第二章 药物代谢动力学
第2章 药物代谢动力学
药量---时间关系
血药浓度 A(给药量)可代替C
时
n=1:一级动力学
间
n=0:零级动力学
正值:表示吸收动力学 负值:表示消除动力学
一级消除动力学(first-order elimination kinetics
----体内药量以恒定的百分率进行消除(恒比消除() 掌握)
一级消除动力学特点
----线性动力学(掌握)
pH=7
pH=4
总量 A + H+HA
100001 105
1
HAH+ + A 总量
1
102 101
10pH-pKa =
[ A ] [HA]
= 107-2 = 105
10pH-pKa =
[ A ] [HA]
= 104-2 = 102
问题
某人过量服用苯巴比妥(酸 性药)中毒,有何办法加速 脑内药物排至外周,并从尿 内排出?
F、Vd、 T1/2、 CL
(掌握) 简单扩散
(掌握)
首关消除 药酶诱导/抑制 尿液PH对药物排泄影响
(掌握)
一级消除动力学 零级消除动力学
Css 、F、Vd、 T1/2、 CL
被动转运 药物跨膜转运方式
滤过 水溶性扩散
简单扩散 脂溶性扩散
载
易化扩散
体 扩
主动转运
膜
散
动
转
运
1.滤过(Filtration) --水溶性扩散(了解)
3.易化扩散 (Facilitated diffusion; Carrier-mediated diffusion) (了解
)
▲有载体协助的顺差转运,有饱和、竟争现象。
第二章 药物代谢动力学
4)D类(危险):临床有资料表明对胎儿有危害 ,但治疗孕妇疾病的疗效肯定,又无代替药物 ,权衡利弊后再应用。如抗惊厥药苯妥英钠,链 霉素等。 5)X类(高度危险):证实对胎儿有危害,禁用
第二章
选药原则: 有A不选B类,X绝对禁选;选AB不选CD, 无药替代才选CD.
三、代谢(生物转化)
定义: 药物 代谢产物
1.4-3.4
=
[ A- ]
[HA]
= 10 -2 =1/100
血浆中:10 7.4-3.4 =
[ A- ]
[HA]
= 10 4 = 10000/1
酸酸少易;酸碱多难
第二章
• 某弱酸性药物的pKa是3.4,该药物在血浆( 血浆pH=7.4)中的解离百分率约为( ) • A.1% • B.10% • C.90% • D.99% • E.99. 99%
二、影响药物通过细胞膜的因素
第二章
(二)药物的浓度差、膜通透性、面积厚度
(三)血流量——影响膜两侧药物浓度差 (四)细胞膜转运蛋白的量和功能
分子量小,脂溶性高,解离度小的药物易转运
第二节 药物的体内过程
一、吸收:
定义:给药部位 影响因素 血液循环
第二章
1. 给药途径 2. 理化性质
3. 吸收环境
dC/dt = - keC
恒量消除 零级消除动力学 (Zero order elimination kinetics) 非线性动力学消除 n=0 dC/dt = - ke
第二章
血 药 浓 度 半 对 数 血 药 浓 度
零级 一级
零级
一级
时间
时间
浓度越大,消除速度越快 浓度越小,消除速度越慢
一、一级消除动力学
药理学第二章
第二章
1
药物分子的跨膜转运
2
药物的体内过程
3
房室模型
4
药物消除动力学
第二章
5 体内药物的药量时间关系 6 药物代谢动力学重要参数 7 药物剂量的设计与优化
第二章
❖ 掌握药物代谢动力学的基本规律 ❖ 药物的被动转运与主动转运 ❖ 首关消除 ❖ 药物与血浆蛋白结合之特点及意义 ❖ 体液的pH和药物的解离度 ❖ 酶的诱导或抑制 ❖ 药物排泄的途径、特点、影响因素。肝肠循环 ❖ 一级消除动力学 ❖ 药物代谢动力学重要参数:消除半衰期(t1/2)、
第二章
(2)直肠给药
经直肠给药仍避免不了首关消除。吸 收不如口服。唯一优点是防止药物对上消 化道的刺激性。
(3)舌下给药
由舌下静脉,不经肝脏而直接进入体 循环,适合经胃肠道吸收时易被破坏或有 明显首过消除的药物。如硝酸甘油、异丙 肾上腺素。
第二章
(4)注射给药
特点是吸收迅速、完全。适用于在胃肠 道易被破坏或不易吸收的药物(青霉素G、 庆大霉素);也适用于肝中首过消除明显 的药物(硝酸甘油 )。
吸收部位
主要在小肠。药物从胃肠道吸收后,都要经过门 静脉进入肝,再进入血液循环。舌下给药或直肠 给药,分别通过口腔、直肠和结肠的粘膜吸收
停留时间长,经绒毛吸收面积大 毛细血管壁孔道大,血流丰富 pH5-8,对药物解离影响小
Fick扩散定律 (Fick’s Law of Diffusi第on二)章
第二章
[CO2]i >[CO2]o
1.药物分子的跨膜转运 第二章
❖(二)简单扩散
非极性药物分子与其所具有的脂溶性溶解于细胞 膜的脂质层,顺浓度差通过细胞膜称简单扩散, 又称
被动扩散
2023年执业药师药物代谢动力学习题及答案
第二章药物代谢动力学一、最佳选择题1、决定药物每天用药次数旳重要原因是A、吸取快慢B、作用强弱C、体内分布速度D、体内转化速度E、体内消除速度2、药时曲线下面积代表A、药物血浆半衰期B、药物旳分布容积C、药物吸取速度D、药物排泄量E、生物运用度3、需要维持药物有效血浓度时,对旳旳恒定给药间隔时间是A、每4h给药一次B、每6h给药一次C、每8h给药一次D、每12h给药一次E、每隔一种半衰期给药一次4、以近似血浆半衰期旳时间间隔给药,为迅速到达稳态血浓度,可以初次剂量A、增长半倍B、增长1倍C、增长2倍D、增长3倍E、增长4倍5、某药旳半衰期是7h,假如按每次0.3g,一天给药3次,到达稳态血药浓度所需时间是A、5~10hB、10~16hC、17~23hD、24~28hE、28~36h6、按一级动力学消除旳药物,按一定期间间隔持续予以一定剂量,到达稳态血药浓度时间长短决定于A、剂量大小B、给药次数C、吸取速率常数D、表观分布容积E、消除速率常数7、恒量恒速给药最终形成旳血药浓度为A、有效血浓度B、稳态血药浓度C、峰浓度D、阈浓度E、中毒浓度8、药物吸取抵达血浆稳态浓度时意味着A、药物作用最强B、药物吸取过程已完毕C、药物消除过程正开始D、药物旳吸取速度与消除速率到达平衡E、药物在体内分布到达平衡9、按一级动力学消除旳药物有关稳态血药浓度旳描述中错误旳是A、增长剂量能升高稳态血药浓度B、剂量大小可影响