中考一元一次不等式组专题复习
中考复习 一元一次(组)不等式应用(四大类型)
中考复习一元一次(组)不等式应用(四大类型)考点1 盈利问题1.(2021春•饶平县校级期末)八年级某班级部分同学去植树,若每人平均植树7棵,还剩9棵,若每人平均植树9棵,则有1位同学植树的棵数不到8棵.若设同学人数为x人,植树的棵数为(7x+9)棵,下列各项能准确的求出同学人数与种植的树木的数量的是()A.7x+9≤8+9(x﹣1)B.7x+9≥9(x﹣1)C.D.2.(磁县期末)现在有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍不空也不满,若设宿舍间数为x,则可以列得不等式组为()A.B.C.D.3.把一些书分给几名同学,如果每人分3本,那么余6本;如果前面的每名同学分5本,那么最后一人就分不到3本,这些书有______本,共有______人.()A.27本,7人B.24本,6人C.21本,5人D.18本,4人考点2 行程问题4.(2020春•嘉祥县期末)某人要完成2.1千米的路程,并要在18分钟内到达,已知他每分钟走90米.若跑步每分钟可跑210米,问这人完成这段路程,至少要跑()A.3分钟B.4分钟C.4.5分钟D.5分钟5.(2020春•濮阳期末)爆破员要爆破一座旧桥,根据爆破情况,安全距离是70米(人员要撤到70米或70米以外),下面是已知的一些数据,人员撤离速度是7米/秒,导火索的燃烧速度是10.3厘米/秒,请问这次爆破的导火索至少多长才能确保安全?()A.100厘米B.101厘米C.102厘米D.103厘米6.(春•番禺区期末)张翔上午7:30出发,从学校骑自行车去县城,路程全长20km,中途因道路施工步行一段路他步行的平均速度是5km/h.(1)若张翔骑车的平均速度是15km/h,当天上午9:00到达县城,则他骑车与步行各用多少时间?(2)若张翔必须在当天上午9:00之前赶到县城,他的步行平均速度不变,则他骑车的平均速度应在什么范围内?7.(市北区二模)小颖和小华进行百米赛跑,小颖的平均速度是7m/s,小华的平均速度是6m/s,小颖让小华先跑10米.(1)求小颖何时追上小华;(2)求从什么时间开始,小颖到终点的距离不超过16米;(3)求小颖何时和小华相距5米.考点3 经济问题8.(春•金水区校级月考)某商品进价是6000元,标价是9000元,商店要求利润率不低于5%,需按标价打折出售,最低可以打()A.8折B.7折C.7.5折D.8.5折9.(2021•金水区校级开学)某商品进价是400元,标价是500元,商店要求利润不低于10%,需按标价打折出售,最多可以打()A.8折B.7折C.7.5折D.8.8折10.(春•荷塘区期末)已知某品牌的饮料有大瓶与小瓶装之分.某超市花了2100元购进一批该品牌的饮料共800瓶,其中,大瓶和小瓶饮料的进价及售价如表所示.大瓶小瓶进价(元/瓶) 3 2售价(元/瓶) 5 3(1)问:该超市购进大瓶和小瓶饮料各多少瓶?(2)当大瓶饮料售出了200瓶,小瓶饮料售出了100瓶后,商家决定将剩下的小瓶饮料的售价降低0.5元销售,并把其中一定数量的小瓶饮料作为赠品,在顾客一次性购买大瓶饮料时,每满2瓶就送1瓶小瓶饮料,送完即止.请问:超市要使这批饮料售完后获得的利润为1075元,那么小瓶饮料作为赠品送出多少瓶?11.(防城港)蔬菜经营户老王,近两天经营的是青菜和西兰花.(1)昨天的青菜和西兰花的进价和售价如表,老王用600元批发青菜和西兰花共200市斤,当天售完后老王一共能赚多少元钱?青菜西兰花进价(元/市斤) 2.8 3.2售价(元/市斤)4 4.5(2)今天因进价不变,老王仍用600元批发青菜和西兰花共200市斤.但在运输中青菜损坏了10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,应怎样给青菜定售价?(精确到0.1元)考点4 方案问题12.(武汉模拟)某自行车专卖店销售A,B两种型号的自行车,其进价与售价如表进价(元/辆)售价(元/辆)自行车A200250自行车B160200(1)一季度,自行车专卖店购进这两种型号的自行车共30辆,用去了5600元,并且全部售完,该自行车专卖店在该买卖中赚了元;(2)为了满足市场需求,二季度自行车专卖店决定用不超过9000元的资金采购A、B 两种型号的自行车共50辆,且自行车A的数量不少于自行车B的数量的,问自行车专卖店有哪几种进货方案?并说明理由;(3)在(2)的条件下,请你通过计算判断,哪种进货方案自行车专卖店赚钱最多?13.(资阳)为了解决农民工子女就近入学问题,我市第一小学计划2012年秋季学期扩大办学规模.学校决定开支八万元全部用于购买课桌凳、办公桌椅和电脑,要求购买的课桌凳与办公桌椅的数量比为20:1,购买电脑的资金不低于16000元,但不超过24000元.已知一套办公桌椅比一套课桌凳贵80元,用2000元恰好可以买到10套课桌凳和4套办公桌椅.(课桌凳和办公桌椅均成套购进)(1)一套课桌凳和一套办公桌椅的价格分别为多少元?(2)求出课桌凳和办公桌椅的购买方案.14.(黔东南州)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?培优特训专项2.2 一元一次(组)不等式应用(四大类型)考点1 盈利问题1.(2021春•饶平县校级期末)八年级某班级部分同学去植树,若每人平均植树7棵,还剩9棵,若每人平均植树9棵,则有1位同学植树的棵数不到8棵.若设同学人数为x人,植树的棵数为(7x+9)棵,下列各项能准确的求出同学人数与种植的树木的数量的是()A.7x+9≤8+9(x﹣1)B.7x+9≥9(x﹣1)C.D.【答案】D【解答】解:(x﹣1)位同学植树棵数为9(x﹣1),∵有1位同学植树的棵数不到8棵.植树的总棵数为(7x+9)棵,∴可列不等式组为:.故选:D.2.(磁县期末)现在有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍不空也不满,若设宿舍间数为x,则可以列得不等式组为()A.B.C.D.【答案】D【解答】解:∵若每间住4人,则还有19人无宿舍住,∴学生总人数为(4x+19)人,∵一间宿舍不空也不满,∴学生总人数﹣(x﹣1)间宿舍的人数在1和5之间,∴列的不等式组为:故选:D.3.把一些书分给几名同学,如果每人分3本,那么余6本;如果前面的每名同学分5本,那么最后一人就分不到3本,这些书有______本,共有______人.()A.27本,7人B.24本,6人C.21本,5人D.18本,4人【答案】C【解答】解:设有x名同学,则就有(3x+6)本书,由题意,得:0≤3x+6﹣5(x﹣1)<3,解得:4<x≤5.5,∵x为非负整数,∴x=5.∴书的数量为:3×5+6=21.故选:C.考点2 行程问题4.(2020春•嘉祥县期末)某人要完成2.1千米的路程,并要在18分钟内到达,已知他每分钟走90米.若跑步每分钟可跑210米,问这人完成这段路程,至少要跑()A.3分钟B.4分钟C.4.5分钟D.5分钟【答案】B【解答】解:设这人跑了x分钟,则走了(18﹣x)分钟,根据题意得:210x+90(18﹣x)≥2100,解得:x≥4,答:这人完成这段路程,至少要跑4分钟.故选:B.5.(2020春•濮阳期末)爆破员要爆破一座旧桥,根据爆破情况,安全距离是70米(人员要撤到70米或70米以外),下面是已知的一些数据,人员撤离速度是7米/秒,导火索的燃烧速度是10.3厘米/秒,请问这次爆破的导火索至少多长才能确保安全?()A.100厘米B.101厘米C.102厘米D.103厘米【答案】D【解答】解:设这次爆破的导火索需要xcm才能确保安全,•7≥70x≥103.这次爆破的导火索至少103cm才能确保安全.故选:D.6.(春•番禺区期末)张翔上午7:30出发,从学校骑自行车去县城,路程全长20km,中途因道路施工步行一段路他步行的平均速度是5km/h.(1)若张翔骑车的平均速度是15km/h,当天上午9:00到达县城,则他骑车与步行各用多少时间?(2)若张翔必须在当天上午9:00之前赶到县城,他的步行平均速度不变,则他骑车的平均速度应在什么范围内?【答案】(1)骑车用了1.25小时,步行用了0.25小时,(2)大于15km/h.【解答】解:(1)设他骑车用了x小时,步行用了y小时,依题意得:,解得,答:他骑车用了1.25小时,步行用了0.25小时,(2)设骑车的平均速度为vkm/h,依题意得:1.25v+5×0.25>20,解得:v>15,答:骑车的平均速度大于15km/h.7.(市北区二模)小颖和小华进行百米赛跑,小颖的平均速度是7m/s,小华的平均速度是6m/s,小颖让小华先跑10米.(1)求小颖何时追上小华;(2)求从什么时间开始,小颖到终点的距离不超过16米;(3)求小颖何时和小华相距5米.【答案】(1)10秒(2)12秒开始(3)5秒【解答】解:(1)设经过x秒小颖追上小华,由题意得7x﹣6x=10解得:x=10答:经过10秒小颖追上小华.(2)设经过y秒后,小颖到终点的距离不超过16米,由题意得0≤100﹣7y≤16解得:12≤y≤14答:从12秒开始,小颖到终点的距离不超过16米.(3)设小颖追上小华之前,经a秒小颖和小华相距5米,7a﹣6a=10﹣5解得:a=5设小颖追上小华之后,经b秒小颖和小华相距5米,7b﹣6b=10+5解得:b=15(不合题意,舍去)答:经5秒小颖和小华相距5米.考点3 经济问题8.(春•金水区校级月考)某商品进价是6000元,标价是9000元,商店要求利润率不低于5%,需按标价打折出售,最低可以打()A.8折B.7折C.7.5折D.8.5折【答案】B【解答】解:设商店可以打x折出售此商品,根据题意可得:,解得:x≥7,故选:B.9.(2021•金水区校级开学)某商品进价是400元,标价是500元,商店要求利润不低于10%,需按标价打折出售,最多可以打()A.8折B.7折C.7.5折D.8.8折【答案】D【解答】解:设可以打x折,根据题意可得:500×﹣400≥400×10%,解得:x≥8.8,故选:D.10.(春•荷塘区期末)已知某品牌的饮料有大瓶与小瓶装之分.某超市花了2100元购进一批该品牌的饮料共800瓶,其中,大瓶和小瓶饮料的进价及售价如表所示.大瓶小瓶进价(元/瓶) 3 2售价(元/瓶) 5 3(1)问:该超市购进大瓶和小瓶饮料各多少瓶?(2)当大瓶饮料售出了200瓶,小瓶饮料售出了100瓶后,商家决定将剩下的小瓶饮料的售价降低0.5元销售,并把其中一定数量的小瓶饮料作为赠品,在顾客一次性购买大瓶饮料时,每满2瓶就送1瓶小瓶饮料,送完即止.请问:超市要使这批饮料售完后获得的利润为1075元,那么小瓶饮料作为赠品送出多少瓶?【答案】(1)大瓶饮料500瓶,小瓶饮料300瓶(2)50瓶【解答】解:(1)设该超市购进大瓶饮料x瓶,小瓶饮料y瓶,依题意,得:,解得:.答:该超市购进大瓶饮料500瓶,小瓶饮料300瓶.(2)设小瓶饮料作为赠品送出m瓶,依题意,得:(5﹣3)×500+(3﹣2)×100+(3﹣0.5﹣2)×(300﹣100﹣m)﹣2m=1075,解得:m=50.答:小瓶饮料作为赠品送出50瓶.11.(防城港)蔬菜经营户老王,近两天经营的是青菜和西兰花.(1)昨天的青菜和西兰花的进价和售价如表,老王用600元批发青菜和西兰花共200市斤,当天售完后老王一共能赚多少元钱?青菜西兰花进价(元/市斤) 2.8 3.2售价(元/市斤)4 4.5(2)今天因进价不变,老王仍用600元批发青菜和西兰花共200市斤.但在运输中青菜损坏了10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,应怎样给青菜定售价?(精确到0.1元)【答案】(1)赚250元钱(2)不低于4.5元/市斤【解答】解:(1)设批发青菜x市斤,西兰花y市斤;根据题意得:,解得:,即批发青菜100市斤,西兰花100市斤,∴100×(4﹣2.8)+100×(4.5﹣3.2)=120+130=250(元);答:当天售完后老王一共能赚250元钱;(2)设给青菜定售价为a元/市斤;根据题意得:100×(1﹣10%)a+100×4.5﹣600≥250,解得:a≥≈4.44;答:给青菜定售价为不低于4.5元/市斤.考点4 方案问题12.(武汉模拟)某自行车专卖店销售A,B两种型号的自行车,其进价与售价如表进价(元/辆)售价(元/辆)自行车A200250自行车B160200(1)一季度,自行车专卖店购进这两种型号的自行车共30辆,用去了5600元,并且全部售完,该自行车专卖店在该买卖中赚了元;(2)为了满足市场需求,二季度自行车专卖店决定用不超过9000元的资金采购A、B 两种型号的自行车共50辆,且自行车A的数量不少于自行车B的数量的,问自行车专卖店有哪几种进货方案?并说明理由;(3)在(2)的条件下,请你通过计算判断,哪种进货方案自行车专卖店赚钱最多?