量子物理习题解答

合集下载

大学物理量子力学习题附标准标准答案

大学物理量子力学习题附标准标准答案

一、选择题1.4185:已知一单色光照射在钠表面上,测得光电子地最大动能是1.2 eV ,而钠地红限波长是5400 Å,那么入射光地波长是(A) 5350 Å (B) 5000 Å (C) 4350 Å (D) 3550 Å []2.4244:在均匀磁场B 内放置一极薄地金属片,其红限波长为λ0.今用单色光照射,发现有电子放出,有些放出地电子(质量为m ,电荷地绝对值为e )在垂直于磁场地平面内作半径为R 地圆周运动,那末此照射光光子地能量是:(A) 0λhc (B) 0λhcm eRB 2)(2+ (C) 0λhc m eRB + (D) 0λhc eRB 2+[] 3.4383:用频率为ν 地单色光照射某种金属时,逸出光电子地最大动能为E K ;若改用频率为2ν 地单色光照射此种金属时,则逸出光电子地最大动能为:(A) 2 E K (B) 2h ν - E K (C) h ν - E K (D) h ν + E K []4.4737:在康普顿效应实验中,若散射光波长是入射光波长地1.2倍,则散射光光子能量ε与反冲电子动能E K 之比ε / E K 为(A) 2 (B) 3 (C) 4 (D) 5 []5.4190:要使处于基态地氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射地各谱线组成地谱线系)地最长波长地谱线,至少应向基态氢原子提供地能量是(A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV []6.4197:由氢原子理论知,当大量氢原子处于n =3地激发态时,原子跃迁将发出:(A) 一种波长地光 (B) 两种波长地光 (C) 三种波长地光 (D) 连续光谱[]7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV ,当氢原子从能量为-0.85 eV 地状态跃迁到上述定态时,所发射地光子地能量为(A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV []8.4750:在气体放电管中,用能量为12.1 eV 地电子去轰击处于基态地氢原子,此时氢原子所能发射地光子地能量只能是(A) 12.1 eV (B) 10.2 eV (C) 12.1 eV ,10.2 eV 和 1.9 eV (D) 12.1 eV ,10.2 eV 和 3.4 eV []9.4241:若α粒子(电荷为2e )在磁感应强度为B 均匀磁场中沿半径为R 地圆形轨道运动,则α粒子地德布罗意波长是(A) )2/(eRB h (B) )/(eRB h (C) )2/(1eRBh (D) )/(1eRBh [] 10.4770:如果两种不同质量地粒子,其德布罗意波长相同,则这两种粒子地(A) 动量相同 (B) 能量相同 (C) 速度相同 (D) 动能相同[]11.4428:已知粒子在一维矩形无限深势阱中运动,其波函数为:a x ax 23cos 1)(π⋅=ψ ( -a ≤x ≤a ),那么粒子在x = 5a /6处出现地概率密度为(A) 1/(2a ) (B) 1/a (C) a 2/1 (D) a /1[]12.4778:设粒子运动地波函数图线分别如图(A)、(B)、(C)、(D)所示,那么其中确定粒子动量地精确度最高地波函数是哪个图?[]x (A)x (C)x (B) x(D)13.5619:波长λ =5000 Å地光沿x 轴正向传播,若光地波长地不确定量∆λ =10-3 Å,则利用不确定关系式h x p x ≥∆∆可得光子地x 坐标地不确定量至少为:(A) 25 cm (B) 50 cm (C) 250 cm (D) 500 cm []14.8020:将波函数在空间各点地振幅同时增大D 倍,则粒子在空间地分布概率将(A) 增大D 2倍 (B) 增大2D 倍 (C) 增大D 倍 (D) 不变[]15.4965:下列各组量子数中,哪一组可以描述原子中电子地状态?(A) n = 2,l = 2,m l = 0,21=s m (B) n = 3,l = 1,m l =-1,21-=s m (C) n = 1,l = 2,m l = 1,21=s m (D) n = 1,l = 0,m l = 1,21-=s m []16.8022:氢原子中处于3d 量子态地电子,描述其量子态地四个量子数(n ,l ,m l ,m s )可能取地值为(A) (3,0,1,21-) (B) (1,1,1,21-)(C) (2,1,2,21) (D) (3,2,0,21) []17.4785:在氢原子地K 壳层中,电子可能具有地量子数(n ,l ,m l ,m s )是(A) (1,0,0,21) (B) (1,0,-1,21)(C) (1,1,0,21-) (D) (2,1,0,21-) []18.4222:与绝缘体相比较,半导体能带结构地特点是(A) 导带也是空带 (B) 满带与导带重合 (C) 满带中总是有空穴,导带中总是有电子(D) 禁带宽度较窄[]19.4789:p 型半导体中杂质原子所形成地局部能级(也称受主能级),在能带结构中应处于(A) 满带中 (B) 导带中 (C) 禁带中,但接近满带顶(D) 禁带中,但接近导带底[]20.8032:按照原子地量子理论,原子可以通过自发辐射和受激辐射地方式发光,它们所产生地光地特点是:(A) 两个原子自发辐射地同频率地光是相干地,原子受激辐射地光与入射光是不相干地(B) 两个原子自发辐射地同频率地光是不相干地,原子受激辐射地光与入射光是相干地(C) 两个原子自发辐射地同频率地光是不相干地,原子受激辐射地光与入射光是不相干地(D) 两个原子自发辐射地同频率地光是相干地,原子受激辐射地光与入射光是相干地21.9900:xˆ与x P ˆ地互易关系[x P x ˆ,ˆ]等于 (A) i (B) i -(C)ih (D)ih -[] 22.9901:厄米算符Aˆ满足以下哪一等式(u 、v 是任意地态函数) (A)()dx v u A dx v A u ⎰⎰=**ˆˆ(B)()dx u A v dx u A v ⎰⎰=**ˆˆ(C)()dx u v A dx u A v ⎰⎰=**ˆˆ(D)()dx v u A dx v A u ⎰⎰=**ˆˆ[]二、填空题1.4179:光子波长为λ,则其能量=_____;动量地大小 =______;质量=_______.2.4180:当波长为3000 Å地光照射在某金属表面时,光电子地能量范围从0到4.0×10-19 J.在作上述光电效应实验时遏止电压为 |U a | =________V ;此金属地红限频率ν0 =_________Hz.3.4388:以波长为λ= 0.207 μm 地紫外光照射金属钯表面产生光电效应,已知钯地红限频率ν 0=1.21×1015赫兹,则其遏止电压|U a | =_______________________V.4.4546:若一无线电接收机接收到频率为108 Hz 地电磁波地功率为1微瓦,则每秒接收到地光子数为___________.5.4608:钨地红限波长是230 nm ,用波长为180 nm 地紫外光照射时,从表面逸出地电子地最大动能为_________eV.6.4611:某一波长地X 光经物质散射后,其散射光中包含波长________和波长__________地两种成分,其中___________地散射成分称为康普顿散射.7.4191:在氢原子发射光谱地巴耳末线系中有一频率为6.15×1014 Hz 地谱线,它是氢原子从能级E n =__________eV 跃迁到能级E k =__________eV 而发出地.8.4192:在氢原子光谱中,赖曼系(由各激发态跃迁到基态所发射地各谱线组成地谱线系)地最短波长地谱线所对应地光子能量为_______________eV ;巴耳末系地最短波长地谱线所对应地光子地能量为___________________eV .9.4200:在氢原子光谱中,赖曼系(由各激发态跃迁到基态所发射地各谱线组成地谱线系)地最短波长地谱线所对应地光子能量为_______________eV ;巴耳末系地最短波长地谱线所对应地光子地能量为___________________eV .10.4424:欲使氢原子发射赖曼系(由各激发态跃迁到基态所发射地谱线构成)中波长为1216 Å地谱线,应传给基态氢原子地最小能量是_________________eV .11.4754:氢原子地部分能级跃迁示意如图.在这些能级跃迁 中,(1) 从n =______地能级跃迁到n =_____地能级时所发射地光子地波长最短;(2) 从n =______地能级跃迁到n =______地能级时所 发射地光子地频率最小.12.4755:被激发到n =3地状态地氢原子气体发出地辐射中, 有______条可见光谱线和_________条非可见光谱线. 13.4760:当一个质子俘获一个动能E K =13.6 eV 地自由电子组成一个基态氢原子时,所发出地单色光频率是______________.14.4207:令)/(c m h e c =λ(称为电子地康普顿波长,其中e m 为电子静止质量,c 为真空中光速,h 为普朗克常量).当电子地动能等于它地静止能量时,它地德布罗意波长是λ =______λc .15.4429:在戴维孙——革末电子衍射实验装置中,自热 阴极K 发射出地电子束经U = 500 V 地电势差加速后投射到晶 体上.这电子束地德布罗意波长λ =⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽nm. 16.4629:氢原子地运动速率等于它在300 K 时地方均根速率时,它地德布罗意波长是______.质量为M =1 g ,以速度 =v 1 cm ·s -1运动地小球地德布罗意波长是________.17.4630:在B =1.25×10-2 T 地匀强磁场中沿半径为R =1.66 cm 地圆轨道运动地α粒子地德布罗意波长是___________. 18.4203:设描述微观粒子运动地波函数为),(t r ψ,则*ψψ表示_______________________;),(t r ψ须满足地条件是_____________________;其归一化条件是___________________.19.4632:如果电子被限制在边界x 与x +∆x 之间,∆x =0.5 Å,则电子动量x 分量地不确定量近似地为________________kg ·m /s. n = 1 n = 2 n = 3 n = 4 4754图 U 4429图20.4221:原子内电子地量子态由n 、l 、m l 及m s 四个量子数表征.当n 、l 、m l 一定时,不同地量子态数目为_____________;当n 、l 一定时,不同地量子态数目为_________________;当n 一定时,不同地量子态数目为_______.21.4782:电子地自旋磁量子数m s 只能取______和______两个值.22.4784:根据量子力学理论,氢原子中电子地动量矩为 )1(+=l l L ,当主量子数n =3时,电子动量矩地可能取值为_____________________________.23.4963:原子中电子地主量子数n =2,它可能具有地状态数最多为______个.24.4219:多电子原子中,电子地排列遵循_____________原理和_______________原理.25.4635:泡利不相容原理地内容是________________________________________.26.4787:在主量子数n =2,自旋磁量子数21=s m 地量子态中,能够填充地最大电子数是_____________.27.4967:锂(Z =3)原子中含有3个电子,电子地量子态可用(n ,l ,m l ,m s )四个量子数来描述,若已知基态锂原子中一个电子地量子态为(1,0,0,21),则其余两个电子地量子态分别为(_____________________)和(________________________).28.4969:钴(Z = 27 )有两个电子在4s 态,没有其它n ≥4地电子,则在3d 态地电子可有____________个.29.8025:根据量子力学理论,原子内电子地量子态由(n ,l ,m l ,m s )四个量子数表征.那么,处于基态地氦原子内两个电子地量子态可由______________和______________两组量子数表征.30.4637:右方两图(a)与(b)中,(a)图是____型半导体地能带结构图,(b)图是____型半导体地能带结构图.31.4792:若在四价元素半导体中掺入五价元素原子,则可构成______型半导体,参与导电 地多数载流子是_______. 32.4793:若在四价元素半导体中掺入三价 元素原子,则可构成______型半导体,参与导电 地多数载流子是______.33.4971:在下列给出地各种条件中,哪些是 产生激光地条件,将其标号列下:___________.(1)自发辐射;(2)受激辐射;(3)粒子数反转;(4)三能极系统;(5)谐振腔.34.5244:激光器中光学谐振腔地作用是:(1)_____________________________________;(2)_________________________________;(3)_________________________________________.35.8034:按照原子地量子理论,原子可以通过____________________________两种辐射方式发光,而激光是由__________________方式产生地.36.8035:光和物质相互作用产生受激辐射时,辐射光和照射光具有完全相同地特性,这些特性是指_______________________________________________.37.8036:激光器地基本结构包括三部分,即_____________、___________和_____________.38.写出以下算符表达式:=x pˆ________;=H ˆ________;=y L ˆ________; 39.微观低速地(非相对论性)体系地波函数ψ满足薛定谔方程,其数学表达式为________.40.自旋量子数为______________地粒子称为费米子,自旋量子数为_______________地粒子称为玻色子;________________体系遵循泡利不相容原理.4637图E v e 41.[]x p x ˆˆ,=___________;[]=z y ˆˆ,___________;[]=z x p p ˆˆ,___________; []=z L L ˆ,ˆ2___________;[]=y x p L ˆ,ˆ___________. 42.线性谐振子地能量可取为________________;若32010352103u u u ++=ψ,nu 是谐振子地第n 个能量本征函数,则体系地能量平均值为________________.三、计算题1.4502:功率为P 地点光源,发出波长为λ地单色光,在距光源为d 处,每秒钟落在垂直于光线地单位面积上地光子数为多少?若λ =6630 Å,则光子地质量为多少?2.4431:α粒子在磁感应强度为B = 0.025 T 地均匀磁场中沿半径为R =0.83 cm 地圆形轨道运动.(1) 试计算其德布罗意波长;(2) 若使质量m = 0.1 g 地小球以与α粒子相同地速率运动.则其波长为多少?(α粒子地质量m α =6.64×10-27 kg ,普朗克常量h =6.63×10-34 J ·s ,基本电荷e =1.60×10-19 C)3.4506:当电子地德布罗意波长与可见光波长( λ =5500 Å)相同时,求它地动能是多少电子伏特?(电子质量m e =9.11×10-31 kg ,普朗克常量h =6.63×10-34 J ·s, 1 eV =1.60×10-19J)4.4535:若不考虑相对论效应,则波长为 5500 Å地电子地动能是多少eV ?(普朗克常量h =6.63×10-34 J ·s ,电子静止质量m e =9.11×10-31 kg)5.4631:假如电子运动速度与光速可以比拟,则当电子地动能等于它静止能量地2倍时,其德布罗意波长为多少?(普朗克常量h =6.63×10-34 J ·s ,电子静止质量m e =9.11×10-31kg)6.5248:如图所示,一电子以初速度v 0 = 6.0×106 m/s 逆着场强方向飞入电场强度为E = 500 V/m 地均匀电场中,问该电子在电场中要飞行多长距离d ,可使得电Yl4HdOAA61 子地德布罗意波长达到λ = 1 Å.(飞行过程中,电子地质量认为不变, 即为静止质量m e =9.11×10-31 kg ;基本电荷e =1.60×10-19 C ;普朗克 常量h =6.63×10-34 J ·s).7.4430:已知粒子在无限深势阱中运动,其波函数为)/sin(/2)(a x a x π=ψ(0≤x≤a ),求发现粒子地概率为最大地位置. 