稳态血药浓度抵达时间C、初次剂量加倍,按原间隔给药可迅速达稳态血药浓度D、定期恒量给药必须经4~6个半衰期才可达稳态血药浓度E、定期恒量给药达稳态血药浓度旳时间与清除率有关10、按一级动力学消除旳药物,其消除半衰期A、与用药剂量有关B、与给药途径有关C、与血浆浓度有关D、与给药次数有关E、与上述原因均无关11、某药按一级动力学消除,其血浆半衰期与消除速率常数k旳关系为A、0.693/kB、k/0.693C、2.303/kD、k/2.303E、k/2血浆药物浓度12、对血浆半衰期(一级动力学)旳理解,不对旳旳是A、是血浆药物浓度下降二分之一旳时间B、能反应体内药量旳消除速度C、根据其可调整给药间隔时间D、其长短与原血浆浓度有关E、一次给药后经4~5个半衰期就基本消除13、静脉注射1g某药,其血药浓度为10mg/dl,其表观分布容积为A、0.05LB、2LC、5LD、10LE、20L14、在体内药量相等时,Vd小旳药物比Vd大旳药物A、血浆浓度较低B、血浆蛋白结合较少C、血浆浓度较高D、生物运用度较小E、能到达旳治疗效果较强15、下列论述中,哪一项与表观分布容积(Vd)旳概念不符A、Vd是指体内药物达动态平衡时,体内药量与血药浓度旳比值B、Vd旳单位为L或L/kgC、Vd大小反应分布程度和组织结合程度D、Vd与药物旳脂溶性无关E、Vd与药物旳血浆蛋白结合率有关16、下列有关房室概念旳描述错误旳是A、它反应药物在体内分却速率旳快慢B、在体内均匀分布称一室模型C、二室模型旳中央室包括血浆及血流充盈旳组织D、血流量少不能立即与中央室达平衡者为周围室E、分布平衡时转运速率相等旳组织可视为一室17、影响药物转运旳原因不包括A、药物旳脂溶性B、药物旳解离度C、体液旳pH值D、药酶旳活性E、药物与生物膜接触面旳大小18、药物消除旳零级动力学是指A、消除半衰期与给药剂量有关B、血浆浓度到达稳定水平C、单位时间消除恒定量旳药物D、单位时间消除恒定比值旳药物E、药物消除到零旳时间19、下列有关一级药动学旳描述,错误旳是A、血浆药物消除速率与血浆药物浓度成正比B、单位时间内机体内药物按恒比消除C、大多数药物在体内符合一级动力学消除D、单位时间机体内药物消除量恒定E、消除半衰期恒定20、有关一室模型旳论述中,错误旳是A、各组织器官旳药物浓度相等B、药物在各组织器官间旳转运速率相似C、血浆药物浓度与组织药物浓度迅速到达平衡D、血浆药物浓度高下可反应组织中药物浓度高下E、各组织间药物浓度不一定相等21、对药时曲线旳论述中,错误旳是A、可反应血药浓度随时间推移而发生旳变化B、横坐标为时间,纵坐标为血药浓度C、又称为时量曲线D、又称为时效曲线E、血药浓度变化可反应作用部位药物浓度变化22、药物在体内旳半衰期依赖于A、血药浓度B、分布容积C、消除速率D、给药途径E、给药剂量23、依他尼酸在肾小管旳排泄属于A、简朴扩散B、滤过扩散C、积极转运D、易化扩散E、膜泡运送24、药物排泄旳重要器官是A、肾脏B、胆管C、汗腺D、乳腺E、胃肠道25、有关药物排泄旳描述错误旳是A、极性大、水溶性大旳药物在肾小管重吸取少,易排泄B、酸性药在碱性尿中解离少,重吸取多,排泄慢C、脂溶性高旳药物在肾小管重吸取多,排泄慢D、解离度大旳药物重吸取少,易排泄E、药物自肾小管旳重吸取可影响药物在体内存留旳时间26、下列有关肝微粒体药物代谢酶旳论述错误旳是A、又称混合功能氧化酶系B、又称单加氧化酶C、又称细胞色素P450酶系D、肝药物代谢酶是药物代谢旳重要酶系E、肝药物代谢专司外源性药物代谢27、药物旳首过消除也许发生于A、舌下给药后B、吸入给药后C、口服给药后D、静脉注射后E、皮下给药后28、具有肝药酶活性克制作用旳药物是A、酮康唑B、苯巴比妥C、苯妥英钠D、灰黄霉素E、地塞米松29、下列有关肝药酶旳论述哪项是错误旳A、存在于肝及其他许多内脏器官B、其作用不限于使底物氧化C、对药物旳选择性不高D、肝药酶是肝脏微粒体混合功能酶系统旳简称E、个体差异大,且易受多种原因影响30、下列有关肝药酶诱导剂旳论述中错误旳是A、使肝药酶旳活性增长B、也许加速自身被肝药酶旳代谢C、可加速被肝药酶转化旳药物旳代谢D、可使被肝药酶转化旳药物血药浓度升高E、可使被肝药酶转化旳药物血药浓度减少31、增进药物生物转化旳重要酶系统是A、单胺氧化酶B、细胞色素P450酶系统C、辅酶ⅡD、葡萄糖醛酸转移酶E、胆碱酯酶32、下列有关药物体内转化旳论述中错误旳是A、药物旳消除方式是体内生物转化B、药物体内旳生物转化重要依托细胞色素P450C、肝药酶旳作用专一性很低D、有些药物可克制肝药酶活性E、有些药物能诱导肝药酶活性33、不符合药物代谢旳论述是A、代谢和排泄统称为消除B、所有药物在体内均经代谢后排出体外C、肝脏是代谢旳重要器官D、药物经代谢后极性增长E、P450酶系旳活性不固定34、药物在体内旳生物转化是指A、药物旳活化B、药物旳灭活C、药物化学构造旳变化D、药物旳消除E、药物旳吸取35、不影响药物分布旳原因有A、肝肠循环B、血浆蛋白结合率C、膜通透性D、体液pH值E、特殊生理屏障36、有关药物分布旳论述中,错误旳是A、分布是指药物从血液向组织、组织间液和细胞内转运旳过程B、分布多属于被动转运C、分布达平衡时,组织和血浆中药物浓度相等D、分布速率与药物理化性质有关E、分布速率与组织血流量有关37、影响药物体内分布旳原因不包括A、组织亲和力B、局部器官血流量C、给药途径D、生理屏障E、药物旳脂溶性38、药物通过血液进入组织器官旳过程称A、吸取B、分布C、贮存D、再分布E、排泄39、药物与血浆蛋白结合A、是不可逆旳B、加速药物在体内旳分布C、是可逆旳D、对药物积极转运有影响E、增进药物旳排泄40、药物肝肠循环影响药物在体内旳A、起效快慢B、代谢快慢C、分布程度D、作用持续时间E、血浆蛋白结合率41、下列有关药物吸取旳论述中错误旳是A、吸取是指药物从给药部位进入血液循环旳过程B、皮下或肌注给药通过毛细血管壁吸取C、口服给药通过首过消除而使吸取减少D、舌下或直肠给药可因首过消除而减少药效E、皮肤给药大多数药物都不易吸取42、丙磺舒可以增长青霉素旳疗效。
药理学第二章
简单扩散
滤过 载体转运
主动转运
易化扩散
问题
某人过量服用苯巴比妥(酸 性药)中毒,有何办法加速 脑内药物排至外周,并从尿内 排出?