【答案】(1)1400 (2)三种方案(3)当a=25时,W最大,此时购进自行车A、自行车B各25台.【解答】解:(1)设自行车专卖店购进自行车Ax辆,自行车By辆,依题意得,解得,所以,20×(250﹣200)+10×(200﹣160)=1400(元).答:自行车专卖店在该买卖中赚了1400元;(2)设购买自行车Aa台,则购买自行车B(50﹣a)台,依题意得,解得22≤a≤25.又∵a为正整数,∴a可取23,24,25.故有三种方案:①购买自行车A23台,则购买自行车B27台;②购买自行车A24台,则购买自行车B26台;③购买自行车A25台,则购买自行车B25台.(3)设自行车专卖店赚钱数额为W元,当a=23时,W=23×(250﹣200)+27×(200﹣160)=2230;当a=24时,W=24×(250﹣200)+26×(200﹣160)=2240;当a=25时,W=25×(250﹣200)+25×(200﹣160)=2250;综上所述,当a=25时,W最大,此时购进自行车A、自行车B各25台.故答案为:1400.13.(资阳)为了解决农民工子女就近入学问题,我市第一小学计划2012年秋季学期扩大办学规模.学校决定开支八万元全部用于购买课桌凳、办公桌椅和电脑,要求购买的课桌凳与办公桌椅的数量比为20:1,购买电脑的资金不低于16000元,但不超过24000元.已知一套办公桌椅比一套课桌凳贵80元,用2000元恰好可以买到10套课桌凳和4套办公桌椅.(课桌凳和办公桌椅均成套购进)(1)一套课桌凳和一套办公桌椅的价格分别为多少元?(2)求出课桌凳和办公桌椅的购买方案.【答案】(1)一套课桌凳和一套办公桌椅的价格分别为120元、200元(2)略【解答】解:(1)设一套课桌凳和一套办公桌椅的价格分别为x元、y元,得:,解得∴一套课桌凳和一套办公桌椅的价格分别为120元、200元;(2)设购买办公桌椅m套,则购买课桌凳20m套,由题意得:16000≤80000﹣120×20m﹣200×m≤24000,解得:,∵m为整数,∴m=22、23、24,有三种购买方案:方案一方案二方案三课桌凳(套)440460480办公桌椅(套)22232414.(黔东南州)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?【答案】(1)饮用水和蔬菜分别为200件和120件(2)①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆;(3)选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元.【解答】解:(1)设饮用水有x件,则蔬菜有(x﹣80)件.x+(x﹣80)=320,解这个方程,得x=200.∴x﹣80=120.答:饮用水和蔬菜分别为200件和120件;(2)设租用甲种货车m辆,则租用乙种货车(8﹣m)辆.得:,解这个不等式组,得2≤m≤4.∵m为正整数,∴m=2或3或4,安排甲、乙两种货车时有3种方案.设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆;(3)3种方案的运费分别为:①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元);∴方案①运费最少,最少运费是2960元.答:运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元.。
2023年中考数学总复习第二章第四节 一元一次不等式(组)及其应用
2023年中考数学总复习第二章第四节一元一次不等式(组)及其应用一、选择题1.[2020·遵化三模]下面列出的不等式中,正确的是()A.“m 不是正数”表示为m<0B.“m 不大于3”表示为m<3C.“n 与4的差是负数”表示为n-4<0D.“n 不等于6”表示为n>62.[2020·株洲]下列哪个数是不等式2(x-1)+3<0的一个解?()A.-3B.C.D.23.[易错][2020·石家庄一模]如果a>b,c<1,那么下列不等式一定成立的是()A.ac>bc B.a+c>b C.ac<bc D.a-c>b-c4.[2020·保定模拟]不等式2x-1<4(x+1)的解集表示在如图所示的数轴上,则阴影部分盖住的数是()A.-1B.-2C.-1.5D.-2.5(第4题图)5.[2020·河北模拟]下列各数中,是不等式组的解的是()A.-1B.2C.4D.86.[难点][2020·天水]若关于x 的不等式3x+a ≤2只有2个正整数解,则a 的取值范围为()A.-7<a<-4B.-7≤a≤-4C.-7≤a<-4D.-7<a≤-47.[2020·重庆]小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔 2.2元,小明买了7支签字笔,他最多还可以买的作业本个数为()A.5B.4C.3D.2二、填空题8.[2020·毕节]不等式x-3<6-2x 的解集是______.9.[2020·河南]已知关于x 的不等式组其中a,b 在数轴上的对应点如图所示,则这个不等式组的解集为______.(第9题图)10.[2020·石家庄一模]不等式的最大整数解是______.11.[创新][2020·保定清苑区一模]现规定一种新的运算:=ad-bc,≤18,则x 的取值范围_____.三、解答题12.[2020·石家庄长安区模拟]解不等式组,请结合题意填空,完成本题的解答.(1)解不等式①,得______;(2)解不等式②,得______;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为___________.(第12题图)13.[2020·苏州]如图,“开心”农场准备用50m 的护栏围成一块靠墙的矩形花园,设矩形花园的长为a (m),宽为b(m).(1)当a=20时,求b 的值;(2)受场地条件的限制,a 的取值范围为18≤a≤26,求b 的取值范围(第13题图)x>a,x>b,2x-3>0,x-4<0。
2023中考数学复习-专题13 一元一次不等式(组)及其应用(练透)(学生版)
专题13 一元一次不等式(组)及其应用一、单选题1.(2022·珠海市九洲中学九年级三模)若x y >,则( ) A .22x y +<+B .22x y -<-C .22x y <D .22x y -<-2.(2022·浙江杭州·翠苑中学九年级二模)下列说法正确的是( ) A .若a b =,则ac bc = B .若a b =,则a b c c= C .若a b >,则11a b ->+D .若1xy>,则x y >3.(2022·深圳市南山区荔香学校九年级开学考试)关于x 的不等式()122m x m +>+的解集为2x <,则m 的取值范围是( ) A .1m ≠-B .1m =-C .1m >-D .1m <-4.(2022·重庆市天星桥中学九年级开学考试)已知关于x 的不等式组5720x a x -<⎧⎨--<⎩有且只有3个非负整数解,且关于x 的分式方程61a x --+a =2有整数解,则所有满足条件的整数a 的值的个数为( ) A .4B .3C .2D .15.(2022·老河口市教学研究室九年级月考)不等式组2030x x -≤⎧⎨->⎩的整数解有( )A .1个B .2个C .3个D .4个6.(2022·山东日照·)若不等式组643x x x m +<-⎧⎨>⎩的解集是3x >,则m 的取值范围是( )A .3m >B .3m ≥C .3m ≤D .3m <7.(2022·珠海市紫荆中学九年级一模)不等式组20321x x -≥⎧⎨+>-⎩的解集是( )A .﹣1<x ≤2B .﹣2≤x <1C .x <﹣1或x ≥2D .2≤x <﹣18.(2022·四川省宜宾市第二中学校九年级三模)若关于x 的不等式3x +m ≥0有且仅有两个负整数解,则m 的取值范围是( ) A .6≤m ≤9B .6<m <9C .6<m ≤9D .6≤m <99.(2020·重庆梁平·)若数a 使关于x 的不等式组347x a x ≤⎧⎪+⎨>-⎪⎩有且仅有四个整数解,且使关于y的分式方程2233ay y+=--有非负数解,则所有满足条件的整数a的值之和是()A.﹣2 B.﹣3 C.2 D.1 10.(2022·北京市第十二中学九年级月考)某中学举行了科学防疫知识竞赛.经过选拔,甲、乙、丙三位选手进入到最后角逐.他们还将进行四场知识竞赛.规定:每场知识竞赛前三名的得分依次为a,b,c(a>b>c且a,b,c均为正整数);选手总分为各场得分之和.四场比赛后,已知甲最后得分为16分,乙和丙最后得分都为8分,且乙只有一场比赛获得了第一名,则下列说法正确的是()A.每场比赛的第一名得分a为4B.甲至少有一场比赛获得第二名C.乙在四场比赛中没有获得过第二名D.丙至少有一场比赛获得第三名二、填空题11.(2022·湖北黄石八中九年级模拟预测)不等式组3712261xx⎧->⎪⎨⎪-≥-⎩的整数解为______________.12.(2022·全国九年级课时练习)高速公路某收费站出城方向有编号为A,B,C,D,E的五个小客车收费出口,假定各收费出口每30分钟通过小客车的数量分别都是不变的.同时开放其中的某两个收费出口,这两个出口30分钟内一共通过的小客车数量记录如下:在A,B,C号是________.13.(2022·辽宁沈阳·中考真题)不等式组51350xx-<⎧⎨-≥⎩的解集是__________.14.(2022·四川省宜宾市第二中学校九年级一模)不等式组:515264253(5)x xx x-+⎧+>⎪⎨⎪+≤-⎩的解集为______.15.(2022·临沂第九中学九年级月考)不等式222xx->-的解集为_____.三、解答题16.(2022·福建厦门双十中学思明分校九年级二模)解不等式组:31320x xx+>+⎧⎨->⎩17.(2022·山东济南·中考真题)解不等式组:3(1)25,32,2x xxx-≥-⎧⎪⎨+<⎪⎩①②并写出它的所有整数解.18.(2022·福建省福州第十九中学九年级月考)解不等式组()311922x xxx⎧+>-⎪⎨+<⎪⎩19.(2022·全国九年级课时练习)某公司招聘人才,对应聘者分别进行阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的测试成绩(百分制)如表:(单位:分)(1(2)若公司将阅读能力、思维能力和表达能力三项测试得分按3:5:2的比确定每人的总成绩.①计算甲的总成绩;②若乙的总成绩超过甲的总成绩,则乙的表达能力成绩x超过多少分?20.(2022·福建省福州延安中学九年级月考)解不等式组3534(1)2x xx x-<-⎧⎨+≥-⎩,并把解集在数轴上表示.21.(2022·四川绵阳·中考真题)某工艺厂为商城制作甲、乙两种木制工艺品,甲种工艺品不少于400 件,乙种工艺品不少于680件.该厂家现准备购买A、B两类原木共150根用于工艺品制作,其中,1根A类原木可制作甲种工艺品4件和乙种工艺品2件,1根B类原木可制作甲种工艺品2件和乙种工艺品6件.(1)该工艺厂购买A类原木根数可以有哪些?(2)若每件甲种工艺品可获得利润50元,每件乙种工艺品可获得利润80元,那么该工艺厂购买A、B两类原木各多少根时获得利润最大,最大利润是多少?22.(2022·哈尔滨市第十七中学校九年级二模)毕业考试结束后,班主任罗老师预购进甲乙两种奖品奖励学生,若购进甲种奖品3件和乙种奖品2件共需要40元;若购进甲种奖品2件和乙种奖品3件共需要55元.(1)求购进甲、乙两种奖品每件分别需要多少元?(2)班主任罗老师决定购进甲、乙两种奖品共20件,且用于购买这20件奖品的资金不超过160元,则最多能购进乙种奖品多少件?23.(2022·日照港中学九年级一模)山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场.某车行经营的A型车去年销售总额为5万元,今年每辆售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(用列方程的方法解答)(2)该车行计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A,B两种型号车的进货和销售价格如下表:。
中考数学复习:专题2-11 用一元一次不等式(组)解决生活中的实际问题
专题11 用一元一次不等式(组)解决生活中的实际问题【专题综述】一元一次不等式组是在学习了一元一次不等式组的概念和解法之后,进一步探索现实世界数量关系的重要内容,是继学习了一元一次方程和二元一次方程组之后,又一次数学建模思想的学习,也是后续学习二元一次方程等内容的重要基础,有着承前启后的作用。
