知连续型随机变量X 的分布,求其满足一定条件的概率,转化为定积分计算即可.【详解】 由题设,知21λ=DX ,于是}{DX X P >=dx e X P x⎰+∞-=>λλλλ1}1{=.11eex=-∞+-λλ【评注】 本题应记住常见指数分布等的期望与方差的数字特征,而不应在考试时再去推算.二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xxx⎰⎰⎰===32sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A) γβα,,. (B) βγα,,. (C) γαβ,,. (D) αγβ,,. [ B ] 【分析】 先两两进行比较,再排出次序即可.【详解】 0c o s 2t a n lim cos tanlim lim22002=⋅==+++→→→⎰⎰xx x dtt dtt x xxx x αβ,可排除(C),(D)选项,又 xx xx dtt dtt x xxx x tan 221sin lim tansin lim lim23032⋅==+++→→→⎰⎰βγ=∞=+→2lim 41xx x ,可见γ是比β低阶的无穷小量,故应选(B).【评注】 本题是无穷小量的比较问题,也可先将γβα,,分别与nx 进行比较,再确定相互的高低次序.(8)设函数f(x)连续,且,0)0(>'f 则存在0>δ,使得(A) f(x)在(0,)δ内单调增加. (B )f(x)在)0,(δ-内单调减少.(C) 对任意的),0(δ∈x 有f(x)>f(0) . (D) 对任意的)0,(δ-∈x 有f(x)>f(0) .[ C ]【分析】 函数f(x)只在一点的导数大于零,一般不能推导出单调性,因此可排除(A),(B)选项,再利用导数的定义及极限的保号性进行分析即可.【详解】 由导数的定义,知 0)0()(lim)0(0>-='→xf x f f x ,根据保号性,知存在0>δ,当),0()0,(δδ -∈x 时,有0)0()(>-xf x f即当)0,(δ-∈x 时,f(x)<f(0); 而当),0(δ∈x 时,有f(x)>f(0). 故应选(C). 【评注】 题设函数一点可导,一般均应联想到用导数的定义进行讨论.(9)设∑∞=1n n a 为正项级数,下列结论中正确的是(A) 若n n na ∞→lim =0,则级数∑∞=1n n a 收敛.(B ) 若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n n a 发散.(C) 若级数∑∞=1n n a 收敛,则0lim 2=∞→n n a n .(D) 若级数∑∞=1n n a 发散, 则存在非零常数λ,使得λ=∞→n n na lim . [ B ]【分析】 对于敛散性的判定问题,若不便直接推证,往往可用反例通过排除法找到正确选项.【详解】 取nn a n ln 1=,则n n na ∞→lim =0,但∑∑∞=∞==11ln 1n n n nn a 发散,排除(A),(D);又取nn a n 1=,则级数∑∞=1n n a 收敛,但∞=∞→n n a n 2lim ,排除(C), 故应选(B).【评注】 本题也可用比较判别法的极限形式,01limlim ≠==∞→∞→λna na n n n n ,而级数∑∞=11n n发散,因此级数∑∞=1n n a 也发散,故应选(B).(10)设f(x)为连续函数,⎰⎰=ttydx x f dy t F 1)()(,则)2(F '等于(A) 2f(2). (B) f(2). (C) –f(2). (D) 0. [ B ] 【分析】 先求导,再代入t=2求)2(F '即可.关键是求导前应先交换积分次序,使得被积函数中不含有变量t.【详解】 交换积分次序,得 ⎰⎰=ttydx x f dy t F 1)()(=⎰⎰⎰-=t xtdx x x f dx dy x f 111)1)((])([于是,)1)(()(-='t t f t F ,从而有 )2()2(f F =',故应选(B).【评注】 在应用变限的积分对变量x 求导时,应注意被积函数中不能含有变量x: ⎰'-'=')()()()]([)()]([])([x b x a x a x a f x b x b f dt t f否则,应先通过恒等变形、变量代换和交换积分次序等将被积函数中的变量x 换到积分号外或积分线上.(11)设A 是3阶方阵,将A 的第1列与第2列交换得B,再把B 的第2列加到第3列得C, 则满足AQ=C 的可逆矩阵Q 为(A) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010. (B) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡10101010. (C) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡11001010. (D) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡10001110. [ D ]【分析】 本题考查初等矩阵的的概念与性质,对A 作两次初等列变换,相当于右乘两个相应的初等矩阵,而Q 即为此两个初等矩阵的乘积.【详解】由题设,有B A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001010, C B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100110001, 于是, .1000111010110001100001010C A A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡ 可见,应选(D).【评注】 涉及到初等变换的问题,应掌握初等矩阵的定义、初等矩阵的性质以及与初等变换的关系.(12)设A,B 为满足AB=O 的任意两个非零矩阵,则必有 (A) A 的列向量组线性相关,B 的行向量组线性相关. (B) A 的列向量组线性相关,B 的列向量组线性相关.(C) A 的行向量组线性相关,B 的行向量组线性相关.(D) A 的行向量组线性相关,B 的列向量组线性相关. [ A ]【分析】A,B 的行列向量组是否线性相关,可从A,B 是否行(或列)满秩或Ax=0(Bx=0)是否有非零解进行分析讨论.【详解1】 设A 为n m ⨯矩阵,B 为s n ⨯矩阵,则由AB=O 知,n B r A r <+)()(.又A,B 为非零矩阵,必有r(A)>0,r(B)>0. 可见r(A)<n, r(B)<n, 即A 的列向量组线性相关,B 的行向量组线性相关,故应选(A).【详解2】 由AB=O 知,B 的每一列均为Ax=0的解,而B 为非零矩阵,即Ax=0存在非零解,可见A 的列向量组线性相关.同理,由AB=O 知,O A B T T =,于是有T B 的列向量组,从而B 的行向量组线性相关,故应选(A).【评注】 AB=O 是常考关系式,一般来说,与此相关的两个结论是应记住的: 1) AB=O ⇒n B r A r <+)()(; 2) AB=O ⇒B 的每列均为Ax=0的解.(13)设随机变量X 服从正态分布N(0,1),对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A) 2αu . (B) 21α-u. (C) 21α-u . (D) α-1u . [ C ]【分析】 此类问题的求解,可通过αu 的定义进行分析,也可通过画出草图,直观地得到结论.【详解】 由标准正态分布概率密度函数的对称性知,αα=-<}{u X P ,于是 }{2}{}{}{}{11x X P x X P x X P x X P x X P ≥=-≤+≥=≥=<-=-α即有 21}{α-=≥x X P ,可见根据定义有21α-=u x ,故应选(C).【评注】 本题αuα 21α-(14)设随机变量)1(,,,21>n X X X n 独立同分布,且其方差为.02>σ令∑==ni iX nY 11,则(A) Cov(.),21nY X σ= (B) 21),(σ=Y X Cov .(C) 212)(σnn Y X D +=+. (D) 211)(σnn Y X D +=-. [ A ]【分析】 本题用方差和协方差的运算性质直接计算即可,注意利用独立性有:.,3,2,0),(1n i X X Cov i ==【详解】 Cov(∑∑==+==ni i ni iX X Cov nX X Cov nX nX Cov Y X 2111111),(1),(1)1,(),=.1121σnDXn =【评注】 本题(C),(D) 两个选项的方差也可直接计算得到:如 222222111)1()111()(σσnn nn X nX nX nn D Y X D n -++=++++=+=222233σσn n nn n +=+,222222111)1()111()(σσnn nn X nX nX nn D Y X D n -+-=----=-=.222222σσnn nn n -=-(15)(本题满分12分)设2e b a e <<<, 证明)(4ln ln 222a b ea b ->-.【分析】 根据要证不等式的形式,可考虑用拉格朗日中值定理或转化为函数不等式用单调性证明.【证法1】 对函数x 2ln 在[a,b]上应用拉格朗日中值定理,得 .),(ln 2ln ln 22b a a b a b <<-=-ξξξ设tt t ln )(=ϕ,则2ln 1)(tt t -='ϕ,当t>e 时, ,0)(<'t ϕ 所以)(t ϕ单调减少,从而)()(2e ϕξϕ>,即2222ln ln eee =>ξξ,故 )(4ln ln 222a b ea b ->-.【证法2】 设x ex x 224ln )(-=ϕ,则24ln 2)(e x xx -='ϕ,2ln 12)(xx x -=''ϕ,所以当x>e 时,,0)(<''x ϕ 故)(x ϕ'单调减少,从而当2e x e <<时, 044)()(222=-='>'eee x ϕϕ,即当2e x e <<时,)(x ϕ单调增加.因此当2e x e <<时,)()(a b ϕϕ>, 即 a ea b eb 22224ln4ln ->-,故 )(4ln ln 222a b ea b ->-.【评注】 本题也可设辅助函数为2222),(4lnln )(e x a e a x ea x x <<<---=ϕ或2222),(4lnln )(e b x e x b ex b x <<<---=ϕ,再用单调性进行证明即可.(16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h. 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).100.66⨯=k 问从着陆点算起,飞机滑行的最长距离是多少?注kg 表示千克,km/h 表示千米/小时.【分析】 本题是标准的牛顿第二定理的应用,列出关系式后再解微分方程即可. 【详解1】 由题设,飞机的质量m=9000kg ,着陆时的水平速度h km v /7000=. 从飞机接触跑道开始记时,设t 时刻飞机的滑行距离为x(t),速度为v(t).根据牛顿第二定律,得 kv dtdv m -=.又d xd v v d t d x d x d v d td v =⋅=,由以上两式得 dv k m dx -=,积分得 .)(C v k m t x +-= 由于0)0(,)0(0==x v v ,故得0v km C =,从而)).(()(0t v v k m t x -=当0)(→t v 时, ).(05.1100.67009000)(60km kmv t x =⨯⨯=→所以,飞机滑行的最长距离为1.05km. 【详解2】 根据牛顿第二定律,得 kv dtdv m -=,所以.dt m k v dv -=两端积分得通解tmk Cev -=,代入初始条件00v vt ==解得0v C =,故 .)(0tm k ev t v -=飞机滑行的最长距离为 ).(05.1)(0000km kmv ekmv dt t v x t mk ==-==∞+-∞+⎰或由tmk ev dtdx -=0,知)1()(000--==--⎰tmk ttmk emkv dt ev t x ,故最长距离为当∞→t 时,).(05.1)(0km mkv t x =→【详解3】 根据牛顿第二定律,得 dtdx kdtx d m-=22,022=+dtdx m k dtx d ,其特征方程为 02=+λλmk ,解之得mk -==21,0λλ,故 .21tm k e C C x -+=由 00200,0v emkC dtdx vxt tmk t t t =-====-===,得 ,021kmv C C =-= 于是 ).1()(0tmk ekmv t x --=当+∞→t 时,).(05.1)(0km kmv t x =→所以,飞机滑行的最长距离为1.05km.【评注】 本题求飞机滑行的最长距离,可理解为+∞→t 或0)(→t v 的极限值,这种条件应引起注意.(17)(本题满分12分) 计算曲面积分 ,)1(322233d x d y z d z d x y d y d z x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.【分析】 先添加一曲面使之与原曲面围成一封闭曲面,应用高斯公式求解,而在添加的曲面上应用直接投影法求解即可.【详解】 取1∑为xoy 平面上被圆122=+y x 所围部分的下侧,记Ω为由∑与1∑围成的空间闭区域,则dxdy z dzdx y dydz xI ⎰⎰∑+∑-++=1)1(322233.)1(3221233dxdy z dzdx y dydz x ⎰⎰∑-++-由高斯公式知d x d y d zz y x d x d y z d z d x y d y d z x ⎰⎰⎰⎰⎰Ω∑+∑++=-++)(6)1(322222331=rdz r z dr d r)(62011022⎰⎰⎰-+πθ=.2)]1()1(21[12232210ππ=-+-⎰dr r r r r 而⎰⎰⎰⎰≤+∑=--=-++123322133)1(322y x dxdydxdy z dzdx y dydz x π,故 .32πππ-=-=I【评注】 本题选择1∑时应注意其侧与∑围成封闭曲面后同为外侧(或内侧),再就是在1∑上直接投影积分时,应注意符号(1∑取下侧,与z 轴正向相反,所以取负号).(18)(本题满分11分)设有方程01=-+nx x n,其中n 为正整数. 证明此方程存在惟一正实根n x ,并证明当1>α时,级数∑∞=1n n x α收敛.【分析】 利用介值定理证明存在性,利用单调性证明惟一性.而正项级数的敛散性可用比较法判定.【证】 记1)(-+=nx x x f nn 由01)0(<-=n f ,0)1(>=n f n ,及连续函数的介值定理知,方程01=-+nx x n 存在正实数根).1,0(∈n x当x>0时,0)(1>+='-n nx x f n n ,可见)(x f n 在),0[+∞上单调增加, 故方程01=-+nx x n存在惟一正实数根.n x由01=-+nx x n 与0>n x 知nnx x nnn 110<-=<,故当1>α时,αα)1(0nx n <<.而正项级数∑∞=11n nα收敛,所以当1>α时,级数∑∞=1n n x α收敛.【评注】 本题综合考查了介值定理和无穷级数的敛散性,题型设计比较新颖,但难度并不大,只要基本概念清楚,应该可以轻松求证.(19)(本题满分12分)设z=z(x,y)是由0182106222=+--+-z yz y xy x 确定的函数,求),(y x z z =的极值点和极值.【分析】 可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值.【详解】 因为 0182106222=+--+-z yz y xy x ,所以 02262=∂∂-∂∂--xz zx z yy x ,0222206=∂∂-∂∂--+-yz zyz yz y x .令 ⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂0,0y z xz得 ⎩⎨⎧=-+-=-,0103,03z y x y x故 ⎩⎨⎧==.,3y z y x将上式代入0182106222=+--+-z yz y xy x ,可得⎩⎪⎨⎧===3,3,9z y x 或 ⎪⎩⎪⎨⎧-=-=-=.3,3,9z y x由于 02)(22222222=∂∂-∂∂-∂∂-xz zxz x z y ,,02222622=∂∂∂-∂∂⋅∂∂-∂∂∂-∂∂--yx z zxzy zyx z yxz02)(22222022222=∂∂-∂∂-∂∂-∂∂-∂∂-yz zyz yz yyz yz ,所以 61)3,3,9(22=∂∂=xz A ,21)3,3,9(2-=∂∂∂=yx z B ,35)3,3,9(22=∂∂=yz C ,故03612>=-BAC ,又061>=A ,从而点(9,3)是z(x,y)的极小值点,极小值为z(9,3)=3.类似地,由 61)3,3,9(22-=∂∂=---xz A ,21)3,3,9(2=∂∂∂=---yx z B ,35)3,3,9(22-=∂∂=---yz C ,可知03612>=-B AC ,又061<-=A ,从而点(-9, -3)是z(x,y)的极大值点,极大值为z(-9, -3)= -3.【评注】 本题讨论由方程所确定的隐函数求极值问题,关键是求可能极值点时应注意x,y,z 满足原方程.(20)(本题满分9分)设有齐次线性方程组)2(,0)(,02)2(2,0)1(212121≥⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++n x a n nx nx x x a x x x x a n n n试问a 取何值时,该方程组有非零解,并求出其通解.【分析】 本题是方程的个数与未知量的个数相同的齐次线性方程组,可考虑对系数矩阵直接用初等行变换化为阶梯形,再讨论其秩是否小于n ,进而判断是否有非零解;或直接计算系数矩阵的行列式,根据题设行列式的值必为零,由此对参数a 的可能取值进行讨论即可.【详解1】 对方程组的系数矩阵A 作初等行变换,有.0021*******1111B a naa aa a n nnna a A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=当a=0时, r(A)=1<n ,故方程组有非零解,其同解方程组为 ,021=+++n x x x 由此得基础解系为,)0,,0,1,1(1T-=η ,)0,,1,0,1(2T -=η,)1,,0,0,1(,1T n -=-η于是方程组的通解为,1111--++=n n k k x ηη 其中11,,-n k k 为任意常数.当0≠a 时,对矩阵B 作初等行变换,有.1000120002)1(1000121111⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--++→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→n n n a na B 可知2)1(+-=n n a 时,n n A r <-=1)(,故方程组也有非零解,其同解方程组为⎪⎪⎩⎪⎪⎨⎧=+-=+-=+-,0,03,0213121n x nx x x x x由此得基础解系为Tn ),,2,1( =η, 于是方程组的通解为ηk x =,其中k 为任意常数.【详解2】 方程组的系数行列式为1)2)1((22221111-++=+++=n an n a an nnna aA.当0=A ,即a=0或2)1(+-=n n a 时,方程组有非零解.当a=0时,对系数矩阵A 作初等行变换,有⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00000111122221111n nnnA , 故方程组的同解方程组为 ,021=+++n x x x 由此得基础解系为,)0,,0,1,1(1T-=η ,)0,,1,0,1(2T -=η,)1,,0,0,1(,1T n -=-η于是方程组的通解为,1111--++=n n k k x ηη 其中11,,-n k k 为任意常数.当2)1(+-=n n a 时,对系数矩阵A 作初等行变换,有 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=a na a aa a n nn n a a A0002111122221111 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→10012000010000121111nna , 故方程组的同解方程组为 ⎪⎪⎩⎪⎪⎨⎧=+-=+-=+-,0,03,0213121n x nx x x x x由此得基础解系为Tn ),,2,1( =η, 于是方程组的通解为ηk x =,其中k 为任意常数.【评注】 矩阵A 的行列式A 也可这样计算:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=a n nnn a a A22221111=aE+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n nnn22221111,矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n nnn22221111的特征值为2)1(,0,,0+n n ,从而A 的特征值为a,a,2)1(,++n n a , 故行列式.)2)1((1-++=n an n a A(21)(本题满分9分) 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=51341321aA 的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化.【分析】 先求出A 的特征值,再根据其二重根是否有两个线性无关的特征向量,确定A 是否可相似对角化即可.【详解】 A 的特征多项式为513410)2(251341321-------=------=-λλλλλλλλaa A E=).3188)(2(51341011)2(2a a++--=------λλλλλλ当2=λ是特征方程的二重根,则有,03181622=++-a 解得a= -2.当a= -2时,A 的特征值为2,2,6, 矩阵2E-A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----321321321的秩为1,故2=λ对应的线性无关的特征向量有两个,从而A 可相似对角化.若2=λ不是特征方程的二重根,则a 31882++-λλ为完全平方,从而18+3a=16,解得 .32-=a当32-=a 时,A 的特征值为2,4,4,矩阵4E-A=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---1321301323秩为2,故4=λ对应的线性无关的特征向量只有一个,从而A 不可相似对角化.【评注】 n 阶矩阵A 可对角化的充要条件是:对于A 的任意i k 重特征根i λ,恒有.)(i i k A E r n =--λ 而单根一定只有一个线性无关的特征向量.(22)(本题满分9分) 设A,B 为随机事件,且21)(,31)(,41)(===B A P A B P A P ,令;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧=求:(I )二维随机变量(X,Y)的概率分布; (II )X 和Y 的相关系数.XY ρ【分析】 先确定(X,Y)的可能取值,再求在每一个可能取值点上的概率,而这可利用随机事件的运算性质得到,即得二维随机变量(X,Y)的概率分布;利用联合概率分布可求出边缘概率分布,进而可计算出相关系数.【详解】 (I ) 由于121)()()(==A B P A P AB P ,,61)()()(==B A P AB P B P所以, 121)(}1,1{====AB P Y X P ,61)()()(}0,1{=-====AB P A P B A P Y X P ,,121)()()(}1,0{=-====AB P B P B A P Y X P)(1)(}0,0{B A P B A P Y X P +-=====32)()()(1=+--AB P B P A P(或32121611211}0,0{=---===Y X P ),故(X,Y)的概率分布为YX 0 10 32 121 161121(II) X, Y 的概率分布分别为X 0 1 Y 0 1 P 43 41 P65 61则61,41==EY EX ,163=DX ,DY=365, E(XY)=121,故 241)(),(=⋅-=EY EX XY E Y X Cov ,从而.1515),(=⋅=DYDX Y X Cov XY ρ【评注】 本题尽管难度不大,但考察的知识点很多,综合性较强.通过随机事件定义随机变量或通过随机变量定义随机事件,可以比较好地将概率论的知识前后连贯起来,这种命题方式值得注意.(23)(本题满分9分)设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x xx F ββ 其中未知参数n X X X ,,,,121 >β为来自总体X 的简单随机样本,求:(I ) β的矩估计量; (II ) β的最大似然估计量.【分析】 先由分布函数求出概率密度,再根据求矩估计量和最大似然估计量的标准方法进行讨论即可.【详解】 X 的概率密度为.1,1,0,),(1≤>⎪⎩⎪⎨⎧=+x x xx f βββ (I ) 由于 1);(11-=⋅==⎰⎰+∞++∞∞-βββββdx xx dx x xf EX ,令X =-1ββ,解得 1-=X X β,所以参数β的矩估计量为.1ˆ-=X X β(II )似然函数为⎪⎩⎪⎨⎧=>==+=∏其他,0),,,2,1(1,)();()(1211n i x x x x x f L in nni i ββββ 当),,2,1(1n i x i =>时,0)(>βL ,取对数得∑=+-=ni i x n L 1ln )1(ln )(ln βββ,两边对β求导,得∑=-=ni i x nd L d 1ln)(ln βββ,令0)(ln =ββd L d ,可得 ∑==ni ix n1lnβ, 故β的最大似然估计量为 .lnˆ1∑==ni iX nβ【评注】 本题是基础题型,难度不大,但计算量比较大,实际做题时应特别注意计算的准确性.。