2、药物的体内过程
药物的体内吸收过程
吸收
分布
代谢
排泄
2、药物的体内过程
2、药物的体内过程
一、吸收
定义: ❖ 药物自给药部位进入血液循环的过程。
(2) 苯巴比妥(弱酸性)pKa=7.4
根据10pH–pKa=[A–]/[HA],当尿液为碱性时, pH值大于pKa,[A-]增多,即[解离型]多,重 吸收减少,药物排泄加快,中毒时碱化尿液。
1.药物分子的跨膜转运
(3)药物分子跨膜转运还符合Fick定律:
面积*通透系数
通透量(单位时间分子数)=(C1-C2)*
1.药物分子的跨膜转运
❖(二)简单扩散
非极性药物分子与其所具有的脂溶性溶解于细胞 膜的脂质层,顺浓度差通过细胞膜称简单扩散, 又称
被动扩散
大多数药物属于被动转运
1.药物分子的跨膜转运
❖离子障
❖ 分子状态药物疏水而亲脂, 易通过细胞膜;离子状态 药物极性高,不易通过细 胞膜的脂质层。
1.药物分子的跨膜转运
另外还有血-眼屏障、血-关节囊屏障
❖ (三)、体液的pH和药物pKa
❖ 药物pKa和体液的pH决定药物分布重要因素, 一般弱碱性药物在细胞内浓度较高,弱酸性药物 在细胞外液浓度较高。利用这一原理对药物中毒 进行解毒。
❖ (四)、其他因素 ❖ (1)组织器官的血流量 ❖ 吸收的药物通过循环迅速向全身组织输送,
药物通过细胞膜的方式
滤过 简单扩散 载体转运
药物代谢动力学
2021年2月9日
中药学专业《药理学》
碱化酸化体液和尿液
通过用药可轻微改变pH,如应用碳酸氢钠 可碱化,而用氯化铵可酸化体液和尿液,应用 此原理可使药物吸收或排泄的速度改变,对提 高药物的吸收或促进中毒物质的排泄有临床意 义。
弱酸性药物在pH低的溶液中解离度小,容 易跨膜转运,在酸性胃液中吸收较快;但如用 药碱化尿液pH变大,则解离度增大而妨碍原形 排泄的药物在肾小管中的重吸收,促进药物从 体内排泄。
2021年2月9日
中药学专业《药理学》
Байду номын сангаас
被动转运(passive diffusion)
特点: 顺浓度梯度转运 不耗能 不需要载体 无饱和性、无竞争性
影响因素:分子大小、脂溶性、极性、 两侧浓度差、解离度等
2021年2月9日
中药学专业《药理学》
被动转运(passive diffusion)
1)简单扩散:因为生物膜的脂质特性, 药物的被动扩散主要与药物的脂溶性(油水 分布系数)与解离度有关。非极性物质、解 离度小或脂溶性强的药物容易通过膜的类脂 相,极性大、解离形式或脂溶性小的药物, 一般不易通过生物膜。大多数药物的转运方 式属于简单扩散。
(Placental barrier)
是指胎儿胎盘绒毛与孕妇子宫血窦间的屏障。 胎毛细血管内皮对药物转运的选择性
脂溶度、分子大小是主要影响因素 (MW 600易通 过;>1000 不能)
母血pH = 7.44; 胎血pH=7.30。弱碱性药物在胎血内 易离解
胎盘有代谢(如氧化)药物的功能
转运方式和其它细胞相同:简单扩散
二、分布
药物以各种途径给药后自给药部位吸收入血, 随血液转运到组织脏器,称分布。研究药物的分 布对探讨药物的作用机制、不良反应的产生,发 现新药以及新的用途,均可得到启示。影响分布 的因素主要有:组织血流量及药物与组织细胞的 亲和力、屏障现象及药物与组织蛋白的结合等。
药理学第二章药物代谢动力学PPT课件
半衰期(T1/2)
总结词
描述药物在体内消除一半所需时间的参数。
详细描述
半衰期是药物在体内消除一半所需的时间,它是药物代谢动力学的重要参数之一。T1/2值越短,药物 消除越快。药物的消除途径、代谢速率和排泄速率等因素都会影响T1/2值。
清除率(Cl)
总结词
描述肾脏清除药物的能力的参数。
详细描述
清除率是指肾脏清除药物的能力,它是药物代谢动力学的重要参 数之一。Cl值越大,肾脏清除药物的能力越强。药物的排泄速率 、尿液pH值和尿液流量等因素都会影响Cl值。
二室模型
总结词
二室模型考虑了药物在体内分布的不均 匀性,将身体分为中央室和周边室两个 部分。
VS
详细描述
二室模型将身体分为中央室和周边室两个 部分,中央室包括血液和主要的脏器,周 边室包括其他组织。该模型适用于药物在 体内分布不均匀,且在中央室和周边室的 转运速率不同的情况。
微生物模型
总结词
微生物模型是用于描述药物在微生物中的代谢和消除过程的模型,常用于药物制剂的微 生物学质量控制。
05
药物代谢动力学的实际应用
个体化给药方案设计
根据患者的年龄、体重、性别、生理状态等因素,制定个性化的给药方案,确保 药物在体内达到最佳的治疗效果。
通过监测患者的药物代谢情况,调整给药剂量和频率,以实现最佳的治疗效果并 减少不良反应。
新药研发与评价
药物代谢动力学是新药研发的重要环 节,用于评估药物的吸收、分布、代 谢和排泄等特性。
疾病状态
疾病状态可以影响药物的吸收、分布、代谢和排泄,导致药 物代谢动力学参数的变化。
肝肾功能不全的患者对药物的代谢和排泄能力较弱,需要调 整药物剂量。
药物代谢动力学