用一元一次不等式(组)解决生活中的实际问题,其主要步骤为:1、审题,设未知数;2、抓关键词,找不等关系;3、构建不等式(组)4 、解不等式(组);5、根据题意,写出合理答案。
【方法解读】一、打折问题:例1,一双运动鞋的进价是200元,标价400元,商场要获得不低于120元的利润,问:最低可以打几折?【举一反三】(湖南省娄底市)某种商品的进价为1000元,出售时的标价为1500元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则最多可打().A、6折B、7折C、8折D、9折二、赛球问题:例2,甲、乙两队进行足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了12场,甲队保持不败,总得分超过26分,问:甲队至少胜了多少场?【举一反三】(江西省崇仁一中)在崇仁一中中学生篮球赛中,小方共打了10场球.他在第6,7,8,9场比赛中分别得了22,15,12和19分,他的前9场比赛的平均得分y比前5场比赛的平均得分x要高.如果他所参加的10场比赛的平均得分超过18分(1)用含x的代数式表示y;(2)小方在前5场比赛中,总分可达到的最大值是多少?(3)小方在第10场比赛中,得分可达到的最小值是多少?三、购买问题:例3,某种肥皂零售价每块2元,凡购买2块以上(包括2块),商场推出两种优惠销售办法。
第一种:一块肥皂按原价,其余按原价的七折销售;第二种:全部按原价的八折销售。
在购买的情况下,要使第一种方法比第二种方法得到的优惠多,最少需要买几块肥皂?【举一反三】某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品一律按商品价格的9.5折优惠.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,她购买商品的价格为多少元时,两个方案所付金额相同?(3)购买商品的价格______元时,采用方案一更合算.四、分苹果问题:例4,把44个苹果分给若干名学生,若每人分苹果7个,则最后1名学生分得的苹果不足3个,求学生人数。
2023年中考数学一轮复习之必考点题型全归纳与分层精练-一元一次不等式(组)(解析版)
专题10一元一次不等式(组)【专题目录】技巧1:一元一次不等式组的解法技巧技巧2:一元一次不等式的解法的应用技巧3:含字母系数的一元一次不等式(组)的应用【题型】一、不等式的性质【题型】二、不等式(组)的解集的数轴表示【题型】三、求一元一次不等式的特解的方法【题型】四、确定不等式(组)中字母的取值范围【题型】五、求一元一次方程组中的待定字母的取值范围【题型】六、一元一次不等式的应用【考纲要求】1、了解不等式(组)有关的概念,理解不等式的基本性质;2、会解简单的一元一次不等式(组);并能在数轴上表示出其解集.3、能列出一元一次不等式(组)解决实际问题.【考点总结】一、一元一次不等式(组)不等式或组不等式的基本性质(1)不等式的两边都加上(或减去)同一个整式,不等号的方向不变(2)不等式的两边都乘(或除以)同一个正数,不等号的方向不变(3)不等式的两边都乘(或除以)同一个负数,不等号的方向改变解法①去分母;②去括号;③移项;④合并同类项;⑤未知数的系数化为1.在①至⑤步的变形中,一定要注意不等号的方向是否需要改变.一元一次不等式组定义一般地,关于同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.解法先求出各个不等式的解再确定其公共部分,即为原不等式组的解集。
四种不等式组(a<b)解集图示口诀【注意】1.不等式的解与不等式的解集的区别与联系:1)不等式的解是指满足这个不等式的未知数的某个值。
2)不等式的解集是指满足这个不等式的未知数的所有的值。
3)不等式的所有解组成了这个不等式的解集,不等式的解集中包括这个不等式的每一个解。
2.用数轴表示不等式的解集:大于向右,小于向左,有等号画实心圆点,无等号画空心圆图。
2.列不等式或不等式组解决实际问题,要注意抓住问题中的一些关键词语,如“至少”“最多”“超过”“不低于”“不大于”“不高于”“大于”“多”等.这些都体现了不等关系,列不等式时,要根据关键词准确地选用不等号.另外,对一些实际问题的分析还要注意结合实际.3.列不等式(组)解应用题的一般步骤:(1)审题;(2)设未知数;(3)找出能够包含未知数的不等量关系;(4)列出不等式(组);(5)求出不等式(组)的解;(6)在不等式(组)的解中找出符合题意的值;(7)写出答案(包括单位名称).【技巧归纳】基本不等式组的解集⎩⎨⎧≥≥b x a x x ≥b 大大取大⎩⎨⎧≤≤b x a x x ≤a 小小取小⎩⎨⎧≤≥bx a x a ≤x ≤b 大小小大中间找⎩⎨⎧≥≤b x a x 无解大大小小解不了技巧1:一元一次不等式组的解法技巧【类型】一、解普通型的一元一次不等式组12x <6,-2≤0的解集,在数轴上表示正确的是()2.解不等式组,并把解集表示在数轴上.(x +2),①+15>0.②【类型】二、解连写型的不等式组3.满足不等式组-1<2x -13≤2的整数的个数是()A .5B .4C .3D .无数4.若式子4-k 的值大于-1且不大于3,则k 的取值范围是____________.5.用两种不同的方法解不等式组-1<2x -13【类型】三、“绝对值”型不等式转化为不等式组求解.6.解不等式|3x -12|≤4.【类型】四、“分式”型不等式转化为不等式组求解7.解不等式3x -62x +1<0.参考答案1.C2.解:由①得,x≥-1.由②得,x <45.∴不等式组的解集为-1≤x <45.表示在数轴上,如图所示.3.B 4.1≤k <55.解:方法1解不等式①,得x>-1.解不等式②,得x≤8.所以不等式组的解集为-1<x≤8.方法2:-1<2x -13≤5,-3<2x -1≤15,-2<2x≤16,-1<x≤8.6.分析:由绝对值的知识|x|<a(a >0),可知-a <x <a.解:由|3x -12|≤4,得-4≤3x -12≤4.-4,①②解不等式①,得x≥-73.解不等式②,得x≤3.所以原不等式的解集为-73≤x≤3.点拨:7.解:∵3x -62x +1<0,∴3x -6与2x +1异号.即:-6>0,+1<0或<0,+1>0.解(Ⅰ)>2,<-12.∴此不等式组无解.解(Ⅱ)<2,>-12.∴此不等式组的解集为-12<x <2.∴原不等式的解集为-12<x <2.技巧2:一元一次不等式的解法的应用【类型】一、直接解不等式1.解下列不等式,并把它们的解集在数轴上表示出来.(1)x >13x -2;(2)4x -13-x >1;(3)x +13≥2(x +1).2.下面解不等式的过程是否正确?如不正确,请找出开始错误之处,并改正.解不等式:4-3x 3-1<7+5x 5.解:去分母,得5(4-3x)-1<3(7+5x).①去括号,得20-15x -1<21+15x.②移项,合并同类项,得-30x <2.③系数化为1,得x >-115.④【类型】二、解含字母系数的一元一次不等式3.解关于x 的不等式ax -x -2>0.【类型】三、解与方程(组)的解综合的不等式4.当m 取何值时,关于x 的方程23x -1=6m +5(x -m)的解是非负数?5+3y =10,-3y =2的解满足不等式ax +y >4,求a 的取值范围.【类型】四、解与新定义综合的不等式6.定义新运算:对于任意实数a ,b ,都有a ★b =a(a -b)+1,等式右边是通常的加法、减法及乘法运算,比如:2★5=2×(2-5)+1=-5.(1)求(-2)★3的值;(2)若3★x 的值小于13,求x 的取值范围,并在数轴上表示出来.【类型】五、解与不等式的解综合的不等式7.已知关于x 的不等式3x -m ≤0的正整数解有四个,求m 的取值范围.8.关于x 的两个不等式①3x +a 2<1与②1-3x>0.(1)若两个不等式的解集相同,求a 的值;(2)若不等式①的解都是②的解,求a 的取值范围.参考答案1.解:(1)x>13x-2,23x>-2,x>-3.这个不等式的解集在数轴上的表示如图所示.(2)4x-13-x>1,4x-1-3x>3,x> 4.这个不等式的解集在数轴上的表示如图所示.(3)x+13≥2(x+1),x+1≥6x+6,-5x≥5,x≤-1.2.解:第①步开始错误,应该改成:去分母,得5(4-3x)-15<3(7+5x).去括号,得20-15x-15<21+15x.移项,合并同类项,得-30x<16.系数化为1,得x>-8 15 .3.解:移项,合并同类项得,(a-1)x>2,当a-1>0,即a>1时,x>2a-1;当a-1=0,即a=1时,x无解;当a-1<0,即a<1时,x<2a-1.4.解:解方程得x =-313(m +1),由题意得-313(m +1)≥0,解得m ≤-1.5.解:2x +3y =10,-3y =2,=2,=2.代入不等式得2a +2>4.所以a >1.6.解:(1)(-2)★3=-2×(-2-3)+1=-2×(-5)+1=10+1=11.(2)∵3★x <13,∴3(3-x)+1<13,去括号,得9-3x +1<13,移项,合并同类项,得-3x <3,系数化为1,得x >-1.在数轴上表示如图所示.7.解:解不等式得x ≤m 3,由题意得4≤m 3<5,解得12≤m <15.方法规律:已知一个不等式的解集满足特定要求,求字母参数的取值范围时,我们可先解出这个含字母参数的不等式的解集,然后根据题意列出一个(或几个)关于字母参数的不等式,从而可求出字母参数的取值范围.8.解:(1)由①得x <2-a 3,由②得x <13,由两个不等的解集相同,得2-a 3=13,解得a =1.(2)由不等式①的解都是②的解,得2-a 3≤13,解得a ≥1.技巧3:含字母系数的一元一次不等式(组)的应用【类型】一、与方程组的综合问题1.已知实数x ,y 同时满足三个条件:①x -y =2-m ;②4x -3y =2+m ;③x >y.那么实数m 的取值范围是()A .m >-2B .m <2C .m <-2D .m >22+y =-7-a ,-y =1+3a的解中,x 为非正数,y 为负数.(1)求a 的取值范围;(2)化简|a -3|+|a +2|.3.在等式y =ax +b 中,当x =1时,y =-3;当x =-3时,y =13.(1)求a ,b 的值;(2)当-1<x <2时,求y 的取值范围.【类型】二、与不等式(组)的解集的综合问题题型1:已知解集求字母系数的值或范围4.已知不等式(a -2)x >4-2a 的解集为x <-2,则a 的取值范围是__________.5-a <1,-2b >3的解集为-1<x <1,求(b -1)a +1的值.题型2:已知整数解的情况求字母系数的值或取值范围6>2,<a 的解集中共有5个整数,则a 的取值范围为()A .7<a ≤8B .6<a ≤7C .7≤a <8D .7≤a ≤87-a ≥0,-b <0的整数解是1,2,3,求适合这个不等式组的整数a ,b 的值.题型3:已知不等式组有无解求字母系数的取值范围8-1>0,-a <0无解,则a 的取值范围是__________.91<a ①,+5>x -7②有解,求实数a 的取值范围.参考答案1.B2.解:(1)=-3+a ,=-4-2a.∵x 为非正数,y 3+a ≤0,4-2a <0,解得-2<a ≤3.(2)∵-2<a ≤3,即a -3≤0,a +2>0,∴原式=3-a +a +2=5.3.解:(1)将x =1时,y =-3;x =-3时,y =13代入y =ax +b +b =-3,3a +b =13,=-4,=1.(2)由y =-4x +1,得x =1-y 4.∵-1<x <2,∴-1<1-y 4<2,解得-7<y <5.4.a <25.-a <1.①,-2b >3.②,解①得x <a +12;解②得x >2b +3.根据题意得a +12=1,且2b +3=-1,解得a =1,b =-2,则(b -1)a +1=(-3)2=9.6.A7.解:解不等式组得a 2≤x <b 3.∵不等式组仅有整数解1,2,3,∴0<a 2≤1,3<b 3≤4.解得0<a ≤2,9<b ≤12.∵a,b为整数,∴a=1,2,b=10,11,12. 8.a≤19.+1<a①,+5>x-7②,解不等式①得x<a-1.解不等式②得x>-6.∵不等式组有解,∴-6<x<a-1,则a-1>-6,a>-5.【题型讲解】【题型】一、不等式的性质例1、若a>b,则下列等式一定成立的是()A.a>b+2B.a+1>b+1C.﹣a>﹣b D.|a|>|b|【答案】B【分析】利用不等式的基本性质判断即可.【详解】A、由a>b不一定能得出a>b+2,故本选项不合题意;B、若a>b,则a+1>b+1,故本选项符合题意;C、若a>b,则﹣a<﹣b,故本选项不合题意;D、由a>b不一定能得出|a|>|b|,故本选项不合题意.