8.4526:粒子在一维矩形无限深势阱中运动,其波函数为:)/sin(/2)(a x n a x n π=ψ (0 <x <a ),若粒子处于n =1地状态,它在 0-a /4区间内地概率是多少?提示:C x x x x +-=⎰2sin )4/1(21d sin 29.氢原子波函数为()310211210100322101ψψψψψ+++=,其中nlm ψ是氢原子地能量本征态,求E 地可能值、相应地概率及平均值. 10.体系在无限深方势阱中地波函数为sin 0()00n A x x a x a x x a πψ⎧<<⎪=⎨⎪≤≥⎩,求归一化常数A . 11.质量为m 地粒子沿x 轴运动,其势能函数可表示为:()000,x a U x x x a <<⎧=⎨∞≤≥⎩,求解粒子地归一化波函数和粒子地能量.12.设质量为粒子处在(0,a )内地无限方势阱中,()⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=x a x a a x ππψ2cos sin 4,对它地能量进行测量,可能得到地值有哪几个?概率各多少?平均能量是多少?13.谐振子地归一化地波函数:()()()()x cu x u x u x 3202131++=ψ.其中,()x u n 是归一化地谐振子地定态波函数.求:c 和能量地可能取值,以及平均能量E .一、选择题1.4185:D 2.4244:B 3.4383:D 4.4737:D 5.4190:C 6.4197:C 7.4748:A 8.4750:C 9.4241:A 10.4770:A 11.4428:A 12.4778:13.5619:C 14.8020:D 15.4965:B 16.8022:D 17.4785:A 18.4222:D 19.4789:C 20.8032:B 21.9900:A 22.9901:C二、填空题1.4179:λ/hc ----------------1分;λ/h ----------------2分;)/(λc h --------------2分2.4180: 2.5---------------------2分; 4.0×1014-----------2分3.4388: 0.99--------------------3分4.4546: 1.5×1019 ------------3分5.4608: 1.5 --------------------3分6.4611:不变-----------------1分;变长----------------1分;波长变长--------------1分7.4191:-0.85---------------2分;-3.4----------------2分8.4192: 13.6----------------- 2分; 3.4---------------- 2分9.4200: 6----------------------2分; 973----------------2分10.4424: 10.2-------------------3分11.4754: 4 1------------2分; 4 3----------------2分12.4755: 1-----------------------2分; 2----------------2分13.4760: 6.56×1015 Hz-------3分14.4207:3/1----------------3分15.4429: 0.0549----------------3分16.4629: 1.45 Å-----------------2分;6.63×10-19 Å-------------------2分17.4630: 0.1 Å-------------------3分18.4203:粒子在t 时刻在(x ,y ,z )处出现地概率密度-------------2分单值、有限、连续---------------------------------------------1分1d d d 2=⎰⎰⎰z y x ψ----------------------------------------2分19.4632: 1.33×10-23 -----------------------3分20.4221: 2-------------------1分;2×(2l +1)-------------2分;2n 2 --------------2分21.4782:21-------------------2分;21------------------------------2分22.4784: 0, 2, 6-----------------------------各1分23.4963: 8------------------------------------------------ 3分24.4219:泡利不相容---------------2分;能量最小-----------------2分25.4635:一个原子内部不能有两个或两个以上地电子有完全相同地四个量子数(n 、l 、m l 、m s )--------------------------3分26.4787: 4---------------------3分27.4967: 1,0,0,21---------------2分;2,0,0,21 2,0,0,21----------------------2分28.4969: 7----------------------------3分 29.8025: (1,0,0,21)----------2分; (1,0,0,21-)-----------------2分30.4637: n-----------------------2分; p-------------2分31.4792: n-----------------------2分;电子--------2分32.4793: p-----------------------2分;空穴--------2分33.4971: (2)、(3)、(4)、(5)-------3分答对2个1分34.5244:产生与维持光地振荡,使光得到加强---------------------------2分使激光有极好地方向性---------------------------------------------1分使激光地单色性好---------------------------------------------------2分35.8034:自发辐射和受激辐射-----------2分;受激辐射------------2分36.8035:相位、频率、偏振态、传播方向---------------------------------3分37.8036:工作物质、激励能源、光学谐振腔---------------------------各1分38.x i p x ∂∂-= ˆ;U H +∇-=222ˆμ ;)(ˆz x x z i L y ∂∂-∂∂-= 39.t i U ∂ψ∂=ψ⎪⎪⎭⎫ ⎝⎛+∇- 222μ或t i U x ∂ψ∂=ψ⎪⎪⎭⎫ ⎝⎛+∂∂- 2222μ 40.半奇数;整数;费米子41. i ;0;0;0;z pi ˆ 42.ω )21(+=n E n ,n =0,1,2,3……;ω 511三、计算题1.4502:解:设光源每秒钟发射地光子数为n ,每个光子地能量为h ν,则由:λν/nhc nh P ==得:)/(hc P n λ=令每秒钟落在垂直于光线地单位面积地光子数为n 0,则:)4/()4/(/220hc d P d n S n n π=π==λ------------------------------------------3分光子地质量:)/()/(/22λλνc h c hc c h m ====3.33×10-36 kg--------------------2分 2.4431:解:(1) 德布罗意公式:)/(v m h =λ由题可知α粒子受磁场力作用作圆周运动:R m B q /2v v α=,qRB m =v α 又e q 2=则:eRB m 2=v α----------------4分故:nm 1000.1m 1000.1)2/(211--⨯=⨯==eRB h αλ-------------3分 (2) 由上一问可得αm eRB /2=v对于质量为m 地小球:αααλλ⋅=⋅==m m m m eRB h m h 2v =6.64×10-34 m-----------3分3.4506:解:)2/()/()2/(22e e K m h m p E λ==---------------3分 =5.0×10-6 eV--------------------------------------2分4.4535:解:非相对论动能:221v e K m E =而v e m p =,故有:e K m p E 22=-----------------------------2分 又根据德布罗意关系有λ/h p =代入上式--------------------1分 则:==)/(2122λe K m h E 4.98×10-6 eV----------------------2分 5.4631:解:若电子地动能是它地静止能量地两倍,则:2222c m c m mc e e =----------1分故:e m m 3=--------------------------1分 由相对论公式:22/1/c m m e v -= 有:22/1/3c m m e e v -= 解得:3/8c =v ---------------------------------------------1分 德布罗意波长为:)8/()v /(c m h m h e ==λ131058.8-⨯≈m-----------------2分光电子地德布罗意波长为:===v e m h p h λ 1.04×10-9 m =10.4 Å------------------3分6.5248:解:)/(v e m h =λ①---------------------2分ad 2202=-v v ②a m eE e =③----------------------2分由①式:==)/(λe m h v 7.28×106 m/s由③式:==e m eE a /8.78×1013 m/s 2由②式:)2/()(202a d v v -== 0.0968 m = 9.68 cm-----------------------4分 7.4430:解:先求粒子地位置概率密度:)/(sin )/2()(22a x a x π=ψ)]/2cos(1)[2/2(a x a π-=--------------------2分当:1)/2cos(-=πa x 时,2)(x ψ有最大值.在0≤x ≤a 范围内可得π=πa x /2 ∴a x 21=--------------------------------3分 8.4526:解:x a x a x P d sin 2d d 22π==ψ-----------------3分粒子位于0 – a /4内地概率为:x ax a P a d sin 24/02⎰π=)d(sin 24/02a x a x a a a πππ=⎰ 4/021]2sin 41[2a a x a x πππ-=)]42sin(414[221a a a a π-ππ= =0.091----------2分9.解:根据给出地氢原子波函数地表达式,可知能量E 地可能值为:1E 、2E 、3E ,其中:113.6E eV =、2 3.4E eV =-、3 1.51E eV =------------------3分由于:11031021011022222=+++-----------------------1分 所以,能量为1E 地概率为5210221==P ---------------------1分能量为2E 地概率为103102101222=+=P ---------------------1分 能量为3E 地概率为10310323==P ---------------------1分 能量地平均值为:332211E P E P E PE ++=-----------------------2分 eV 913.6-=--------------------1分10.解:由归一化条件,应有1sin 022=⎰xdx a n A a π-----------------------3分 得:a A 2=-----------------------2分11.解:当0≤x 或a x ≥时,粒子势能无限大,物理上考虑这是不可能地,所以粒子在该区域出现纪律为零,即:()0=x ψ当a x <<0时,()0=x U ,定态薛定谔方程为:ψψE dx d m =-2222 设2/2 E k μ=,则方程为:0222=+ψψk dx d通解为:()kx B kx A x cos sin +=ψ由波函数地连续性可知,在0x =、x a =处()0=x ψ,即:()()()()0cos sin 00cos 0sin =+==+=ka B ka A x B A x ψψ得:0B =;n k a π=,n =1、2、3……所以有:()sin n n x A a πψ⎛⎫= ⎪⎝⎭,n =1、2、3…… 归一化条件:()()1sin 022022=⎪⎭⎫ ⎝⎛==⎰⎰⎰∞+∞-a a dx a n A dx x dx x πψψ 所以:a A 2=,即:()n n x a πψ⎛⎫ ⎪⎝⎭,n =1、2、3…… 粒子能量为:22222n E E n a πμ==,n =1、2、3……12.解:()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=a x a x a x a a x a x a x πππππψ2cos sin sin 2cos sin 22⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=a x a a x a ππ3sin 221sin 221即()x ψ是第一和第三个能量本征态地叠加,所以测得能量值可为: (1)2222a μπ ,相应概率为:21212= (2)22229a μπ ,相应概率为:21212= 所以,能量平均值为:21=E 2222a μπ +2122229a μπ =22225a μπ 13.解:由归一化条件得:12131222=++c 解得:61=c根据谐振子波函数地表达式,可知能量E 地可能值为:0E 、2E 、3E 因为:νh n E n ⎪⎭⎫ ⎝⎛+=21 所以:νh E 210=;νh E 252=;νh E 273= 则:=E =++332200E P E P E P ννννh h h h 2276125212131222=⋅+⋅+⋅版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.ViLRaIt6sk用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬.9eK0GsX7H1个人收集整理仅供参考学习Users may use the contents or services of this article for personal study, research or appreciation, and othernon-commercial or non-profit purposes, but at the same time, they shall abide by the provisions of copyright law and other relevant laws, and shall not infringe upon the legitimate rights of this website and its relevant obligees. In addition, when any content or service of this article is used for other purposes, written permission and remuneration shall be obtained from the person concerned and the relevant obligee.naK8ccr8VI转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任.B6JgIVV9aoReproduction or quotation of the content of this article must be reasonable and good-faith citation for the use of news or informative public free information. It shall not misinterpret or modify the original intention of the content of this article, and shall bear legal liability such as copyright.P2IpeFpap511 / 11。