第二章药物代谢动力学药物代谢动力学(药动学):指药物的体内过程,研究药物的吸收、分布、代谢和排泄,血药浓度随时间而变化的规律。
常用数学公式和图解表示。
第一节药物分子的跨膜转运药物的吸收、分布、排泄需要通过各种生物膜。
生物膜基本结构:液态脂质双分子结构脂溶性物质容易通过功能蛋白质(载体、酶、受体)膜孔转运小分子物质转运方式1.被动转运:不耗能,顺浓度差(高→低)转运。
(1)简单扩散:称脂溶性扩散,高浓度→低浓度,转运数度取决膜二侧浓度差、脂溶性、极性、分子量。
药物属弱酸、弱减性,以离子、非离子型存在,非离子型易转运,解离程度取决药物的pK a(解离常数的负对数),并受pH的影响。
弱酸性药物:解离方程式HA ===H+ +A- Ka(解离常数) =〔H+〕〔A-〕/〔HA〕(两侧取负对数)-logKa = - log〔H+〕-- log〔A-〕/〔HA〕pKa = pH - log〔A-〕/〔HA〕(以指数表示)10 pH - pKa = A-(离子型)/HA(非离子型)当pH = pKa(100 = 1),解离型 = 非解离型既pKa = 药物解离一半时的pH值。
药物的pKa是不变的,pH的变化明显影响药物的解离。
苯巴比妥(弱酸性),pKa = 7.4,在胃中的吸收。
血浆(pH = 7.4) 胃粘膜胃液(pH = 1.4)HA HA‖‖A- A-+ +H++结论:弱酸性药物在酸性环境中,解离少,易吸收;″″″在碱性″,″多,难吸收;弱碱性药物在酸性环境中,解离多,难吸收;″″″在碱性″,″少,易吸收;2.主动转运:通过细胞膜上的载体,逆浓度差转运,耗能,可发生竞争性抑制(丙磺舒抑制青霉素的排泄)。
第二节药物的体内过程一、吸收吸收:药物经给药部位进入血循环。
1.胃肠道给药口服:经胃肠道粘膜,主要由小肠被动吸收。
(1)胃内pH = 0.9--1.5;小肠内5--8,多数药物都可吸收。
(2)小肠比胃吸收面积大;小肠血流丰富蠕动较快。
完整版)执业药师药物代谢动力学习题及答案
完整版)执业药师药物代谢动力学习题及答案第二章药物代谢动力学1.主要因素决定药物每天用药次数是什么?药物每天用药次数的主要因素是体内消除速度。
2.药时曲线下面积代表什么?药时曲线下面积代表药物的生物利用度。
3.维持药物有效血浓度的正确恒定给药间隔时间是多久?正确的恒定给药间隔时间是每隔一个半衰期给药一次。
4.为了迅速达到稳态血浓度,可以通过以近似血浆半衰期的时间间隔给药来实现,首次剂量应该增加多少?首次剂量应该增加一倍。
5.如果某药的半衰期是7小时,按每次0.3g,一天给药3次,达到稳态血药浓度所需的时间是多久?达到稳态血药浓度所需的时间是28-36小时。
6.按一级动力学消除的药物,达到稳态血药浓度时间长短决定于什么?达到稳态血药浓度时间长短决定于给药次数。
7.恒量恒速给药最后形成的血药浓度是什么?恒量恒速给药最后形成的血药浓度是稳态血药浓度。
8.药物吸收到达血浆稳态浓度时意味着什么?药物吸收到达血浆稳态浓度时意味着药物的吸收速度与消除速率达到平衡。
9.按一级动力学消除的药物有关稳态血药浓度的描述中哪个是错误的?错误的描述是“定时恒量给药必须经4~6个半衰期才可达稳态血药浓度”。
10.按一级动力学消除的药物,其消除半衰期与什么有关?按一级动力学消除的药物,其消除半衰期与血浆浓度有关。
11.某药按一级动力学消除,其血浆半衰期与消除速率常数k的关系是什么?某药按一级动力学消除,其血浆半衰期与消除速率常数k的关系是0.693/k。
12.对血浆半衰期(一级动力学)的理解,哪个是不正确的?不正确的理解是“一次给药后经4~5个半衰期就基本消除”。
A、药物的脂溶性B、药物的极性C、药物的分子量D、药物的代谢速率E、药物的剂量重写后:1.肾小管对极性大、水溶性大的药物重吸收少,易排泄;酸性药在碱性尿中解离少,重吸收多,排泄慢;脂溶性高的药物在肾小管重吸收多,排泄慢;解离度大的药物重吸收少,易排泄。
药物在体内存留的时间受肾小管的重吸收影响。
第二章 药物代谢动力学
A
14
当药物pKa不变时,改变溶液的pH,可 明显影响药物的解离度,从而影响药物 的跨膜转运。
归纳:弱酸性药物在酸性环境中,解离 少,吸收多,排泄少;而在碱性环境中, 解离多,吸收少,排泄多。
A
15
归纳为:“酸酸少易,酸碱多难”。
解释为:“酸酸少易”-弱酸性药物在 酸性体液中解离少,容易透过细胞膜; “酸碱多难”- 弱酸性药物在碱性体液 中解离多,则很难透过细胞膜。
C.机械门控通道——受膜两侧的机械力学因 素变化来控制开闭的通道。
A
22
电 压 门 控 通 道
A
23
化学门控通道
(配体门控通道)
ቤተ መጻሕፍቲ ባይዱ
A
24
机 械 门 控 通 道
A
25
2、主动转运(active transport):
药物从低浓度一侧跨膜向高浓度一 侧的转运,又称逆流转运、上山运动。
主动转运的特点: (1)药物逆浓度差转运 (2)耗能 (3)需要载体 (4)有饱和现象及竞争性抑制
从细胞内转运到胞外,即胞吐。
A
33
A
34
A
35