上海交通大学2004年硕士研究生入学考试试题

上海交通大学2004年硕士研究生入学考试试题

上海交通大学2004年硕士研究生入学考试试题811 质量管理学 (解析与答案)一、填空(30分)1、质量管理在发展到全面质量管理阶段之前经历过一下两个发展阶段:(1),(2);各个发展阶段中对质量管理的发展做出突出贡献的代表人物有:(3)、(4)、(5)、(6)。

【答案解析】:(1)质量检验阶段 (2)统计控制阶段 (3)泰勒 (4)修哈特 (5)戴明 (6)费根堡姆考察质量管理的三个发展阶段,第一个阶段代表人物泰勒,第二阶段修哈特、戴明,第三阶段费根堡姆。

出现在第一章第四节。

2、在推行全面质量管理时,要求做到“三全一多样”。

即(1)质量管理,(2)的质量管理,(3)的质量管理,以前全面质量管理所采用的方法是(4),建立(5)是全面质量管理的基本要求。

【答案解析】:(1)全面的 (2)全过程 (3)全员参与 (4)多种多样的 (5)质量管理体系 “三全一多样”是全面质量管理的特点。

考察全面质量管理,出现在教材第二章第一节。

3、排列图的主要用途是:(1);因果图的主要用途是:(2)。

【答案解析】:(1)找出主要问题或影响质量的主要因素 (2)找到质量问题的主要原因 考察旧七种质量工具的主要用途。

出现在第四章。

4、质量认证的最大特点是由(1)进行证明的活动。

【答案解析】: (1)第三方考察质量认证(产品质量认证、质量体系认证)的相关概念。

出现在第三章第六节。

5、质量成本可分为四类:(1),(2),(3),(4)。

【答案解析】:(1)预防成本 (2)鉴定成本 (3)内部故障成本 (4)外部故障成本 考察质量成本的分类,即质量成本项目。

出现在第十四章第四节。

6、工序质量控制的任务,是要把(1)控制在规定的波动范围内,是工序处于受控状态,能稳定地生产合格品。

【答案解析】: (1)系统性原因考察工序质量与控制图的概念。

出现在教材第五章和第六章。

7、控制图的基本思想是:(1)。

按控制图的用途来分类,控制图可以分为(2)控制与(3)控制图,计算控制图中的点子排列缺陷的概率,通常采用(4)分布概率的计算公式,其计算公式为(5)。

2004考研数学真题+答案

2004考研数学真题+答案

.
(B) (D)
Cov( X 1 , Y ) 2 .
D( X 1 Y ) n 1 2 . n
2004 年 • 第 2 页
郝海龙:考研数学复习大全·配套光盘·2004 年数学试题答案和评分参考
三、解答题(本题共 9 小题,满分 94 分. 解答应写出文字说明、证明过程或演算步骤) ( 15 )(本题满分 12 分)
1
由高斯公式知
1
2x dydz 2 y dzdx 3( z
3 3
2
1)dxdy 6( x 2 y 2 z)dxdydz

…… 3 分 …… 9 分
1 1 ( z r 2 )rdz = 12 [ r (1 r 2 ) 2 r 3 (1 r 2 )]dr 2 . 0 2 3 3 2 而 2 x dydz 2 y dzdx 3( z 1)dxdy 3dxdy 3 ,
2 设 e a b e , 证明 ln 2 b ln 2 a

ln t 1 ln t ,则 (t ) ,当 t e 时, (t ) 0 ,即 (t ) 单调减少, …… 9 分 t t2 ln ln e 2 2 4 2 从而 ( ) (e ) ,即 …… 12 分 2 2 ,故 ln 2 b ln 2 a 2 (b a) . e e e

2 2 取 1 为 xoy 平面上被圆 x y 1 所围部分的下侧, 记 为由 与 1 围成的空
间闭区域,则 I
1
2x dydz 2 y dzdx 3( z
3 3
2
1)dxdy
2 x 3 dydz 2 y 3 dzdx 3( z 2 1)dxdy.

上海大学2004年数学分析解答

上海大学2004年数学分析解答

上海大学2004年度研究生入学考试题数学分析1、 判断数列{}n S 是否收敛,其中111,231nn k S k k =⎛⎫=+ ⎪+⎝⎭∑证明你的结论. 2、 在[]0,1区间上随机地选取无穷多个数构成一个数列{}n a ,请运用区间套定理或有限覆盖定理证明该数列{}n a 必有收敛子列.3、 设函数在[]0,1上连续, (0)(1)f f =,证明方程1()()3f x f x =+在[]0,1上一定有根.4、 证明:达布定理:设()f x 在(),a b 上可微, ()12,,x x a b ∈,如果12()()0,f x f x ''<则在12,x x 之间存在一点,使得()0f ξ'=.5、 给出有界函数()f x 在闭区间[],a b 上黎曼可积的定义,并举出一个[],a b 有界但是不可积的函数的例子,并证明你给的函数不是黎曼可积的.6、 闭区间[],a b 上的连续函数()f x ,如果积分()()0ba f x x dx ϕ=⎰对于所有具有连续一 阶导数并且()()0a b ϕϕ==的函数)(x ϕ都成立,证明:()f x .7、判别广义积分dx x x ⎰+∞0sin 的收敛性和绝对收敛性,证明你的结论. 8、证明:2cos 10220lim π=+⎰+→dt t x t x x 9、计算:∑+∞=++-01121n n n )(. 10、试将函数x x f =)(在],0[π上展开成余弦级数,并由此计算:++++++222)12(151311k 11、函数列 ,2,1)(=n x f n ,,在]1,0[上连续,且对任意的),()(],1,0[x f x f x n n −−→−∈∞→,问)(x f 是否也在]1,0[上连续,证明你的结论.12、设函数,3),(33xy y x y x f -+=请在平面上每一点指出函数增加最快的方向,并计算出函数在该方向的方向导数.13、求解viviani 问题,计算球体2222a z y x ≤++被柱面ax y x =+22所截出的那部分体积.14、曲线积分⎰++L y x ydy xdx 22是否与路径无关,其中曲线不过原点,证明你的结论.15、设函数)(x f 可微,若0)(2)(−−→−'++∞→x x f x f ,证明:0)(lim =+∞→x f x .。

上海交通大学《高等代数》《数学分析》历年考研真题汇总(2009-2018真题汇编)

上海交通大学《高等代数》《数学分析》历年考研真题汇总(2009-2018真题汇编)

(x − 1)n | (f (x) + 1), (x + 1)n | (f (x) − 1).
Ê! V •ê• F þ n ‘‚5˜m, A • V þ ‚5C†÷v A 3 − 2A 2 − A = −2id, Ù¥ id • V þð C†.
(1) A ´ÄŒé z, e´, žy². (2) - V1 = {(A − 2id)v | v ∈ V }, V2 = {(A 2 − id)v | v ∈ V }. y²: V = V1 ⊕ V2.
8
5 þ° ÏŒÆ 2015 ca¬ïÄ)\Æ•ÁÁK£828 p “ê¤
9
6 þ° ÏŒÆ 2018 ca¬ïÄ)\Æ•ÁÁK£828 p “ê¤
10
7 þ° ÏŒÆ 2010 ca¬ïÄ)\Æ•ÁÁK( 614 êÆ©Û)
11
8 þ° ÏŒÆ 2011 ca¬ïÄ)\Æ•ÁÁK( 614 êÆ©Û)
16
3
1. 2010年þ° ÏŒÆ828《高等代数》a¬ïÄ)\Æ•ÁÁK
˜! ( 20 ©) OŽ1 ª
an1
an2
(1) Dn+1 =
...
an1 −1b1 · · ·
an2 −1b2 · · · ...
ann+1 ann−+11bn+1 · · ·
1 + a1 + b1 a1 + b2
a1bn1 −1
›˜! A ´ n ‘m¥ f˜m.
C†, V1 ´ V A − ØCf˜m. y²: V1
Ö•´ V A − ØC
› ! A, B þ• n ¢é¡ , y²: AB A ŠÑŒu".
4