量子物理基础习题解

量子物理基础习题解

量⼦物理基础习题解量⼦物理基础17.1 夜间地⾯降温主要是由于地⾯的热辐射。

如果晴天夜⾥地⾯温度为-5°C ,按⿊体辐射计算,每平⽅⽶地⾯失去热量的速率多⼤?解:每平⽅⽶地⾯失去热量的速率即地⾯的辐射出射度2484W /m2922681067.5=??==-TM σ17.2 在地球表⾯,太阳光的强度是1.0?103W/m 2。

地球轨道半径以1.5?108km 计,太阳半径以7.0?108 m 计,并视太阳为⿊体,试估算太阳表⾯的温度。

解:42244TR I R M SE σππ==K103.51067.5)107.6(100.1)105.1(348283211422==S E R I R T 17.3宇宙⼤爆炸遗留在宇宙空间的均匀背景辐射相当于3K ⿊体辐射.求:(1)此辐射的单⾊辐射强度在什么波长下有极⼤值?(2)地球表⾯接收此辐射的功率是多少?[解答](1)根据公式λm T = b ,可得辐射的极值波长为λm = b/T = 2.897×10-3/3 = 9.66×10-4(m).(2)地球的半径约为R = 6.371×106m ,表⾯积为 S = 4πR 2.根据公式:⿊体表⾯在单位时间,单位⾯积上辐射的能量为 M = σT 4,因此地球表⾯接收此辐射的功率是 P = MS = 5.67×10-8×34×4π(6.371×106)2= 2.34×109(W).17.4 铝的逸出功是eV 2.4,今有波长nm 200=λ的光照射铝表⾯,求:(1)光电⼦的最⼤动能;(2)截⽌电压;(3)铝的红限波长。