受体介导入胞则是通过被转运物质与膜 受体特异结合,二者一同凹入细胞内, 再分离,细胞膜与受体均可以重复使用。 通过这种方式入胞的物质很多,包括胰 岛素及一些多肽类激素、内皮生长因子、 神经生长因子、低密度脂蛋白颗粒、结 合了铁离子的运铁蛋白、结合了维生素 的运输蛋白质、抗体及一些细菌等。它 与一般的入胞比较,速度快,特异性高。
A
38
二、药物的吸收及给药途径
药物的吸收:药物自给药部位进入血液循 环的过程。 静脉注射和静脉滴注直接进入血液,没有 吸收过程。 吸收速率和程度受药物的理化性质、剂型、 吸收部位的血流量、给药途径等因素影响。
2第二章 药物代谢动力学
三、代谢 (生物转化)
(biotrans formation)
药物在体内的化学结构的变化称为生物转化。
主要在肝进行,能将脂溶性药物转化为极性大、水溶性高 的代谢物而利于排出。生物转化与排泄统称为消除 (elimination)。 1、生物转化步骤: 第一步为氧化、还原或水解,通常使药物失效,但少数反 而活化,如环磷酰胺转化为醛磷酰胺才有抗癌作用。 第二步为结合,结合后的产物药理活性降低或消失,水溶 性增加易经肾排出。
2、肝药酶:是肝微粒体混合功能氧化酶系统的简 称,主要成分是细胞色素p-450酶系统,简称CYP (还原型CYP与一氧化碳结合时,在波长450nm 处有一最大吸收峰,故名)。参与许多生理代谢 物及数百种药物的转化。
特性:专一性低,易饱和,个体差异大,易受 药物的诱导或抑制。 肝药酶诱导剂 :是指能诱导提高肝药酶活性的 药物,是药物产生耐受性的原因之一。 肝药酶抑制剂:是指能降低、抑制肝药酶活性 的药物,如氯霉素等与苯妥英钠的合用。
4、乳汁排泄:由于乳汁略呈酸性又富含脂质,所以脂溶性高 的药物和弱碱性药物如吗啡、阿托品等可自乳汁排泄。
5、其他途径排泄:肺、汗腺、唾液及泪液等,但量很少。
第三节
体内药量变化的时间过程
时效关系:药物效应随时间的推移而变化的关系。 时量关系:血药浓度随时间的推移而变化的关系。 峰值浓度(Cmax):药物在体内达到的最大浓度。 达峰时间(Tpeak):从给药时至峰值浓度的时间。
. 4-3.4 = [ A - ] = 104 = 10000/1 血浆中:107
[HA]
[A-] 占99.99%
[HA] 占0.01%
离子障 :是指非离子型药物可以自由透过生物膜,而
离子型药物则被限制在膜的一侧的现象。
药理学 第2章 药物代谢动力学
等量等间隔多次给药血中积累药物总药量
t1/2数
给药后的
经过半衰期药量
1
100% A0
50% A0
2
150% A0
75% A0
3
175% A0
87.5% A0
4
187.5% A0
93.8% A0
5
193.8% A0
96.9% A0
6
196.9% A0
98.4% A0
7
198.4% A0
99.2% A0
常用药动学参数
1.. 血浆半衰期:
Half-life (in Conc.-Time Curve)
是临床用药间隔的依据
Half-Life The amount of time required to rid the body of half of the initial concentration of the drug.
三、药物的分布:
影响药物分布的因素: 1.药物与血浆蛋白结合; 2.局部器官的血流量; 3.体液pH; 4.组织亲和力; 5.体内屏障,包括血脑屏障和胎盘屏障。
血浆蛋白结合(Plasma protein binding)
D+P
DPc
可逆性(Reversible equilibrium) 可饱和性(Saturable)
血脑屏障
(Blood-brain barrier, BBB)
由毛细血管 壁和N胶质细 胞构成
Blood Brain Barrier
四、生物转化 (transformation / metabolism)
又称为药物代谢,是药物在体内发生的 化学变化,药物经转化后成为极性高的 水溶性代谢物而利于排出体外。
第二章 药物代谢动力学
肾脏排泄
肾小球滤过; 肾小管分泌(主动分泌通道, 竞争性抑制);
肾小管重吸收(被动扩散,尿液pH)、
消化道排泄 肝肠循环:胆汁排入肠腔的药物部分可再经小肠上皮细胞吸收经
肝脏进入血液循环,形成的肝—胆汁—小肠间的循环。
其他途径 汗液、泪液、唾液、乳汁、呼吸道、头发和皮肤。
第三节 药物的速率过程
一、一次给药的药—时曲线下面积
内转运的药物量随时间而下降;
t1/2恒定,与剂量或血药浓度无关, t1/2=0.693/ ke
消除 5单位/h
2.5单位/h
1.25单位/h
零级动力学消除
单位时间内消除恒定量的药物(超过机体的消除能力),
即血药浓度按恒定消除速度进行消除,也称恒量消除。
过量用药时出现;
单位时间消除恒量的药物;
消除速率与药量或浓度无关,与初始浓度无关;
特点 通过毛细血管壁吸收(简单扩散、滤过); 可避免胃肠液中酸碱及消化酶对药物的影响; 可避免首过消除现象; 给药剂量准确; 药物效应快速显著.