故选:B.【题型】二、不等式(组)的解集的数轴表示例2、不等式组20240xx+>⎧⎨-≤⎩的解集在数轴上表示正确的是()A.B.C.D.【答案】C【解析】解不等式x+2>0,得:x>-2,解不等式2x-4≤0,得:x≤2,则不等式组的解集为-2<x≤2,将解集表示在数轴上如下:故选C.【题型】三、求一元一次不等式的特解的方法例3、不等式12x-≤的非负整数解有()A.1个B.2个C.3个D.4个【答案】D【详解】解:12x-≤,解得:3x≤,则不等式12x-≤的非负整数解有:0,1,2,3共4个.故选:D.【题型】四、确定不等式(组)中字母的取值范围例4、若不等式组130x abx->⎧⎨+≥⎩的解集是﹣1<x≤1,则a=_____,b=_____.【答案】-2-3【详解】解:由题意得:130 x abx->⎧⎨+≥⎩①②解不等式①得:x>1+a,解不等式②得:x≤3 b-不等式组的解集为:1+a<x≤3b- 不等式组的解集是﹣1<x≤1,∴..1+a=-1,3b-=1,解得:a=-2,b=-3故答案为:-2,-3.【题型】五、求一元一次方程组中的待定字母的取值范围例5、若不等式组841x x x m +<-⎧⎨>⎩的解集是x >3,则m 的取值范围是().A .m >3B .m≥3C .m≤3D .m <3【答案】C【解析】详解:841x x x m +<-⎧⎨>⎩①②,解①得,x>3;解②得,x>m ,∵不等式组841x x x m +<-⎧⎨>⎩的解集是x>3,则m ⩽3.故选:C.【题型】六、一元一次不等式的应用例6、某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为()A .13B .14C .15D .16【答案】C【分析】根据竞赛得分10=⨯答对的题数(5)+-⨯未答对的题数,根据本次竞赛得分要超过120分,列出不等式即可.【详解】解:设要答对x 道.10(5)(20)120x x +-⨯->,10 1005 120x x -+>,15 220x >,解得:443x >,根据x 必须为整数,故x 取最小整数15,即小华参加本次竞赛得分要超过120分,他至少要答对15道题.故选C .一元一次不等式(组)(达标训练)一、单选题1.若m n >,则下列不等式一定成立的是().A .2121m n -+>-+B .1144m n ++>C .m a n b+>+D .am an-<-【答案】B【分析】根据不等式的性质解答.不等式的性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.【详解】解:A 、∵m >n ,∴-2m <-2n ,则-2m +1<-2n +1,故该选项不成立,不符合题意;B 、∵m >n ,∴m +1>n +1,则1144m n ++>,故该选项成立,符合题意;C 、∵m >n ,∴m +a >n +a ,不能判断m +a >n +b ,故该选项不成立,不符合题意;D 、∵m >n ,当a >0时,-am <-an ;当a <0时,-am >-an ;故该选项不成立,不符合题意;故选:B .【点睛】本题考查了不等式的性质,掌握不等式的基本性质是解答本题的关键.2.北京2022冬奥会吉祥物“冰墩墩”和“雪容融”受到大家的喜爱,某网店出售这两种吉祥物礼品,售价如图所示.小明妈妈一共买10件礼品,总共花费不超过900元,如果设购买冰墩墩礼品x 件,则能够得到的不等式是()A .100x +80(10﹣x )>900B .100+80(10﹣x )<900C .100x +80(10﹣x )≥900D .100x +80(10﹣x )≤900【答案】D【分析】设购买冰墩墩礼品x 件,则购买雪容融礼品(10﹣x )件,根据“冰墩墩单价×冰墩墩个数+雪容融单价×雪容融个数≤900”可得不等式.【详解】解:设购买冰墩墩礼品x 件,则购买雪容融礼品(10﹣x )件,根据题意,得:100x +80(10﹣x )≤900,故选:D .【点睛】本题主要考查由实际问题抽象出一元一次不等式,解题的关键是理解题意,找到其中蕴含的不等关系.3.不等式组3050x x +>⎧⎨-≤⎩的解是()A .3x >-B .5x ≤C .35x -<≤D .无解【答案】C 【分析】先求出每个不等式的解集,再结合起来即可得到不等式组的解集.【详解】由30x +>得:3x >-由50x -≤得:5x ≤∴35x -<≤故选C【点睛】本题考查一元一次方程组的求解,掌握方法是关键.4.不等式3﹣x <2x +6)A .x <1B .x >1C .x <﹣1D .x >﹣1【答案】D【分析】根据一元一次不等式的解法,移项、合并同类项、系数化1求解即可.【详解】解:326x x -<+,移项得362x x -<+,合并同类项得33x -<,系数化1得1x >-,∴不等式326x x -<+的解集是1x >-,故选:D .【点睛】本题考查一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解决问题的关键.5.在数轴上表示不等式1x >-的解集正确的是()A.B.C.D.【答案】A【分析】根据不等式解集的表示方法依次判断.【详解】解:在数轴上表示不等式x>−1的解集的是A.故选:A.【点睛】此题考查了在数轴上表示不等式的解集,正确掌握不等式解集的表示方法,区分实心点与空心点,是解题的关键.二、填空题6.超市用1200元钱批发了A,B两种西瓜进行销售,两种西瓜的批发价和零售价如下表所示,若计划将这批西瓜全部售完后,所获利润率不低于40%,则该超市至少批发A种西瓜__________kg.名称A B批发价(元/kg)43零售价(元/kg)64【答案】120【分析】设批发A种西瓜x kg,根据“利润率不低于40%”列出不等式,求解即可.【详解】解:设批发A种西瓜x kg,则(6-4)x+120043x-×(4-3)≥1200×40%,解得x≥120.答:该超市至少批发A种西瓜120kg.故答案为:120.【点睛】本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,找出合适的不等关系,列不等式求解.7.不等式2103x--<的解集为____.【答案】5x <【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1;本题可以采用去括号、移项、合并同类项即可求解.【详解】解:去分母,得:230x --<,移项,得:23x <+,合并同类项,得:5x <.∴不等式的解集为:5x <.故答案为:5x <.【点睛】本题考查了解一元一次不等式.严格遵循解不等式的基本步骤是关键,尤其需要注意∶不等式两边都乘以或除以同一个负数时,不等号方向改变;在数轴上表示不等式的解集要注意实心点和空心点的区别.三、解答题8.解不等式组:()36,3121,x x x x ≤-⎧⎨+>-⎩并将解集在数轴上表示.【答案】3x ≥,数轴表示见解析【详解】解:解不等式36x x -≤,得:3x ≥,解不等式312(1)x x +>-,得:3x >-,∵3x ≥与3x >-的公共部分为3x ≥,∴不等式组的解集是:3x ≥.在数轴上表示解集如下:【点睛】本题考查了一元一次不等式组,熟练掌握一元一次不等式组解集的求解方法是解题关键.一元一次不等式(组)(提升测评)1.2022年北京冬季奥运会开幕式于2022年2月4日20:00在国家体育馆举行,嘉淇利用相关数字做游戏:①画一条数轴,在数轴上用点A ,B ,C 分别表示﹣20,2022,﹣24,如图1所示;②将这条数轴在点A 处剪断,点A 右侧的部分称为数轴I ,点A 左侧的部分称为数轴Ⅱ;③平移数轴Ⅱ使点A 位于点B 的正下方,如图2所示;④扩大数轴Ⅱ的单位长度至原来的k 倍,使点C 正上方位于数轴I 的点A 左侧.则整数k 的最小值为()A .511B .510C .509D .500【答案】A 【分析】根据题意可得k ⋅AC AB >,列出不等式,求得最小整数解即可求解.【详解】解:依题意,4AC =,2042AB =∵扩大数轴Ⅱ的单位长度至原来的k 倍,使点C 正上方位于数轴I 的点A 左侧,∴k ⋅AC AB >,即42042k >,解得15102k >, k 为正整数,∴k 的最小值为511,故选A .【点睛】本题考查了数轴上两点距离,一元一次不等式的应用,根据题意得出k ⋅AC AB >是解题的关键.2.不等式12<32x x -⎛⎫ ⎪⎝⎭的解在数轴上表示正确的是()A .B .C .D .【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得不等式的解集,继而可得答案.【详解】解:去括号,得:21<3x x -,移项,得:3+2<1x x -,合并同类项,得:<1x -,系数化为1,得>1x -,在数轴上表示为:故选:A .【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.3.已知实数a ,b ,c 满足2a c b +=,112a c b +=.则下列结论正确的是()A .若0a b >>,则0c b >>B .若1ac =,则1b =±C .a ,b ,c 不可能同时相等D .若2a =,则28b c=【答案】B【分析】A.根据0a b >>,则11a b <,根据112a c b +=,得出c b <;B.根据112a c b+=,得出()2ac b a c =+,把2a c b +=代入得:21b ac ==,即可得出答案;C.当a b c ==时,可以使2a c b +=,112a c b +=,即可判断出答案;D.根据解析B 可知,22b ac c ==,即可判断.【详解】A.∵0a b >>,∴11a b<,∵112a c b+=,∴11c b,∴c b <,故A 错误;B.∵112a c b +=,即2a c ac b+=,∴()2ac b a c =+,把2a c b +=代入得:222ac b =,21b ac ∴==,解得:1b =±,故B 正确;C.当a b c ==时,可以使2a c b +=,112a c b+=,∴a ,b ,c 可能同时相等,故C 错误;D.根据解析B 可知,2b ac =,把2a =代入得:22b c =,故D 错误.故选:B .【点睛】本题主要考查了分式的化简,等式基本性质和不等式的基本性质,熟练掌握不等式的基本性质和等式的性质,是解题的关键.4.若数a 使关于x 的分式方程1133x a x x ++=--有非负整数解,且使关于y 的不等式组3212623y y y y a++⎧⎪⎨⎪≥-⎩>至少有3个整数解,则符合条件的所有整数a 的和是()A .﹣5B .﹣3C .0D .2【答案】D 【分析】解不等式组,根据题意确定a 的范围;解出分式方程,根据题意确定a 的范围,根据题意计算即可.【详解】解:3212623y y y y a ++⎧⎪⎨⎪≥-⎩>①②,解不等式①得:y >﹣8,解不等式②得:y ≤a ,∴原不等式组的解集为:﹣8<y ≤a ,∵不等式组至少有3个整数解,∴a ≥﹣5,1133x a x x++=--,去分母得∶1﹣x ﹣a =x ﹣3,解得:x 42a -=,∵分式方程有非负整数解,∴x ≥0(x 为整数)且x ≠3,∴42a -为非负整数,且42a -≠3,∴a ≤4且a ≠﹣2,∴符合条件的所有整数a 的值为:﹣4,0,2,4,∴符合条件的所有整数a 的和是:2,故选:D .【点睛】本题考查的是分式方程的解法、一元一次不等式组的解法,掌握解分式方程、一元一次不等式组的一般步骤是解题的关键.5.已知三个实数a 、b 、c ,满足325a b c ++=,231a b c +-=,且0a ≥、0b ≥、0c ≥,则37+-a b c 的最小值是()A .111-B .57-C .37D .711【答案】B【分析】由两个已知等式3a +2b +c =5和2a +b ﹣3c =1.可用其中一个未知数表示另两个未知数,然后由条件:a ,b ,c 均是非负数,列出c 的不等式组,可求出未知数c 的取值范围,再把m =3a +b ﹣7c 中a ,b 转化为c ,即可得解.【详解】解:联立方程组325231a b c a b c ++=⎧⎨+-=⎩,解得,73711a c b c=-⎧⎨=-⎩,由题意知:a ,b ,c 均是非负数,则07307110c c c ≥⎧⎪-≥⎨⎪-≥⎩,解得37711c ≤≤,∴3a +b ﹣7c=3(﹣3+7c )+(7﹣11c )﹣7c=﹣2+3c ,当c =37时,3a+b ﹣7c 有最小值,即3a+b ﹣7c =﹣2+3×37=﹣57.故选:B .【点睛】此题主要考查代数式求值,考查的知识点相对较多,包括不等式的求解、求最大值最小值等,另外还要求有充分利用已知条件的能力.二、填空题6.