解:(1) A chA h E k -=-=λνeV 0.22.4106.1102001031063.6199834=-=---(2)V 0.21/0.2/===e E U k c (3)Ahc c==0νλnm6.12.41031063.6719834=?==---17.5 康普顿散射中⼊射X 射线的波长是λ = 0.70×10-10m ,散射的X 射线与⼊射的X 射线垂直.求:(1)反冲电⼦的动能E K ;(2)散射X 射线的波长;(3)反冲电⼦的运动⽅向与⼊射X 射线间的夹⾓θ.[解答](1)(2)根据康普顿散射公式得波长变化为21222sin2 2.42610sin24πλΛ-?==??= 2.426×10-12(m),散射线的波长为λ` = λ + Δλ = 0.72426×10-10(m).反冲电⼦的动能为`k hchcE λλ=810106.63103106.63103100.7100.7242610----=-= 9.52×10-17(J).(3)由于/`tan /`hc hc λλθλλ==,0.70.96650.72426==,所以夹⾓为θ = 44°1`.17.6 求波长分别为71100.7-?=λm 的红光和波长1021025.0-?=λm 的X 射线光⼦的能量、动量和质量。

量子物理基础参考答案(改)

量子物理基础参考答案(改)

量子物理基础参考答案一、选择题参考答案:1. D ;2. D ;3. D ;4. C ;5. D ;6. C ;7. C ;8. A ;9. A ;10. D ;11. D ;12. C ;13. C ;14. A ;15. D ;16. E ;17. C ;18. C ;19. B ;20. A ;21. D ;22. C ;23. B ;24. B ;25. A ;26. C ;27. D ;28. A ;29. A ;30. D ;31. C ;32. B ;33. C ;34. C ;35. C ;36. D ;37. C ;38. D ;39. A ;40.D二、填空题参考答案:1、J 261063.6-⨯,1341021.2--⋅⋅⨯s m kg2、>,>3、14105⨯,24、V 45.1,151014.7-⋅⨯s m5、θφcos cos P c v h c hv+'=6、2sin 2sin 2212ϕϕ7、π,︒08、定态,(角动量)量子化,跃迁9、(1)4 , 1 (2)4 ,310、10 ,311、6.13 , 4.312、913、1:1, 1:414、122U em he15、m 101045.1-⨯, m 291063.6-⨯16、231033.1-⨯, 不能17、241063.6-⨯18、≥19、(1)粒子在t 时刻在()z y x ,,处出现的概率密度;(2)单值、有限、连续;(3)12*=ψ=ψψ⎰⎰⎰⎰dxdydz dV V20、不变 21、a x n a π2sin 2, dx a x n a a π230sin 2⎰三、计算题参考答案:1、分析 光子的能量、动量和质量与波长的关系为c h cE m h c E p hc E λλλ=====2 解: 利用上面的公式,当nm 001.0 nm,20 nm,1500=λ时,分别有 J 1099.1 J,1097.9 J,1033.1131919---⨯⨯⨯=Em/s kg 1063.6 m/s,kg 1031.3 m/s,kg 1043.4222628⋅⨯⋅⨯⋅⨯=---p kg 1021.2kg,1010.1kg,1048.1303436---⨯⨯⨯=m2、解: 由光电效应方程可得V 45.1=-=eW h U a ν m/s 1014.725max ⨯==meU a v3、解: 康普顿散射公式得散射光的波长为2sin 22sin 22C 0200ϕλλϕλλ+=+=c m h 其中m 1043.212C -⨯=λ,则当︒︒︒=90 ,60 ,30ϕ时,代入上式得波长分别为 nm 0074.0nm,0062.0nm,0053.0=λ4、解: 氢原子从基态1=f n 激发到3=i n 的能级需要的能量为eV 1.12Δ13=-=E E E对应于从3=i n 的激发态跃迁到基态1=f n 的三条谱线的光子能量和频率分别为 Hz 1092.2eV 1.12 :1315⨯===→=νE n n f iHz 1046.2eV 2.10 Hz1056.4eV 89.1 :12315221411⨯==⨯===→=→=ννE E n n n f i5、解: 经电场加速后,电子的动量为meU p 2=根据德布罗意关系,有m 1023.111-⨯==Ph λ6、解: 一维无限深阱中概率密度函数(定态)为)2cos 1(1sin 2)(*)()(2ax n a a x n a x x x ππψψρ-=== 当12cos -=a x n π时,即 ,212,,.23,2212a nk n a n a a n k x +=+=时,发现粒子的概率最大.当∞→n 时,趋近于经典结果.7、解:分析 在一维无限深井区间],[21x x 发现粒子的概率为 ⎰=21d )(*)(x x x x x P ψψ 在区间]43,0[a 发现粒子的概率为 909.0d sin 2d )(*)(4302430===⎰⎰a ax ax a x x x P πψψ。

量子物理试题及答案

量子物理试题及答案

量子物理试题及答案1. 请解释普朗克常数在量子力学中的作用。

答案:普朗克常数是量子力学中一个基本常数,它标志着能量与频率之间的联系。

在量子力学中,普朗克常数用于描述粒子的能量量子化,即粒子的能量只能以普朗克常数的整数倍进行变化。

2. 描述海森堡不确定性原理。

答案:海森堡不确定性原理指出,粒子的位置和动量不能同时被精确测量。

具体来说,粒子的位置不确定性与动量不确定性的乘积至少等于普朗克常数除以2π。

3. 什么是波函数坍缩?答案:波函数坍缩是指在量子力学中,当进行测量时,系统从一个不确定的量子态(波函数描述的状态)转变为一个确定的经典态的过程。

4. 简述薛定谔的猫思想实验。

答案:薛定谔的猫是一个思想实验,用来说明量子力学中的超位置原理。

在这个实验中,一只猫被放置在一个封闭的盒子里,盒子内还有一个装有毒气的瓶子和一个放射性原子。

如果原子衰变,毒气瓶就会打开,猫就会被毒死。

在没有观察之前,猫处于既死又活的超位置状态。

只有当观察者打开盒子时,猫的状态才会坍缩为一个确定的状态。

5. 什么是量子纠缠?答案:量子纠缠是量子力学中的一种现象,指的是两个或多个粒子之间存在一种特殊的关联,使得即使它们相隔很远,一个粒子的状态也会立即影响到另一个粒子的状态。

6. 解释泡利不相容原理。

答案:泡利不相容原理指出,在同一个原子内,两个电子不能具有相同的四个量子数(主量子数、角量子数、磁量子数和自旋量子数)。

这个原理解释了原子的电子排布和元素周期表的结构。

7. 描述量子隧穿效应。

答案:量子隧穿效应是指粒子能够穿越一个在经典物理学中不可能穿越的势垒。

这种现象是由于量子力学中的波函数具有非零的概率在势垒的另一侧存在,即使粒子的能量低于势垒的高度。

8. 什么是量子比特?答案:量子比特,又称为量子位,是量子计算中的基本信息单位。

与经典比特不同,量子比特可以处于0和1的叠加态,这使得量子计算机能够同时处理大量信息。

9. 简述狄拉克方程。

量子物理习习题解答

量子物理习习题解答

精心整理量子物理习题解答习题17—1用频率为1ν的单色光照射某一金属时,测得光电子的最大初动能为E k 1;用频率为2ν的单色光照射另一种金属时,测得光电子的最大初动能为E k 2。

那么[ ](A)1ν一定大于2ν。

(B)1ν一定小于2ν。

(C)1ν一定等于2ν。

(D)1ν可能大于也可能小于2ν。

解:根据光电效应方程,光电子的最大初动能为由此式可以看出,E k 不仅与入射光的频率ν有关,而且与金属的逸出功A 有关,因此我们无法判习题 所以L (A)。

习题所以习题(A)1/4。

(B)1/8。

(C)1/16。

(D)1/32。

解:根据玻尔的理论,氢原子中电子的动能、角动量和轨道半径分别为mP E k 22= ; n P r L n == ;12r n r n = 所以电子的动能与量子数n 2成反比,因此,题给的两种情况下电子的动能之比12/42=1/16,所以我们选择答案(C)。

习题17—5在康普顿效应实验中,若散射光波长是入射光波长的1.2倍,则散射光光子能量ε与反冲电子动能E k 之比k E ε为[ ](A)2。

(B)3。

(C)4。

(D)5。

解:由康普顿效应的能量守恒公式可得所以,应该选择答案(D)。

习题17—6设氢原子的动能等于温度为T 的热平衡状态时的平均动能,氢原子的质量为m ,那么此氢原子的德布罗意波长为[ ](A)mkT h 3=λ。

(B)mkT h 5=λ。

(C)h mkT 3=λ。

(D)h mkT 5=λ。

把此式代入德布罗意公式有所以因此,应该选择答案(D)。

习题17—10氩(Z =18)原子基态的电子组态是:[ ] (A)1S 22S 83P 8(B)1S 22S 22P 63d 8 (C)1S 22S 22P 63S 23P 6(D)1S 22S 22P 63S 23P 43d 2解:对(A)示组态,既违反泡利不相容原理,也违反能量最小原理,是一个不可能的组态;对(B)示组态和(D)示组态均违反能量最小原理,也都是不可能组态。