影响因素 药物在组织间液的溶解度; 注射部位血流量。
血管内给药
无吸收过程,可迅速起效; 静脉注射、静脉滴注; 静脉滴注适用于治疗指数小、药物容积大、不易吸收或刺激性
代第 谢二 动章 力药 学物
药物代谢动力学
研究机体对药物的处置过程,即药物在体内吸收、分布、生
物转化(代谢)及排泄的过程,以及血药浓度随时间变化而 变化的规律的科学。
第一节 药物的跨膜转运
药物分子的跨膜转运方式
被动转运(passive transport):滤过、简单扩散 载体转运(active transport):主动转运、易化扩散 膜动转运:胞吐、胞饮
第2章 药物代谢动力学
(三)膜动转运(cytosis)
指大分子转运伴随膜 运动。 1 胞饮(pinocytosis): 又称吞饮或入胞,指 液态蛋白质或大分子 物质,可通过生物膜 内陷形成吞噬小胞, 进入细胞内。 胞饮:垂体后叶素粉 剂经鼻粘膜吸收
2 胞吐(exocytosis): 又称胞裂外排或出胞, 指液态大分子,可从细 胞内转运到细胞外。 胞吐:腺体分泌,递质 释放
硝酸甘油(95%)
3 吸收环境
(1)胃的排空、肠蠕动的快慢 推进性蠕动过快影响吸收。 适宜的蠕动有利于药物与肠壁接触,利于吸收。
(2)胃肠内容物的多少和性质 内容物过多,影响药物与肠壁接触不利吸收。 油及脂肪可促进脂溶性药物吸收。
三 药物的分布和影响因素
分布:指药物随血液循环到达全身各个部位的过程。 影响因素: 1 与血浆蛋白结合: 血浆蛋白结合率:与蛋白结合的药物占药物总量 的百分数(表示药物与血浆蛋白结合的程度) ①不能跨膜转运 + ②不能被代谢或排泄 ③暂时无生物活性 ④结合率高,消除慢,维持时间长
图:苯巴比妥加速双香豆素代谢
苯+双 双香豆素 凝 血 酶 原 时 间
36
血药浓度(mg/L)
28 20 12 4 30 60 90 120 150 180 210 服药时间 (日 )
(2)酶的抑制
酶的抑制:某些化学物质能抑制肝微粒体药物代谢酶 的活性,减慢其他药物的代谢速率,使药物效应增 强此现象称酶的抑制(enzyme inhibition)。 ①常见抑制剂:氯霉素、对氨水杨酸、异烟肼、保泰 松。 ②意义:可减慢自身代谢和其他药物代谢。 长期应用可产生积蓄中毒。 ③例如:肝药酶抑制剂氯霉素与苯妥英钠合用,则因 肝药酶活性降低,使苯妥英钠的代谢作用减弱,使 苯妥英钠疗效增强或出现毒性反应.
药物代谢动力学
载体转运 特点:饱和性、选择性和竞争性
影响因素(生物利用度<1 的原因) –吸收不完全:药物理化特性、P-糖蛋白相关的反向转运(自肠壁细胞转入 肠腔); –首过消除:初次经过肠壁肝脏时被代谢清除
表观分布容积(Volume of distribution,Vd) Vd=体内药物总量(A)/血药浓度(C)
指药物吸收达平衡时,按照血药浓度(C)推算体内药物总量(A)在理论上 应占有的体液容积,以 L 或 L/kg 表示.
消除半衰期(Half-life, t1/2) 血药浓度下降一半所需的时间 –反映药物的消除速度; –确定给药间隔的依据; –测算达到稳态的时间及药物清除时间;
消除率( Clearance,CL ) 单位时间内机体清除药物的速率。
单位时间内多少容积血浆中的药物被清除,反映肝肾功能 CL=CL 肾脏+CL 肝脏+CL 其它 计算公式: CL = A(体内药物总量)/AUC
代谢 部位: 主要在肝脏, 其它如胃肠、肺、皮肤、肾
细胞色素 P-450 单氧化霉系 : 药物代谢酶(药物代谢酶的活性可被诱导或抑制)
排泄
途径:
肾脏 (主要),胆汁(肝肠循环),乳汁,肺排泄 ,唾液、汗液 肾脏排泄: 肾小球滤过,肾小管分泌,肾小管重吸收 1.滤过——受血浆蛋白结合率、分子量影响 2.分泌——受竞争性抑制的影响 3. 重吸收——受尿液的 pH 值
二室模型:转运速率不一样,据此分为中央室和周边室. 进行药剂的动 力学研究此模型较准确.
02 药物代谢动力学(人卫九版药理学)
时浓曲线
布 相
Cmin 纵坐标:浓度或对数浓度
维持时间
tmax 时间
横坐标:时间
药物消除动力学类型
消除:药物代谢与排泄的总和。
• 一级动力学消除 恒比消除,线性消除; 单位时间内体内药物浓度按恒定比例消除;
• 零级动力学消除 恒量消除,非线性消除; 单位时间消除恒量的药物;
一级动力学消除
(机体的消除能力超过剂量)
特点:逆浓度差转运、需要载体协助、消耗能量、 具有饱和性、有竞争性抑制现象。
例如:青霉素与丙磺舒自肾小管的分泌
3、其他转运方式
胞饮
一些大分子的肽类药物(如胰岛素)通过膜 的内陷形成小泡而进入细胞。
胞吐
又称胞裂外排或者出胞,指大分子物质从细 胞内转运到细胞外。
定义 特点
应用
被动转运
依赖膜两侧浓度差顺浓度梯 度转运(高→低)
华法林(血浆蛋白结合率为99%)+保泰松 (血浆蛋白结合率为98%)→出血倾向
磺胺类置换胆红素与血浆蛋白结合,可导 致新生儿核黄疸症
竞争血浆蛋白结合
华法林:99%
华法林结合型型 药物浓度下降
+
保泰松
游离型药物浓度 上升
2.体内屏障
① 血脑屏障:血液与脑细胞 血液与脑脊液 脑脊液与脑细胞
�脂溶性或小分子药物可通过; �葡萄糖以载体转运方式通过; �可变性,炎症时通透性↑
药物跨膜转运方式
滤过(filtration)
直径小于膜孔的水溶性的极性或非极性药物 分子,借助于膜两侧的流体静压或渗透压通过 细胞膜的水性通道,由细胞膜一侧到达另一侧, 为被动转运方式。
如:肾小球滤过。
特点:
1. 水溶性物质; 2. 顺浓度差,高低; 3. 通过细胞膜的水性通道; 4. 不耗能,不需要载体; 5. 无饱和性,无竞争性抑制;
第二章药物代谢动力学
非线性动力学:non-linear kinetics
dC/dt = -KCn
在t时间内可处置的药物量(浓度)
西安交大医学院药理学系 曹永孝 ;
1 一级动力学
dC/dt = -KCn
药物消除速率与血药浓度成正比 即单位时间内消除某恒定比例 的药量。
dC/dt = -K C
血药浓度与时间作图 指数曲线 lgC 与 t 作图 直线
曲线下面积(AUC)---血药浓度随时间变化的积分值(g٠ h/L)
15
西安交大医学院药理学系 曹永孝 ;
二、速率过程