一元二次方程x 2+5x ﹣m =0有两个不相等的实数根,则m 的取值范围是_____.【答案】254m >-## 6.25m >-##164m >-【分析】由方程有两个不相等的实数根结合根的判别式,可得254()0m =-->Δ,进行计算即可得.【详解】解:根据题意得254()0m =-->Δ,解得,254m >-,故答案为:254m >-.【点睛】本题考查了根的判别式,解题的关键是掌握根的判别式并认真计算.7.若关于x 的分式方程232x m x -=-的解是非负数,则m 的取值范围是________.【答案】m ≤6且m ≠4【分析】先求得分式方程的解,利用已知条件列出不等式,解不等式即可求解.【详解】解:关于x 的分式方程232x m x -=-的解为:x =6−m ,∵分式方程有可能产生增根2,∴6−m ≠2,∴m ≠4,∵关于x 的分式方程232x m x -=-的解是非负数,∴6−m ≥0,解得:m ≤6,综上,m 的取值范围是:m ≤6且m ≠4.故答案为:m ≤6且m ≠4.【点睛】本题主要考查了分式方程的解,解一元一次不等式,解分式方程一定要注意有可能产生增根的情况,这是解题的关键.三、解答题8.2022年4月16日,神舟十三号载人飞船返回舱成功着陆,三名航天员平安归来,神舟十三号任务取得圆满成功.飞箭航模店看准商机,推出了“神舟”和“天宫”模型.已知每个“神舟”模型的成本比“天宫”模型多10元,同样花费100元,购进“天宫”模型的数量比“神舟”模型多5个.(1)“神舟”和“天宫”模型的成本各多少元?(2)飞箭航模店计划购买两种模型共200个,且每个“神舟”模型的售价为30元,“天宫”模型的售价为15元.设购买“神舟”模型a 个,销售这批模型的利润为w 元.①求w 与a 的函数关系式(不要求写出a 的取值范围);②若购进“神舟”模型的数量不超过“天宫”模型数量的13,则购进“神舟”模型多少个时,销售这批模型可以获得最大利润?最大利润是多少?【答案】(1)“天宫”模型成本为每个10元,“神舟”模型每个20元(2)①51000w a =+②购进“神舟”模型50个时,销售这批模型可以获得最大利润,最大利润为1250元【分析】(1.(2)①设“神舟”模型a 个,则“天宫”模型为200a -()个,根据利润关系即可表示w 与a 的关系式.②根据购进“神舟”模型的数量不超过“天宫”模型数量的13,即可找到a 的取值范围,利用一次函数性质即可求解.(1)解:设“天宫”模型成本为每个x 元,则“神舟”模型成本为每个10x +()元.依题意得100100510x x =++.解得10x =.经检验,10x =是原方程的解.答:“天宫”模型成本为每个10元,“神舟”模型每个20元;(2)解:① “神舟”模型a 个,则“天宫”模型为200a -()个.()()()3020151020051000w a a a ∴=-+--=+.② 购进“神舟”模型的数量不超过“天宫”模型数量的13.()12003a a ∴≤-.解得:50a ≤.51000w a =+ .50k =>.()max 5055010001250a w ∴==⨯+=当时,元.即:购进“神舟”模型50个时,销售这批模型可以获得利润.最大利润为1250元.【点睛】本题考查了分式方程、一次函数的性质,关键在于找到等量关系,建立方程,不等式,函数模型.9.解不等式组:3(2)821+1<52x x x x --≥--⎧⎪⎨⎪⎩【答案】1x ≥-【分析】先分别求出两个一元一次不等式的解集,然后根据“同大取大、同小取小,小大大小取中间、大大小小找不到”即可求解.【详解】解:3(2)821+1<52x x x x --≥--⎧⎪⎨⎪⎩①②,解不等式①,得1x ≥-,解不等式②,得>7x -,∴该不等式组的解集为1x ≥-.【点睛】本题主要考查了解一元一次不等式组,理解并掌握求不等式组的原则“同大取大、同小取小,小大大小取中间、大大小小找不到”是解题的关键.。
考点07 一元一次不等式(组)及其应用-备战2023届中考数学一轮复习考点梳理(解析版)
考点07 一元一次不等式(组)及其应用中考数学中,一元一次不等式(组)的解法及应用时有考察,其中,不等式基本性质和一元一次不等式(组)解法的考察通常是以选择题或填空题的形式出题,还通常难度不大。
而对其简单应用,常会和其他考点(如二元一次方程组、二次函数等)结合考察,此时难度上升,需要小心应对。
对于一元一次不等式中含参数问题,虽然难度系数上升,但是考察几率并不大,复习的时候只需要兼顾即可!一、不等式的基本性质二、一元一次不等式(组)的解法三、求不等式(组)中参数的值或范围四、不等式(组)的应用考向一:不等式的基本性质【易错警示】1.若a >b ,则下列不等式中,错误的是( )A .3a >3bB .﹣<﹣C .4a ﹣3>4b ﹣3D .ac 2>bc 2【分析】根据不等式的性质进行一一判断.【解答】解:A 、在不等式a >b 的两边同时乘以3,不等式仍成立,即3a >3b ,故本选项正确;B 、在不等式a >b 的两边同时除以﹣3,不等号方向改变,即﹣<﹣,故本选项正确;C 、在不等式a >b 的两边同时先乘以4、再减去3,不等式仍成立,4a ﹣3>4b ﹣3,故本选项正确;D 、当c =0时,该不等式不成立,故本选项错误.故选:D .2.已知x <y ,下列式子不成立的是( )A .x +1<y +1B .x <y +100C .﹣2022x <﹣2022yD .【分析】根据不等式的性质判断即可.【解答】解:A 、在不等式x =y 的两边同时加上1得x +1<y +1,原变形成立,故此选项不符合题意;B 、在不等式x <y 的两边同时加上100得x +100<y +100,原变形成立,故此选项不符合题意;C 、在不等式x <y的两边同时乘以﹣2022得﹣2022x >﹣2022y ,原变形不成立,故此选项符合题意;D 、在不等式x <y 的两边同时除以2022得x <y ,原变形成立,故此选项不符合题意;故选:C .3.若x>y,且(a+3)x<(a+3)y,求a的取值范围 a<﹣3 .【分析】根据题意,在不等式x>y的两边同时乘以(a+3)后不等号改变方向,根据不等式的性质3,得出a+3<0,解此不等式即可求解.【解答】解:∵x>y,且(a+3)x<(a+3)y,∴a+3<0,则a<﹣3.故答案为:a<﹣3.4.已知3x﹣y=1,且x≤3,则y的取值范围是 y≤8 .【分析】根据3x﹣y=1求出x=,根据x≤3得出≤3,再根据不等式的性质求出不等式的解集即可.【解答】解:∵3x﹣y=1,∴3x=1+y,∴x=,∵x≤3,∴≤3,∴1+y≤9,∴y≤8,即y的取值范围是y≤8,故答案为:y≤8.5.已知a,b,c为三个非负实数,且满足,若W=3a+2b+5c,则W的最大值为 130 .【分析】将方程组两个方程相加,得到3a+5c=130﹣4b,整体替换可得W=130﹣2b,再由b的取值范围即可求解.【解答】解:,①+②,得3a+4b+5c=130,可得出a=10﹣,c=20﹣,∵a,b,c为三个非负实数,∴a =10﹣≥0,c =20﹣≥0,∴0≤b ≤20,∴W =3a +2b +5c =2b +130﹣4b =130﹣2b ,∴当b =0时,W =130﹣2b 的最大值为130,故答案为:130.考向二:一元一次不等式(组)的解法1. 一元一次不等式的解法2. 一元一次不等式(组)的解法①按照一元一次不等式的解法解出每个不等式的解集②依据数轴取各不等式解集的公共部分一元一次不等式组解法及解集的四种情况无解大大小小则无解1.不等式3(2﹣x)>x+2的解在数轴上表示正确的是( )A.B.C.D.【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.【解答】解:∵3(2﹣x)>x+2,∴6﹣3x>x+2,﹣3x﹣x>2﹣6,﹣4x>﹣4,x<1,故选:C.2.在平面直角坐标系中,点A(a,2)在第二象限内,则a的取值可以是( )A.1B.﹣C.0D.4或﹣4【分析】根据第二象限内点的坐标特点列出关于a的不等式,求出a的取值范围即可.【解答】解:∵点A(a,2)是第二象限内的点,∴a<0,四个选项中符合题意的数是,故选:B.3.关于x的方程ax=2x﹣7的解为负数,则a的取值范围是 a>2 .【分析】先解方程得到x=,根据题意得到<0,所以2﹣a<0,然后解不等式即可.【解答】解:解方程ax=2x﹣7的得x=,∵方程ax=2x﹣7的解为负数,∴<0,∴2﹣a<0,解得a>2,即a的取值范围为a>2.故答案为:a>2.4.已知x>2是关于x的不等式x﹣3m+1>0的解集,那么m的值为 1 .【分析】先把m看作常数,求出不等式的解集,再根据不等式解集为x>2,建立关于m的方程,求解即可.【解答】解:x﹣3m+1>0x>3m﹣1,∵x>2 是关于x的不等式x﹣3m+1>0 的解集,∴3m﹣1=2,解得:m=1,故答案为:1.5.若关于的不等式﹣ax>bx﹣b(ab≠0)的解集为x>,则关于x的不等式3bx<ax﹣b的解集是 x>﹣1 .【分析】根据已知不等式的解集,即可确定的值以及a+b的符号,进而求得a=2b,进一步求得b<0,从而解不等式即可.【解答】解:移项,得:(a+b)x<b,根据题意得:a+b<0且=,即3b=a+b,则a=2b,又a+b<0,即3b<0,则b<0,则关于x的不等式3bx<ax﹣b化为:3bx<2bx﹣b,解得x>﹣1.故答案为:x>﹣1.6.解下列不等式,并将解集在数轴上表示出来.(1)﹣x+19≥2(x+5);(2).【分析】(1)先去括号,再移项、合并同类项,把x的系数化为1,再把不等式的解集在数轴上表示出来即可;(2)不等式两边都乘12去分母后,去括号,移项合并,将x系数化为1,求出解集,表示在数轴上即可.【解答】解:(1)﹣x+19≥2(x+5),去括号,得)﹣x+19≥2x+10,移项,得﹣x﹣2x≥10﹣19,合并同类项,得﹣3x≥﹣9,系数化为1,得x≤3.将解集在数轴上表示为:(2),去分母,得3(x+4)﹣12<4(4x﹣13),去括号,得3x+12﹣12<16x﹣52,移项,得3x﹣16x<﹣52﹣12+12,合并同类项,得﹣13x<﹣52,系数化为1,得x>4.解集在数轴上表示为:7.关于x的方程5x﹣2k=6+4k﹣x的解是负数,求字母k的值.【分析】解方程得出x=k+1,根据方程的解为负数得出关于k的不等式,解之可得.【解答】解:解方程5x﹣2k=6+4k﹣x得x=k+1,∵方程的解是负数,∴k+1<0,∴k<﹣1.8.不等式组的解集在数轴上表示为( )A.B.C.D.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后在数轴上表示出其解集即可.【解答】解:,解不等式①,得:x≥1,解不等式②,得:x≥2,故原不等式组的解集是x≥2,其解集在数轴上表示如下:,故选:C.9.对于任意实数x,我们用{x}表示不小于x的最小整数.如:{2.7}=3,{2022}=2022,{﹣3.14}=﹣3,若{2x+3}=﹣2,则x的取值范围是( )A.B.C.D.【分析】根据{x}表示不小于x的最小整数,可得﹣3<2x+3≤﹣2,然后进行计算即可解答.【解答】解:∵{2x+3}=﹣2,∴﹣3<2x+3≤﹣2,∴﹣6<2x≤﹣5,∴﹣3<x≤﹣,故选:D.10.不等式组的解集是 x<3 .【分析】先求出每个一元一次不等式的解集,再求出它们的公共部分即为不等式组的解集.【解答】解:,解①得:x≤8,解②得:x<3,∴不等式组的解集为x<3.故答案为:x<3.11.解不等式(组),并把解集在数轴上表示出来:(1)2(x﹣1)+2<3x;(2).【分析】(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:(1)∵2(x﹣1)+2<3x,∴2x﹣2+2<3x,∴2x﹣3x<2﹣2,∴﹣x<0,则x>0,将解集表示在数轴上如下:(2)解不等式3x﹣(x﹣2)≥6,得:x≥2,解不等式x+1>,得:x<4,则不等式组的解集为2≤x<4,将不等式组的解集表示在数轴上如下:考向三:求不等式组中参数的值或范围方法步骤总结:①解出不等式(组)的解集——用含参数的表达式表示;②根据题目要求,借助数轴,确定参数表达式的范围,必在两个相邻整数之间;③由空心、实心判断参数两边边界哪边可以取“=”,哪边不能取“=”。
中考常见的一元一次不等式(组)考点
考点三、一元一次不等式(组)的实际应用问 题
一元一次不等式(组)的实际应用问题, 主要考查同学们根据实际问 题构建不等式 (组)的能力.在解答一元一次不等式(组)的 应用题时, 同学们要注意如下几点:
✓ 一是细致 审题,巧抓关键词,明确考查意图; ✓ 二是弄清 题中各种量之间的不等关系,列出相应的不 等式(组); ✓ 三是检查所求的解是否符合题意 要求,舍去不必要的,从而确保解答
无误.