大学物理第13章 量子物理习题解答

大学物理第13章 量子物理习题解答

习题13-1设太阳就是黑体,试求地球表面受阳光垂直照射时每平方米得面积上每秒钟得到得辐射能。

如果认为太阳得辐射就是常数,再求太阳在一年内由于辐射而损失得质量。

已知太阳得直径为1、4×109 m ,太阳与地球得距离为1、5×1011 m ,太阳表面得温度为6100K 。

【解】设太阳表面单位面积单位时间发出得热辐射总能量为0E ,地球表面单位面积、单位时间得到得辐射能为1E 。

()484720 5.671061007.8510W/m E T σ-==⨯⨯=⨯22014π4πE R E R →=太阳地球太阳()()()29232102110.7107.85 1.7110W/m 1.510R E E R→⨯==⨯=⨯⨯太阳2地球太阳太阳每年损失得质量()()()790172287.851040.710365243600 1.6910kg 3.010E S t m c π⨯⨯⨯⨯⨯⨯⨯∆∆===⨯⨯太阳 13-2 用辐射高温计测得炉壁小孔得辐出度为22、8 W/cm 2,试求炉内温度。

【解】由40E T σ=得()1/41/440822.810 1.416 K 5.6710E T σ-⎛⎫⨯⎛⎫=== ⎪ ⎪⨯⎝⎭⎝⎭13-3黑体得温度16000T = K ,问1350λ= nm 与2700λ= nm 得单色辐出度之比为多少?当黑体温度上升到27000T =K 时,1350λ= nm 得单色辐出度增加了几倍?【解】由普朗克公式()5/1,1hc k TT eλρλλ-∝-34823911 6.6310310 6.861.3810600035010hc k T λ---⨯⨯⨯==⨯⨯⨯⨯ 21123.43 5.88hc hck T k T λλ==()()11 3.48 6.8621,700 1.03,350T e T ρλρλ-==()()12 6.86 5.8811, 2.66,T e T ρλρλ-==13-4在真空中均匀磁场(41.510B -=⨯T )内放置一金属薄片,其红限波长为2010λ-=nm 。

量子习题解答

量子习题解答

n 0,1,2,3...
8、氢原子: 氢原子能级:
me4 1 1 En 2 13.6 2 (e V) 2 2 2 (4 0 ) n n
轨道角动量
L l (l 1)
轨道角动量沿磁场方向分量:Lz m 主量子数 轨道量子数 轨道磁量子数
n=1,2,3…
l=0,1,2,3…,n-1 ml=-l,-(l-1),…,0,1,..,l
h 0 ( 1 cos ) m0 c
4、不确定关系(1927):
h 2
x p x (或, 或h) 位臵动量不确定关系: 2
能量时间不确定关系:Et / 2
5、氢原子光谱(1913) 谱线的波数
1 1 R ( 2 2 ) T ( m) T ( n) m n
玻尔磁子
电子自旋磁矩在磁场中的能量 Es B B
e B 9.27 10 24 J / T 2me
10、多电子原子的电子组态 电子的状态用4 个量子数n,l,ml,ms确定。n相同 的状态组成一壳层,可容纳2n2个电子;l相同 的状态组成一次壳层,可容纳2(2l+1)个电子。 基态原子电子组态遵循两个规律: (1)能量最低原理,即电子总处于可能最 低的能级。一般n越大,l越大,能量就越高。 (2)泡利不相容原理(1921),不可能有两个 或两个以上的电子处在同一量子状态。即不 能有两个电子具有相同的n, l, ml , ms。
解: 光子的散射角 θ π 时电子获得的能量最大, v 电子的反冲速度沿入射光子的运动方向.设 为入 pe 射光的频率,为散射光的频率, 为反冲电子的动 v 量。 1 由能量守恒有: h(v v) Ek
由动量守恒有: 2 式得 由1 、

高二物理量子物理练习题及答案

高二物理量子物理练习题及答案

高二物理量子物理练习题及答案第一题:小明是一位高二学生,正在学习量子物理。

他遇到了一个练习题,请根据以下题目及答案给出解析。

题目:在一个电子束实验中,电子通过一个狭缝后形成干涉图样。

若间距为d的两条暗纹距离中心的距离为y,则电子波长为λ。

小明计算出干涉图案中相邻两个亮纹之间的间距为x,请推导出计算λ的公式。

答案:在干涉图样中,相邻两个亮纹之间的间距x可以表示为:x = λD/d,其中D为屏幕到狭缝的距离。

根据几何关系,可以得到下列表达式:tanθ = y / D,其中θ为小角度。

进而可得:y = D tanθ,将其代入x =λD/d中,可得到结果:x = λD / (d tanθ)解析:这个题目考察了学生对干涉图样和波长之间的关系的理解,同时还考察了几何关系的运用。

在解答题目时,小明首先要明确干涉图案中相邻两个亮纹之间的间距是与波长有关的,然后通过几何关系的运用,得到了计算λ的公式。

第二题:小明继续进行量子物理的练习题,以下是他遇到的另一个问题,请根据题目及答案给出解析。

题目:在其他物理实验中,小明观察到一束光经过一个光栅后形成了衍射图样。

若光栅缝宽为d,中心条纹到第一个次级最暗条纹的距离为y,则光的波长为λ。

小明计算出光栅条纹间距为x,请推导出计算λ的公式。

答案:光栅条纹间距x可以表示为:x = λD / d,其中D为屏幕到光栅的距离。

根据几何关系与几何光学原理,可以得到下列表达式:tanθ = y / D,其中θ为小角度。

进一步可以得到:y = D tanθ,将其代入x = λD / d中,解得:x = λ/y解析:在这个问题中,小明需要理解光栅衍射图样中光波长与条纹间距之间的关系,以及应用几何关系来推导计算λ的公式。

小明通过几何光学原理和几何关系,成功地找到了解决问题的思路,并最终推导出结果。

通过以上两道量子物理练习题,我们可以看到小明在学习量子物理方面有了不错的掌握,他通过理解干涉和衍射现象,并熟练运用几何关系,成功地解答了这两道题目。

2024高考物理量子物理学专题练习题及答案

2024高考物理量子物理学专题练习题及答案

2024高考物理量子物理学专题练习题及答案一、选择题1. 下列说法正确的是:A. 电子云中的电子运动呈连续轨道。

B. 电子在原子核周围的轨道上运动速度是恒定的。

C. 电子在原子核周围的轨道上运动具有不确定性。

D. 电子在原子核周围的轨道上运动具有确定的轨迹。

答案:C2. 根据波粒二象性原理,下列说法正确的是:A. 波动性只存在于光学现象中。

B. 微观粒子既具有波动性又具有粒子性。

C. 微观粒子只具有波动性,不具有粒子性。

D. 微观粒子只具有粒子性,不具有波动性。

答案:B3. 某氢原子的能级为-13.6电子伏特,当电子从第3能级跃迁到第2能级时,所辐射的光子的能量为:A. 10.2电子伏特B. 12.1电子伏特C. 1.89电子伏特D. 2.04电子伏特答案:D二、填空题1. 根据不确定性原理,测量一个粒子的位置和动量越准确,就会越大地影响到它的 _______。

答案:状态2. 量子力学中,电子在原子内的运动状态由 _______ 表示。

答案:波函数3. 量子力学中,电子的能级用 _______ 表示。

答案:量子数三、简答题1. 什么是量子力学?请简述其基本原理。

答:量子力学是描述微观粒子行为的物理理论。

其基本原理包括波粒二象性原理和不确定性原理。

波粒二象性原理指出微观粒子既具有波动性又具有粒子性,可以用波函数来描述其运动状态。

不确定性原理指出无法同时准确地确定粒子的位置和动量,测量一个物理量会对另一个物理量产生不可忽略的影响。

2. 请简述量子力学中的量子力学态和测量问题。

答:量子力学态是用波函数表示的一种描述微观粒子运动状态的数学表示。

波函数包含了粒子的位置信息和概率分布。

在量子力学中,测量问题指的是测量粒子的某个物理量时,由于波粒二象性原理和不确定性原理的存在,测量结果只能是一系列可能的取值,并且每个取值的概率由波函数给出。

四、综合题某物理学家正在研究一个单电子系统,该系统可以用简化的一维势场模型来描述。

量子物理答案

量子物理答案

量子物理答案【篇一:量子物理作业答案】ile2~file5?mt?b表示,其中b?2.8978?10?3m?k。

求人体热辐射的峰值波长(设体温为37?)。

解:由定律?mt?b可得:bb2.8978?10?3?m???m?9.35?10?6mtt?to37?273即,人体热辐射的峰值波长为9350nm。

2. 宇宙大爆炸遗留在宇宙空间的均匀各向同性的背景热辐射相当于t=2.726k黑体辐射。

此辐射的峰值波长是多少?在什么波段?解:根据维恩位移定律?mt?b,得:b2.8978?10?3?m??m?1.06?10?3mt2.726即该辐射峰值波长为1.06mm,属于红外波段。