药物浓度随时间变化的过程
速率---血药浓度随时间的变化率(dC/dt)
可用数学式表达
一级动力学: first-order kinetics
零级动力学: zero-order kinetics
少数药的消除有此饱和现象如胃肠 的主动转运,肾和胆的排泄。
或当药物浓度过高,酶系统饱和时, 如乙醇 阿司匹林等
西安交大医学院药理学系 曹永孝 ;
dC/dt = -KCn
3.非线性动力学(non-linear kinetics)
在治疗剂量时,血浆浓度按一级动力学消除, 在血药浓度较高时,以零级动力学消除。
浓度为纵,时间为横- 时量曲线。
潜伏期反应吸收和分布过程 药高峰浓浓度度,与(C剂ma量x)—成药正后比达到的最 达 高峰 浓时 度间 的时(Tm间ax)—用药后达到最 持续期—持续有效的时间。与
吸收和消除速率有关
2. 曲线下面积(AUC)---血药浓度随时间变化的积分值(g·h/L)
表示药物在血中的相对累积量。
第二节 药物体内的速率过程
药物的转运及转化使药物在不同器官、组织、体液中的浓度 随时间而变化,这个动力过程称动力学过程。
第二章 药动学
第五节
体内药物的药量-时间关系
一次给药的药时曲线
药时曲线
•Cmax •Tpeak •有效时间 •AUC
•起效快慢与吸收速率有关
•持续时间与消除速率有关
AUC意义:
1.表示吸收进入血循环药物的量 2.求参数,如CL、生物利用度 A B AUC0-∞= + α β
多次给药
多次给药时,随着次数增加,血药浓 度不断递增,但当给药量等于消除量 minimal toxic concentration 时,血药浓度不再增加,而是在稳态 水平上下波动,此浓度成为稳态血药 浓度,也称坪浓度。 minimal effect concentration
系统,系统内部按动力学特点将机体
划分为若干房室(compartment),
房室内药物转运速率相同。药物可进
出房室,为一开放系统。
房室模型
单室模型 药物进入体内后,能迅速、均 匀分布到全身各组织、器官和体液中,然后 消除。可以把整个机体看成药物转运动态平 衡的“均一单元”。
双室模型 药物进入体内后,能迅速进入机 体的某些部位,对另一些部位,需要一段时 间才能完成分布。
特点:
1.顺浓度梯度扩散,不耗能。
2.无选择性。 3.无饱和现象。 4.无竞争性抑制。
载体转运
特点:借助于载体、常耗能、
逆浓度转运、具有饱和性、具有选择性、 存在竞争。
载体:P-糖蛋白、转运体(阳、阴离子)
存在部位:肾小管、胆道、血脑屏障、胃
肠道
方式:主动转运、易化扩散。
影响药物跨膜的因素
• 药物解离度及体液PH值 • 药物浓度差及细胞膜通透性、面积和 厚度 • 血流量 • 细胞膜转运蛋白的量和功能
连续恒速给药
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[ H+ ] [ A ]
Ka =
[HA] [ A ]
pKa = pH - log
[HA]
10 pH-pKa =
[ A ]
[HA]
碱性药:pKa-pH
问题
某人过量服用苯巴比妥(酸 性药)中毒,有何办法加速 脑内药物排至外周,并从尿内 排出?
2. 滤过(Filtration)
指直径小于膜孔的水溶性的极性或非极性药 物,借助膜两侧的流体静压和渗透压差被水 携带到低压侧的过程。如肾小球滤过
(Facilitated diffusion; Carrier-mediated diffusion)
通过细胞膜上的某些特异性蛋白质-通透酶帮助而扩 散,不需供应ATP。 膜上存在多种离子通道蛋白,如Na+、K+、Ca2+电 压依赖性通道(VDC)受膜两侧电位差的影响. 化学依 赖性通道(CDC)主要受化学物质决定
代谢
药物在作用部位的浓度
药效学
药理研究
临床疗效
毒理学
药效学
第 一 节 药物分子的跨膜转运 Drug Transport
第二章
生物膜
生物膜,包括细胞膜和细胞的内膜系统,是 由脂类、蛋白质和糖类组成。生物膜的分 子结构,一般称为膜脂双分子层结构,即 在膜的中间是双层脂类分子,两层脂类分 子疏水性的尾部相对,亲水性的头部位于 膜的外侧,与内外层的蛋白质以非共价键 相连,活细胞的细胞膜处于流动状态,脂 类和蛋白质可以在膜的平面上移动。
简单扩散 易化扩散
又分为脂溶扩散和水溶扩散(滤过) 又称载体转运
一、药物通过细胞膜的方式
载体转运 滤过 简单扩散
主动转运 易化扩散
简单扩散
滤 过
载体转运
主动转运 易化扩散
1.简单扩散
(Simple diffusion, Passive diffusion)
脂溶性物质直接溶于膜的类脂相而通过
2.被动易化扩散: 所有通道蛋白和许多载体蛋白使溶质穿 过膜的过程是被动的,即运动方向是由溶 质的浓度梯度或电化学梯度决定的,称为 被动易化扩散(passive facilitated diffusion)。其特点是:顺浓度梯度转运, 不消耗能量,有饱和现象,可被竞争性抑 制。
3.易化扩散,又叫载体转运
第二章 药物代谢动力学
Pharmacokinetics
内容提要
第一节 药物分子的跨膜转运 滤过 第二节 简单扩散 载体转运
药物的体内过程
吸收
第三节 第四节 房室模型
分布
代谢
排泄
药物消除动力学 一级消除动力学 零级消除动力学
第五节
体内药物的药量-时间关系4.疾病 脂痢:脂溶性药物吸收不良; 急性菌痢:婴幼儿对氨苄青霉素和萘啶酸吸 收不佳; 柯兴氏症:肠壁增厚,减少吸收表面积。
5.药物相互作用 抗酸药一般为强碱弱酸型化合物或两性化合物, 所以会改变胃肠道的pH,因而会改变药物的溶解 度。改变胃排空,金属离子可以与药物形成复合 物,影响吸收。抗酸药中,两性化合物氢氧化铝 呈胶体状态,可吸附药物,影响吸收。 代谢抑制剂可抑制相关药物的吸收,如丙磺舒、 汞撒利、利尿酸可减少洋地黄毒甙等的吸收。同 载体转运的药物可产生竞争性抑制作用,如对氨 基水杨酸与利福平之间,新霉素与青霉素之间都 会减少对方的吸收。
定义
药物体内处置 (Disposition) 吸收 (Absorption) 分布 (Distribution)
代谢 (Metabolism)
排泄 (Excretion)
体内药物 浓度随时 间变化的 动力学规 律