2004—数一真题、标准答案及解析

2004—数一真题、标准答案及解析

2004年全国硕士研究生入学统一考试数学一真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为__________ . (2)已知xxxee f −=′)(,且f(1)=0, 则f(x)=__________ .(3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分∫−Lydx xdy 2的值为__________.(4)欧拉方程)0(024222>=++x y dx dy x dx yd x 的通解为. __________ . (5)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100021012A ,矩阵B 满足**2ABA BA E =+,其中*A 为A 的伴随矩阵,E 是单位矩阵,则=B __________ .(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >= __________ .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x∫∫∫===302sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A)γβα,,. (B) βγα,,. (C) γαβ,,. (D) αγβ,,. [ ](8)设函数f(x)连续,且,0)0(>′f 则存在0>δ,使得(A) f(x)在(0,)δ内单调增加. (B )f(x)在)0,(δ−内单调减少. (C) 对任意的),0(δ∈x 有f(x)>f(0) .(D) 对任意的)0,(δ−∈x 有f(x)>f(0) . [ ](9)设∑∞=1n na为正项级数,下列结论中正确的是(A) 若n n na ∞→lim =0,则级数∑∞=1n na收敛.(B ) 若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n na发散.(C) 若级数∑∞=1n na收敛,则0lim 2=∞→n n a n .(D) 若级数∑∞=1n na发散, 则存在非零常数λ,使得λ=∞→n n na lim . [ ](10)设f(x)为连续函数,∫∫=ttydx x f dy t F 1)()(,则)2(F ′等于(A) 2f(2). (B) f(2). (C) –f(2). (D) 0. [ ](11)设A 是3阶方阵,将A 的第1列与第2列交换得B,再把B 的第2列加到第3列得C, 则满足AQ=C 的可逆矩阵Q 为(A) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010. (B) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010. (C) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010. (D) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110. [ ](12)设A,B 为满足AB=O 的任意两个非零矩阵,则必有 (A) A 的列向量组线性相关,B 的行向量组线性相关. (B) A 的列向量组线性相关,B 的列向量组线性相关. (C) A 的行向量组线性相关,B 的行向量组线性相关.(D) A 的行向量组线性相关,B 的列向量组线性相关. [ ](13)设随机变量X 服从正态分布N(0,1),对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A) 2αu . (B) 21α−u. (C) 21α−u . (D) α−1u . [ ](14)设随机变量)1(,,,21>n X X X n L 独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A) Cov(.),21nY X σ= (B) 21),(σ=Y X Cov .(C) 212)(σn n Y X D +=+. (D) 211)(σnn Y X D +=−. [ ] (15)(本题满分12分)设2e b a e <<<, 证明)(4ln ln 222a b e a b −>−. (16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h. 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).100.66×=k 问从着陆点算起,飞机滑行的最长距离是多少?注kg 表示千克,km/h 表示千米/小时. (17)(本题满分12分) 计算曲面积分 ,)1(322233dxdy z dzdx y dydz x I ∫∫∑−++=其中∑是曲面)0(122≥−−=z y x z 的上侧.(18)(本题满分11分)设有方程01=−+nx x n,其中n 为正整数. 证明此方程存在惟一正实根n x ,并证明当1>α时,级数∑∞=1n n x α收敛.(19)(本题满分12分)设z=z(x,y)是由0182106222=+−−+−z yz y xy x 确定的函数,求),(y x z z =的极值点和极值. (20)(本题满分9分)设有齐次线性方程组)2(,0)(,02)2(2,0)1(212121≥⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++n x a n nx nx x x a x x x x a n nn L L L L L L L L L 试问a 取何值时,该方程组有非零解,并求出其通解.(21)(本题满分9分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−=51341321a A 的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化. (22)(本题满分9分) 设A,B 为随机事件,且21)(,31)(,41)(===B A P A B P A P ,令 ;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧=求:(I )二维随机变量(X,Y)的概率分布; (II )X 和Y 的相关系数.XY ρ(23)(本题满分9分) 设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧−=x x x x F ββ其中未知参数n X X X ,,,,121L >β为来自总体X 的简单随机样本,求:(I ) β的矩估计量; (II )β的最大似然估计量.2004年数学一试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为1−=x y .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标. 【详解】 由11)(ln ==′=′xx y ,得x=1, 可见切点为)0,1(,于是所求的切线方程为 )1(10−⋅=−x y , 即 1−=x y .【评注】 本题也可先设切点为)ln ,(00x x ,曲线y=lnx 过此切点的导数为11==′=x y x x ,得10=x ,由此可知所求切线方程为)1(10−⋅=−x y , 即 1−=x y .本题比较简单,类似例题在一般教科书上均可找到. (2)已知xxxee f −=′)(,且f(1)=0, 则f(x)=2)(ln 21x . 【分析】 先求出)(x f ′的表达式,再积分即可. 【详解】 令t e x=,则t x ln =,于是有t t t f ln )(=′, 即 .ln )(x x x f =′ 积分得 C x dx x x x f +==∫2)(ln 21ln )(. 利用初始条件f(1)=0, 得C=0,故所求函数为f(x)=2)(ln 21x . 【评注】 本题属基础题型,已知导函数求原函数一般用不定积分. (3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分∫−Lydx xdy 2的值为π23. 【分析】 利用极坐标将曲线用参数方程表示,相应曲线积分可化为定积分. 【详解】 正向圆周222=+y x 在第一象限中的部分,可表示为.20:,sin 2,cos 2πθθθ→⎩⎨⎧==y x于是θθθθθπd ydx xdy L]sin 2sin 22cos 2cos 2[220⋅+⋅=−∫∫=.23sin 2202πθθππ=+∫d【评注】 本题也可添加直线段,使之成为封闭曲线,然后用格林公式计算,而在添加的线段上用参数法化为定积分计算即可.(4)欧拉方程)0(024222>=++x y dx dyx dxy d x 的通解为 221x c x c y +=. 【分析】 欧拉方程的求解有固定方法,作变量代换te x =化为常系数线性齐次微分方程即可. 【详解】 令te x =,则dtdyx dt dy e dx dt dt dy dx dy t 1==⋅=−, ][11122222222dtdy dt y d x dx dt dt y d x dt dy x dx yd −=⋅+−=,代入原方程,整理得02322=++y dt dydty d , 解此方程,得通解为 .221221xc x c e c ec y t t+=+=−− 【评注】 本题属基础题型,也可直接套用公式,令te x =,则欧拉方程)(222x f cy dx dybx dx y d ax=++, 可化为 ).(][22t e f cy dt dyb dt dy dty d a =++−(5)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100021012A ,矩阵B 满足E BA ABA +=**2,其中*A 为A 的伴随矩阵,E 是单位矩阵,则=B91 . 【分析】 可先用公式E A A A =*进行化简 【详解】 已知等式两边同时右乘A ,得A A BA A ABA +=**2, 而3=A ,于是有A B AB +=63, 即 A B E A =−)63(,再两边取行列式,有363==−A B E A ,而 2763=−E A ,故所求行列式为.91=B 【评注】 先化简再计算是此类问题求解的特点,而题设含有伴随矩阵*A ,一般均应先利用公式E A AA A A ==**进行化简.(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >= e1.【分析】 已知连续型随机变量X 的分布,求其满足一定条件的概率,转化为定积分计算即可. 【详解】 由题设,知21λ=DX ,于是}{DX X P >=dx e X P x ∫+∞−=>λλλλ1}1{=.11eex=−∞+−λλ 【评注】 本题应记住常见指数分布等的期望与方差的数字特征,而不应在考试时再去推算.二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x∫∫∫===302sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A)γβα,,. (B) βγα,,. (C) γαβ,,. (D) αγβ,,. [ B ]【分析】 先两两进行比较,再排出次序即可.【详解】 0cos 2tan lim cos tan limlim 22002=⋅==+++→→→∫∫x xx dtt dt t x xx x x αβ,可排除(C),(D)选项,又 xx xx dtt dtt x xxx x tan 221sin lim tan sin limlim 2300302⋅==+++→→→∫∫βγ=∞=+→20lim 41xx x ,可见γ是比β低阶的无穷小量,故应选(B). 【评注】 本题是无穷小量的比较问题,也可先将γβα,,分别与nx 进行比较,再确定相互的高低次序. (8)设函数f(x)连续,且,0)0(>′f 则存在0>δ,使得(A) f(x)在(0,)δ内单调增加. (B )f(x)在)0,(δ−内单调减少.(C) 对任意的),0(δ∈x 有f(x)>f(0) . (D) 对任意的)0,(δ−∈x 有f(x)>f(0) .[ C ]【分析】 函数f(x)只在一点的导数大于零,一般不能推导出单调性,因此可排除(A),(B)选项,再利用导数的定义及极限的保号性进行分析即可.【详解】 由导数的定义,知0)0()(lim)0(0>−=′→xf x f f x ,根据保号性,知存在0>δ,当),0()0,(δδU −∈x 时,有0)0()(>−xf x f即当)0,(δ−∈x 时,f(x)<f(0); 而当),0(δ∈x 时,有f(x)>f(0). 故应选(C). 【评注】 题设函数一点可导,一般均应联想到用导数的定义进行讨论. (9)设∑∞=1n na为正项级数,下列结论中正确的是(A) 若n n na ∞→lim =0,则级数∑∞=1n na收敛.(B ) 若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n na发散.(C) 若级数∑∞=1n na收敛,则0lim 2=∞→n n a n .(E) 若级数∑∞=1n na发散, 则存在非零常数λ,使得λ=∞→n n na lim . [ B ]【分析】 对于敛散性的判定问题,若不便直接推证,往往可用反例通过排除法找到正确选项.【详解】 取n n a n ln 1=,则n n na ∞→lim =0,但∑∑∞=∞==11ln 1n n n n n a 发散,排除(A),(D); 又取nn a n 1=,则级数∑∞=1n na收敛,但∞=∞→n n a n 2lim ,排除(C), 故应选(B).【评注】 本题也可用比较判别法的极限形式,01lim lim ≠==∞→∞→λna na n n n n ,而级数∑∞=11n n 发散,因此级数∑∞=1n n a 也发散,故应选(B).(10)设f(x)为连续函数,∫∫=t tydx x f dy t F 1)()(,则)2(F ′等于(A) 2f(2). (B) f(2). (C) –f(2). (D) 0. [ B ]【分析】 先求导,再代入t=2求)2(F ′即可.关键是求导前应先交换积分次序,使得被积函数中不含有变量t.【详解】 交换积分次序,得∫∫=tt ydx x f dy t F 1)()(=∫∫∫−=t x tdx x x f dx dy x f 111)1)((])([于是,)1)(()(−=′t t f t F ,从而有 )2()2(f F =′,故应选(B).【评注】 在应用变限的积分对变量x 求导时,应注意被积函数中不能含有变量x: ∫′−′=′)()()()]([)()]([])([x b x a x a x a f x b x b f dt t f否则,应先通过恒等变形、变量代换和交换积分次序等将被积函数中的变量x 换到积分号外或积分线上.(11)设A 是3阶方阵,将A 的第1列与第2列交换得B,再把B 的第2列加到第3列得C, 则满足AQ=C 的可逆矩阵Q 为(A) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010. (B) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010. (C) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010. (D) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110. [ D ]【分析】 本题考查初等矩阵的的概念与性质,对A 作两次初等列变换,相当于右乘两个相应的初等矩阵,而Q 即为此两个初等矩阵的乘积.【详解】由题设,有B A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001010,C B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100110001, 于是, .100001110100110001100001010C A A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡可见,应选(D).【评注】 涉及到初等变换的问题,应掌握初等矩阵的定义、初等矩阵的性质以及与初等变换的关系. (12)设A,B 为满足AB=O 的任意两个非零矩阵,则必有 (D) A 的列向量组线性相关,B 的行向量组线性相关. (E) A 的列向量组线性相关,B 的列向量组线性相关. (F) A 的行向量组线性相关,B 的行向量组线性相关.(D) A 的行向量组线性相关,B 的列向量组线性相关. [ A ]【分析】A,B 的行列向量组是否线性相关,可从A,B 是否行(或列)满秩或Ax=0(Bx=0)是否有非零解进行分析讨论.【详解1】 设A 为n m ×矩阵,B 为s n ×矩阵,则由AB=O 知,n B r A r <+)()(.又A,B 为非零矩阵,必有r(A)>0,r(B)>0. 可见r(A)<n, r(B)<n, 即A 的列向量组线性相关,B 的行向量组线性相关,故应选(A).【详解2】 由AB=O 知,B 的每一列均为Ax=0的解,而B 为非零矩阵,即Ax=0存在非零解,可见A 的列向量组线性相关.同理,由AB=O 知,O A B TT=,于是有TB 的列向量组,从而B 的行向量组线性相关,故应选(A). 【评注】 AB=O 是常考关系式,一般来说,与此相关的两个结论是应记住的: 1) AB=O ⇒n B r A r <+)()(; 2) AB=O ⇒B 的每列均为Ax=0的解.(13)设随机变量X 服从正态分布N(0,1),对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A) 2αu . (B) 21α−u. (C) 21α−u . (D) α−1u . [ C ]【分析】 此类问题的求解,可通过αu 的定义进行分析,也可通过画出草图,直观地得到结论. 【详解】 由标准正态分布概率密度函数的对称性知,αα=−<}{u X P ,于是}{2}{}{}{}{11x X P x X P x X P x X P x X P ≥=−≤+≥=≥=<−=−α即有 21}{α−=≥x X P ,可见根据定义有21α−=u x ,故应选(C). 【评注】 本题u 相当于分位数,直观地有α α 2/)1(α−o u 21−u(14)设随机变量)1(,,,21>n X X X n L 独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A) Cov(.),21nY X σ=(B) 21),(σ=Y X Cov .(C) 212)(σn n Y X D +=+. (D) 211)(σnn Y X D +=−. [ A ] 【分析】 本题用方差和协方差的运算性质直接计算即可,注意利用独立性有:.,3,2,0),(1n i X X Cov i L ==【详解】 Cov(∑∑==+==ni i n i i X X Cov n X X Cov n X n X Cov Y X 2111111),(1),(1)1,(),=.1121σnDX n = 【评注】 本题(C),(D) 两个选项的方差也可直接计算得到:如222222111)1()111()(σσn n n n X n X n X n n D Y X D n −++=++++=+L =222233σσn n nn n +=+, 222222111)1()111()(σσn n n n X n X n X n n D Y X D n −+−=−−−−=−L =.222222σσn n nn n −=− (15)(本题满分12分)设2e b a e <<<, 证明)(4ln ln 222a b ea b −>−. 【分析】 根据要证不等式的形式,可考虑用拉格朗日中值定理或转化为函数不等式用单调性证明. 【证法1】 对函数x 2ln 在[a,b]上应用拉格朗日中值定理,得 .),(ln 2ln ln 22b a a b a b <<−=−ξξξ设t t t ln )(=ϕ,则2ln 1)(ttt −=′ϕ, 当t>e 时,,0)(<′t ϕ 所以)(t ϕ单调减少,从而)()(2e ϕξϕ>,即2222ln ln ee e =>ξξ, 故 )(4ln ln 222a b e a b −>−.【证法2】 设x e x x 224ln )(−=ϕ,则24ln 2)(e x x x −=′ϕ, 2ln 12)(xxx −=′′ϕ, 所以当x>e 时,,0)(<′′x ϕ 故)(x ϕ′单调减少,从而当2e x e <<时,044)()(222=−=′>′e e e x ϕϕ, 即当2e x e <<时,)(x ϕ单调增加.因此当2e x e <<时,)()(a b ϕϕ>,即 a e a b e b 22224ln 4ln −>−, 故 )(4ln ln 222a b ea b −>−.【评注】 本题也可设辅助函数为2222),(4ln ln )(e x a e a x ea x x <<<−−−=ϕ或 2222),(4ln ln )(e b x e x b ex b x <<<−−−=ϕ,再用单调性进行证明即可. (16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h. 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).100.66×=k 问从着陆点算起,飞机滑行的最长距离是多少?注kg 表示千克,km/h 表示千米/小时.【分析】 本题是标准的牛顿第二定理的应用,列出关系式后再解微分方程即可.【详解1】 由题设,飞机的质量m=9000kg ,着陆时的水平速度h km v /7000=. 从飞机接触跑道开始记时,设t 时刻飞机的滑行距离为x(t),速度为v(t).根据牛顿第二定律,得kv dt dvm−=. 又 dxdv v dt dx dx dv dt dv =⋅=,由以上两式得 dv kmdx −=,积分得 .)(C v k m t x +−= 由于0)0(,)0(0==x v v ,故得0v k mC =,从而 )).(()(0t v v kmt x −=当0)(→t v 时, ).(05.1100.67009000)(60km k mv t x =××=→所以,飞机滑行的最长距离为1.05km. 【详解2】 根据牛顿第二定律,得 kv dtdvm −=, 所以.dt mk v dv −= 两端积分得通解t mkCev −=,代入初始条件00v vt ==解得0v C =,故 .)(0t mk ev t v −=飞机滑行的最长距离为 ).(05.1)(000km kmv e kmv dt t v x tmk==−==∞+−∞+∫或由t m ke v dt dx −=0,知)1()(000−−==−−∫t m kt t mke mkv dt e v t x ,故最长距离为当∞→t 时,).(05.1)(0km mkv t x =→【详解3】 根据牛顿第二定律,得 dt dxk dt x d m −=22, 022=+dtdxm k dt x d ,其特征方程为02=+λλm k ,解之得m k −==21,0λλ, 故 .21t mk eC C x −+=由 002000,0v e mkC dt dxv x t m kt t t =−====−===,得 ,021k mv C C =−= 于是 ).1()(0t m ke kmv t x −−=当+∞→t 时,).(05.1)(0km kmv t x =→所以,飞机滑行的最长距离为1.05km.【评注】 本题求飞机滑行的最长距离,可理解为+∞→t 或0)(→t v 的极限值,这种条件应引起注意. (17)(本题满分12分)计算曲面积分 ,)1(322233dxdy zdzdx y dydz x I ∫∫∑−++=其中∑是曲面)0(122≥−−=z y x z 的上侧.【分析】 先添加一曲面使之与原曲面围成一封闭曲面,应用高斯公式求解,而在添加的曲面上应用直接投影法求解即可.【详解】 取1∑为xoy 平面上被圆122=+y x 所围部分的下侧,记Ω为由∑与1∑围成的空间闭区域,则dxdy z dzdx y dydz x I ∫∫∑+∑−++=1)1(322233 .)1(3221233dxdy z dzdx y dydz x ∫∫∑−++−由高斯公式知dxdydz z y x dxdy z dzdx ydydz x ∫∫∫∫∫Ω∑+∑++=−++)(6)1(322222331=rdz r z dr d r )(62011022∫∫∫−+πθ=.2)]1()1(21[12232210ππ=−+−∫dr r r r r而∫∫∫∫≤+∑=−−=−++123322133)1(322y x dxdy dxdy z dzdx y dydz x π,故 .32πππ−=−=I【评注】 本题选择1∑时应注意其侧与∑围成封闭曲面后同为外侧(或内侧),再就是在1∑上直接投影积分时,应注意符号(1∑取下侧,与z 轴正向相反,所以取负号).(18)(本题满分11分)设有方程01=−+nx x n,其中n 为正整数. 证明此方程存在惟一正实根n x ,并证明当1>α时,级数∑∞=1n n x α收敛.【分析】 利用介值定理证明存在性,利用单调性证明惟一性.而正项级数的敛散性可用比较法判定.【证】 记.1)(−+=nx x x f n n 由01)0(<−=n f ,0)1(>=n f n ,及连续函数的介值定理知,方程01=−+nx x n存在正实数根).1,0(∈n x当x>0时,0)(1>+=′−n nx x f n n ,可见)(x f n 在),0[+∞上单调增加, 故方程01=−+nx x n 存在惟一正实数根.n x由01=−+nx x n与0>n x 知n n x x nn n 110<−=<,故当1>α时,αα)1(0n x n <<.而正项级数∑∞=11n n α收敛,所以当1>α时,级数∑∞=1n n x α收敛.【评注】 本题综合考查了介值定理和无穷级数的敛散性,题型设计比较新颖,但难度并不大,只要基本概念清楚,应该可以轻松求证.(19)(本题满分12分)设z=z(x,y)是由0182106222=+−−+−z yz y xy x 确定的函数,求),(y x z z =的极值点和极值. 【分析】 可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值.【详解】 因为 0182106222=+−−+−z yz y xy x ,所以 02262=∂∂−∂∂−−xz z x z yy x , 0222206=∂∂−∂∂−−+−yzz y z yz y x . 令 ⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂0,0yzxz得 ⎩⎨⎧=−+−=−,0103,03z y x y x 故 ⎩⎨⎧==.,3y z y x将上式代入0182106222=+−−+−z yz y xy x ,可得⎪⎩⎪⎨⎧===3,3,9z y x 或 ⎪⎩⎪⎨⎧−=−=−=.3,3,9z y x 由于 02)(22222222=∂∂−∂∂−∂∂−xzz x z x z y ,,02222622=∂∂∂−∂∂⋅∂∂−∂∂∂−∂∂−−yx z z x z y z y x z y x z 02)(22222022222=∂∂−∂∂−∂∂−∂∂−∂∂−y z z y z y z y y zy z ,所以 61)3,3,9(22=∂∂=x zA ,21)3,3,9(2−=∂∂∂=y x zB ,35)3,3,9(22=∂∂=yzC , 故03612>=−B AC ,又061>=A ,从而点(9,3)是z(x,y)的极小值点,极小值为z(9,3)=3. 类似地,由61)3,3,9(22−=∂∂=−−−x zA ,21)3,3,9(2=∂∂∂=−−−y x zB ,35)3,3,9(22−=∂∂=−−−yzC ,可知03612>=−B AC ,又061<−=A ,从而点(-9, -3)是z(x,y)的极大值点,极大值为 z(-9, -3)= -3.【评注】 本题讨论由方程所确定的隐函数求极值问题,关键是求可能极值点时应注意x,y,z 满足原方程.(20)(本题满分9分) 设有齐次线性方程组)2(,0)(,02)2(2,0)1(212121≥⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++n x a n nx nx x x a x x x x a n n n L L L L L L L L L试问a 取何值时,该方程组有非零解,并求出其通解.【分析】 本题是方程的个数与未知量的个数相同的齐次线性方程组,可考虑对系数矩阵直接用初等行变换化为阶梯形,再讨论其秩是否小于n ,进而判断是否有非零解;或直接计算系数矩阵的行列式,根据题设行列式的值必为零,由此对参数a 的可能取值进行讨论即可.【详解1】 对方程组的系数矩阵A 作初等行变换,有.00002111122221111B a na a a a a n n n n a a A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−+→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=L L L L L L L L L L L L L L L L 当a=0时, r(A)=1<n ,故方程组有非零解,其同解方程组为 ,021=+++n x x x L 由此得基础解系为,)0,,0,1,1(1T L −=η ,)0,,1,0,1(2T L −=η,)1,,0,0,1(,1T n L L −=−η于是方程组的通解为,1111−−++=n n k k x ηηL 其中11,,−n k k L 为任意常数.当0≠a 时,对矩阵B 作初等行变换,有.10000120002)1(10000121111⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡−−++→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−+→L L L L L L L L L L L L L L L L n n n a n a B可知2)1(+−=n n a 时,n n A r <−=1)(,故方程组也有非零解,其同解方程组为 ⎪⎪⎩⎪⎪⎨⎧=+−=+−=+−,0,03,0213121n x nx x x x x L L L 由此得基础解系为Tn ),,2,1(L =η, 于是方程组的通解为ηk x =,其中k 为任意常数.【详解2】 方程组的系数行列式为1)2)1((22221111−++=+++=n a n n a an n n n a a A L L L L L L L L . 当0=A ,即a=0或2)1(+−=n n a 时,方程组有非零解. 当a=0时,对系数矩阵A 作初等行变换,有⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=000000000111122221111L L L L L L L L L L L L L L L n n n n A , 故方程组的同解方程组为 ,021=+++n x x x L 由此得基础解系为,)0,,0,1,1(1T L −=η ,)0,,1,0,1(2T L −=η,)1,,0,0,1(,1T n L L −=−η于是方程组的通解为,1111−−++=n n k k x ηηL 其中11,,−n k k L 为任意常数. 当2)1(+−=n n a 时,对系数矩阵A 作初等行变换,有 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−+→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=a na a a a a n n n n a a A L L L L L L L L L L L L L L L L 0002111122221111 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−+→1000012000010000121111L L L L L L L L L L L L L L L L n n a , 故方程组的同解方程组为⎪⎪⎩⎪⎪⎨⎧=+−=+−=+−,0,03,0213121n x nx x x x x L L L 由此得基础解系为Tn ),,2,1(L =η, 于是方程组的通解为ηk x =,其中k 为任意常数.【评注】 矩阵A 的行列式A 也可这样计算:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=a n n n n a a A L L L L L L L L 22221111=aE +⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n n n n L L L L L L L L 22221111,矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n n n n L L L L L L L L 22221111的特征值为2)1(,0,,0+n n L ,从而A 的特征值为a,a,2)1(,++n n a L , 故行列式.)2)1((1−++=n a n n a A(21)(本题满分9分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−=51341321a A 的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化. 【分析】 先求出A 的特征值,再根据其二重根是否有两个线性无关的特征向量,确定A 是否可相似对角化即可.【详解】 A 的特征多项式为513410)2(251341321−−−−−−−=−−−−−−=−λλλλλλλλaa A E=).3188)(2(51341011)2(2a a++−−=−−−−−−λλλλλλ 当2=λ是特征方程的二重根,则有,03181622=++−a 解得a= -2.当a= -2时,A 的特征值为2,2,6, 矩阵2E-A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−−321321321的秩为1,故2=λ对应的线性无关的特征向量有两个,从而A 可相似对角化.若2=λ不是特征方程的二重根,则a 31882++−λλ为完全平方,从而18+3a=16,解得 .32−=a当32−=a 时,A 的特征值为2,4,4,矩阵4E-A=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−1321301323秩为2,故4=λ对应的线性无关的特征向量只有一个,从而A 不可相似对角化.【评注】 n 阶矩阵A 可对角化的充要条件是:对于A 的任意i k 重特征根i λ,恒有.)(i i k A E r n =−−λ 而单根一定只有一个线性无关的特征向量.(22)(本题满分9分)设A,B 为随机事件,且21)(,31)(,41)(===B A P A B P A P ,令 ;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧=求:(I )二维随机变量(X,Y)的概率分布; (II )X 和Y 的相关系数.XY ρ【分析】 先确定(X,Y)的可能取值,再求在每一个可能取值点上的概率,而这可利用随机事件的运算性质得到,即得二维随机变量(X,Y)的概率分布;利用联合概率分布可求出边缘概率分布,进而可计算出相关系数.【详解】 (I ) 由于121)()()(==A B P A P AB P , ,61)()()(==B A P AB P B P所以, 121)(}1,1{====AB P Y X P , 61)()()(}0,1{=−====AB P A P B A P Y X P , ,121)()()(}1,0{=−====AB P B P B A P Y X P)(1(}0,0{B A P B A P Y X P +−=====32)()()(1=+−−AB P B P A P (或32121611211}0,0{=−−−===Y X P ),故(X,Y)的概率分布为 YX 0 10 32121 1 61121 (II) X, Y 的概率分布分别为X 0 1 Y 0 1 P43 41 P 65 61则61,41==EY EX ,163=DX ,DY=365, E(XY)=121, 故 241)(),(=⋅−=EY EX XY E Y X Cov ,从而 .1515),(=⋅=DY DX Y X Cov XY ρ 【评注】 本题尽管难度不大,但考察的知识点很多,综合性较强.通过随机事件定义随机变量或通过随机变量定义随机事件,可以比较好地将概率论的知识前后连贯起来,这种命题方式值得注意.(23)(本题满分9分)设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧−=x x x x F ββ其中未知参数n X X X ,,,,121L >β为来自总体X 的简单随机样本,求:(I )β的矩估计量; (II ) β的最大似然估计量.【分析】 先由分布函数求出概率密度,再根据求矩估计量和最大似然估计量的标准方法进行讨论即可.【详解】 X 的概率密度为.1,1,0,),(1≤>⎪⎩⎪⎨⎧=+x x x x f βββ (I ) 由于1);(11−=⋅==∫∫+∞++∞∞−βββββdx x x dx x xf EX , 令X =−1ββ,解得 1−=X X β,所以参数β的矩估计量为 .1ˆ−=X β(II )似然函数为⎪⎩⎪⎨⎧=>==+=∏其他,0),,,2,1(1,)();()(1211n i x x x x x f L i n n n i i L L ββββ当),,2,1(1n i x i L =>时,0)(>βL ,取对数得∑=+−=ni i x n L 1ln )1(ln )(ln βββ,两边对β求导,得∑=−=n i i x n d L d 1ln )(ln βββ, 令0)(ln =ββd L d ,可得 ∑==n i ixn 1ln β, 故β的最大似然估计量为.ln ˆ1∑==n i iXnβ 【评注】 本题是基础题型,难度不大,但计算量比较大,实际做题时应特别注意计算的准确性.。