3. 波长?=0.01nm的x射线光子与静止的电子发生碰撞。

在与入射方向垂直的方向上观察时,散射x射线的波长为多大?碰撞后电子获得的能量是多少ev?解:依题意,在垂直方向观察时散射角,??90?由波长改变量公式??????0?h?1?cos??,得散射后x射线波长: m0c6.63?10?34???0????0.01?10?(1?cos90?)?0.0124?10?9m ?3189.1?10?3?10?9?x射线损失的能量等于电子增加的动能?ee??ex?hchc111??6.63?10?34?3?108??9?(?) ?0?100.010.0124?ee?3.85?10?15j?2.4?104ev所以,散射x射线波长为0.0124nm,电子获得能量为2.4?104ev 4. 在一束电子束中,单电子的动能为e=20ev,求此电子的德布罗意波长。

解:电子动能较小,固忽略其相对论效应,所以由e?1mv2,得电子速率v?22emh p又?p?mv,由德布罗意公式??h????mv6.63?10?34?192?20?1.6?109.1?10?31?9.1?10?31m?2.75?10?10m即电子德布罗意波长为2.75?10?10m。

file61.设归一化波函数:??x??ae化常数a。

量子物理参考答案大全

量子物理参考答案大全

量子物理参考答案大全量子物理参考答案大全量子物理是一门研究微观世界的学科,它揭示了微观粒子的行为和性质,以及这些行为和性质如何影响宏观世界。

在量子物理中,有许多重要的概念和理论,这些概念和理论对于理解和解释微观世界的现象至关重要。

在本文中,我们将为您提供一份量子物理参考答案大全,希望能够帮助您更好地理解这个复杂而神奇的学科。

1. 什么是量子?量子是指物质和能量的最小单位。

在经典物理中,物质和能量可以连续地分割,而在量子物理中,它们只能以离散的方式存在。

量子的离散性质导致了一系列奇特的现象,如量子叠加和量子纠缠。

2. 什么是量子叠加?量子叠加是指量子系统可以同时处于多个状态的现象。

换句话说,一个粒子可以同时处于不同的位置、动量或能量状态。

这与我们在日常生活中观察到的经典物体的行为截然不同。

量子叠加是量子计算和量子通信等领域的基础。

3. 什么是量子纠缠?量子纠缠是指两个或更多个量子系统之间存在一种特殊的关联关系。

当两个量子系统纠缠在一起时,它们的状态是相互依赖的,即使它们之间的距离很远。

这种关联关系在量子通信和量子隐形传态等领域有着重要的应用。

4. 什么是波粒二象性?波粒二象性是指微观粒子既可以表现出粒子的特性,如位置和动量,又可以表现出波的特性,如干涉和衍射。

这一概念是量子物理的基石,它揭示了微观粒子行为的奇特性质。

5. 什么是量子力学?量子力学是研究量子系统行为的理论框架。

它提供了描述和计算量子系统的数学工具和规则。

量子力学包括波函数、薛定谔方程和量子力学算符等概念。

通过量子力学,我们可以预测和解释微观粒子的行为。

6. 什么是薛定谔方程?薛定谔方程是描述量子系统演化的基本方程。

它通过一个波函数来描述系统的状态,并通过一个算符来描述系统的物理量。

薛定谔方程可以用来计算系统的能量和波函数的演化。

7. 什么是量子力学算符?量子力学算符是描述量子系统物理量的数学对象。

它们对应于可观测量,如位置、动量和能量。

大学物理知识总结习题答案(第十章)量子物理基础

大学物理知识总结习题答案(第十章)量子物理基础

第十章 量子物理基础本章提要1. 光的量子性· 物体由于自身具有一定温度而以电磁波的形式向周围发射能量的现象称热辐射。

· 在任何温度下都能全部吸收照射到它表面上的各种波长的光(电磁波),则这种物体称为绝对黑体,简称黑体。

· 单位时间内物体单位表面积发出的包括所有波长在内的电磁波的辐射功率,称为辐射出射度。

2. 维恩位移定律· 在不同的热力学温度T 下,单色辐射本领的实验曲线存在一个峰值波长λm ,维恩从热力学理论导出T 和λm 满足如下关系λm T b =其中b 是维恩常量。

3. 斯忒藩—玻尔兹曼定律· 斯忒藩—玻尔兹曼定律表明黑体的辐射出射度M 与温T 的关系4T M σ=其中s 为斯忒藩—玻尔兹曼常量。

对于一般的物体4T M εσ=e 称发射率。

4. 黑体辐射· 黑体辐射不是连续地辐射能量,而是一份份地辐射能量,并且每一份能量与电磁波的频率ν成正比,这种能量分立的现象被称为能量的量子化,每一份最小能量E hv =被称为一个量子。

黑体辐射的能量为E nhv =,其中n =1,2,3,…,等正整数,h 为普朗克常数。

· 普朗克黑体辐射公式简称普朗克公式25/λ2πhc 1()λ1hc kT M T e l =-· 光是以光速运动的粒子流,这些粒子称为光量子,简称光子。

· 一个光子具有的能量为νh E =。

5. 粒子的波动性· 德布罗意认为实物粒子也具有波粒二象性,它的能量E 、动量p 跟和它相联系的波的频率ν、波长λ满足以下关系2E mc h ν==λh p m u == 这两个公式称为德布罗意公式或德布罗意假设。

与实物粒子相联系的波称为物质波或德布罗意波。

· x x p D D ?h 或者E t D D ?h 这一关系叫做不确定关系。

其中为位置不确定量、动量不确定量、能量不确定量、时间不确定量。

关于量子物理习题解答

关于量子物理习题解答

量子物理习题解答习题17—1 用频率为1ν的单色光照射某一金属时,测得光电子的最大初动能为E k 1;用频率为2ν的单色光照射另一种金属时,测得光电子的最大初动能为E k 2。

那么[ ](A) 1ν一定大于2ν。

(B) 1ν一定小于2ν。

(C) 1ν一定等于2ν。

(D) 1ν可能大于也可能小于2ν。

解:根据光电效应方程,光电子的最大初动能为由此式可以看出,E k 不仅与入射光的频率ν有关,而且与金属的逸出功A 有关,因此我们无法判断题给的两种情况下光电子的最大初动能谁大谁小,从而也就无法判断两种情况下入射光的频率的大小关系,所以应该选择答案(D)。

习题17—2 根据玻尔的理论,氢原子中电子在n =5的轨道上的角动量与在第一激发态的角动量之比为[ ](A) 5/2。

(B) 5/3。

(C) 5/4。

(D) 5。

解:根据玻尔的理论,氢原子中电子的轨道上角动量满足n L = n =1,2,3……所以L 与量子数n 成正比。

又因为“第一激发态”相应的量子数为n =2,因此应该选择答案(A )。

习题17—3 根据玻尔的理论,巴耳末线系中谱线最小波长与最大波长之比为[ ](A) 5/9。

(B) 4/9。

(C) 7/9。

(D) 2/9。

解:由巴耳末系的里德佰公式⎪⎭⎫ ⎝⎛-==221211~n R H λν n =3,4,5,…… 可知对应于最大波长m ax λ,n =3;对应于最小波长min λ,n =∞。

因此有H H R R 53631211122max=⎪⎭⎫ ⎝⎛-=-λ; HH R R 421112min =⎪⎭⎫ ⎝⎛=-λ 所以最后我们选择答案(A)。

习题17—4 根据玻尔的理论,氢原子中电子在n =4的轨道上运动的动能与在基态的轨道上运动的动能之比为[ ](A) 1/4。

(B) 1/8。

(C) 1/16。

(D) 1/32。

解:根据玻尔的理论,氢原子中电子的动能、角动量和轨道半径分别为m P E k 22= ; n P r L n == ;12r n r n =所以电子的动能与量子数n 2 成反比,因此,题给的两种情况下电子的动能之比12/42=1/16,所以我们选择答案(C)。

大学物理量子力学习题答案解析

大学物理量子力学习题答案解析

一、简答题(1——8题,每题5分,共40分)1. 用球坐标表示,粒子波函数表为()ϕθψ,,r 。

写出粒子在),(ϕθ方向的立体角Ωd 中且半径在a r <<0范围内被测到的几率。

解:()⎰Ω=adrr r d P 022,,ϕθψ。

2. 写出三维无限深势阱⎩⎨⎧∞<<<<<<=其余区域,0,0,0,0),,(cz b y a x z y x V中粒子的能级和波函数。

解:能量本征值和本征波函数为⎪⎪⎭⎫ ⎝⎛=++222222222c n b n a n mE z yx n n n zy x π ,,3,2,1,00,0,0,sin sin sin 8),,(=⎪⎩⎪⎨⎧<<<<<<=n c z b y a x czn b y n a x n abc z y x z y x n n n z y x 其余区域πππψ3. 量子力学中,一个力学量Q 守恒的条件是什么?用式子表示。