谢谢观看!
✓ 第三步:画图,即在数轴上画出不等式组的解集。
考点二、含参数的一元一次不等式(组)的整数 解问题
含参数的一元一次不等式(组)的整数解问题,是一元一次不 等式(组)的重难点问题之一,也是考试时的一个易错点和失 分点,主要涉及有且仅有几个整数解、至少有几个整数解、整 数解的和、最大整数解与最小整数解等问题。
中考常见的一元一次不等式 (组)考点
考点一、用数轴表示一元一次不等式组 的解集问题
用数轴表示一元一次不等式组的解集,通常分三步进 行:
✓ 第一步:求解,即分别求出步:定集,即根据“同大取大;同小取小;大小 小大中间找;大大小小解不了”口诀,明确不等式组 的解集;
2024年中考数学复习专题课件(共30张PPT)一元一次不等式(组)及其应用
解:设普通水稻的亩产量是 x kg,则杂交水稻的亩产量是 2x kg,依题 意得 7 200 9 600
x - 2x =4,解得 x=600, 经检验,x=600 是原分式方程的解,且符合题意,则 2x=2×600=1 200(kg). 答:普通水稻的亩产量是 600 kg,杂交水稻的亩产量是 1 200 kg.
__00__.
6.[2023·贵州第 17(2)题 6 分]已知 A=a-1,B=-a+3.若 A>B,求 a 的取值范围. 解:由 A>B 得 a-1>-a+3, 解得 a>2, 即 a 的取值范围为 a>2.
7.[2021·贵阳第 17(1)题 6 分]有三个不等式 2x+3<-1,-5x>15, 3(x-1)>6,请在其中任选两个不等式, 组成一个不等式组,并求出它 的解集.
4.风陵渡黄河公路大桥是连接山西、陕西、河南三省的交通要塞 ,该 大桥限重标志牌显示,载重后总质量超过 30 t 的车辆禁止通行,现有一 辆自重 8 t 的卡车,要运输若干套某种设备,每套设备由 1 个 A 部件和 3 个 B 部件组成,这种设备必须成套运输,已知 1 个 A 部件和 2 个 B 部件 的总质量为 2.8 t,2 个 A 部件和 3 个 B 部件的质量相等. (1)求 1 个 A 部件和 1 个 B 部件的质量各是多少; (2)卡车一次最多可运输多少套这种设备通过此大桥?
解:(1)设出售的竹篮 x 个,陶罐 y 个,依题意有 5x+12y=61, x=5, 6x+10y=60,解得y=3. 答:小钢出售的竹篮 5 个,陶罐 3 个.
(2)设购买鲜花 a 束,依题意有 0<61-5a≤20, 解得 8.2≤a<12.2, ∵a 为整数, ∴共有 4 种购买方案, 方案一:购买鲜花 9 束; 方案二:购买鲜花 10 束; 方案三:购买鲜花 11 束; 方案四:购买鲜花 12 束.
专题10 一元一次不等式(组)(课件)2023年中考数学一轮复习(全国通用)
1. 一元一次不等式的定义:不等式中只含有一个未知数,未知数的次数是1,且不 等式的两边都是整式,这样的不等式叫做一元一次不等式.
2. 一元一次不等式的解法: 一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将未知项的 系数化为1.
知识点2:一元一次不等式及其解法
典型例题
知识点3:一元一次不等式组及其解法
知识点梳理
3. 解不等式组:求不等式组的解集的过程,叫做解不等式组.
4. 一元一次不等式组的解法: (1)分别求出不等式组中各个不等式的解集; (2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集.
知识点3:一元一次不等式组及其解法
知识点梳理
5. 解集在数轴上的表示(令a>b):
典型例题
【例8】(2022•聊城)关于x,y的方程组
2x y x 2 y
2k k
3
的解中x与y的和不小于5,
则k的取值范围为( )
A.k≥8 B.k>8 C.k≤8 D.k<8
【解答】解:把两个方程相减,可得x+y=k-3, 根据题意得:k-3≥5, 解得:k≥8. 所以k的取值范围是k≥8. 故选:A.
知识点4:一元一次不等式(组)的实际应用
典型例题
【解答】解:(1)设生产A产品x件,B产品y件,
根据题意,得
100x 75y 8250 (120 100)x (100 75) y 2350
.
解这个方程组,得
x 30
y
70
,
所以,生产A产品30件,B产品70件.
知识点4:一元一次不等式(组)的实际应用
知识点梳理
知识点1:不等式及其性质
5. 不等式基本性质:
2023中考数学一轮复习专题2
专题2.4 一元一次不等式(组)(真题专练)一、单选题1.(2021·辽宁阜新·中考真题)不等式组22413x x -≤⎧⎨+>⎩的解集,在数轴上表示正确的是( )A .B .C .D .2.(2021·山东日照·中考真题)若不等式组643x x x m +<-⎧⎨>⎩的解集是3x >,则m 的取值范围是( ) A .3m >B .3m ≥C .3m ≤D .3m <3.(2021·内蒙古·中考真题)定义新运算“⊗”,规定:2a b a b ⊗=-.若关于x 的不等式3x m ⊗>的解集为1x >-,则m 的值是( )A .1-B .2-C .1D .24.(2021·湖南邵阳·中考真题)如图,若数轴上两点M ,N 所对应的实数分别为m ,n ,则m n +的值可能是( )A .2B .1C .1-D .2-5.(2021·山东聊城·中考真题)若﹣3<a ≤3,则关于x 的方程x +a =2解的取值范围为( ) A .﹣1≤x <5B .﹣1<x ≤1C .﹣1≤x <1D .﹣1<x ≤56.(2021·湖南衡阳·中考真题)不等式组1026x x +<⎧⎨-≤⎩的解集在数轴上可表示为( )A .B .C .D .7.(2021·湖南常德·中考真题)若a b >,下列不等式不一定成立的是( ) A .55a b ->-B .55a b -<-C .a bc c> D .a c b c +>+8.(2021·江苏南通·中考真题)若关于x 的不等式组23120x x a +>⎧⎨-≤⎩恰有3个整数解,则实数a的取值范围是( ) A .78a <<B .78a <≤C .78a ≤<D .78a ≤≤9.(2021·湖南永州·中考真题)一元一次不等式组21050x x +>⎧⎨-≤⎩的解集中,整数解的个数是( )A .4B .5C .6D .710.(2021·山东菏泽·中考真题)如果不等式组541x x x m +<-⎧⎨>⎩的解集为2x >,那么m 的取值范围是( ) A .2m ≤B .2m ≥C .2m >D .2m <11.(2021·重庆·中考真题)若关于x 的一元一次不等式组()322225x x a x ⎧-≥+⎨-<-⎩的解集为6x ≥,且关于y 的分式方程238211y a y y y+-+=--的解是正整数,则所有满足条件的整数a 的值之和是( ) A .5B .8C .12D .1512.(2021·山东威海·中考真题)解不等式组311223(21)8x x x x -⎧-<⎪⎨⎪--≥⎩①②时,不等式①①的解集在同一条数轴上表示正确的是( ) A .B .C .D .13.(2021·山东潍坊·中考真题)不等式组2111313412x x x x +≥⎧⎪-⎨-<⎪⎩的解集在数轴上表示正确的是( ) A . B .C .D .二、填空题14.(2021·辽宁沈阳·中考真题)不等式组51350x x -<⎧⎨-≥⎩的解集是__________.15.(2021·吉林长春·中考真题)不等式组211x x >-⎧⎨≤⎩,的所有整数解是__________.16.(2021·江苏扬州·中考真题)在平面直角坐标系中,若点()1,52P m m --在第二象限,则整数m 的值为_________.17.(2021·湖南张家界·中考真题)不等式2217x x >⎧⎨+≤⎩的正整数解为______.18.(2021·辽宁盘锦·中考真题)从不等式组3(2)42213x x x x --≤⎧⎪+⎨≥-⎪⎩的所有整数解中任取一个数,它是偶数的概率是________19.(2021·贵州黔东南·中考真题)不等式组()5231131722x x x x ⎧+>-⎪⎨-≤-⎪⎩的解集是__________.20.(2021·湖北荆州·中考真题)若关于x 的方程21322x m x x x+-+=--的解是正数,则m 的取值范围为_____________.21.(2021·黑龙江大庆·中考真题)三个数3,1,12a a --在数轴上从左到右依次排列,且以这三个数为边长能构成三角形,则a 的取值范围为______三、解答题22.(2021·海南·中考真题)(1)计算:312|3|35-+-÷;(2)解不等式组26,11.26x x x >-⎧⎪-+⎨≤⎪⎩并把它的解集在数轴(如图)上表示出来.23.(2021·四川阿坝·中考真题)(14sin 60(2020)π︒︒+-.(2)解不等式组:21,21 3.3x x +>-⎧⎪-⎨≤⎪⎩24.(2021·山西·中考真题)(1)计算:()()24311822⎛⎫-⨯-+-⨯ ⎪⎝⎭.(2)下面是小明同学解不等式的过程,请认真阅读并完成相应任务. 2132132x x -->- 解:()()2213326x x ->--第一步42966x x ->--第二步49662x x ->--+第三步 510x ->-第四步2x >第五步 任务一:填空:①以上解题过程中,第二步是依据______________(运算律)进行变形的; ①第__________步开始出现错误,这一步错误的原因是________________; 任务二:请直接写出该不等式的正确解集.25.(2021·内蒙古通辽·中考真题)为做好新冠疫情的防控工作,某单位需购买甲、乙两种消毒液经了解每桶甲种消毒液的零售价比乙种消毒液的零售价多6元,该单位以零售价分别用900元和720元采购了相同桶数的甲、乙两种消毒液.(1)求甲、乙两种消毒液的零售价分别是每桶多少元?(2)由于疫情防控进入常态化,该单位需再次购买两种消毒液共300桶,且甲种消毒液的桶数不少于乙种消毒液桶数的13,由于购买量大,甲、乙两种消毒液分别获得了20元/桶,15元/桶的批发价.求甲种消毒液购买多少桶时,所需资金总额最少?最少总金额是多少元?26.(2021·四川眉山·中考真题)为进一步落实“德、智、体、美、劳”五育并举工作,某中学以体育为突破口,准备从体育用品商场一次性购买若千个足球和篮球,用于学校球类比赛活动.每个足球的价格都相同,每个篮球的价格也相同.已知篮球的单价比足球单价的2倍少30元,用1200元购买足球的数量是用900元购买篮球数量的2倍.(1)足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共200个,但要求足球和篮球的总费用不超过15500元,学校最多可以购买多少个篮球?参考答案1.C 【分析】根据解不等式组的方法可以求得原不等式组的解集,从而可以解答本题. 【详解】解:22413x x -≤⎧⎨+>⎩①②,由①得:1x ≥-, 由①得:2x >,故原不等式组的解集为:2x >, 故选:C .【点拨】本题主要考查解一元一次不等式组、在数轴上表示不等式的解集,解题的关键是明确解不等式组的方法. 2.C 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集. 【详解】解:解不等式643x x +<-,得:3x >, x m >且不等式组的解集为3x >,3m ∴,故选:C .【点拨】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 3.B 【分析】题中定义一种新运算,仿照示例可转化为熟悉的一般不等式,求出解集,由于题中给出解集为1x >-,所以与化简所求解集相同,可得出等式231m +=-,即可求得m . 【详解】解:由2a b a b ⊗=-,①23x m x m =->, 得:23x m >+,①3x m >解集为1x >-, ①231m +=- ①2m =-, 故选:B .【点拨】题目主要考查对新运算的理解、不等式的解集、一元一次方程的解等,难点是将运算转化为所熟悉的不等式. 4.D 【分析】根据数轴确定m 和n 的范围,再根据有理数的加法法则即可做出选择. 【详解】解:根据数轴可得-3<m <-2,0<n <1,则-3<+m n <-1. 故选:D .【点拨】本题考查的知识点为数轴,有理数的加法,解决本题的关键是要根据数轴明确m 和n 的范围,然后再确定+m n 的范围即可.5.A 【分析】先求出方程的解,再根据﹣3<a ≤3的范围,即可求解. 【详解】解:由x +a =2,得:x =2-a , ①﹣3<a ≤3,①﹣1≤2-a <5,即:﹣1≤x <5, 故选A .【点拨】本题主要考查解一元一次方程以及不等式的性质,用含a 的代数式表示x ,是解题的关键. 6.A 【分析】根据一元一次不等式组的解题要求对两个不等式进行求解得到解集即可对照数轴进行选择.【详解】解不等式x +1<0,得x <-1, 解不等式-26x ≤,得3x ≥-,所以这个不等式组的解集为-3-x ≤<1,在数轴上表示如选项A 所示, 故选:A .【点拨】本题主要考查了一元一次不等式组的解,正确求解不等式组的解集并在数轴上表示是解决本题的关键. 7.C 【分析】根据不等式的性质逐项进行判断即可得到答案. 【详解】解:A .在不等式a b >两边同时减去5,不等式仍然成立,即55a b ->-,故选项A 不符合题意;B . 