上海交大2004考研数学分析

上海交大2004考研数学分析

2004年上海交通大学 数学分析一(14)设lim n n a a →∞=,证明22lim221anna a a n n =+++∞→ 证 因2n x n =∞ ,故利用Stolz 公式,11limlim n n n n n n n ny y yx x x +→∞→∞+-=-,得12112222(1)1limlim lim lim (1)212n n n n n n n a a na n a n aa n n n n ++→∞→∞→∞→∞+++++===+-+ 二(14)证明2sin()x 在[)+∞,0上不一致连续.证因n x =n y =22sin sin 1n n x y -=,0n n x y -=-=→,故2sin()x 在[)+∞,0上不一致连续.三(14)设)(x f 在[]a 2,0上连续,且)0(f =)2(a f ,证明∃0x ∈[]a ,0,使)(0x f =)(0a x f +证 作()()()g x f x a f x =+-([]0,x a ∈),则()g x 在[]0,a 上连续,因)0(f =)2(a f ,故(2)(0)g a g =-,情形1 若(0)0g =,则取00x =,则)(0x f =)(0a x f +, 情形2 若(0)0g ≠,则因2(2)(0)(0)0g a g g =-<,故由介值定理知,存在[]00,x a ∈,使得0()0g x =,即)(0x f =)(0a x f +.四(14)证明不等式x π2<x sin <x ,⎪⎭⎫ ⎝⎛∈2,0πx证 作sin ()x f x x =,π0,2x ⎛⎫∈ ⎪⎝⎭,则因22cos sin cos ()(tan )0x x x xf x x x x x-'==-<,故sin ()x f x x =在π0,2⎛⎫⎪⎝⎭上严格单调减少,而0lim ()1x f x →=,π22lim ()πx f x →=, 因此,在π0,2⎛⎫ ⎪⎝⎭上,有2sin ()1πx f x x <=<,即x π2<x sin <x .五 (14) 设()d af x x +∞⎰收敛,且)(x f 在[)+∞,a 上一致连续,证明)(lim x f x +∞→= 0.证 因)(x f 在[)+∞,a 上一致连续,故0ε∀>,0δ∃>,使得当[)12,,t t a ∈+∞且12t t δ-<时,有12()()2f t f t ε-<,令(1)()d a n n a n u f x x δδ++-=⎰,则由积分第一中值定理得,[](1),n x a n a n δδ∃∈+-+,使得(1)()d ()a n n n a n u f x x f x δδδ++-==⎰.因()d af x x +∞⎰收敛,故级数1n n u ∞=∑收敛,从而0n u →,即()0n f x δ→,也即()0n f x →,故对上述的ε,存在N +∈ ,使得当n N >时,()2n f x ε<.取X a N δ=+,则当x X >时,因[)[)0,(1),k x a a k a k δδ∞=∈∞=+-+故存在惟一的k +∈ ,使得[)(1),x a k a k δδ∈+-+,易见k N >,且k x x δ-<,从而()()()()22k k f x f x f x f x εεε≤+-<+=六(14)设211n x n -=,121d n n n x x x +=⎰,1,2,n = ,证明级数()∑∞=--111n nn x 收敛.解. 11211d ln |ln(1)n n n n nx x x x n ++===+⎰,因2121n nS S k+=+,故只要证 ()1211111ln(1)nnk n k k k S x kk -==⎡⎤=-=-+⎢⎥⎣⎦∑∑22111()2n k k k =⎡⎤=+⎢⎥⎣⎦∑ 收敛即可.七(14)设)(x f 在[]1,0上连续,)1(f = 0 ,n n x x f x g )()(= ,1,2,n = , 证明)}({x g n 在[]1,0上一致收敛.八(12)设()f x 在[]1,0上连续,证明10lim ()d n n n x f x x →∞⎰=)1(f .证 (1)(令n t x =,则10()d n n x f x x ⎰111()d n nt f t t =⎰,(2)因()f x 在[]1,0上连续,故0M ∃>,使得()f x M ≤,[]0,1x ∈,(3)0ε∀>,记3a Mε=,不妨设01a <<,则11110()d ()d d 3aa an nnnt f t t t f t t M t Ma ε≤≤==⎰⎰⎰,(4)111111111()d (1)[()(1)]d ()(1)d n nnnnnaa at f t t f tf t f t t f t f t -=-≤-⎰⎰⎰11111()(1)(1)(1)d nnnnat f t t f t f f t =-+-⎰1111()(1)d (1)1d nnaaf t f t f t t ≤-+-⎰⎰(5)因()f x 在[]1,0上连续,故()f x 在[]1,0上一致连续,故对上述的正数ε,0δ∃>,当[]12,0,1x x ∈且12x x δ-<时,有12()()3(1)f x f x a ε-<-(6)因1lim 1nn a →∞=,记min{,}3(1)M a εεδ*=-,则存在正整数N ,使得当n N >时,有11na ε*-<,(7)当(,1)t a ∈时,有111111nnnt t a -=-≤-,从而当n N >时,有1111()(1)d (1)1d 33nnaaf t f t f t t εε-+-<+⎰⎰(8)由(3)和(7)知,当n N >时,有1110()d (1)nnt f t t f -⎰1111102()d ()d (1)33an n n na t f t t t f t t f εεε≤+-<+=⎰⎰九(12)设1a >0,1+n a =n a +n a 1,证明n =1证 (1)要证n =1 ,只要证2lim 12nn a n →∞=,即只要证221lim 1(22)2n nn a a n n +→∞-=+-,即证221lim()2n n n a a +→∞-= (2)因1+n a =n a +n a 1,故110n n n a a a +-=>,1211n n na a a +=+ 2211112211()()112n n n n n n n n n n na a a a a a a a a a a +++++-=-+==++=+ 因此只要证21lim0n na →∞=,即只要证lim n n a →∞=∞ (3)由110n n na a a +-=>知,{}n a 单调增加,假如{}n a 有上界,则{}n a 必有极限a ,由1+n a =n a +n a 1知,a =a +1a,因此10a =,矛盾. 这表明{}n a 单调增加、没有上界,因此lim n n a →∞=∞. (证完)十(28)计算下述积分:1.d x y ⎰⎰,其中D 是矩形区域x 1≤,20≤≤y解 记21{(,)|1,02,0}D x y x y y x =≤≤≤-≤22{(,)|1,02,0}D x y x y y x =≤≤≤≤-,2d d d DD D x y x y x y =+⎰⎰⎰⎰⎰⎰2112221122211d ()d d ()d x x x x y y x y x y --=-+-⎰⎰⎰⎰332211221122()d (2)d 33x x x x --=+-⎰⎰ 332211220044()d (2)d 33x x x x =+-⎰⎰ π143400416d cos d 33x x t t =+⎰⎰()x t =这里 π2401161cos2d 332t t +⎛⎫=+ ⎪⎝⎭⎰ π40141cos412cos2d 332t t t +⎛⎫=+++ ⎪⎝⎭⎰ π40143sin 4sin 23328t t t ⎡⎤=+++⎢⎥⎣⎦ 143ππ5133823⎛⎫=++=+ ⎪⎝⎭ 2.22d d ()d d d d Syz y z x z y z x xy x y +++⎰⎰,其中S 是曲面224z x y +=-上0≥y 的那部分正侧.解 记22{(,,)|4,0}x y z x z y ∑=+≤=(取下侧),22{(,,)|04}V x y z y x z =≤≤--,则V S ∂=+∑,由高斯公式知,2222d d ()d d d d ()d d d 0SS Vyz y z x z y z x xy x y x z x y z +∑∑+++=-=++⎰⎰⎰⎰⎰⎰⎰⎰⎰2242222()d d d d ()d d Vx z x z x y z yx z x z +=+=+⎰⎰⎰⎰42012π(4)d 4y y =-⎰ 430π32π(4)63y ⎡⎤=--=⎣⎦。

2004年考研数学一试题与答案解析

2004年考研数学一试题与答案解析

2004年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上) (1)曲线ln y x =上与直线1=+y x 垂直的切线方程为__________ .(2)已知(e )e x xf x -'=,且(1)0f =,则()f x =__________ .(3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-Lydx xdy 2的值为__________.(4)欧拉方程)0(024222>=++x y dx dyx dxy d x 的通解为__________ . (5)设矩阵210120001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,矩阵B 满足**2=+ABA BA E ,其中*A 为A 的伴随矩阵,E 是单位矩阵,则B =__________ .(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >= __________ .二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===302sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A)γβα,, (B)βγα,, (C)γαβ,,(D)αγβ,,(8)设函数()f x 连续,且,0)0(>'f 则存在0>δ,使得 (A)()f x 在(0,)δ内单调增加(B)()f x 在)0,(δ-内单调减少 (C)对任意的),0(δ∈x 有()(0)f x f >(D)对任意的)0,(δ-∈x 有()(0)f x f >(9)设∑∞=1n na为正项级数,下列结论中正确的是(A)若n n na ∞→lim =0,则级数∑∞=1n na收敛(B)若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n na发散(C)若级数∑∞=1n na收敛,则0lim 2=∞→n n a n(D)若级数∑∞=1n na发散, 则存在非零常数λ,使得λ=∞→n n na lim(10)设()f x 为连续函数,⎰⎰=t tydx x f dy t F 1)()(,则)2(F '等于(A)2(2)f(B)(2)f (C)(2)f -(D) 0(11)设A 是3阶方阵,将A 的第1列与第2列交换得B ,再把B 的第2列加到第3列得C ,则满足=AQ C 的可逆矩阵Q 为(A)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010(B)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010 (C)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010(D)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110 (12)设,A B 为满足=AB O 的任意两个非零矩阵,则必有 (A)A 的列向量组线性相关,B 的行向量组线性相关 (B)A 的列向量组线性相关,B 的列向量组线性相关 (C)A 的行向量组线性相关,B 的行向量组线性相关 (D)A 的行向量组线性相关,B 的列向量组线性相关(13)设随机变量X 服从正态分布(0,1),N 对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A)2αu(B)21α-u(C)21α-u(D) α-1u(14)设随机变量)1(,,,21>n X X X n 独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A)21Cov(,)X Y nσ=(B)21Cov(,)X Y σ= (C)212)(σnn Y X D +=+(D)211)(σnn Y X D +=-三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤) (15)(本题满分12分)设2e e a b <<<,证明2224ln ln ()eb a b a ->-. (16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).100.66⨯=k 问从着陆点算起,飞机滑行的最长距离是多少?(注:kg 表示千克,km/h 表示千米/小时) (17)(本题满分12分)计算曲面积分,)1(322233dxdy z dzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.(18)(本题满分11分)设有方程10n x nx +-=,其中n 为正整数.证明此方程存在惟一正实根n x ,并证明当1α>时,级数1nn x α∞=∑收敛. (19)(本题满分12分)设(,)z z x y =是由2226102180x xy y yz z -+--+=确定的函数,求(,)z z x y =的极值点和极值.(20)(本题满分9分) 设有齐次线性方程组121212(1)0,2(2)20,(2),()0,n n n a x x x x a x x n nx nx n a x ++++=⎧⎪++++=⎪≥⎨⎪⎪++++=⎩试问a 取何值时,该方程组有非零解,并求出其通解.(21)(本题满分9分)设矩阵12314315a -⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦A 的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化.(22)(本题满分9分)设,A B 为随机事件,且111(),(|),(|)432P A P B A P A B ===,令 ;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧= 求:(1)二维随机变量(,)X Y 的概率分布. (2)X 和Y 的相关系数.XY ρ(23)(本题满分9分)设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x x x F ββ其中未知参数n X X X ,,,,121 >β为来自总体X 的简单随机样本,求:(1)β的矩估计量. (2)β的最大似然估计量.2004年考研数学试题答案与解析(数学一)一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为1-=x y .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标.【详解】 由11)(ln =='='xx y ,得x=1, 可见切点为)0,1(,于是所求的切线方程为 )1(10-⋅=-x y , 即 1-=x y .【评注】 本题也可先设切点为)ln ,(00x x ,曲线y=lnx 过此切点的导数为11=='=x y x x ,得10=x ,由此可知所求切线方程为)1(10-⋅=-x y , 即 1-=x y . 本题比较简单,类似例题在一般教科书上均可找到.(2)已知xx xe e f -=')(,且f(1)=0, 则f(x)=2)(ln 21x . 【分析】 先求出)(x f '的表达式,再积分即可. 【详解】 令t e x=,则t x ln =,于是有t t t f ln )(=', 即 .ln )(x xx f =' 积分得 C x dx x x x f +==⎰2)(ln 21ln )(. 利用初始条件f(1)=0, 得C=0,故所求函数为f(x)= 2)(ln 21x .【评注】 本题属基础题型,已知导函数求原函数一般用不定积分. (3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-Lydx xdy 2的值为π23 . 【分析】 利用极坐标将曲线用参数方程表示,相应曲线积分可化为定积分. 【详解】 正向圆周222=+y x 在第一象限中的部分,可表示为.20:,sin 2,cos 2πθθθ→⎩⎨⎧==y x于是θθθθθπd ydx xdy L]sin 2sin 22cos 2cos 2[220⋅+⋅=-⎰⎰=.23sin 2202πθθππ=+⎰d 【评注】 本题也可添加直线段,使之成为封闭曲线,然后用格林公式计算,而在添加的线段上用参数法化为定积分计算即可.(4)欧拉方程)0(024222>=++x y dx dyx dx y d x 的通解为 221x c x c y +=.【分析】 欧拉方程的求解有固定方法,作变量代换te x =化为常系数线性齐次微分方程即可.【详解】 令te x =,则dtdyx dt dy e dx dt dt dy dx dy t 1==⋅=-, ][11122222222dt dydty d x dx dt dt y d x dt dy x dx y d -=⋅+-=, 代入原方程,整理得02322=++y dt dy dty d , 解此方程,得通解为 .221221x c x c e c ec y t t+=+=-- 【评注】 本题属基础题型,也可直接套用公式,令te x =,则欧拉方程)(222x f cy dx dybx dxy d ax =++, 可化为 ).(][22t e f cy dt dyb dt dy dty d a =++- (5)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100021012A ,矩阵B 满足E BA ABA +=**2,其中*A 为A 的伴随矩阵,E 是单位矩阵,则=B91. 【分析】 可先用公式E A A A =*进行化简 【详解】 已知等式两边同时右乘A ,得A A BA A ABA +=**2, 而3=A ,于是有A B AB +=63, 即 A B E A =-)63(,再两边取行列式,有363==-A B E A ,而 2763=-E A ,故所求行列式为.91=B 【评注】 先化简再计算是此类问题求解的特点,而题设含有伴随矩阵*A ,一般均应先利用公式E A AA A A ==**进行化简.(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >=e1 . 【分析】 已知连续型随机变量X 的分布,求其满足一定条件的概率,转化为定积分计算即可.【详解】 由题设,知21λ=DX ,于是}{DX X P >=dx e X P x ⎰+∞-=>λλλλ1}1{=.11eex=-∞+-λλ 【评注】 本题应记住常见指数分布等的期望与方差的数字特征,而不应在考试时再去推算.二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===302sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A) γβα,,. (B) βγα,,. (C) γαβ,,. (D) αγβ,,. [ B ] 【分析】 先两两进行比较,再排出次序即可.【详解】 0cos 2tan lim cos tan limlim 22002=⋅==+++→→→⎰⎰x xx dtt dt t x xx x x αβ,可排除(C),(D)选项, 又 xx xx dtt dtt x x xx x tan 221sin lim tan sin lim lim 2300302⋅==+++→→→⎰⎰βγ=∞=+→20lim 41xxx ,可见γ是比β低阶的无穷小量,故应选(B). 【评注】 本题是无穷小量的比较问题,也可先将γβα,,分别与nx 进行比较,再确定相互的高低次序.(8)设函数f(x)连续,且,0)0(>'f 则存在0>δ,使得(A) f(x)在(0,)δ内单调增加. (B )f(x)在)0,(δ-内单调减少.(C) 对任意的),0(δ∈x 有f(x)>f(0) . (D) 对任意的)0,(δ-∈x 有f(x)>f(0) . [ C ]【分析】 函数f(x)只在一点的导数大于零,一般不能推导出单调性,因此可排除(A),(B)选项,再利用导数的定义及极限的保号性进行分析即可.【详解】 由导数的定义,知0)0()(lim)0(0>-='→xf x f f x ,根据保号性,知存在0>δ,当),0()0,(δδ -∈x 时,有0)0()(>-xf x f即当)0,(δ-∈x 时,f(x)<f(0); 而当),0(δ∈x 时,有f(x)>f(0). 故应选(C). 【评注】 题设函数一点可导,一般均应联想到用导数的定义进行讨论. (9)设∑∞=1n na为正项级数,下列结论中正确的是(A) 若n n na ∞→lim =0,则级数∑∞=1n na收敛.(B ) 若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n na发散.(C) 若级数∑∞=1n na收敛,则0lim 2=∞→n n a n .(D) 若级数∑∞=1n na发散, 则存在非零常数λ,使得λ=∞→n n na lim . [ B ]【分析】 对于敛散性的判定问题,若不便直接推证,往往可用反例通过排除法找到正确选项.【详解】 取n n a n ln 1=,则n n na ∞→lim =0,但∑∑∞=∞==11ln 1n n n n n a 发散,排除(A),(D);又取nn a n 1=,则级数∑∞=1n na收敛,但∞=∞→n n a n 2lim ,排除(C), 故应选(B).【评注】 本题也可用比较判别法的极限形式,01limlim ≠==∞→∞→λna na n n n n ,而级数∑∞=11n n 发散,因此级数∑∞=1n n a 也发散,故应选(B). (10)设f(x)为连续函数,⎰⎰=ttydx x f dy t F 1)()(,则)2(F '等于(A) 2f(2). (B) f(2). (C) –f(2). (D) 0. [ B ] 【分析】 先求导,再代入t=2求)2(F '即可.关键是求导前应先交换积分次序,使得被积函数中不含有变量t.【详解】 交换积分次序,得⎰⎰=t tydx x f dy t F 1)()(=⎰⎰⎰-=t x tdx x x f dx dy x f 111)1)((])([于是,)1)(()(-='t t f t F ,从而有 )2()2(f F =',故应选(B).【评注】 在应用变限的积分对变量x 求导时,应注意被积函数中不能含有变量x: ⎰'-'=')()()()]([)()]([])([x b x a x a x a f x b x b f dt t f否则,应先通过恒等变形、变量代换和交换积分次序等将被积函数中的变量x 换到积分号外或积分线上.(11)设A 是3阶方阵,将A 的第1列与第2列交换得B,再把B 的第2列加到第3列得C, 则满足AQ=C 的可逆矩阵Q 为(A) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010. (B) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010. (C) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010. (D) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110. [ D ]【分析】 本题考查初等矩阵的的概念与性质,对A 作两次初等列变换,相当于右乘两个相应的初等矩阵,而Q 即为此两个初等矩阵的乘积.【详解】由题设,有B A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001010,C B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100110001, 于是, .100001110100110001100001010C A A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡可见,应选(D).【评注】 涉及到初等变换的问题,应掌握初等矩阵的定义、初等矩阵的性质以及与初等变换的关系.(12)设A,B 为满足AB=O 的任意两个非零矩阵,则必有 (A) A 的列向量组线性相关,B 的行向量组线性相关. (B) A 的列向量组线性相关,B 的列向量组线性相关.(C) A 的行向量组线性相关,B 的行向量组线性相关.(D) A 的行向量组线性相关,B 的列向量组线性相关. [ A ]【分析】A,B 的行列向量组是否线性相关,可从A,B 是否行(或列)满秩或Ax=0(Bx=0)是否有非零解进行分析讨论.【详解1】 设A 为n m ⨯矩阵,B 为s n ⨯矩阵,则由AB=O 知,n B r A r <+)()(.又A,B 为非零矩阵,必有r(A)>0,r(B)>0. 可见r(A)<n, r(B)<n, 即A 的列向量组线性相关,B 的行向量组线性相关,故应选(A).【详解2】 由AB=O 知,B 的每一列均为Ax=0的解,而B 为非零矩阵,即Ax=0存在非零解,可见A 的列向量组线性相关.同理,由AB=O 知,O A B TT=,于是有T B 的列向量组,从而B 的行向量组线性相关,故应选(A).【评注】 AB=O 是常考关系式,一般来说,与此相关的两个结论是应记住的:1) AB=O ⇒n B r A r <+)()(; 2) AB=O ⇒B 的每列均为Ax=0的解.(13)设随机变量X 服从正态分布N(0,1),对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A) 2αu . (B) 21α-u. (C) 21α-u . (D) α-1u . [ C ]【分析】 此类问题的求解,可通过αu 的定义进行分析,也可通过画出草图,直观地得到结论.【详解】 由标准正态分布概率密度函数的对称性知,αα=-<}{u X P ,于是}{2}{}{}{}{11x X P x X P x X P x X P x X P ≥=-≤+≥=≥=<-=-α即有 21}{α-=≥x X P ,可见根据定义有21α-=u x ,故应选(C). 【评注】 本题αuα 21α-(14)设随机变量)1(,,,21>n X X X n 独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A) Cov(.),21nY X σ= (B) 21),(σ=Y X Cov .(C) 212)(σn n Y X D +=+. (D) 211)(σnn Y X D +=-. [ A ] 【分析】 本题用方差和协方差的运算性质直接计算即可,注意利用独立性有:.,3,2,0),(1n i X X Cov i ==【详解】 Cov(∑∑==+==ni i n i i X X Cov n X X Cov n X n X Cov Y X 2111111),(1),(1)1,(),=.1121σnDX n = 【评注】 本题(C),(D) 两个选项的方差也可直接计算得到:如222222111)1()111()(σσn n n n X n X n X n n D Y X D n -++=++++=+ =222233σσn n nn n +=+, 222222111)1()111()(σσn n n n X n X n X n n D Y X D n -+-=----=-=.222222σσn n nn n -=- (15)(本题满分12分)设2e b a e <<<, 证明)(4ln ln 222a b ea b ->-. 【分析】 根据要证不等式的形式,可考虑用拉格朗日中值定理或转化为函数不等式用单调性证明.【证法1】 对函数x 2ln 在[a,b]上应用拉格朗日中值定理,得 .),(ln 2ln ln 22b a a b a b <<-=-ξξξ设t t t ln )(=ϕ,则2ln 1)(t t t -='ϕ, 当t>e 时, ,0)(<'t ϕ 所以)(t ϕ单调减少,从而)()(2e ϕξϕ>,即2222ln ln ee e =>ξξ, 故 )(4ln ln 222a b ea b ->-. 【证法2】 设x ex x 224ln )(-=ϕ,则24ln 2)(e x x x -='ϕ, 2ln 12)(xxx -=''ϕ, 所以当x>e 时,,0)(<''x ϕ 故)(x ϕ'单调减少,从而当2e x e <<时,044)()(222=-='>'e e e x ϕϕ, 即当2e x e <<时,)(x ϕ单调增加.因此当2e x e <<时,)()(a b ϕϕ>,即 a e a b e b 22224ln 4ln ->-, 故 )(4ln ln 222a b ea b ->-.【评注】 本题也可设辅助函数为2222),(4ln ln )(e x a e a x ea x x <<<---=ϕ或 2222),(4ln ln )(e b x e x b ex b x <<<---=ϕ,再用单调性进行证明即可. (16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h. 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).100.66⨯=k 问从着陆点算起,飞机滑行的最长距离是多少?注kg 表示千克,km/h 表示千米/小时.【分析】 本题是标准的牛顿第二定理的应用,列出关系式后再解微分方程即可.【详解1】 由题设,飞机的质量m=9000kg ,着陆时的水平速度h km v /7000=. 从飞机接触跑道开始记时,设t 时刻飞机的滑行距离为x(t),速度为v(t).根据牛顿第二定律,得kv dt dvm-=. 又 dxdv v dt dx dx dv dt dv =⋅=,由以上两式得 dv kmdx -=, 积分得 .)(C v k m t x +-= 由于0)0(,)0(0==x v v ,故得0v k mC =,从而 )).(()(0t v v kmt x -=当0)(→t v 时, ).(05.1100.67009000)(60km k mv t x =⨯⨯=→所以,飞机滑行的最长距离为1.05km. 【详解2】 根据牛顿第二定律,得 kv dtdvm -=, 所以.dt mk v dv -= 两端积分得通解t mkCev -=,代入初始条件00v vt ==解得0v C =,故 .)(0t mk ev t v -=飞机滑行的最长距离为 ).(05.1)(000km kmv ekmv dt t v x tm k==-==∞+-∞+⎰或由t m ke v dtdx -=0,知)1()(000--==--⎰t m kt t mke m kv dt e v t x ,故最长距离为当∞→t 时,).(05.1)(0km mkv t x =→【详解3】 根据牛顿第二定律,得 dt dxk dt x d m -=22,022=+dt dxm k dtx d , 其特征方程为02=+λλm k ,解之得mk-==21,0λλ, 故 .21t mk eC C x -+=由 002000,0v e mkC dt dxv x t tm kt t t =-====-===,得 ,021kmv C C =-= 于是 ).1()(0t m ke k mv t x --= 当+∞→t 时,).(05.1)(0km kmv t x =→所以,飞机滑行的最长距离为1.05km.【评注】 本题求飞机滑行的最长距离,可理解为+∞→t 或0)(→t v 的极限值,这种条件应引起注意.(17)(本题满分12分) 计算曲面积分,)1(322233dxdy z dzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.【分析】 先添加一曲面使之与原曲面围成一封闭曲面,应用高斯公式求解,而在添加的曲面上应用直接投影法求解即可.【详解】 取1∑为xoy 平面上被圆122=+y x 所围部分的下侧,记Ω为由∑与1∑围成的空间闭区域,则dxdy zdzdx y dydz x I ⎰⎰∑+∑-++=1)1(322233.)1(3221233dxdy z dzdx y dydz x ⎰⎰∑-++-由高斯公式知dxdydz z y x dxdy z dzdx y dydz x ⎰⎰⎰⎰⎰Ω∑+∑++=-++)(6)1(322222331=rdz r z dr d r )(62011022⎰⎰⎰-+πθ=.2)]1()1(21[12232210ππ=-+-⎰dr r r r r而⎰⎰⎰⎰≤+∑=--=-++123322133)1(322y x dxdy dxdy zdzdx y dydz x π,故 .32πππ-=-=I【评注】 本题选择1∑时应注意其侧与∑围成封闭曲面后同为外侧(或内侧),再就是在1∑上直接投影积分时,应注意符号(1∑取下侧,与z 轴正向相反,所以取负号).(18)(本题满分11分)设有方程01=-+nx x n,其中n 为正整数. 证明此方程存在惟一正实根n x ,并证明当1>α时,级数∑∞=1n n x α收敛.【分析】 利用介值定理证明存在性,利用单调性证明惟一性.而正项级数的敛散性可用比较法判定.【证】 记.1)(-+=nx x x f n n 由01)0(<-=n f ,0)1(>=n f n ,及连续函数的介值定理知,方程01=-+nx x n存在正实数根).1,0(∈n x当x>0时,0)(1>+='-n nx x f n n ,可见)(x f n 在),0[+∞上单调增加, 故方程01=-+nx x n 存在惟一正实数根.n x由01=-+nx x n与0>n x 知n n x x nn n 110<-=<,故当1>α时,αα)1(0n x n <<. 而正项级数∑∞=11n n α收敛,所以当1>α时,级数∑∞=1n n x α收敛.【评注】 本题综合考查了介值定理和无穷级数的敛散性,题型设计比较新颖,但难度并不大,只要基本概念清楚,应该可以轻松求证.(19)(本题满分12分)设z=z(x,y)是由0182106222=+--+-z yz y xy x 确定的函数,求),(y x z z =的极值点和极值.【分析】 可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值.【详解】 因为 0182106222=+--+-z yz y xy x ,所以 02262=∂∂-∂∂--xz z x z yy x , 0222206=∂∂-∂∂--+-yzz y z yz y x . 令 ⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂0,0y z xz得⎩⎨⎧=-+-=-,0103,03z y x y x 故 ⎩⎨⎧==.,3y z y x将上式代入0182106222=+--+-z yz y xy x ,可得⎪⎩⎪⎨⎧===3,3,9z y x 或 ⎪⎩⎪⎨⎧-=-=-=.3,3,9z y x 由于 02)(22222222=∂∂-∂∂-∂∂-xzz x z x z y ,,02222622=∂∂∂-∂∂⋅∂∂-∂∂∂-∂∂--yx z z x z y z y x z y x z 02)(22222022222=∂∂-∂∂-∂∂-∂∂-∂∂-yzz y z y z y y z y z ,所以 61)3,3,9(22=∂∂=x zA ,21)3,3,9(2-=∂∂∂=y x zB ,35)3,3,9(22=∂∂=yzC , 故03612>=-B AC ,又061>=A ,从而点(9,3)是z(x,y)的极小值点,极小值为z(9,3)=3. 类似地,由61)3,3,9(22-=∂∂=---x zA ,21)3,3,9(2=∂∂∂=---y x zB ,35)3,3,9(22-=∂∂=---yzC ,可知03612>=-B AC ,又061<-=A ,从而点(-9, -3)是z(x,y)的极大值点,极大值为 z(-9, -3)= -3.【评注】 本题讨论由方程所确定的隐函数求极值问题,关键是求可能极值点时应注意x,y,z 满足原方程.(20)(本题满分9分) 设有齐次线性方程组)2(,0)(,02)2(2,0)1(212121≥⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++n x a n nx nx x x a x x x x a n n n试问a 取何值时,该方程组有非零解,并求出其通解.【分析】 本题是方程的个数与未知量的个数相同的齐次线性方程组,可考虑对系数矩阵直接用初等行变换化为阶梯形,再讨论其秩是否小于n ,进而判断是否有非零解;或直接计算系数矩阵的行列式,根据题设行列式的值必为零,由此对参数a 的可能取值进行讨论即可.【详解1】 对方程组的系数矩阵A 作初等行变换,有.00002111122221111B a na a a a a n n n n a a A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++= 当a=0时, r(A)=1<n ,故方程组有非零解,其同解方程组为 ,021=+++n x x x 由此得基础解系为,)0,,0,1,1(1T -=η ,)0,,1,0,1(2T -=η,)1,,0,0,1(,1T n -=-η于是方程组的通解为,1111--++=n n k k x ηη 其中11,,-n k k 为任意常数.当0≠a 时,对矩阵B 作初等行变换,有.10000120002)1(10000121111⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--++→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→ n n n a n a B 可知2)1(+-=n n a 时,n n A r <-=1)(,故方程组也有非零解,其同解方程组为 ⎪⎪⎩⎪⎪⎨⎧=+-=+-=+-,0,03,0213121n x nx x x x x由此得基础解系为Tn ),,2,1( =η, 于是方程组的通解为ηk x =,其中k 为任意常数.【详解2】 方程组的系数行列式为1)2)1((22221111-++=+++=n a n n a an nnna aA. 当0=A ,即a=0或2)1(+-=n n a 时,方程组有非零解. 当a=0时,对系数矩阵A 作初等行变换,有⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=000000000111122221111 n n n n A , 故方程组的同解方程组为 ,021=+++n x x x 由此得基础解系为,)0,,0,1,1(1T -=η ,)0,,1,0,1(2T -=η,)1,,0,0,1(,1T n -=-η于是方程组的通解为,1111--++=n n k k x ηη 其中11,,-n k k 为任意常数.当2)1(+-=n n a 时,对系数矩阵A 作初等行变换,有 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=a na a a a a n n n n a a A00002111122221111 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→1000012000010000121111 n n a , 故方程组的同解方程组为⎪⎪⎩⎪⎪⎨⎧=+-=+-=+-,0,03,0213121n x nx x x x x由此得基础解系为Tn ),,2,1( =η, 于是方程组的通解为ηk x =,其中k 为任意常数.【评注】 矩阵A 的行列式A 也可这样计算:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=a n n n n a a A 22221111=aE +⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n n n n 22221111,矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n n n n 22221111的特征值为2)1(,0,,0+n n ,从而A 的特征值为a,a,2)1(,++n n a , 故行列式.)2)1((1-++=n a n n a A(21)(本题满分9分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=51341321a A 的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化.【分析】 先求出A 的特征值,再根据其二重根是否有两个线性无关的特征向量,确定A 是否可相似对角化即可.【详解】 A 的特征多项式为513410)2(251341321-------=------=-λλλλλλλλaa A E=).3188)(2(51341011)2(2a a++--=------λλλλλλ当2=λ是特征方程的二重根,则有,03181622=++-a 解得a= -2.当a= -2时,A 的特征值为2,2,6, 矩阵2E-A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----321321321的秩为1,故2=λ对应的线性无关的特征向量有两个,从而A 可相似对角化.若2=λ不是特征方程的二重根,则a 31882++-λλ为完全平方,从而18+3a=16,解得 .32-=a当32-=a 时,A 的特征值为2,4,4,矩阵4E-A=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---1321301323秩为2,故4=λ对应的线性无关的特征向量只有一个,从而A 不可相似对角化.【评注】 n 阶矩阵A 可对角化的充要条件是:对于A 的任意i k 重特征根i λ,恒有.)(i i k A E r n =--λ 而单根一定只有一个线性无关的特征向量.(22)(本题满分9分) 设A,B 为随机事件,且21)(,31)(,41)(===B A P A B P A P ,令 ;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧=求:(I )二维随机变量(X,Y)的概率分布; (II )X 和Y 的相关系数.XY ρ【分析】 先确定(X,Y)的可能取值,再求在每一个可能取值点上的概率,而这可利用随机事件的运算性质得到,即得二维随机变量(X,Y)的概率分布;利用联合概率分布可求出边缘概率分布,进而可计算出相关系数.【详解】 (I ) 由于121)()()(==A B P A P AB P , ,61)()()(==B A P AB P B P所以, 121)(}1,1{====AB P Y X P , 61)()()(}0,1{=-====AB P A P B A P Y X P , ,121)()()(}1,0{=-====AB P B P B A P Y X P)(1)(}0,0{B A P B A P Y X P +-=====32)()()(1=+--AB P B P A P (或32121611211}0,0{=---===Y X P ), 故(X,Y)的概率分布为 YX 0 10 32 121 1 61 121 (II) X, Y 的概率分布分别为X 0 1 Y 0 1P43 41 P 65 61 则61,41==EY EX ,163=DX ,DY=365, E(XY)=121, 故 241)(),(=⋅-=EY EX XY E Y X Cov ,从而 .1515),(=⋅=DY DX Y X Cov XY ρ 【评注】 本题尽管难度不大,但考察的知识点很多,综合性较强.通过随机事件定义随机变量或通过随机变量定义随机事件,可以比较好地将概率论的知识前后连贯起来,这种命题方式值得注意.(23)(本题满分9分)设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x x x F ββ 其中未知参数n X X X ,,,,121 >β为来自总体X 的简单随机样本,求:(I ) β的矩估计量;(II ) β的最大似然估计量.【分析】 先由分布函数求出概率密度,再根据求矩估计量和最大似然估计量的标准方法进行讨论即可.【详解】 X 的概率密度为.1,1,0,),(1≤>⎪⎩⎪⎨⎧=+x x x x f βββ (I ) 由于1);(11-=⋅==⎰⎰+∞++∞∞-βββββdx x x dx x xf EX ,令X =-1ββ,解得 1-=X X β,所以参数β的矩估计量为.1ˆ-=X X β (II )似然函数为⎪⎩⎪⎨⎧=>==+=∏其他,0),,,2,1(1,)();()(1211n i x x x x x f L i n nni i ββββ 当),,2,1(1n i x i =>时,0)(>βL ,取对数得∑=+-=ni i x n L 1ln )1(ln )(ln βββ,两边对β求导,得∑=-=n i i x n d L d 1ln )(ln βββ, 令0)(ln =ββd L d ,可得 ∑==n i ixn 1ln β, 故β的最大似然估计量为.ln ˆ1∑==n i iXnβ 【评注】 本题是基础题型,难度不大,但计算量比较大,实际做题时应特别注意计算的准确性.。