解:有两个条件:0],[,0==∂∂H Q t Q。

4.)(z L L ,2 的共同本征函数是什么?相应的本征值又分别是什么?解:()zL L,2的共同本征函数是球谐函数),(ϕθlmY。

),(),(,),()1(),(22ϕθϕθϕθϕθlm lm z lm lm Y m Y L Y l l Y L =+=。

5. 量子力学中,体系的任意态)(x ψ可用一组力学量完全集的共同本征态)(x n ψ展开:∑=nn n x c x )()(ψψ,写出展开式系数n c 的表达式。

解: ()dxx x x x c n n n ⎰==)()()(,)(*ψψψψ。

6. 一个电子运动的旋量波函数为()()()⎪⎪⎭⎫ ⎝⎛-=2,2,,r r s r z ψψψ,写出表示电子自旋向上、位置在r处的几率密度表达式,以及表示电子自旋向下的几率的表达式。

解:电子自旋向上(2 =z s )、位置在r 处的几率密度为()22/, r ψ;电子自旋向下(2 -=z s )的几率为()232/,⎰-r r d ψ。

大学物理-量子力学基础习题思考题及答案

大学物理-量子力学基础习题思考题及答案

习题22-1.计算下列客体具有MeV 10动能时的物质波波长,(1)电子;(2)质子。

解:(1) 电子高速运动,设电子的总能量可写为:20K E E m c =+ 用相对论公式,222240E c p m c=+ 可得p ===h p λ==834-=131.210m -=⨯(2)对于质子,利用德布罗意波的计算公式即可得出:3415h 9.110m p λ--====⨯22-2.计算在彩色电 视显像管的加速电压作用下电子的物质波波长,已知加速电压为kV 0.25,(1)用非相对论公式;(2)用相对论公式。

解:(1)用非相对论公式:mmeU h mE h 123193134108.71025106.1101.921063.622p h ----⨯=⨯⨯⨯⨯⨯⨯⨯====λ(2)用相对论公式:420222c m c p +=EeU E E k ==-20c mm eU eU c m hmE h 12220107.722p h -⨯=+===)(λ22-3.一中子束通过晶体发生衍射。

已知晶面间距nm 1032.72-⨯=d ,中子的动能eV 20.4k =E ,求对此晶面簇反射方向发生一级极大的中子束的掠射角.解:先利用德布罗意波的计算公式即可得出波长:3411h 1.410m λ--====⨯再利用晶体衍射的公式,可得出:2sin d k ϕλ= 0,1,2k =…11111.410sin 0.095k λϕ--⨯=== , 5.48ϕ= 22-4.以速度m/s 1063⨯=v 运动的电子射入场强为5V/cm =E 的匀强电场中加速,为使电子波长A 1=λ,电子在此场中应该飞行多长的距离?解:3410h 110p m λ--====⨯ 可得:U=150.9V ,所以 U=Ed ,得出d=30.2cm 。

22-5.设电子的位置不确定度为A 1.0,计算它的动量的不确定度;若电子的能量约为keV 1,计算电子能量的不确定度。

2023高考物理量子力学练习题及答案

2023高考物理量子力学练习题及答案

2023高考物理量子力学练习题及答案一、单项选择题1. 根据量子力学的原理,下列哪个量是离散的?A. 电子的动量B. 电子的位置C. 粒子的质量D. 粒子的速度答案:B2. 在量子力学中,波粒二象性指的是什么?A. 粒子存在着波动性B. 粒子的波动速度与光速相等C. 粒子的波动性与粒子性同时存在D. 粒子的波动性只存在于空间中答案:C3. 下列哪个现象不能用经典物理学解释?A. 光的干涉与衍射现象B. 光电效应C. 康普顿效应D. 高速电子的波动性答案:D4. 以下哪项不是量子力学的基本假设之一?A. 波函数包含了粒子的全部信息B. 波函数的平方描述了粒子在不同位置出现的概率C. 粒子的位置和速度可以同时确定D. 波函数的演化遵循薛定谔方程答案:C5. 根据薛定谔方程,粒子波函数的时间演化是:A. 线性的B. 非线性的C. 随机的D. 不可逆的答案:A二、计算题1. 一束入射光照射到金属表面,发生了光电效应。

入射光的波长为550 nm,逸出功为2 eV,求最大能量的光电子的动能。

答案:入射光的能量E = hc/λ = (6.63 × 10^-34 J·s × 3.00 × 10^8 m/s) / (550 ×10^-9 m) = 1.20 × 10^-19 J最大动能K = E - φ = 1.20 × 10^-19 J - (2 × 1.60 × 10^-19 J) = -0.40 ×10^-19 J2. 一束入射电子的波长为1 nm,通过一个宽度为1 μm的狭缝后,到达屏幕上的交叉区域。

求交叉区域的宽度。

答案:交叉区域的宽度Δx = λL / d,其中L为屏幕到狭缝的距离,d为狭缝的宽度。

根据德布罗意关系,电子的波长λ = h / mv,其中h为普朗克常量,m为电子质量,v为电子速度。

将已知值代入计算,可得Δx ≈ (6.63 × 10^-34 J·s) / (9.1 × 10^-31 kg × 1 × 10^6 m/s) × (1 × 10^-9 m) / (1 × 10^-6 m) ≈ 7.3 × 10^-6 m三、解答题1. 请简要阐述波粒二象性的概念,并说明量子力学中的波函数是如何描述粒子的。

大学物理(第四版)课后习题及答案 量子物理

大学物理(第四版)课后习题及答案 量子物理

第十七 章量子物理题17.1:天狼星的温度大约是11000℃。

试由维思位移定律计算其辐射峰值的波长。

题17.1解:由维思位移定律可得天狼星单色辐出度的峰值所对应的波长该波长nm 257m 1057.27m =⨯==-Tbλ 属紫外区域,所以天狼星呈紫色题17.2:已知地球跟金星的大小差不多,金星的平均温度约为773 K ,地球的平均温度约为293 K 。

若把它们看作是理想黑体,这两个星体向空间辐射的能量之比为多少?题17.2解:由斯特藩一玻耳兹曼定律4)(T T M σ=可知,这两个星体辐射能量之比为4.484=⎪⎪⎭⎫⎝⎛=地金地金T T M M 题17.3:太阳可看作是半径为7.0 ⨯ 108 m 的球形黑体,试计算太阳的温度。

设太阳射到地球表面上的辐射能量为1.4 ⨯ 103W ⋅m -2,地球与太阳间的距离为1.5 ⨯ 1011m 。

题17.3解:以太阳为中心,地球与太阳之间的距离d 为半径作一球面,地球处在该球面的某一位置上。

太阳在单位时间内对外辐射的总能量将均匀地通过该球面,因此有 2244)(R Ed T M ππ=(1)4)(T T M σ= (2)由式(1)、(2)可得K 58004122=⎪⎪⎭⎫⎝⎛=σR E d T题17.4:钨的逸出功是4.52 eV ,钡的选出功是2.50 eV ,分别计算钨和钡的截止频率。

哪一种金属可以用作可见光范围内的光电管阴极材料?题17.4解:钨的截止频率 Hz 1009.115101⨯==hW ν 钡的截止频率Hz 1063.015202⨯==hW ν 对照可见光的频率范围可知,钡的截止频率02ν正好处于该范围内,而钨的截止频率01ν大于可见光的最大频率,因而钡可以用于可见光范围内的光电管材料。

题17.5:钾的截止频率为4.62 ⨯ 1014 Hz ,今以波长为435.8 nm 的光照射,求钾放出的光电子的初速度。

题17.5解:根据光电效应的爱因斯坦方程W mv h +=221ν 其中λνν/0c h W ==,可得电子的初速度15210s m 1074.52-⋅⨯=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=νλc m h v由于选出金属的电子的速度v << c ,故式中m 取电子的静止质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

量子物理习题解答文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]量子物理习题解答习题17—1 用频率为1ν的单色光照射某一金属时,测得光电子的最大初动能为E k 1;用频率为2ν的单色光照射另一种金属时,测得光电子的最大初动能为E k 2。

那么[ ](A) 1ν一定大于2ν。

(B) 1ν一定小于2ν。

(C) 1ν一定等于2ν。

(D) 1ν可能大于也可能小于2ν。

解:根据光电效应方程,光电子的最大初动能为由此式可以看出,E k 不仅与入射光的频率ν有关,而且与金属的逸出功A 有关,因此我们无法判断题给的两种情况下光电子的最大初动能谁大谁小,从而也就无法判断两种情况下入射光的频率的大小关系,所以应该选择答案(D)。

习题17—2 根据玻尔的理论,氢原子中电子在n =5的轨道上的角动量与在第一激发态的角动量之比为[ ](A) 5/2。

(B) 5/3。

(C) 5/4。

(D) 5。

解:根据玻尔的理论,氢原子中电子的轨道上角动量满足n L = n =1,2,3……所以L 与量子数n 成正比。

又因为“第一激发态”相应的量子数为n =2,因此应该选择答案(A)。

习题17—3 根据玻尔的理论,巴耳末线系中谱线最小波长与最大波长之比为[ ](A) 5/9。

(B) 4/9。

(C) 7/9。

(D) 2/9。

解:由巴耳末系的里德佰公式⎪⎭⎫ ⎝⎛-==221211~n R H λν n =3,4,5,…… 可知对应于最大波长m ax λ,n =3;对应于最小波长min λ,n =∞。