在不等式a b >两边同时除以-5,不等号方向改变,即55a b -<-,故选项B 不符合题意;C .当c ≤0时,不等得到a bc c>,故选项C 符合题意; D . 在不等式a b >两边同时加上c ,不等式仍然成立,即a c b c +>+,故选项D 不符合题意; 故选:C .【点拨】此题主要考查了不等式的性质运用的,熟练掌握不等式的性质是解答此题的关键. 8.C 【分析】分别求出每一个不等式的解集,根据口诀不等式组的整数解个数即可得出答案. 【详解】解:解不等式2312x +>,得:92x >, 解不等式0x a -≤,得:x a ≤,①不等式组只有3个整数解,即5,6,7, ①78a ≤<, 故选:C .【点拨】本题主要考查了一元一次不等式组的整数解,解题的关键是熟练掌握解一元一次不等式,并根据不等式组整数解的个数得出关于a 的不等式组.9.C 【详解】①解不等式210x+>得:12 x>-,解不等式50x-≤,得:x≤5,①不等式组的解集是152x-<≤,整数解为0,1,2,3,4,5,共6个,故选C.考点:一元一次不等式组的整数解.10.A【分析】先解不等式组,确定每个不等式的解集,后根据不等式组的解集的意义,确定m的取值范围即可.【详解】①541x xx m+<-⎧⎨>⎩①②,解①得x>2,解①得x>m,①不等式组541x xx m+<-⎧⎨>⎩的解集为2x>,根据大大取大的原则,①2m≤,故选A.【点拨】本题考查了一元一次不等式组的解法,熟练根据不等式组的解集确定字母的取值是解题的关键.11.B【分析】先计算不等式组的解集,根据“同大取大”原则,得到562a+<解得7a<,再解分式方程得到5=2ay+,根据分式方程的解是正整数,得到5a>-,且5a+是2的倍数,据此解得所有符合条件的整数a的值,最后求和.【详解】解:()322225x x a x ⎧-≥+⎨-<-⎩①② 解不等式①得,6x ≥, 解不等式①得,5+2ax >不等式组的解集为:6x ≥562a+∴< 7a ∴<解分式方程238211y a y y y+-+=--得 238211y a y y y +--=-- 2(38)2(1)y a y y ∴+--=-整理得5=2a y +, 10,y -≠ 则51,2a +≠ 3,a ∴≠-分式方程的解是正整数,502a +∴> 5a ∴>-,且5a +是2的倍数,57a ∴-<<,且5a +是2的倍数,∴整数a 的值为-1, 1, 3, 5,11358∴-+++= 故选:B .【点拨】本题考查解含参数的一元一次不等式、解分式方程等知识,是重要考点,难度一般,掌握相关知识是解题关键. 12.A 【分析】先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集. 【详解】解不等式①得:x >−3,解不等式①得:x ≤-1,①不等式组的解集为-3<x ≤-1,将不等式组的解集表示在数轴上如下:故选A .【点拨】本题考查了解一元一次不等式组,在数轴上表示不等式的解集解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.13.D【分析】分别求出每一个不等式的解集,再将解集表示在同一数轴上即可得到答案.【详解】 解:2111313412x x x x +≥⎧⎪⎨--<⎪⎩①②解不等式①,得:x ≥-1,解不等式①,得:x <2,将不等式的解集表示在同一数轴上:所以不等式组的解集为-1≤x <2,故选:D .【点拨】本题考查的是解一元一次不等式组,关键是正确求出每一个不等式解集,并会将解集表示在同一数轴上.14.563x < 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:解不等式51x -<,得:6x <,解不等式350x -,得:53x , 则不等式组的解集为563x <, 故答案为:563x <. 【点拨】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 15.0,1【分析】分别求出每个不等式的解集,再根据“大小小大中间找”求得不等式组的解集,进而可求得整数解.【详解】解:211x x >-⎧⎨⎩,①② 由①得:x >12- 由①得:x ≤1,①不等式组的解集为112x -<≤, ①不等式组的整数解为0,1故答案为:0,1.【点拨】本题考查了解一元一次不等式组,正确求出每一个不等式的解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 16.2【分析】根据第二象限的点的横坐标小于0,纵坐标大于0列出不等式组,然后求解即可.【详解】解:由题意得:10520m m -<⎧⎨->⎩,解得:512m<<,①整数m的值为2,故答案为:2.【点拨】本题考查了点的坐标及解一元一次不等式组,记住各象限内点的坐标的符号是解决的关键.17.3【分析】直接解出各个不等式的解集,再取公共部分,再找正整数解即可.【详解】解:由217x+≤,解得:3x≤,由2x>,∴原不等式的解集是:23x<≤.故不等式2217xx>⎧⎨+≤⎩的正整数解为:3,故答案是:3.【点拨】本题考查了解一元一次不等式组的解集和求不等式组的正整数解,解题的关键是:掌握解不等式组的基本运算法则,求出解集后,找出满足条件的正整数解即可.18.2 5【分析】首先求得不等式组3(2)42213x xxx--≤⎧⎪+⎨≥-⎪⎩的所有整数解,然后由概率公式求得答案.【详解】解:①3(2)42213x xxx--≤⎧⎪⎨+≥-⎪⎩①②,由①得:x≥1,由①得:x≤5,①不等式组的解集为:1≤x≤5,①整数解有:1,2,3,4,5;①它是偶数的概率是25. 故答案为:25. 【点拨】此题考查了概率公式的应用以及不等式组的解集.用到的知识点为:概率=所求情况数与总情况数之比.19.542x -<≤ 【分析】分别求出各不等式的解集,再求出其公共解集.【详解】解:解不等式5x +2>3(x ﹣1),得:x 52>-, 解不等式131722x x -≤-,得:4x ≤, 则不等式组的解集为542x -<≤, 故答案为542x -<≤. 【点拨】本题考查了解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.20.m >-7且m ≠-3【分析】先用含m 的代数式表示x ,再根据解为正数,列出关于m 的不等式,求解即可.【详解】 解:由21322x m x x x+-+=--,得:72m x +=且x ≠2, ①关于x 的方程21322x m x x x +-+=--的解是正数, ①702m +>且722m +≠,解得:m >-7且m ≠-3, 故答案是:m >-7且m ≠-3.【点拨】本题考查了分式方程的解以及解一元一次不等式组,求出方程的解是解题的关键.21.32a -<<-【分析】根据三个数在数轴上的位置得到3112a a <-<-,再根据三角形的三边关系得到1312a a -+>-,求解不等式组即可.【详解】解:①3,1,12a a --在数轴上从左到右依次排列,①3112a a <-<-,解得2a <-,①这三个数为边长能构成三角形,①1312a a -+>-,解得3a >-,综上所述,a 的取值范围为32a -<<-,故答案为:32a -<<-.【点拨】本题考查不等式组的应用、三角形的三边关系,根据题意列出不等式组是解题的关键.22.(1)8;(2)32x -<≤.解集在数轴上表示见解析.【分析】(1)先计算有理数的乘方、化简绝对值、算术平方根、负整数指数幂,再计算有理数的混合运算即可得;(2)先求出两个不等式的解,再找出它们的公共部分即为不等式组的解集,然后在数轴上表示出来即可.【详解】解:(1)312335-+-÷,183355=+÷-⨯, 811=+-,8=;(2)261126x x x >-⎧⎪⎨-+≤⎪⎩①②,解不等式①得:3x >-,解不等式①得:2x ≤,则这个不等式组的解集是32x -<≤.解集在数轴上表示如下:【点拨】本题考查了有理数的乘方、算术平方根、负整数指数幂、解一元一次不等式组,熟练掌握各运算法则和不等式组的解法是解题关键.23.(1)1;(2)-3<x≤5.【分析】(1)原式根据二次根式的性质、特殊角三角函数值以及零指数幂的运算法则分别化简各项,然后再合并;(2)分别求出不等式组中每个不等式的解集,然后再取它们的公共部分即可得到不等式组的解集.【详解】(14sin60(2020)π︒︒+-=41,=1,=1;(2)212133xx+>-⎧⎪⎨-≤⎪⎩①②解不等式①得,x>-3,解不等式①得,x≤5,所以,不等式组的解集为:-3<x≤5.【点拨】本题主要考查了实数的混合运算以及求不等式组的解集,解答此题的关键是熟练掌握运算法则,确定不等式组的解集就熟练掌握口诀“大大取大,小小取小,大小小大中间找,小小大大找不了(无解)”.24.(1)6;(2)任务一:①乘法分配律(或分配律);①五;不等式两边都除以-5,不等号的方向没有改变(或不符合不等式的性质3);任务二:2x<【分析】(1)根据实数的运算法则计算即可;(2)根据不等式的性质3判断并计算即可.【详解】(1)解:原式118(8)4=⨯+-⨯()826=+-=.(2)①乘法分配律(或分配律)①五不等式两边都除以-5,不等号的方向没有改变(或不符合不等式的性质3);任务二:不等式两边都除以-5,改变不等号的方向得:2x<.【点拨】本题主要考查实数的运算,不等式的性质等知识点,熟练掌握实数的运算法则以及不等式的性质是解题关键.25.(1)甲种消毒液每桶的单价为30元,乙种消毒液每桶的单价为24元;(2)甲种消毒液购买75桶时,所需资金总额最少,最少总金额是4875元.【分析】(1)根据该单位以零售价分别用900元和720元采购了相同桶数的甲、乙两种消毒液,可以得到相应的分式方程,从而可以得到甲、乙两种消毒剂的零售价,注意分式方程要检验;(2)设购买甲种消毒液m桶,则购买乙种消毒液(300-m)桶,根据甲种消毒液的桶数不少于乙种消毒液桶数的13,即可得出关于m的一元一次不等式,再结合费用总量列出一次函数,根据一次函数性质得出结果.【详解】解:(1)设甲种消毒液每桶的单价为x元,乙种消毒液每桶的单价为(x-6)元,依题意,得:9007206x x=-,解得:x=30,经检验,x=30是原方程的解,且符合实际意义,则x-6=24.答:甲种消毒液每桶的单价为30元,乙种消毒液每桶的单价为24元;(2)设购买甲种消毒液m桶,则购买乙种消毒液(300-m)桶,根据题意得到不等式:m≥13(300-m),解得:m≥75,①75≤m≤300,设总费用为W,根据题意得:W=20m+15(300-m)=5m+4500,①k=5>0,①W随m的减小而减小,①当m=75时,W有最小值,①W =5×75+4500=4875元①甲种消毒液购买75桶时,所需资金总额最少,最少总金额是4875元.【点拨】本题考查一次函数的应用、分式方程的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答,注意分式方程要检验. 26.(1)每个足球60元,每个篮球90元;(2)最多购进篮球116个【分析】(1)设一个足球的单价x 元,已知篮球的单价比足球单价的2倍少30元,则一个篮球的单价为(2x -30)元,根据“用1200元购买足球的数量是用900元购买篮球数量的2倍”列方程求解即可;(2)设买篮球m 个,则买足球(200-m )个,根据购买足球和篮球的总费用不超过15500元建立不等式求出解即可.【详解】解:(1)设每个足球x 元,每个篮球(2x -30)元, 根据题意得:12009002230x x =⨯-, 解得x =60,经检验x =60是方程的根且符合题意,2x -30=90,答:每个足球60元,每个篮球90元.(2)设设买篮球m 个,则买足球(200-m )个,由题意得:9060(200)15500m m +-≤, 解得21163m ≤. ① m 为正整数,① 最多购进篮球116个.【点拨】本题考查了列一元一次方程解实际问题的运用,列一元一次不等式解实际问题的运用,解答本题时找到方程的等量关系和建立不等式的不等关系是解答本题的关键.。
中考专题复习之一元一次不等式(组)