上海交通大学2004年硕士研究生入学考试题

上海交通大学2004年硕士研究生入学考试题

上海交通大学2004年硕士研究生入学考试题数学分析试题解答一.(14分)设a a n n =∞→lim ,证明22lim221an na a a n n =+++∞→ .证明法一:利用平均极限定理.记n n a a b -=,则n n a b a =+,lim 0n n b →∞=.记12n n S b b b =+++ , 则12limlim lim 0n nn n n n S b b b b n n →∞→∞→∞+++=== .11S b =,212S b b =+,……12n n S b b b =+++ .将以上n 各式子相加得: 1212(1)n n S S S nb n b b +++=+-++从而 1212(2)()n n b b nb S S S +++++++ []1212(2)(1)n n b b nb nb n b b =+++++-++12()n n n b b b nS =+++= ,所以 12122()n n n b b nb nS S S S +++=-+++故 1212222()lim lim n n n n n b b nb nS S S S n n→∞→∞+++-+++= 122()lim n n n S S S S n n →∞+++⎡⎤=-⎢⎥⎣⎦ 121lim lim n n n n S S S S n n n →∞→∞+++⎛⎫=-⋅ ⎪⎝⎭1210lim lim 0n n n S S S n n →∞→∞+++=-⋅= .1212222...()2()...()lim lim n n n n a a na b a b a n b a n n→∞→∞+++++++++= 122222lim n n b b nb a a na n n →∞++++++⎛⎫=+ ⎪⎝⎭1222(1)22lim lim 022n n n n n ab b nb a a n n →∞→∞++++=+=+= . 证明法二:利用Stolz 公式.令122n n x a a na =+++ ,2n y n =,则{}n y 严格增加且lim n n y →∞=+∞,112121(2)[2(1)]n n n n n x x a a na a a n a na ---=+++-+++-= .根据Stolz 公式得12122212 (i)lim lim lim (1)n n n n nn n n n n n n a a na x x x na n y y y n n -→∞→∞→∞→∞-+++-===--- 1lim lim lim 212122n n n n n na n a a a n n →∞→∞→∞==⋅=⋅=--. 二.(14分)证明)sin(2x 在),0[+∞上不一致连续.证明:令22ππ+=n x n ,πn y n 2=, ,2,1=n .则1)sin()sin(22≡-n ny x , 02221222→++=-+=-ππππππn n n n y x n n (∞→n )因此)sin(2x 在),0[+∞上不一致连续. 或210=∃ε,0>∀δ,∃22ππ+=n x n ,πn y n 2=,其中22111δδ>+⎥⎦⎤⎢⎣⎡=n . 尽管δππππππ<<++=-+=-nn n n n y x n n 12221222,但0221)sin()sin(ε>≡-n n y x ,因此)sin(2x 在),0[+∞上不一致连续.三.(14分)设)(x f 在]2,0[a 上连续,且)0(f =)2(a f .证明],0[0a x ∈∃,使得)(0x f )(0a x f +=. 证明:令)()()(x f a x f x g -+=,],0[a x ∈.则)(x g 在],0[a 上连续,且)0()()0(f a f g -=, )()2()(a f a f a g -=)0()()0(g a f f -=-=.情形1 若0)0(=g ,取00=x 或a x =0,则],0[0a x ∈且)(0x f =)(0a x f +.情形 2 若0)0(≠g ,则因为0)0()()0(2<-=g a g g ,故由介值定理知:),0(0a x ∈∃,使得0)(0=x g ,即)(0x f =)(0a x f +.四.(14分)证明不等式x π2<x sin <x ,⎪⎭⎫⎝⎛∈2,0πx . 证明:令⎪⎩⎪⎨⎧=≤<=.0,1,20,sin )(x x x xx f π则)(x f 在⎥⎦⎤⎢⎣⎡2,0π上连续,在⎪⎭⎫ ⎝⎛2,0π内可导,且 0)(tan cos sin cos )(22<--=-='x x x xx x x x x f , 因此)(x f 在⎥⎦⎤⎢⎣⎡2,0π上严格减少,所以当⎪⎭⎫ ⎝⎛∈2,0πx 时,有)0()(2f x f f <<⎪⎭⎫⎝⎛π,即x x x<<sin 2π. 五. (14分) 若无穷积分⎰+∞adx x f )(收敛,且)(x f 是),[+∞a 上的一致连续,则0)(lim=+∞→x f x .证明:0>∀ε, 由于)(x f 是),[+∞a 上的一致连续,因此,0>∃δ(不妨设εδ≤),使得 当),[,21+∞∈a x x 且δ<-21x x 时,有 2)()(21ε<-x f x f ;又由⎰+∞adx x f )(收敛的Cauchy 准则知:对022>δ,a A >∃,使得当A x x >''',时,有2)(2δ<⎰'''x x dx x f ;当A x >时,取x x ''',使x x x A ''<<'<,且δ='-''x x ,可估计得:22)()()()()]()([)()(2δδεδ+<+-≤+-==⎰⎰⎰⎰⎰'''''''''''''''x x x x x x x x x x dt t f dt t f x f dt t f dt t f x f dt x f x f ,因此当A x >时,有εδε≤+<-220)(x f ,即0)(lim =+∞→x f x .六.(14分)设n x n 112=-,⎰+=121n n n dx x x , ,2,1=n .证明级数∑∞=--11)1(n n n x 收敛. 证明: 因为1212121111-++=<=<+=⎰n n n n n x ndx x x n x , ,2,1=n . 所以数列{}n x 严格减少且0lim =∞→n n x ,故交错级数∑∞=--11)1(n n n x 收敛.七.(14分)设)(x f 在]1,0[上连续,0)1(=f ,n n x x f x g )()(=, ,2,1=n .证明:)}({x g n 在]1,0[上一致收敛.证明:ⅰ>因为)(x f 在]1,0[上连续,所以)(x f 在]1,0[上有界,因此0>∃M ,使得]1,0[∈∀x ,有M x f ≤)(.0>∀ε,ⅱ>因为)(x f 在1=x 处左连续,所以0)(>=∃εδδ(不妨设1<δ),使得当11≤<-x δ时,有ε<=-)()1()(x f f x f .从而当11≤<-x δ时,有ε<≤=)()()(x f x x f x g n n .ⅲ>因为0)1(lim =-∞→nn M δ,所以)(εN N =∃,使得当N n >时,有εδ<-<n M )1(0.从而当Nn >时,]1,0[δ-∈∀x ,有εδ<-≤=nn n M x x f x g )1()()(.ⅳ>当N n >时,]1,0[∈∀x ,⑴当]1,0[δ-∈x 时, 有εδ<-≤=nn n M x x f x g )1()()(.⑵当]1,1(δ-∈x 时, 有ε<≤=)()()(x f x x f x g nn .综上所述当N n >时,]1,0[∈∀x , 都有ε<)(x g n .因此)}({x g n 在]1,0[上一致收敛于0. 八.(12分)设)(x f 在]1,0[上连续,证明:)1()(lim 1f dx x f x n nn =⎰∞→.证明:⑴因为)(x f 在]1,0[上连续,所以)(x f 在]1,0[上有界,因此0>∃M ,使得]1,0[∈∀x ,有M x f ≤)(.⑵令t x n=,则nt x =,dt ntt dx n=,dt t f t dx x f x n n n n)()(1010⎰⎰=.⑶0ε∀>(不妨设8M ε<),记8a Mε=,则01a <<.00(1)])(1)2243af f dt f f dt M Ma εε⎤-≤+≤≤=<⎦⎰⎰⎰, 1,2,n = .⑷1(1)](1)(1)(1)(1)d aaaf dt f dt f t -≤-=-+-⎰⎰⎰(1)d (1)1d af f t f t ≤-+⎰⎰.⑸因为()f x 在[0,1]上连续,故()f x 在[0,1]上一致连续,故对03(1)a ε>-,0δ∃>,使得12,[0,1]x x ∀∈,当12x x δ-<时,有12()()3(1)f x f x a ε-<-.⑹因为1n =,所以对min ,,03(1)3M a εεεδ*⎧⎫=>⎨⎬-⎩⎭,则N ∃,使得当n N >时,1ε*<.⑺当n N >时,有(,1]t a ∀∈,111ε*=<.从而当n N >时,有1(1)1d 1d d (1)3aaf t M t M t M a εεε**≤<<-≤⎰⎰⎰,11(1)d (1)d d 3aaf f t f f t t εεε**-≤-≤<≤⎰⎰⎰.⑻综上所述知当n N >时,有⎰⎰-=-110)]1()([)1()(dt f t f t f dt t f t nn n n ⎰⎰-+-=1)]1()([)]1()([an n n an dt f t f t dt f t f t10(1)](1)]aa f dt f dt≤-+-⎰⎰(1)](1)d (1)1d aaaf dt f f t f t ≤-+-+⎰⎰⎰333εεεε<++=.因此)1()(lim 10f dx x f x n nn =⎰∞→.九.(12分)设01>a ,n n n a a a 11+=+.证明:12lim =∞→na n n .证明:ⅰ>因为01>a ,所以01112>+=a a a ,假设0>n a ,则011>+=+n n n a a a .根据数学归纳法知: 0>n a , ,2,1=n .由011>=-+nn n a a a 知{}n a 严格增加.假如{}n a 有上界,则{}n a 收敛,记a a n n =∞→lim .在nn n a a a 11+=+中令∞→n 得:a a a 1+=,即01=a ,矛盾.因此{}n a 单调增加但无上界,故+∞=∞→n n a lim .ⅱ>因为2111nn n a a a +=+,所以 21111221121))((nn n n n n n n n n n n a a a a a a a a a a a a +=+=+=+-=-+++++, 从而2)(lim 221=-+∞→n n n a a .ⅲ>由于{}n 2严格增加且+∞=∞→n n 2lim ,利用Stolz 公式得:n n a a n a nn n n n 2)22(lim2lim 2212-+-=+∞→∞→12lim 221=-=+∞→n n n a a .因此12lim=∞→na n n .十.(28分)计算下述积分:1.⎰⎰-Ddxdy x y 2,其中D 是矩形区域x 1≤,20≤≤y .解:记{}0,20,1),(21≤-≤≤≤=x y y x y x D , {}0,20,1),(22≥-≤≤≤=x y y x y x D .=-⎰⎰Ddxdy x y 2⎰⎰⎰⎰-+-2122D D dxdy x y dxdy x y⎰⎰⎰⎰-+-=--221121122x xdy x y dx dy y x dx 22321102321122)(32)(32x x x y dx y x dx -⋅+-⋅-=⎰⎰--⎰⎰---+=11232113)2(3232dx x dx x ⎰⎰-+=1232103)2(3434dx x dx x )sin 2()sin 22(343140232104⎰-+=πt d t x ⎰+=404cos 31631πtdt ⎰⎪⎭⎫ ⎝⎛++=40222cos 131631πdt t ⎰⎪⎭⎫ ⎝⎛++++=4024cos 12cos 213431πdt t t 4084sin 2sin 233431π⎪⎭⎫ ⎝⎛+++=t t t ⎪⎭⎫ ⎝⎛++=1833431π235π+=. 2.⎰⎰+++Sxydxdy ydzdx z x yzdydz )(22,其中S 是曲面224z x y +=-上0≥y 的那部分正侧.解:记{}4),0,(221≤+=z x z x S (取左侧),{}2240),,(z x y z y x --≤≤=Ω,则1S S =Ω∂,由高斯公式知,⎰⎰⎰⎰⎰⎰⎰⎰-≤+Ω+=+=+++yz x Vdxdz z xdydxdydz z x xydxdy ydzdx z xyzdydz 4224222222)()()(332)4(2402ππ=-=⎰dy y .而0)(122=+++⎰⎰S xydxdy ydzdx z x yzdydz ,因此332)(22π=+++⎰⎰Sxydxdy ydzdx z x yzdydz . 或曲面S:224z x y --=,{}4),(),(22≤+=∈x z x z D x z .因此z z y 2-=∂∂,x xy 2-=∂∂. ⎰⎰+++Sxydxdyydzdx z xyzdydz )(22⎰⎰⋅--+--++⋅--=Ddzdx z z x x y x z x x z z x ]2)4()4)((2)4[(22222222⎰⎰++--=Ddzdx z x xz z x )2)(4(2222⎰⎰+-=222220)cos sin 4)(4(rdr r r r d θθθπ⎰⎰-=203220)4(dr r r d πθ332622064ππ=⎪⎪⎭⎫ ⎝⎛-=r r .第二型曲面积分计算公式:ⅰ>若曲面S 的方程为:(,),(,)z f x y x y D =∈,则(,,)(,,)(,,)SP x y z dydz Q x y z dzdx R x y z dxdy ++⎰⎰[(,,(,))(,)(,,(,))(,)(,,(,))]x y DP x y f x y f x y Q x y f x y f x y R x y f x y dxdy ''=±--+⎰⎰,上侧取“+”, 下侧取“-”.ⅱ>若曲面S 的方程为:(,),(,)y g z x z x D =∈,则(,,)(,,)(,,)SP x y z dydz Q x y z dzdx R x y z dxdy ++⎰⎰[(,(,),)(,)(,(,),)(,(,),)(,)]x z DP x g z x z g z x Q x g z x z R x g z x z g z x dzdx ''=±-+-⎰⎰,右侧取“+”, 左侧取“-”.ⅲ>若曲面S 的方程为:(,),(,)x h y z y z D =∈,则(,,)(,,)(,,)SP x y z dydz Q x y z dzdx R x y z dxdy ++⎰⎰[((,),,)((,),,)(,)((,),,)(,)]y z DP h y z y z Q h y z y z h y z R h y z y z h y z dxdy ''=±--⎰⎰.前侧取“+”, 后侧取“-”.。