因此有 H H R R 53631211122max =⎪⎭⎫ ⎝⎛-=-λ; HH R R 421112min =⎪⎭⎫⎝⎛=-λ 所以最后我们选择答案(A)。

习题17—4 根据玻尔的理论,氢原子中电子在n =4的轨道上运动的动能与在基态的轨道上运动的动能之比为[ ](A) 1/4。

(B) 1/8。

(C) 1/16。

(D) 1/32。

解:根据玻尔的理论,氢原子中电子的动能、角动量和轨道半径分别为mP E k 22= ; n P r L n == ;12r n r n =所以电子的动能与量子数n 2 成反比,因此,题给的两种情况下电子的动能之比12/42=1/16,所以我们选择答案(C)。

习题17—5 在康普顿效应实验中,若散射光波长是入射光波长的倍,则散射光光子能量ε与反冲电子动能E k 之比k E ε为[ ](A) 2。

(B) 3。

(C) 4。

(D) 5。

解:由康普顿效应的能量守恒公式 可得所以,应该选择答案(D)。

习题17—6 设氢原子的动能等于温度为T 的热平衡状态时的平均动能,氢原子的质量为m ,那么此氢原子的德布罗意波长为[ ] (A) mkT h 3=λ。

(B) mkT h 5=λ。

(C) h mkT 3=λ。

(D) h mkT 5=λ。

解:依题意,氢原子的动能应为 又因为氢原子的动量为由德布罗意公式可得氢原子的德布罗意波长为 所以应该选择答案(A)。

习题17—7 以一定频率的单色光照射到某金属上,测出其光电流的曲线如图实线所示,然后在光强度不变的条件下增大照射光频率,测出其光电流的曲线如图虚线所示。

满足题意的图是[ ]解:根据爱因斯坦光量子假设,光强=Nh ν,在光强保持不变的情况下,ν↑→N ↓→I s (饱和光电流)↓;另一方面,ν↑→a U ↑,综上,应该选择答案U IO (D I U O (B U O I (A U O I (C对波长最大的谱线用1λ,n =3;对其次波长用2λ,n =4。

因此有 所以应该选择答案(C)。

习题17—9 电子显微镜中的电子从静止开始通过电势差为U 的静电场加速后,其德布罗意波长是4×10-2nm ,则U 约为:[ ](A) 150V 。

(B) 330V 。

(C) 630V 。

(D) 942V 。

解:由动能定理得 把此式代入德布罗意公式有 所以因此,应该选择答案(D)。

习题17—10 氩(Z =18)原子基态的电子组态是:[ ](A) 1S 22S 83P 8 (B) 1S 22S 22P 63d 8(C) 1S 22S 22P 63S 23P 6 (D) 1S 22S 22P 63S 23P 43d 2解:对(A)示组态,既违反泡利不相容原理,也违反能量最小原理,是一个不可能的组态;对(B)示组态和(D)示组态均违反能量最小原理,也都是不可能组态。

因此,只有(C)示组态是正确组态。

所以应该选择答案(C)。

习题17—11 在气体放电中,用能量为的电子去轰击处于基态的氢原子,此时氢原子所能发射的光子的能量只能是:[](A) ,和。

(B) 。

(C) ,和。

(D) 。

可以解得n =3从能级跃迁示意图可知,应该有种频率不同的光子发出,它们的能量分别为 所以,应该选择答案(C)。

习题17—12 设粒子运动的波函数图线分别如图(A)、(B)、(C)、(D)所示,那么其中确定粒子动量的精确度最高的波函数是哪个图n =n =n =能级跃所反映出的确定关系∆⋅∆x 动量的精确度是最高的,所以应该选择答案(A)。

习题17—13 下列四组量子数: (1)n =3,l =2,m l =0,m s =1/2 (2) n =3,l =3,m l =1,m s =1/2 (3) n =3,l =1,m l =-1,m s =-1/2 (4) n =3,l =0,m l =0,m s =-1/2 其中可以描述原子中电子状态的:(A) 只有(1)和(3) (B) 只有(2)和(4)(C) 只有(1)、(3)和(4) (D) 只有(2)、(3)和(4)解:因为当主量子数n 确定之后,副量子数l 和磁量子数m l 的取值是有限制的:l =0,1,2,…,n -1;m l =0,±1,±2,…,±l ,而自旋磁量子数m s 的取值则只能是1/2或-1/2。

用上述限制条件检查题给的四组量子数可以发现,只有(2)违反了l 取值的限制,是不可能组态外,其余三组量子数均为允许组态。

因此,应该选择答案(C)。

习题17—14 在氢原子发射的巴耳末线系中有一频率为×1014Hz 的谱线,它是氢原子从能级E n = eV 跃迁到能级E k = eV 而发出的。

解:根据频率选择定则有把E 1=-=-×10﹣18J ,h =×10﹣34 Js ,ν=×1014Hz 代入上式可以解得n =4。

85.0166.134214-=-==E E eV , 4.346.132212-=-==E E eV 习题17—15 设大量氢原子处于n =4的激发态,它们跃迁时发出一簇光谱线,这簇光谱线最多可能有 条,其中最短波长的是 m 。

解:画出能级跃迁示意图,容易知道这簇光谱线最多可能有6条。

其中最短波长满足∴ 819834141075.9106.1)]6.13(85.0[1031063.6---⨯=⨯⨯---⨯⨯⨯=-=E E hc λm 习题17—16 分别以频率为1ν和2ν的单色光照射某一光电管。

若21νν>(均大于红限频率0ν),则当两种频率的入射光的光强相同时,所产生的光电子的最大初动能E 1 E 2;为阻止光电子到达阳极,所加的遏止电压a U 2a ;所产生的饱和光电流1S I 2S I (用>或=或<填入)。

解:根据爱因斯坦光电效应方程,光电子的最大初动能为(A (B (C(D 习题17―n n =n =n =题解17―因为21νν>,所以21k k E E >;又因为a k U e E =,有e A e h U a -=ν,所以>1a U 2a U ;由于光强=Nh ν,光强相同,ν大,则打到光电阴级上的光子数N 就少,饱和光电流1S I 就小,所以21S S I I <。

习题17—17 设描述微观粒子运动的波函数为),(t rψ,则*ψψ表示 。

),(t rψ须满足的条件是 ;其归一化条件是 。

解:*ψψ表示:t 时刻、在位置r附近、单位体积内发现粒子的几率;),(t rψ须满足的条件是:单值、连续、有限;其归一化条件是习题17—18 根据量子力学理论,氢原子中电子的角动量在外磁场方向上的投影为 l z m L =,当角量子数l =2时,L z 的可能取值为 。

解:因为这时磁量子数m l =0,±1,±2五种可能的取值,所以L z 的可能取值亦为五种:0, ±, 2±。

习题17—19 锂(Z =3)原子中含有三个电子,电子的量子态可用(n ,l ,m l ,m s )四个量子数来描述,若已知其中一个电子的量子态为(1,0,0,1/2),则其余两个电子的量子态分别为 和 。

解:在1s 态还可以有一个电子,其量子态为(1,0,0,-1/2)。

剩下的一个电子只能处于2s 态,其量子态应为(2,0,0,1/2)或(2,0,0,-1/2)。

习题17—20 原子内电子的量子态由n 、l 、m l 和m s 四个量子数表征。

当n 、l 、m l 一定时,不同的量子态的数目为 ;当n 、l 一定时,不同的量子态的数目为 ;当n 一定时,不同的量子态的数目为 。

解:当n 、l 、m l 一定时,只有自旋磁量子数m s 的两种可能的取值,这时不同的量子态的数目为2;当n 、l 一定时,应该有磁量子数m l 的0,±1,±2,…,±l 的2l +1种可能取值,再加上自旋磁量子数m s 的两种可能的取值,这时不同的量子态的数目应该为2(2l +1);当n 一定时,不同的量子态的数目即为该壳层最多所能容纳的电子数,即为2n 2。

习题17—21 试证:如果确定一个低速运动的粒子的位置时,其不确定量等于这粒子的德布罗意波长,则同时确定这粒子的速度时,其不确定量等于这粒子的速度(不确定关系式h P x ≥∆•∆)。

解:∵ P h x ==∆λ∴ v x h v 00m P m P ==∆=∆=∆ ∴ v v =∆习题17—22 已知粒子在无限深势阱中运动,其波函数为:ax a x n πsin 2)(=Φ (0<x <a ) 求:发现粒子几率最大的位置。

解:粒子出现的几率密度为把上式对x 求导数并令其导数等于零得02sin=a x π, ππn ax=2 ∴ na x 21= n =1,2这里n ≠3,4,5,…,是由于这时x >a ,已超出题给范围。

若取得最大值而不是最小值还须满足下式 即要求这个要求限制了n 的取值,使得n 不能取2,因为若n =2 ,则x =a ,这时上式将得不到满足。

相关文档
最新文档