吸 收
药物在组织中 的分布 药物在循环系统中 的分布 药物的消除
药代动力学
分布
肠黏膜上皮细胞及其它大多数细 胞膜孔道4~8Å (=1010m ),仅 水、尿素等小分子水溶性物质能 通过,分子量>100者即不能通过
毛细血管内皮孔 道约40Å ,除蛋 白质外,血浆中 的溶质均能通过
载体转运
膜转运蛋白主要有两类,一类为载体蛋白 (carrier protein),一类为通道蛋白 (channel protein)。载体蛋白与特定的 溶质结合,改变构象使溶质穿越细胞膜。 通道蛋白形成一种充满水溶液的通道,贯 穿脂双层,特定的溶质可由通道穿过细胞 膜。这些转运方式叫做载体转运,按其不 同的特点,又分为两种方式。
4).转运蛋白 被动扩散是药物在胃肠道最重要的转运过程。 扩散能够发生在通过细胞的途径和通过细胞间的 途径。 主动转运也占有很重要的位置。一些药物与受 体或酶的内源性配体结构类似,因此,它们自然 成为各种生物膜泵(如氨基酸、葡萄糖。维生素 和重金属转运蛋白)的配体。甚至很多结构更为 复杂的新药,也需要载体介导转运进行吸收。还 有很多结合代谢物,可被有机阴离子转运多肽、 有机阳离子转运蛋白和有机阴离子转运蛋白转运。
4.主动转运 (Active transport)
需依赖细胞膜内特异性载体转运
5-氟脲嘧啶、甲基多巴等 特点: 逆浓度梯度,耗能 特异性(选择性) 饱和性 竞争性
膜动转运
• 指大分子转运伴随膜运动。 • 1,胞饮(pinocytosis):又称吞饮或入胞,指 液态蛋白质或大分子物质,可通过生物膜内 陷形成吞噬小胞,进入细胞内。 • 2,胞吐(exocytosis):又称胞裂外排或出胞, 指液态大分子,可从细胞内转运到细胞外。 • 例:胞饮:垂体后叶素粉剂经鼻粘膜吸收 • 胞吐:腺体分泌,递质释放
第二节
药物的体内过程
Absorption, Distribution, Metabolism and Excretion
(一)药物的吸收
吸收是指药物从用药部位进人血液循环的过程。
• • • •
消化道吸收 注射部位的吸收 呼吸道吸收 皮肤和粘膜吸收
一、消化道吸收 (一)胃和小肠 大部分药物是经过口服途径给药,也即消化道 吸收的方式。消化道吸收实际上就是胃和小肠的 吸收。 胃是一个容积很大的器官,其粘膜面积较大, 约为1m2,有丰富的血流灌注,血流量为 150ml/min。对药物吸收十分有利。但胃液的酸 性较强,pH在1-2左右,因此,弱酸性药物基本 以非离子型存在,容易被吸收,而弱减性药物在 胃中大部分以离子型存在,不易吸收。
• 有一些转运蛋白系统的作用与吸收相反, 是为了排出非营养化合物,从而保护有机 体。它们中最典型的代表是多要耐药蛋白 家族(multi-drug resistance protein family)。P-糖蛋白就是一种所谓的排出泵 (efflux pump),是MDR1基因的产物,能 够从细胞逐出广泛的结构不同的物质。
生物膜象一道半透膜屏障,控制着营养物质、 内源性物质从细胞外液进入细胞,和代谢 产物流出细胞,同时阻止外源性有害物质 进入细胞,保持内环境的稳定。 生物膜又如一个平台,在膜脂双分子层中, 镶嵌了一些重要的功能性蛋白质,如酶、 受体、转运蛋白、离子通道等,完成细胞 的有关功能。
(一) 被动转运
特点:(1) 由高浓度侧向低浓度侧转运 (2)速度与膜两侧浓差成正比 (3)不消耗ATP (4)无载体
(1) 口服给药 (Oral ingestion)
吸收部位
主要在小肠。药物从胃肠道吸收后,都要经过门静脉进人 肝,再进人血液循环。舌下给药或直肠给药,分别通过口 腔、直肠和结肠的粘膜吸收
停留时间长,经绒毛吸收面积大 毛细血管壁孔道大,血流丰富
pH5-8,对药物解离影响小
Fick扩散定律 (Fick’s Law of Diffusion)
碱性药 (Basic drug): BH+ H+ + B (分子型) 离子障(ion trapping) 分子型极性低,亲脂,可通过膜;离子型相反
H+ HA AB H+ BH+
HA H+
A-
B H+
BH+
pH和pKa决定药物分子解离多少
酸性药 :
溶液pH值的微小变化可显 著改变药物的解离度。 弱酸性药物在酸性环境中 非解离型多。
特 点:
转运速度与脂溶度(lipid solubility)成正比,
药物的油水分配系数越大越容易通过,大多 数药物的转运属于简单扩散。顺浓度差,不 耗能。不需要载体,无饱和性,各药之间无 竞争性抑制现象。转运速度与浓度差成正比. 转运速度与药物解离度 (pKa) 有关
酸性药 (Acidic drug): HA H+ + A
1.主动转运: 细胞膜利用消耗能量使物质逆浓度梯度方向进 行的转运,称为主动转运(active transport)。 主动转运过程类似于酶和底物的反应,有特定的 结合部位。因此,其特点是:逆浓度梯度;消耗 能量;可被代谢抑制剂阻断;对底物转运有结构 特异性要求,相似结构由同一系统进行转运,彼 此产生竞争性抑制,转运过程有饱和现象。与酶 底物反应不同的是,载体蛋白对溶质没有结构修 饰作用。
2).食物:食物有不同的成分,进食量和进食 时间也有变异,药物的化合物也分属各种 类型,因此食物对药物会有不同的影响。 如纤维与地高辛形成复合物,四环素与多 价金属螯合均减慢其吸收速度;而脂肪则 可增加灰黄霉素的吸收。
3).肠蠕动 肠蠕动对药物吸收有不同的影响。 其一,可促进固体药物的崩解和溶解。其 二,使不搅动水层厚度减小,有利于脂溶 性药物的吸收。其三,使溶解度小的或有 主动转运的药物在肠道内存留时间缩短, 减少吸收。
2.血流 灌注速率是单位容积组织每分钟血流量, 单位用ml/min/ml组织表示。血流灌注速率 大,单位时间里携带的药物较多,吸收较 快。对于高脂溶性药物或自由通过膜孔小 分子,其透过生物膜的速度较快,吸收速 率主要受灌注速率限制。
3.胃肠道状况 胃肠道本身的情况对吸收的影响是显而 易见的,主要有下列一些方面: 1).胃排空:为胃将内容物完全排入小肠的过 程。延缓胃排空有利于一些碱性药物在胃 中的溶解;另一方面,它又使一些药物进 入小肠的时间延长,影响吸收的速度。不 同食物和药物可增加或减少胃排空时间。