2004考研数学一真题及答案解析(统编)

2004考研数学一真题及答案解析(统编)

2004年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上) (1)曲线ln y x =上与直线1=+y x 垂直的切线方程为__________ . (2)已知(e )e x x f x -'=,且(1)0f =,则()f x =__________ .(3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-L ydx xdy 2的值为__________.(4)欧拉方程)0(024222>=++x y dx dyx dxy d x 的通解为__________ . (5)设矩阵210120001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,矩阵B 满足**2=+ABA BA E ,其中*A 为A 的伴随矩阵,E 是单位矩阵,则B =__________ .(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >= __________ .二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===03002sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A)γβα,, (B)βγα,, (C)γαβ,, (D)αγβ,, (8)设函数()f x 连续,且,0)0(>'f 则存在0>δ,使得(A)()f x 在(0,)δ内单调增加 (B)()f x 在)0,(δ-内单调减少 (C)对任意的),0(δ∈x 有()(0)f x f > (D)对任意的)0,(δ-∈x 有()(0)f x f >(9)设∑∞=1n n a 为正项级数,下列结论中正确的是(A)若n n na ∞→lim =0,则级数∑∞=1n n a 收敛(B)若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n n a 发散(C)若级数∑∞=1n n a 收敛,则0lim 2=∞→n n a n (D)若级数∑∞=1n n a 发散, 则存在非零常数λ,使得λ=∞→n n na lim(10)设()f x 为连续函数,⎰⎰=t ty dx x f dy t F 1)()(,则)2(F '等于 (A)2(2)f (B)(2)f (C)(2)f - (D) 0(11)设A 是3阶方阵,将A 的第1列与第2列交换得B ,再把B 的第2列加到第3列得C ,则满足=AQ C 的可逆矩阵Q 为(A)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010(B)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010 (C)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010(D)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110 (12)设,A B 为满足=AB O 的任意两个非零矩阵,则必有 (A)A 的列向量组线性相关,B 的行向量组线性相关 (B)A 的列向量组线性相关,B 的列向量组线性相关 (C)A 的行向量组线性相关,B 的行向量组线性相关 (D)A 的行向量组线性相关,B 的列向量组线性相关(13)设随机变量X 服从正态分布(0,1),N 对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A)2αu (B)21α-u(C)21α-u (D) α-1u(14)设随机变量)1(,,,21>n X X X n 独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A)21Cov(,)X Y nσ=(B)21Cov(,)X Y σ=(C)212)(σnn Y X D +=+ (D)211)(σnn Y X D +=-三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤)(15)(本题满分12分) 设2e e a b <<<,证明2224ln ln ()eb a b a ->-.(16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).100.66⨯=k 问从着陆点算起,飞机滑行的最长距离是多少?(注:kg 表示千克,km/h 表示千米/小时)(17)(本题满分12分)计算曲面积分,)1(322233dxdy z dzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.(18)(本题满分11分)设有方程10nx nx+-=,其中n为正整数.证明此方程存在惟一正实根n x,并证明当1α>时,级数1nn xα∞=∑收敛.(19)(本题满分12分)设(,)z z x y =是由2226102180x xy y yz z -+--+=确定的函数,求(,)z z x y =的极值点和极值.(20)(本题满分9分)设有齐次线性方程组121212(1)0,2(2)20,(2),()0,nnna x x xx a x xnnx nx n a x++++=⎧⎪++++=⎪≥⎨⎪⎪++++=⎩试问a取何值时,该方程组有非零解,并求出其通解.(21)(本题满分9分)设矩阵12314315a-⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦A的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.(22)(本题满分9分)设,A B 为随机事件,且111(),(|),(|)432P A P B A P A B ===,令;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧= 求:(1)二维随机变量(,)X Y 的概率分布. (2)X 和Y 的相关系数.XY ρ(23)(本题满分9分) 设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x x x F ββ其中未知参数n X X X ,,,,121 >β为来自总体X 的简单随机样本,求:(1)β的矩估计量. (2)β的最大似然估计量2004年数学一试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为 1-=x y .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标。

2004年数学考研真题及解析

2004年数学考研真题及解析

,可见根据定义有 x
=
u1−α
2
,故应选(C).
ϕ ( x)
ϕ ( x)
α
α
(1 − α ) / 2
0 uα
0
u1−α x
2
∑ (14)设随机变量 X1, X 2 ,
, X n (n > 1) 独立同分布,且其方差为σ 2
> 0.
令Y
=
1 n
n i =1
Xi


(A)
Cov(
X1,Y
)
=
σ2 n
.
ϕ ′′( x)
=
2
1 − ln x2
x
,
所以当 x > e 时,ϕ ′′(x) < 0, 故ϕ ′(x) 单调减少,从而当 e < x < e2 时,
ϕ′(x) > ϕ′(e2 ) = 4 − 4 = 0 e2 e2
即当 e < x < e2 时,ϕ(x) 单调增加.
因此当 e < x < e2 时,ϕ(b) > ϕ(a) ,即
(A) f ( x) 在(0,δ ) 内单调增加.
(B) f ( x) 在 (−δ ,0) 内单调减少.
(C) 对任意的 x ∈ (0,δ ) 有 f ( x) > f (0). (D) 对任意的 x ∈ (−δ ,0) 有 f ( x) > f (0).
【答】 应选(C).
【详解】 由导数的定义,知
2004 年全国硕士研究生入学统一考试 理工数学一试题详解及评析
一、 填空题
(1)曲线 y = ln x 与直线 x + y = 1 垂直的切线方程为 .

2004年全国硕士研究生入学统一考试数学(三)试卷答案和评分参考

2004年全国硕士研究生入学统一考试数学(三)试卷答案和评分参考

2004年全国硕士研究生入学统一考试数学(三)试卷答案和评分参考2004年全国硕士研究生入学统一考试数学(三)试卷答案和评分参考一、填空题(本题共6小题,每小题4分,满分24分.把答案填写在题中横线上.)(1)若0sin lim(cos )5xx x x b e a→-=-,则a = 1 ,b = -4 .(2)函数(,)f u v 由关系式[(),]()f xg y y x g y =+确定,其中函数()g y 可微,且()0g y ≠,则2f u v=??2()[()]g v g v '-.(3)设21,2,()21,2,x xe x f x x ?-≤-≥?则212(1)f x dx -=?12-.(4)二次型222123122313(,,)()()()f x x x x x x x x x =++-++的秩为 2 . (5)设随机变量X 服从参数为λ的指数分布,则{P X >=1e.(6)设总体X 服从正态分布21(,)N μσ,总体Y 从正态分布2 2(,)N μσ,112,,,n X X X 和212,,,n Y Y Y 分别是来自总体X 和Y 的简单随机样本,则12221112()()2n n i j i j X X Y Y E n n ==??-+-??+-∑∑= 2σ . 二、选择题(本题共8小题,每小题4分,满分32分,在每小题给出的四个选项中,只有一个是符合题目要求的,把所选项前的字母填在题后面的括号内.)(7)函数2sin(2)()(1)(2)x x f x x x x -=--在下列哪个区间内有界.(A)(1,0)-. (B)(0,1). (C)(1,2). (D)(2,3). 【 A 】(8)设()f x 在(,)-∞+∞内有定义,且lim ()x f x a →+∞=,1(),0,()0,0,f xg x xx ?≠?=??=?则(A)0x =必是()g x 的第一类间断点. (B )0x =必是()g x 的第二类间断点. (C )0x =必是()g x 的连续点.(D )()g x 在点0x =处的连续性与a 的取值有关. 【 D 】(9)设()(1),f x x x =-则(A)0x =是()f x 的极值点,但(0,0)不是曲线()y f x =的拐点. (B)0x =不是()f x 的极值点,但(0,0)是曲线()y f x =的拐点. (C)0x =是()f x 的极值点,且(0,0)是曲线()y f x =的拐点.(D)0x =不是()f x 的极值点,(0,0)也不是曲线()y f x =的拐点. 【 C 】(10)设有以下命题:①若()2121n n n u u ∞-=+∑收敛,则1n n u ∞=∑收敛.②若1n n u ∞=∑收敛,则10001n n u ∞+=∑收敛.③若1lim1n n nu u +→+∞>收敛,则1n n u ∞=∑发散.④若()1n n n u v ∞=+∑收敛,则11,n n n n u v ∞∞==∑∑都收敛. 【 B 】(11)设()f x '在[,]a b 上连续,且()0,()0f a f b ''><,则下列结论中错误..的是 (A)至少存在一点0(,)x a b ∈,使得0()()f x f a >. (B)至少存在一点0(,)x a b ∈,使得0()()f x f b >. (C)至少存在一点0(,)x a b ∈,使得0()0f x '=.(D)至少存在一点0(,)x a b ∈,使得0()0f x = 【 D 】(12)设n 阶矩阵A 与B 等价,则必有(A)当(0)A a a =≠时,B a =.(B)当(0)A a a =≠时,B a =-. (C)当0A ≠时,0B =.(D)当0A =时,0B =. 【 D 】 (13)设n 阶矩阵A 的伴随矩阵*0A ≠,若1234,,,ξξξξ是非齐次线性方程组Ax b =的互不相等的解,则对应的齐次线性方程0Ax =的基础解系(A)不存在. (B)仅含一个非零解向量.(C)含有两个线性无关的解向量. (D)含有三个线性无关的解向量. 【 B 】 (14)设随机变量X 服从正态分布(0,1)N ,对给定的(01)αα<<,数a u 满足{}a P X u α>=.若{}P X x α<=,则x 等于(A )2a u . (B )12-. (C )12a u -. (D )1a u - 【 C 】三、解答题(本题共9小题,满分94分,解答题应写出文字说明、证明过程或演算步骤.)(15)(本题满分8分)求 22201cos lim sin x x x x →??-解 22201cos lim sin x x x x →??-22222sin cos limsin x x x xx x→-=22401sin 24limx x xx→-= ……2分01sin 44lim2x x xx→-= ……4分 201cos 4lim 6x x x→-= ……6分0sin 4lim 3x x x →= 4 3= ……8分 (16)(本题满分8分) 求)Dy d σ??,其中D 是由圆224x y +=和22 (1)1x y ++=所围成的平面区域(如图).解法1)))DD D y d y d y d σσσ=-大圆小圆……2分)D y d σ+??大圆D D yd σσ=+大大(根据对称性)2220d r dr πθ=+?=163π ……4分)D y d σ+??小圆D D yd σσ=+小小32cos 2220d r dr πθπθ-=+??329=,……7分所以)16(32)9Dy d σπ=-??……8分解法 2 由积分区域对称性和被积函数的奇偶性0Dyd σ=?? ……1分原式0Dσ=+??12D D σσ??=+上上2……2分22222002cos 22d r dr d r dr πππθθθ-??=+……5分4462()339ππ??=+- 16(32)9π=- ……8分[注]:1D σ??上定限1分,计算1分.D σ??上2定限1分,计算1分.(17)(本题满分8分)设(),()f x g x 在[,]a b 上连续,且满足()(),[,)x x a a f t dt g t dt x a b ≥∈??, ()(),b b a af t dtg t dt =证明:()().bb a axf x dx xg x dx ≤证令()()(),()(),x aF x f x g xG x F t dt =-=?由题设知()0,[,]G x x a b ≥∈()()0,()(),G a G b G x F x '=== ……2分从而()(),b b aaxF x dx xdG x =()(),b baaxG x G x dx =-(),baG x dx =-? ……4分由于()0,[,]G x x a b ≥∈,故有()0,ba G x dx -≤? ……6分即 ()0baxF x dx ≤?.因此 ()()bb aaxf x dx xg x dx ≤……8分(18)(本题满分9分)设某商品的需求函数为1005Q P =-,其中价格(0,20)P ∈,Q 为需求量. (I )求需求量对价格的弹性(0);d d E E > (II )推导(1)d dR Q E dP=-(其中R 为收益),并用弹性d E 说明价格在何范围内变化时,降低价格反而使收益增加.解 (I) 20d P P E Q Q P'==-. ……2分(II )由,R PQ =得dR Q P Q dP'=+(1)P Q Q Q'=+(1)d Q E =-. ……4分又由 120d P E P==-,得10P =. ……5分当1020P <<时,1d E >,于是0dR dP<. ……7分故当1020P <<时,降低价格反而使收益增加. ……9分(19)(本题满分9分)设级数468()242462468xxxx +++-∞<<+∞的和函数为()S x .求:(I )()S x 所满足的一阶微分方程;(II )()S x 的表达式. 解(I ) 468(),242462468xxxS x =+++易见(0)0.S = ……1分357()224246xxS x '=+++246224246x x xx ??=+++……2分 2().2x x S x ??=+……4分因此()S x 是初值问题3,(0)02xy xy y '=+=的解. ……4分(II )方程32xy xy '=+的通解为32xdx xdx x y e e dx c -=+222xxC e=--+, ……7分由初始条件(0)0y =,求的1C =. ……8分故22212xxy e=-+-,因此和函数222()12xxS x e=-+- ……9分(20)(本题满分13分)设123(1,2,0),(1,2,3),(1,2,2),(1,3,3)TTTTa ab a b αααβ==+-=---+=-. 试讨论当,a b 为何值时,(I )β不能够由123,,ααα线性表示;(II )β可由123,,ααα惟一线性表示,并求出表示式;(III )β可由123,,ααα惟一线性表示,但表示式不惟一,并求出表达式. 解设有数123,,k k k ,使得112233k k k αααβ++= (*)……1分记123(,,)A ααα=.对矩阵()A β施以初等行变换,有111122230323A a b aa b β?-?+-- ? ?-+-?()=010001a b ?→- ? ?-?……3分(I )当0a b =,为任意常数时,有111101000A a b a b β?-?→- ? ?-?()可知()()r A r A β≠,故方程组(*)无解,β不能由123,,ααα线性表示.……5分(II )当0,a ≠且a b ≠时,()()3r A r A β==,故方程组(*)有惟一解123111,,0k k k a a=-==,则β可由123,,ααα惟一地线性表示,其表示式为12111a aβαα?=-+ ……7分(III )当0a b =≠时,对A β()施以初等行变换,有110011011000a A a β??-→- ?(). ……9分可知()()2r A r A β==,故方程组(*)有无穷多解,其全部解为123111,,k k c k c a a ??=-=+=,其中c 为任意常数. β可由123,,ααα线性表示,但表示式不惟一,其表示式为……11分123111c c a a βααα?=-+++ ? ??. ……13分(21)(本题满分13分)设n 阶矩阵11b b A b b= ? ? ??(I )求A 的特征值和特征向量;(II )求可逆矩阵P ,使得1P AP -为对角矩阵. 解(I )1? 当0b ≠时,111bb b b E A bbλλλλ-------=---1[1(1)][(1)]n n b b λλ-=----- ……3分故A 的特征值为121(1),1.n n b b λλλ=+-===-对于11(1)n b λ=+-,设A 的属于特征值1λ的一个特征向量为1ξ,则1111[1(1)]1b b b bn b b bξξ?? ? ?=+- ? ? ??解得 1(1,1,,1)Tξ= ,所以全部特征向量为1(1,1,,1)Tk k ξ= (k 为任意非零常数)……5分对于21n b λλ===- ,解齐次线性方程组[(1)]0b E A x --=,由111000(1)000b b b b b b b E A b bb ----- ?--=→ ? ? ? ? ? ?---?,解得基础解系2(1,1,0,,0)Tξ=-3(1,0,1,,0)Tξ=-2(1,0,0,,1)Tξ=-故全部特征向量为2233n n k k k ξξξ+++ (2,,n k k 是不全为零的常数). ......7分2?当0b =时,特征11n λλ=== ,任意非零列向量均为特征向量. (9)分(II )1?当0b ≠时,A 有n 个线性无关的特征向量,令12(,,,)n P ξξξ= ,则{}11(1),1,,1.P AP diag n b b b -=+--- ……11分2?当0b =时,A E =,对任意可逆矩阵P ,均有1P AP E -= ……13分[注]: 1(1,1,,1)Tξ= 也可由求解齐次线性方程组1()0E A x λ-=得出.(22)(本题满分13分)设A B 、为两个随机事件,且111432PP P (A)=,(B A)=,(A B)=,令1,0,A X A ?=?发生,不发生; 1,0,B Y B ?=??,发生不发生. 求:(I )二维随机变量(,)X Y 的概率分布;(II )X 与Y 的相关系数X Y ρ;(III )22Z X Y =+的概率分布.解(I )()()()1,12P A B P A P B A ==()()()1,6P A B P B P B A == ……2分则{}(){}()()(){}()()(){}()11,1,1211,0,610,1,120,0P X Y P A B P X Y P A B P A P A B P X Y P AB P B P A B P X Y P A B========-=====-====()()()()211[]3P A B P A P B P AB =-=-+-= ,(或{}11120,01126123P X Y ===---=),……6分即 (,)X Y 的概率分布为(II )方法 1111(),(),(),4612EX P A EY P B E XY =====则1(,)()24C ov X Y E X Y E X E Y =-= 22222211(),4635(),(),1636E X P A E YP B D X E X E X D Y E Y E Y == ===-==-=(,)1XY C ov X Y ρ==……9分方法 2 ,X Y 的概率分布分别为X 01,Y 01.P3414P 5616则 111,,(),4612E X E Y E X Y ==而故 1(,)(),24C ov X Y E XY EX EY =-= 22222211,,4635(),(),1636E XE YD XE X E X D Y E Y E Y ===-==-=XY ρ==……9分(III )Z 的可能取值为012,,,{}{}{}{}{}200,0,3110,11,04P Z P X Y P Z P X Y P X Y =========+===,{}{}121,1,12P Z P X Y =====……13分即Z 的概率分布为Z 012.P2314112(23)(本题满分13分)设总体X 的分布函数为1,(;;)0,x F x x x βαααβα->? ?=≤?其中参数0,1,αβ>>设12,,,n X X X 为来自总体X 的简单随机样本.(I )当1α=时,求未知参数β的矩估计量;(II )当1α=时,求未知参数β的最大似然估计量;(III )当2β=时,求未知参数α的最大似然估计量. 解当1α=时,X 的概率密度为111,1,(;)0,1,x F x xx ββ+?->?=??≤?……1分(I )由于11(;),1EX xf x dx x dx xβββββ+∞+∞+-∞===-?……2分令1X ββ=-,解得1X X β=-,所以参数β的矩估计量为1X X β=- ……4分(II )对于总体X 的样本值12,,,n x x x ,似然函数为1121,1(1,2,,)()(;)()0,nni n i x i n L f x x x x βββα+=?>=?==??∏其他……6分当1(1,2,,)i x i n >= 时,()L β>0,取对数得1ln ()ln (1)ln ,ni i L n x βββ==-+∑两边对β求导,得1ln ()ln ,nii d L nx d βββ==-∑1ln ()0,ln nid xβββ===∑令,解得故β的最大似然估计量为1.ln nii nXβ==∑ ……9分(III )当2β=时,X 的概率密度为232,(;)0,x f x x x αααα>?=??≤?对于总体X 的样本值12,,,n x x x ,似然函数为31212,(1,2,,)()(;)()0,n nni n i x i n L f x x x x αααα=?>=?==??∏,……11分当(1,2,,)i x i n α>= 时,α越大,()L α越大,因而的最大似然估计值为{}12m in ,,,n x x x α= 则的最大似然估计量为{}12m in ,,,n X X X α= ……13分。

2004年全国硕士研究生入学统一考试数学一试题及答案

2004年全国硕士研究生入学统一考试数学一试题及答案

2004年全国硕士研究生入学统一考试数学(一)试题及答案一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为 1-=x y .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标。

【详解】 由11)(ln =='='xx y ,得x=1, 可见切点为)0,1(,于是所求的切线方程为 )1(10-⋅=-x y , 即 1-=x y .【评注】 本题也可先设切点为)ln ,(00x x ,曲线y=lnx 过此切点的导数为11=='=x y x x ,得10=x ,由此可知所求切线方程为)1(10-⋅=-x y , 即 1-=x y . (2)已知xxxe e f -=')(,且f(1)=0, 则f(x)=2)(ln 21x . 【分析】 先求出)(x f '的表达式,再积分即可。

【详解】 令t e x=,则t x ln =,于是有t t t f ln )(=', 即 .ln )(x xx f =' 积分得 C x dx x x x f +==⎰2)(ln 21ln )(. 利用初始条件f(1)=0, 得C=0,故所求函数为f(x)= 2)(ln 21x .(3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-Lydx xdy 2的值为π23 . 【分析】 利用极坐标将曲线用参数方程表示,相应曲线积分可化为定积分。

【详解】 正向圆周222=+y x 在第一象限中的部分,可表示为.20:,sin 2,cos 2πθθθ→⎩⎨⎧==y x于是θθθθθπd y d x x d y L]s i n 2s i n 22c o s 2c o s 2[220⋅+⋅=-⎰⎰=.23sin 2202πθθππ=+⎰d(4)欧拉方程)0(024222>=++x y dx dyx dxy d x 的通解为 221x c x c y +=. 【分析】 欧拉方程的求解有固定方法,作变量代换te x =化为常系数线性齐次微分方程即可。

(完整版)数学分析_各校考研试题及答案

(完整版)数学分析_各校考研试题及答案

2003南开大学年数学分析一、设),,(x y x y x f w-+=其中),,(z y x f 有二阶连续偏导数,求xy w解:令u=x+y ,v=x-y ,z=x 则z v u x f f f w ++=;)1()1()1(-++-++-+=zv zu vv vu uv uu xy f f f f f f w二、设数列}{n a 非负单增且a a nn =∞→lim ,证明a a a a n n n n n n =+++∞→121][lim解:因为an 非负单增,故有n n n nnn n n n na a a a a 1121)(][≤+++≤由a a nn =∞→lim ;据两边夹定理有极限成立。

三、设⎩⎨⎧≤>+=0,00),1ln()(2x x x x x f α试确定α的取值范围,使f(x )分别满足:(1) 极限)(lim 0x f x +→存在(2) f(x )在x=0连续 (3) f (x )在x=0可导 解:(1)因为)(lim 0x f x +→=)1ln(lim 20x x x ++→α=)]()1(2[lim 221420n nn x x o nxx x x +-++--→+α极限存在则2+α0≥知α2-≥(2)因为)(lim 0x f x -→=0=f(0)所以要使f(x)在0连续则2->α(3)0)0(='-f 所以要使f (x )在0可导则1->α四、设f (x)在R 连续,证明积分ydy xdx y x f l ++⎰)(22与积分路径无关解;令U=22y x+则ydy xdx y x f l ++⎰)(22=21du u f l )(⎰又f (x )在R 上连续故存在F(u )使dF (u )=f(u )du=ydy xdx y x f ++)(22所以积分与路径无关。

(此题应感谢小毒物提供思路)五、设f(x)在[a,b ]上可导,0)2(=+b a f 且M x f ≤')(,证明2)(4)(a b M dx x f b a-≤⎰证:因f(x)在[a ,b]可导,则由拉格朗日中值定理,存在)2)(()2()(),(ba x fb a f x f b a +-'=+-∈ξξ使即有dx ba x f dx x f bab a)2)(()(+-'=⎰⎰ξ222)(4])2()2([)2)((a b M dx b a x dx x b a M dx b a x f bb a ba a ba-=+-+-+≤+-'≤⎰⎰⎰++ξ六、设}{n a 单减而且收敛于0。

2004考研数学一真题及答案解析

2004考研数学一真题及答案解析

2004年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上) (1)曲线ln y x =上与直线1=+y x 垂直的切线方程为__________ . (2)已知(e )e x x f x -'=,且(1)0f =,则()f x =__________ .(3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-L ydx xdy 2的值为__________.(4)欧拉方程)0(024222>=++x y dx dyx dxy d x 的通解为__________ . (5)设矩阵210120001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,矩阵B 满足**2=+ABA BA E ,其中*A 为A 的伴随矩阵,E 是单位矩阵,则B =__________ .(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >= __________ .二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===03002sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A)γβα,, (B)βγα,, (C)γαβ,, (D)αγβ,, (8)设函数()f x 连续,且,0)0(>'f 则存在0>δ,使得(A)()f x 在(0,)δ内单调增加 (B)()f x 在)0,(δ-内单调减少 (C)对任意的),0(δ∈x 有()(0)f x f > (D)对任意的)0,(δ-∈x 有()(0)f x f >(9)设∑∞=1n n a 为正项级数,下列结论中正确的是(A)若n n na ∞→lim =0,则级数∑∞=1n n a 收敛(B)若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n n a 发散(C)若级数∑∞=1n n a 收敛,则0lim 2=∞→n n a n(D)若级数∑∞=1n n a 发散, 则存在非零常数λ,使得λ=∞→n n na lim(10)设()f x 为连续函数,⎰⎰=t ty dx x f dy t F 1)()(,则)2(F '等于 (A)2(2)f (B)(2)f (C)(2)f - (D) 0(11)设A 是3阶方阵,将A 的第1列与第2列交换得B ,再把B 的第2列加到第3列得C ,则满足=AQ C 的可逆矩阵Q 为(A)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010(B)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010 (C)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010(D)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110 (12)设,A B 为满足=AB O 的任意两个非零矩阵,则必有 (A)A 的列向量组线性相关,B 的行向量组线性相关 (B)A 的列向量组线性相关,B 的列向量组线性相关 (C)A 的行向量组线性相关,B 的行向量组线性相关 (D)A 的行向量组线性相关,B 的列向量组线性相关(13)设随机变量X 服从正态分布(0,1),N 对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A)2αu (B)21α-u(C)21α-u (D) α-1u(14)设随机变量)1(,,,21>n X X X n Λ独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A)21Cov(,)X Y nσ= (B)21Cov(,)X Y σ=(C)212)(σnn Y X D +=+ (D)211)(σnn Y X D +=-三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤)(15)(本题满分12分) 设2e e a b <<<,证明2224ln ln ()e b a b a ->-.(16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).100.66⨯=k 问从着陆点算起,飞机滑行的最长距离是多少?(注:kg 表示千克,km/h 表示千米/小时)(17)(本题满分12分)计算曲面积分,)1(322233dxdy z dzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.(18)(本题满分11分)设有方程10nx nx+-=,其中n为正整数.证明此方程存在惟一正实根n x,并证明当1α>时,级数1nn xα∞=∑收敛.(19)(本题满分12分)设(,)z z x y =是由2226102180x xy y yz z -+--+=确定的函数,求(,)z z x y =的极值点和极值.(20)(本题满分9分)设有齐次线性方程组121212(1)0,2(2)20,(2),()0,nnna x x xx a x xnnx nx n a x++++=⎧⎪++++=⎪≥⎨⎪⎪++++=⎩LLL L L L L LL试问a取何值时,该方程组有非零解,并求出其通解.(21)(本题满分9分)设矩阵12314315a-⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦A的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.(22)(本题满分9分)设,A B 为随机事件,且111(),(|),(|)432P A P B A P A B ===,令;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧= 求:(1)二维随机变量(,)X Y 的概率分布. (2)X 和Y 的相关系数.XY ρ(23)(本题满分9分) 设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x x x F ββ其中未知参数n X X X ,,,,121Λ>β为来自总体X 的简单随机样本,求:(1)β的矩估计量. (2)β的最大似然估计量2004年数学一试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为 1-=x y .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标。

2004年考研数学一试题及答案解析

2004年考研数学一试题及答案解析

2004年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上) (1)曲线ln y x =上与直线1=+y x 垂直的切线方程为__________ . (2)已知(e )e x x f x -'=,且(1)0f =,则()f x =__________ .(3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-L ydx xdy 2的值为__________.(4)欧拉方程)0(024222>=++x y dx dyx dx y d x的通解为__________ . (5)设矩阵210120001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,矩阵B 满足**2=+ABA BA E ,其中*A 为A 的伴随矩阵,E 是单位矩阵,则B =__________ .(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >= __________ .二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===03002sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A)γβα,, (B)βγα,, (C)γαβ,, (D)αγβ,, (8)设函数()f x 连续,且,0)0(>'f 则存在0>δ,使得(A)()f x 在(0,)δ内单调增加 (B)()f x 在)0,(δ-内单调减少 (C)对任意的),0(δ∈x 有()(0)f x f > (D)对任意的)0,(δ-∈x 有()(0)f x f >(9)设∑∞=1n n a 为正项级数,下列结论中正确的是(A)若n n na ∞→lim =0,则级数∑∞=1n n a 收敛(B)若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n n a 发散(C)若级数∑∞=1n n a 收敛,则0lim 2=∞→n n a n (D)若级数∑∞=1n n a 发散, 则存在非零常数λ,使得λ=∞→n n na lim(10)设()f x 为连续函数,⎰⎰=t ty dx x f dy t F 1)()(,则)2(F '等于 (A)2(2)f (B)(2)f (C)(2)f - (D) 0(11)设A 是3阶方阵,将A 的第1列与第2列交换得B ,再把B 的第2列加到第3列得C ,则满足=AQ C 的可逆矩阵Q 为(A)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010(B)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010 (C)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010(D)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110 (12)设,A B 为满足=AB O 的任意两个非零矩阵,则必有 (A)A 的列向量组线性相关,B 的行向量组线性相关 (B)A 的列向量组线性相关,B 的列向量组线性相关 (C)A 的行向量组线性相关,B 的行向量组线性相关 (D)A 的行向量组线性相关,B 的列向量组线性相关(13)设随机变量X 服从正态分布(0,1),N 对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A)2αu (B)21α-u(C)21α-u (D) α-1u(14)设随机变量)1(,,,21>n X X X n 独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A)21Cov(,)X Y nσ= (B)21Cov(,)X Y σ=(C)212)(σnn Y X D +=+ (D)211)(σnn Y X D +=-三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤)(15)(本题满分12分) 设2e e a b <<<,证明2224ln ln ()eb a b a ->-.(16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg的飞机,着陆时的水平速度为700km/h 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).k问从着陆点=10⨯0.66算起,飞机滑行的最长距离是多少?(注:kg表示千克,km/h表示千米/小时)(17)(本题满分12分)计算曲面积分,)1(322233dxdy z dzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.(18)(本题满分11分)设有方程10nx nx+-=,其中n为正整数.证明此方程存在惟一正实根n x,并证明当1α>时,级数1nn xα∞=∑收敛.(19)(本题满分12分)设(,)z z x y =是由2226102180x xy y yz z -+--+=确定的函数,求(,)z z x y =的极值点和极值.(20)(本题满分9分)设有齐次线性方程组121212(1)0,2(2)20,(2),()0,nnna x x xx a x xnnx nx n a x++++=⎧⎪++++=⎪≥⎨⎪⎪++++=⎩试问a取何值时,该方程组有非零解,并求出其通解.(21)(本题满分9分)设矩阵12314315a-⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦A的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.(22)(本题满分9分)设,A B 为随机事件,且111(),(|),(|)432P A P B A P A B ===,令;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧= 求:(1)二维随机变量(,)X Y 的概率分布. (2)X 和Y 的相关系数.XY ρ(23)(本题满分9分) 设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x x x F ββ其中未知参数n X X X ,,,,121 >β为来自总体X 的简单随机样本,求:(1)β的矩估计量. (2)β的最大似然估计量2004年数学一试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为 1-=x y .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标。

2004年全国硕士研究生入学统一考试数学(四)试题及答案 .doc

2004年全国硕士研究生入学统一考试数学(四)试题及答案 .doc

2004年全国硕士研究生入学统一考试数学(四)试题及答案一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1) 若5)(cos sin lim0=--→b x ae xx x ,则a =1,b =4-.【分析】本题属于已知极限求参数的反问题. 【详解】因为5)(cos sin lim0=--→b x a e xx x ,且0)(cos sin lim 0=-⋅→b x x x ,所以 0)(lim 0=-→a e x x ,得a = 1. 极限化为51)(cos lim )(cos sin lim00=-=-=--→→b b x x xb x a e x x x x ,得b = -4.因此,a = 1,b = -4.(2) 设1ln arctan 22+-=x xxe e e y ,则1121+-==e e dx dy x .【分析】本题为基础题型,先求导函数即可.【详解】因为)1ln(21arctan 2++-=xxe x e y ,111222++-+='x x xx e e e e y , 所以,1121+-==e e dx dy x . (3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则21)1(221-=-⎰dx x f .【分析】本题属于求分段函数的定积分,先换元:x - 1 = t ,再利用对称区间上奇偶函数 的积分性质即可.【详解】令x - 1 = t , ⎰⎰⎰--==-121121221)()()1(dt x f dt t f dx x f=21)21(0)1(12121212-=-+=-+⎰⎰-dx dx xe x .(4) 设⎪⎪⎪⎭⎫⎝⎛--=100001010A ,AP P B 1-=,其中P 为三阶可逆矩阵, 则=-220042A B ⎪⎪⎪⎭⎫ ⎝⎛-100030003 .【分析】 将B 的幂次转化为A 的幂次, 并注意到2A 为对角矩阵即得答案. 【详解】因为⎪⎪⎪⎭⎫ ⎝⎛--=1000100012A , P A P B 200412004-=.故E EP P P A P B===--11002212004)(,=-220042A B ⎪⎪⎪⎭⎫⎝⎛-100030003.(5) 设()33⨯=ija A 是实正交矩阵,且111=a ,Tb )0,0,1(=,则线性方程组b Ax =的解是T)0,0,1(.【分析】利用正交矩阵的性质即可得结果. 【详解】因为 b A x 1-=, 而且()33⨯=ij a A 是实正交矩阵, 于是 1-=A A T , A 的每一个行(列)向量均为单位向量, 所以⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛===-0011312111a a a b A b A x T.(6) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X Pe1. 【分析】 根据指数分布的分布函数和方差立即得正确答案. 【详解】 由于21λDX =, X 的分布函数为 ⎩⎨⎧≤>-=-.0,0,0,1)(x x e x F x λ故=>}{DX X P =≤-}{1DX X P =≤-}1{1λX P )1(1λF -e1=.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界. (A) (-1 , 0).(B) (0 , 1).(C) (1 , 2).(D) (2 , 3). [ A ]【分析】如f (x )在(a , b )内连续,且极限)(lim x f a x +→与)(lim x f b x -→存在,则函数f (x ) 在(a , b )内有界.【详解】当x ≠ 0 , 1 , 2时,f (x )连续,而183sin )(lim1-=+-→x f x ,42sin )(lim 0-=-→x f x ,42sin )(lim 0=+→x f x ,∞=→)(lim 1x f x ,∞=→)(lim 2x f x , 所以,函数f (x )在(-1 , 0)内有界,故选(A).(8) 设f (x )在(-∞ , +∞)内有定义,且a x f x =∞→)(lim ,⎪⎩⎪⎨⎧=≠=0,00,)1()(x x xf xg ,则 (A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. [ D ] 【分析】考查极限)(lim 0x g x →是否存在,如存在,是否等于g (0)即可,通过换元xu 1=, 可将极限)(lim 0x g x →转化为)(lim x f x ∞→.【详解】因为)(lim )1(lim )(lim 0u f x f x g u x x ∞→→→=== a (令xu 1=),又g (0) = 0,所以,当a = 0时,)0()(lim 0g x g x =→,即g (x )在点x = 0处连续,当a ≠ 0时,)0()(lim 0g x g x ≠→,即x = 0是g (x )的第一类间断点,因此,g (x )在点x = 0处的连续性与a 的取值有关,故选(D). (9) 设f (x ) = |x (1 - x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点.(C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点. [ C ] 【分析】由于f (x )在x = 0处的一、二阶导数不存在,可利用定义判断极值情况, 考查f (x )在x = 0的左、右两侧的二阶导数的符号,判断拐点情况.【详解】设0 < δ < 1,当x ∈ (-δ , 0) ⋃ (0 , δ)时,f (x ) > 0,而f (0) = 0,所以x = 0是f (x ) 的极小值点.显然,x = 0是f (x )的不可导点. 当x ∈ (-δ , 0)时,f (x ) = -x (1 - x ),02)(>=''x f ,当x ∈ (0 , δ)时,f (x ) = x (1 - x ),02)(<-=''x f ,所以(0 , 0)是曲线y = f (x )的拐点.故选(C).(10) 设⎪⎩⎪⎨⎧<-=>=0,10,00,1)(x x x x f ,⎰=x dt t f x F 0)()(,则(A) F (x )在x = 0点不连续.(B) F (x )在(-∞ , +∞)内连续,但在x = 0点不可导. (C) F (x )在(-∞ , +∞)内可导,且满足)()(x f x F ='.(D) F (x )在(-∞ , +∞)内可导,但不一定满足)()(x f x F ='.[ B ]【分析】先求分段函数f (x )的变限积分⎰=xdt t f x F 0)()(,再讨论函数F (x )的连续性与可导性即可.【详解】当x < 0时,x dt x F x-=-=⎰0)1()(;当x > 0时,x dt x F x==⎰01)(,当x = 0时,F (0) = 0. 即F (x ) = |x |,显然,F (x )在(-∞ , +∞)内连续,但在x = 0点不可导. 故选(B).(11) 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是 (A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ). (B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ). (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.[ D ]【分析】利用介值定理与极限的保号性可得到三个正确的选项,由排除法可选出错误选项. 【详解】首先,由已知)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则由介值定理, 至少存在一点),(0b a x ∈,使得0)(0='x f ;另外,0)()(lim)(>--='+→ax a f x f a f a x ,由极限的保号性,至少存在一点),(0b a x ∈使得0)()(00>--ax a f x f ,即)()(0a f x f >. 同理,至少存在一点),(0b a x ∈使得)()(0b f x f >. 所以,(A) (B) (C)都正确,故选(D).(12) 设n 阶矩阵A 与B 等价, 则必须(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||. (C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B . [ D ] 【分析】 利用矩阵A 与B 等价的充要条件: )()(B r A r =立即可得.【详解】因为当0||=A 时, n A r <)(, 又A 与B 等价, 故n B r <)(, 即0||=B , 从而选 (D).(13) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{, 若αx X P =<}|{|, 则x 等于(A) 2αu . (B) 21αu - . (C) 21αu-. (D) αu -1. [ B ]【分析】 利用标准正态分布密度曲线的对称性和几何意义即得. 【详解】 由αx X P =<}|{|, 以及标准正态分布密度曲线的对称性可得21}{αx X P -=>. 故正确答案为(B).(14) 设随机变量n X X X ,,,21 )1(>n 独立同分布,且方差02>σ.令随机变量∑==ni i X n Y 11, 则(A) 212)(σn n Y X D +=+. (B) 212)(σnn Y X D +=-. (C) nσY X Cov 21),(=. (D) 21),(σY X Cov =. [ C ]【分析】 利用协方差的性质立即得正确答案..【详解】 由于随机变量n X X X ,,,21 )1(>n 独立同分布, 于是可得),(1)1,(),(11111∑∑====ni i n i i X X Cov n X n X Cov Y X Cov),(1),(11111X X Cov nX X Cov n n i i ==∑=211)(1σnX D n ==. 故正确答案为(C).三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (15) (本题满分8分)求)cos sin 1(lim 2220xxx x -→. 【分析】先通分化为“”型极限,再利用等价无穷小与罗必达法则求解即可. 【详解】xx xx x x x x x x 2222202220sin cos sin lim )cos sin 1(lim -=-→→ =30422044sin 212lim 2sin 41lim x xx x x x x x -=-→→. 346)4(21lim 64cos 1lim 22020==-=→→xx x x x x . (16) (本题满分8分)求⎰⎰++Dd y y x σ)(22,其中D 是由圆422=+y x 和1)1(22=++y x 所围成的平面区域(如图).【分析】首先,将积分区域D 分为大圆}4|),{(221≤+=y x y x D 减去小圆}1)1(|),{(222≤++=y x y x D ,再利用对称性与极坐标计算即可.【详解】令}1)1(|),{(},4|),{(222221≤++=≤+=y x y x D y x y x D ,由对称性,0=⎰⎰Dyd σ.⎰⎰⎰⎰⎰⎰+-+=+21222222D D Dd y x d y x d y x σσσ⎰⎰⎰⎰--=θπππθθcos 20223220220dr r d dr r d .)23(916932316-=-=ππ所以,)23(916)(22-=++⎰⎰πσDd y y x . (17) (本题满分8分)设f (u , v )具有连续偏导数,且满足uv v u f v u f v u='+'),(),(.求),()(2x x f e x y x -=所满足的一阶微分方程,并求其通解.【分析】先求y ',利用已知关系uv v u f v u f v u='+'),(),(,可得到关于y 的一阶微分方程. 【详解】x v x ux x e x y x x f e x x f e x x f e y 222222),(),(),(2----+-='+'+-=', 因此,所求的一阶微分方程为x e x y y 222-=+'.解得 x dxx dx e C x C dx e e x e y 232222)31()(---+=+⎰⎰=⎰(C 为任意常数).(18) (本题满分9分) 设某商品的需求函数为Q = 100 - 5P ,其中价格P ∈ (0 , 20),Q 为需求量. (I) 求需求量对价格的弹性d E (d E > 0);(II) 推导)1(d E Q dPdR-=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时, 降低价格反而使收益增加. 【分析】由于d E > 0,所以dP dQ Q P E d =;由Q = PQ 及dPdQQ P E d =可推导 )1(d E Q dPdR-=. 【详解】(I) PPdP dQ Q P E d -==20. (II) 由R = PQ ,得)1()1(d E Q dPdQ Q P Q dP dQ P Q dP dR -=+=+=. 又由120=-=PPE d ,得P = 10.当10 < P < 20时,d E > 1,于是0<dPdR,故当10 < P < 20时,降低价格反而使收益增加.【评注】当d E > 0时,需求量对价格的弹性公式为dPdQQ P dP dQ Q P E d -==. 利用需求弹性分析收益的变化情况有以下四个常用的公式:Qdp E dR d )1(-=,Q E dpdRd )1(-=,p E dQ dR d )11(-=, d E EpER-=1(收益对价格的弹性).(19) (本题满分9分)设⎪⎩⎪⎨⎧>≤=-0,0,)(22x ex e x F x x ,S 表示夹在x 轴与曲线y = F (x )之间的面积. 对任何t > 0,)(1t S 表示矩形-t ≤ x ≤ t ,0 ≤ y ≤ F (t )的面积. 求(I) S (t ) = S -)(1t S 的表达式;(II) S (t )的最小值.【分析】曲线y = F (x )关于y 轴对称,x 轴与曲线y = F (x )围成一无界区域,所以, 面积S 可用广义积分表示. 【详解】(I) 120202=-==+∞-∞+-⎰x xedx e S ,t te t S 212)(-=,因此t te t S 221)(--=,t ∈ (0 , +∞). (II) 由于t e t t S 2)21(2)(---=',故S (t )的唯一驻点为21=t , 又t e t t S 2)1(8)(--='',04)21(>=''eS ,所以,eS 11)21(-=为极小值,它也是最小值.(20) (本题满分13分)设线性方程组⎪⎩⎪⎨⎧=+++++=+++=+++,14)4()2(3,022,0432143214321x x μx λx x x x x x x μx λx 已知T)1,1,1,1(--是该方程组的一个解,试求(Ⅰ) 方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解; (Ⅱ) 该方程组满足32x x =的全部解.【分析】 含未知参数的线性方程组的求解, 当系数矩阵为非方阵时一般用初等行变换法化增广矩阵为阶梯形, 然后对参数进行讨论. 由于本题已知了方程组的一个解, 于是可先由它来(部分)确定未知参数.【详解】 将T)1,1,1,1(--代入方程组,得μλ=.对方程组的增广矩阵A 施以初等行变换, 得⎪⎪⎪⎭⎫ ⎝⎛------→⎪⎪⎪⎭⎫ ⎝⎛++=1212)12(2001131012011422302112011λλλλλλλλλλA ,(Ⅰ) 当21≠λ时,有 ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--→2121100212101001001A , 43)()(<==A r A r ,故方程组有无穷多解,且T ξ)0,21,21,0(0-=为其一个特解,对应的齐次线性方程组的基础解系为 Tη)2,1,1,2(--=,故方程组的全部解为T T k ηk ξξ)2,1,1,2()0,21,21,0(0--+-=+= (k 为任意常数).当21=λ时,有⎪⎪⎪⎪⎪⎭⎫⎝⎛--→00000113102121101A ,42)()(<==A r A r ,故方程组有无穷多解,且T ξ)0,0,1,21(0-=为其一个特解,对应的齐次线性方程组的基础解系为 Tη)0,1,3,1(1-=,Tη)2,0,2,1(2--=,故方程组的全部解为T T T k k ηk ηk ξξ)2,0,2,1()0,1,3,1()0,0,1,21(2122110--+-+-=++=(21,k k 为任意常数).(Ⅱ) 当21≠λ时,由于32x x =,即 k k -=+-2121,解得 21=k , 故方程组的解为T T T ξ)1,0,0,1()2,1,1,2(21)0,21,21,1(-=--+-= .当21=λ时, 由于32x x =,即121231k k k =--, 解得 212141k k -=,故方程组的全部解为 T T T k k ξ)2,0,2,1()0,1,3,1)(2141()0,0,1,21(22--+--+-=T T k )2,21,21,23()0,41,41,41(2---+-=, (2k 为任意常数).(2) 对于题(Ⅱ), 实际上就是在原来方程组中增加一个方程, 此时新的方程组当21≠λ时有惟一解, 当21=λ时有无穷多解. (3) 在题(Ⅱ)中,当21=λ时,解得12221k k -=,方程组的全部解也可以表示为T T k ξ)4,1,1,3()1,0,0,1(1-+-=, (1k 为任意常数).(21) (本题满分13分)设三阶实对称矩阵A 的秩为2,621==λλ是A 的二重特征值.若T α)0,1,1(1=, T α)1,1,2(2=, T α)3,2,1(3--=, 都是A 的属于特征值6的特征向量.(Ⅰ) 求A 的另一特征值和对应的特征向量;(Ⅱ) 求矩阵A . 【分析】 由矩阵A 的秩为2, 立即可得A 的另一特征值为0. 再由实对称矩阵不同特征值所对应的特征向量正交可得相应的特征向量, 此时矩阵A 也立即可得.【详解】 (Ⅰ) 因为621==λλ是A 的二重特征值,故A 的属于特征值6的线性无关的特征向量有2个.由题设知Tα)0,1,1(1=,Tα)1,1,2(2=为A 的属于特征值6的线性无关特征向量.又A 的秩为2,于是0||=A ,所以A 的另一特征值03=λ.设03=λ所对应的特征向量为T x x x α),,(321=,则有 01=ααT ,02=ααT,即⎩⎨⎧=++=+,02,032121x x x x x得基础解系为Tα)1,1,1(-=,故A 的属于特征值03=λ全部特征向量为T k αk )1,1,1(-= (k 为任意不为零的常数).(Ⅱ) 令矩阵),,(21αααP =,则⎪⎪⎪⎭⎫ ⎝⎛=-0661AP P ,所以1066-⎪⎪⎪⎭⎫ ⎝⎛=P P A ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=3131313231311100661******** ⎪⎪⎪⎭⎫ ⎝⎛--=422242224. (22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=AB P , 21)|(=B A P , 令 ⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y 求(Ⅰ) 二维随机变量),(Y X 的概率分布; (Ⅱ) X 与Y 的相关系数 XY ρ; (Ⅲ) 22Y X Z +=的概率分布.【分析】本题的关键是求出),(Y X 的概率分布,于是只要将二维随机变量),(Y X 的各取值对转化为随机事件A 和B 表示即可.【详解】 (Ⅰ) 因为 121)|()()(==A B P A P AB P , 于是 61)|()()(==B A P AB P B P , 则有 121)(}1,1{====AB P Y X P , 61)()()(}0,1{=-====AB P A P B A P Y X P , 121)()()(}1,0{=-====AB P B P B A P Y X P ,32)]()()([1)(1)(}0,0{=-+-=⋃-=⋅===AB P B P A P B A P B A P Y X P , ( 或 32121611211}0,0{=---===Y X P ),即),(Y X 的概率分布为:(Ⅱ) 方法一:因为 41)(==A P EX ,61)(==B P EY ,121)(=XY E , 41)(2==A P EX ,61)(2==B P EY ,163)(22=-=EX EX DX ,165)(22=-=EY EY DY ,241)(),(=-=EXEY XY E Y X Cov ,所以X 与Y 的相关系数 1515151),(==⋅=DYDX Y X Cov ρXY . 方法二: X, Y 的概率分布分别为X 0 1 Y 0 1P 43 41 P 65 61 则61,41==EY EX ,163=DX ,DY=365, E(XY)=121,故 241)(),(=⋅-=EY EX XY E Y X Cov ,从而.1515),(=⋅=DYDX Y X Cov XY ρ (Ⅲ) Z 的可能取值为:0,1,2 .32}0,0{}0{=====Y X P Z P , 41}1,0{}0,1{}1{===+====Y X P Y X P Z P , 121}1,1{}2{=====Y X P Z P , 即Z 的概率分布为:(23) (本题满分13分)设随机变量X 在区间)1,0(上服从均匀分布,在)10(<<=x x X 的条件下,随机变量Y 在区间),0(x 上服从均匀分布,求(Ⅰ) 随机变量X 和Y 的联合概率密度; (Ⅱ) Y 的概率密度; (Ⅲ) 概率}1{>+Y X P .【分析】正确理解已知条件, 即条件密度是求解本题的关键. 【详解】 (Ⅰ) X 的概率密度为⎩⎨⎧<<=其他,,,010,1)(x x f X在)10(<<=x x X 的条件下,Y 的条件概率密度为⎪⎩⎪⎨⎧<<=其他,,,00,1)|(|x y x x y f X Y当10<<<x y 时,随机变量X 和Y 的联合概率密度为 xx y f x f y x f X Y X 1)|()(),(|== 在其它点),(y x 处,有0),(=y x f ,即⎪⎩⎪⎨⎧<<<=.x y x y x f 其他,,010,1),((Ⅱ) 当10<<y 时,Y 的概率密度为⎰⎰-===+∞∞-1ln 1),()(y Y y dx xdx y x f y f ; 当0≤y 或1≥y 时,0)(=y f Y .因此 ⎩⎨⎧<<-=.y y y f Y 其他,,010,ln )((Ⅲ) ⎰⎰⎰⎰->+==>+xx Y X dy xdx dxdy y x f Y X P 112111),(}1{2ln 1)12(121-=-=⎰dx x .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2004 年上海交通大学 一(14)设 lim an = a ,证明 lim n →∞
n→∞
数学分析
a1 + 2a 2 + L + na n a = 2 n2
证 因 xn = n 2
lim
∞ ,故利用 Stolz 公式,lim
n→∞
yn+1 − yn y = lim n ,得 xn+1 − xn n→∞ xn
a1 + 2a2 + L + nan n +1 a (n + 1)an+1 lim lim lim a = = = n +1 n→∞ n →∞ ( n + 1) 2 − n 2 n →∞ 2n + 1 n →∞ 2 n2
二(14)证明 sin( x 2 ) 在 [0,+∞ ) 上不一致连续.
xn − yn = 2nπ +
w w
1k et

∃xn ∈ [ a + (n − 1)δ , a + nδ ] ,使得 un =
Hale Waihona Puke ana + nδ a +( n −1)δ
令 un =

f ( x)d x ,则由积分第一中值定理得,

g.
ε
2 +
a + nδ
f ( x)d x = δ f ( xn ) .
co
2
+
t1 , t2 ∈ [ a, +∞ ) 且 t1 − t2 < δ 时,有 f (t1 ) − f (t2 ) <
2 π 四(14)证明不等式 x < sin x < x , x ∈ 0,
w
w w
证 作 g ( x) = f ( x + a ) − f ( x) ( x ∈ [ 0, a ] ) ,则 g ( x) 在 [ 0, a ] 上连续,
π
.2
1k et
证 作 f ( x) =
sin x π , x ∈ 0, ,则因 x 2
0
3M
.2
(3) ∀ε > 0 ,记 a =
ε
,不妨设 0 < a < 1 ,则
a 1 n
1k et
1 n 0
(2)因 f ( x) 在 [0,1] 上连续,故 ∃M > 0 ,使得 f ( x) ≤ M , x ∈ [ 0,1] ,
an
a 0 1 n
1
co
1
证明 {g n ( x)} 在 [0,1] 上一致收敛.
f ( x) ≤ f ( xk ) + f ( x) − f ( xk ) <
ε
2

六(14)设 x2 n−1 = 收敛. 解. x2 n = ∫
S2 n = ∑ ( −1)
k =1 n k −1 n +1
∞ n +1 1 1 d x , n = 1, 2,L ,证明级数 ∑ (− 1)n−1 x n , x2 n = ∫ n n x n =1
n
1 1 1 n +1 d x = ln x |n = ln(1 + ) , 故只要证 因 S2 n+1 = S 2 n + , k x n
n
1 n 1 1 1 xk = ∑ − ln(1 + ) = ∑ 2 + o( 2 ) 收敛即可. k k =1 2k k k =1 k
an
2
g.
π − 2 nπ = 2
1 → 0, π 2nπ + + 2nπ 2
co
m
证 因 xn = 2nπ +
π 2 2 , yn = 2nπ , sin xn − sin yn = 1, 2
f ′( x) =
x cos x − sin x cos x = 2 ( x − tan x) < 0 , x2 x sin x π 2 在 0, 上严格单调减少, lim ( ) 而 lim f ( x) = 1, f x = , π x →0 x π x→ 2
故 sin( x 2 ) 在 [0,+∞ ) 上不一致连续.
三(14)设 f ( x) 在 [0,2a ] 上连续,且 f (0) = f (2a) ,证明 ∃ x0 ∈ [0, a ] ,使
f ( x0 ) = f ( x0 + a)
因 f (0) = f (2a) ,故 g (2a ) = − g (0) , 情形 1 若 g (0) = 0 ,则取 x0 = 0 ,则 f ( x0 ) = f ( x0 + a) , 情形 2 若 g (0) ≠ 0 ,则因 g (2a ) g (0) = − g 2 (0) < 0 ,故由介值定理 知,存在 x0 ∈ [ 0, a ] ,使得 g ( x0 ) = 0 ,即 f ( x0 ) = f ( x0 + a) .
2
故 f ( x) =
2 sin x π 2 < 1 ,即 x < sin x < x . 因此,在 0, 上,有 < f ( x) = π x π 2
五 (14) 设
x → +∞

+∞ a
f ( x)d x 收 敛 , 且 f ( x) 在 [a,+∞ ) 上 一 致 连 续 , 证 明
lim f ( x) = 0.
证 因 f ( x) 在 [a,+∞ ) 上一致连续,故 ∀ε > 0 , ∃δ > 0 ,使得当
a +( n −1)δ
a
.2
因∫
+∞
f ( x)d x 收敛,故级数 ∑ un 收敛,从而 un → 0 ,即
n =1
δ f ( xn ) → 0 ,也即 f ( xn ) → 0 ,故对上述的 ε ,存在 N ∈

1 1 n a
a
0
t f (t )d t ≤ ∫ t
1 n
七(14)设 f ( x) 在 [0,1] 上连续, f (1) = 0 , g n ( x) = f ( x) x n , n = 1, 2,L ,
g.
0
1 1 0
八(12)设 f ( x) 在 [0,1] 上连续,证明 lim n ∫ x n f ( x)d x = f (1) .
1 n→∞
证 (1) (令 t = x n ,则 n ∫ x n f ( x)d x = ∫ t n f (t n )d t ,
ε

m
,使得
w
当 n > N 时, f ( xn ) <
ε
2
.
取 X = a + Nδ ,则当 x > X 时,因
x ∈ [ a, ∞ ) = U [ a + (k − 1)δ , a + kδ )
k =0

故存在惟一的 k ∈
x − xk < δ ,从而
+
,使得 x ∈ [ a + (k − 1)δ , a + kδ ) ,易见 k > N ,且
相关文档
最新文档