中考专题复习之一元一次不等式(组)一、选择题1. x 与17的和比它的5倍小,用不等式表示为( )A .175x x >+B .175x x +>C .175x x +<D .175x x <+2.若a b >,有212a b --<-+□,则□的值可以是( )A .0B .2-C .4-D .6-3.已知a b <,则下列不等式成立的是( )A .44a b +>+B .0a b ->C .22a b >D .33a b ->-4.将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有一个小朋友分到苹果但不到8个苹果.求这一箱苹果的个数与小朋友的人数.若设有x 人,则可列不等式组为( )A .8(1)5128x x -<+<B .05128x x <+<C .05128(1)8x x <+--<D .85128x x <+<5.数学课上同学们展开了激烈的讨论,甲同学:37y +是一个不等式;乙同学:2x =是不等式360x ->的一个解;丙同学:2x >-是不等式240x +>的解集;丁同学:3x >范围内任何一个实数都可以使不等式12x +>成立,所以3x >是12x +>的解集.你认为谁的说法正确?( ) A .甲同学 B .乙同学 C .丙同学 D .丁同学6.(2022秋•桥西区期末)老师设计了接力游戏,用合作的方式完成解一元一次不等式,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( )A .只有乙B .甲和乙C .乙和丙D .乙和丁7.若a b >,则ac bc <成立的条件是( )A .0c >B .0c <C .0c =D .不存在这样的c8.(2022秋•桥西区月考)下列式子是一元一次不等式的是( )A .0x y +<B .20x >C .32x x >+D .10x< 9.(2022秋•桥西区期中)不等式35x +<的解集在数轴上表示正确的是( )A .B .C .D .10.(2022秋•桥西区期中)若x y >,则下列不等式一定成立的是( )A .66x y -<-B .33x y <C .22x y -<-D .2121x y +<+11.(2022•莲池区开学)不等式521x +<的解集在数轴上表示正确的是( )A .B .C .D . 12.(2022春•高邑县期末)小明网购了一本《好玩的数学》,同学们想知道价格,小明让他们猜,甲说:至少15元.乙说:至多12元.小明说:你们两个都说错了.则这本书的价格可能是( )A .12元B .14元C .15元D .16元13.(2022春•广阳区期末)如果a b >,那么下列错误的是( )A .22a b +>+B .33a b ->-C .44a b ->-D .22a b > 14.(2022春•永年区期末)如果关于x 的不等式(48)48a x a +<+的解集为1x >,那么a 的取值范围是( )A .0a >B .0a <C .2a >-D .2a <-15.(2022春•平泉市期末)某种牛奶包装盒上表明“净重205g ,蛋白质含量3%”.则这种牛奶蛋白质的质量是( )A .3%以上B .6.15gC .6.15g 及以上D .不足6.15g15.(2022春•滦南县期末)用不等式表示图中的不等式的解集,其中正确的是( )A .3x >-B .3x <-C .32x -<<D .3x -17.(2022春•迁安市期末)若6m >-,则下列各式中错误的是( )A .530m >-B .15m +>-C .116m -<D .15m -<-18.(2022春•秦皇岛期末)若x y <,且(2)(2)m x m y ->-,则m 的取值范围是( )A .2mB .2m >C .2mD .2m <19.(2022春•古冶区期末)不等式3(1)22x x ->-的解在数轴上表示正确的是( )A .B .C .D .20.(2022春•临漳县期末)如图,一个倾斜的天平两边分别放有小立方体和砝码,每个砝码的质量都是5g ,每个小立方体的质量都是mg ,则m 的取值范围为( )A .152m <B .152m >C .15m <D .15m >21.(2022春•安次区期末)如图,数轴上表示的解集为( )A .3x >-B .2xC .32x -<D .32x -<22.(2022春•馆陶县期末)若42x -<,两边都除以4-,得( )A .12x >-B .2x <-C .12x <-D .2x >- A .7 B .6 C .3D .5 23.(2022春•威县期末)若am an <,且m n >,则a 的值可以是( )A .17B .7-C .0.7 D24.(2022春•魏县期末)已知a b >,下列变形一定正确的是( )A .33a b >B .44a b +>-C .33ac bc >D .3223a b +>+25.(2022•大名县三模)若关于x 的不等式1x m +<的正整数解有且只有2个,则m 可能的值是( )A .3.5B .3C .2.5D .226.语句“m 的13与m 的差超过3”可以表示为( ) A .33m m - B .33m m -> C .33m m - D .33m m-> 27.(2022春•沧州期末)如果a b <,那么下列各式中,不一定成立的是( )A .33a b +<+B .2a ab <C .22a b <D .33a b ->- 二、填空题28.(2013秋•桃城区月考)若0a <,则a - 0.(用<,=,>填空)29.(2013春•阜平县期末)小颖家每月水费都不少于15元,自来水公司的收费标准如下:若每户每月用水不超过5立方米,则每立方米收费1.8元;若每户每月用水超过5立方米,则超出部分每立方米收费2元,小颖家每月用水量至少是 立方米.30.(2022春•丛台区期中)不等式39x ->-的正整数解有 个.31.(2022春•路南区期末)定义一种法则“⊗”如下:()()a a b a b b a b >⎧=⎨⎩⊗,例如:122=⊗,若(25)33m -+=⊗,则m 的取值范围是 .32.(2022春•永年区期末)不等式245(1)x x -<+的解集是 ;将该解集表示在如图所示的数轴上,则阴影部分盖住的数是 .33.(2022春•古冶区期末)不等式350x ->的最小整数解是 .34.(2022春•唐山期末)若点(26,42)A m m --在第三象限.则m 的取值范围是 .35.(2022春•遵化市期末)若关于x 的一元一次不等式组0231x a x ->⎧⎨-<⎩无解,则a 的取值范围是 .36.(2022春•兴隆县期末)(1)关于x 的不等式组21x x <⎧⎨>-⎩的正整数解是 ; (2)若关于x 的不等式组2x x a <⎧⎨>⎩只有三个整数解,则a 的取值范围是 . 37.(2022春•青龙县期末)写出不等式组13x x >-⎧⎨<⎩的整数解 .38.(2022春•高邑县期末)若不等式组121x m x m <+⎧⎨>-⎩无解,则m 的取值范围是 . 三、解答题39.(2022•顺平县模拟)已知关于x 的不等式155a x a x -<-. (1)当2022a =时,求此不等式解集.(2)a 为何值,该不等式有解,并求出其解集.40.(2022•孟村县模拟)请按照题目要求步骤解不等式:121143x x -->-. ①去分母②去括号③移项④合并同类项⑤化系数为1在上面的步骤中 (填序号)应用了不等式的基本性质.41.(2022春•襄都区月考)小李计划从网上批发一些饰品摆摊售卖,经过多方调查,仔细甄别,他选定了A 、B 两款网红饰品,其进价分别为每个x 元、y 元.已知购进A 款饰品8个和B 款饰品6个所需花费相同;购进A 款饰品10个和B 款饰品4个共需230元.(1)请求出A 、B 两款饰品的进价分别是多少?(2)小李计划购进两款饰品共计100个(其中A 款饰品最多62个),要使所需费用不多于1700元,则他有哪几种购进方案?(3)小李最后准备将A 、B 两款饰品单价分别定为21元,28元,他计划按照(2)中能够获得最大利润的方案购进,而且为吸引顾客,他准备在售卖过程中,给予顾客不同金额的现金红包,若要保证最后的利润率不低于35%,那么他给出的红包总额不能超过多少元?42.(2022春•长安区月考)(1)解不等式5122(43)x x --,并把它的解集在数轴上表示出来.43.(2022春•唐县期末)已知两个有理数:8-和4.(1)计算:(8)42-+;(2)若再填一个负整数a,且8-,4与a这三个数的平均数仍小于a,求a的值.44.(2022春•迁安市期末)现定义运算“⊗”,对于任意有理数a、b,都有22a b a ab b=-+⊗,例如:232233224=⨯-⨯+=⊗,请根据上述知识解决问题:(1)化简:(1)(2)x x-+⊗;(2)若(1)的代数式值大于3-而小于9,求x的取值范围.45.(2022春•威县期末)按要求完成下列各小题,(2)解不等式组:4723 362x xxx+>+⎧⎪⎨-<⎪⎩.46.(2022春•武邑县期末)非常时期,出门切记戴口罩.当下口罩市场出现热销,某超市用12000元购进甲、乙两种型号的口罩在超市销售,销售完后共获利2700元,进价和售价如表所示.(1)求该超市购进甲、乙两种型号的口罩各多少袋?(2)该超市第二次以原价购进甲、乙两种型号的口罩,购进甲种型号的口罩袋数不变,而购进乙种型号的口罩袋数是第一次的2倍,甲种型号的口罩按原售价出售,而效果更好的乙种型号的口罩打折让利销售,若两种型号的口罩全部售完,要使第二次销售活动获利不少于1740元,求每袋乙种型号的口罩最多打几折?。
中考数学点对点-一元一次不等式(组)及其应用(解析版)
专题13 一元一次不等式(组)及其应用专题知识点概述1.不等式的定义:用不等号“<”“>”“≤”“≥”表示不相等关系的式子叫做不等式。
2.不等式的解:使不等式成立的未知数的值,叫做不等式的解。
一个含有未知数的不等式的所有解,组成这个不等式的解集。
3.一元一次不等式的定义:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。
4.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
5.不等式的性质:性质1:不等式的两边都加上(或减去)同一个数,不等号的方向不变。
性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
6.一元一次不等式的解法的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1.7.一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
8.求不等式组解集的规律:不等式解集在数轴上的表示方法:含≥或≤,用实心圆点,含>或<用空心圆圈。
不等式组的解集有四种情况:若a>b,(1)当x ax b>⎧⎨>⎩时,•则不等式的公共解集为x>a;(2)x ax b<⎧⎨>⎩时,不等式的公共解集为b<x<a;(3)x ax b<⎧⎨<⎩时,不等式的公共解集为x<b;(4)当x ax b>⎧⎨<⎩时,不等式组无解.9.中考出现一元一次不等式(组)试题类型总结:类型一:一元一次不等式的解集问题。
类型二:一元一次不等式组无解的情况。
类型三:明确一元一次不等式组的解集求范围。
类型四:一元一次不等式组有解求未知数的范围。
类型五:一元一次不等式组有整数解求范围。
九年级数学中考总复习一元一次不等式组(基础)知识讲解
一元一次不等式组(基础)知识讲解【学习目标】1.理解不等式组的概念;2.会解一元一次不等式组,并会利用数轴正确表示出解集;3.会利用不等式组解决较为复杂的实际问题,感受不等式组在实际生活中的作用.【要点梳理】要点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010xx->⎧⎨-<⎩,7021163159xxx->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组.要点诠释:(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.要点二、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.要点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.要点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.要点诠释:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.【典型例题】类型一、不等式组的概念1.某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边为x,请你根据题意写出x必须满足的不等式.【思路点拨】由题意知,x必须满足两个条件①面积大于48平方米.②周长小于34米.故必须构建不等式组来体现其不等关系.【答案与解析】解:依题意得:8482(8)34.x x >⎧⎨+<⎩【总结升华】建立不等式组的条件是:当感知所求的量同时满足几个不等关系时,要建立不等式组,建立不等式组的意义与建立方程组的意义类似.【高清课堂:第二讲 一元一次不等式组的解法370096 例2】举一反三:【变式】直接写出解集:(1)2,3x x >⎧⎨>-⎩的解集是______; (2)2,3x x <⎧⎨<-⎩的解集是______; (3)2,3x x <⎧⎨>-⎩的解集是_______;(4)2,3x x >⎧⎨<-⎩的解集是_______. 【答案】(1)2x >;(2)3x <-;(3)32x -<<;(4)空集.类型二、解一元一次不等式组2. 解下列不等式组(1) 313112123x x x x +<-⎧⎪⎨++≤+⎪⎩①② (2)213(1)4x x x +>-≥-.【思路点拨】解不等式组时,要先分别求出不等式组中每个不等式的解集,然后画数轴,找它们解集的公共部分,这个公共部分就是不等式组的解集.【答案与解析】解:(1)解不等式①,得x <-2解不等式②,得x ≥-5故原不等式组的解集为-5≤x <-2.其解集在数轴上表示如图所示.(2)原不等式可变为:213(1)3(1)4x xx x+>-⎧⎨-≥-⎩①②解①得:4x<解②得:12 x≥-故原不等式组的解集为14 2x-≤<.【总结升华】确定一元一次不等式组解集的常用方法有两种:(1)数轴法:运用数轴法确定不等式组的解集,就是将不等式组中的每一个不等式的解集在数轴上表示出来,然后找出它们的公共部分,这个公共部分就是此不等式组的解集;如果没有公共部分,则这个不等式组无解,这种方法体现了数形结合的思想,既直观又明了,易于掌握.(2)口诀法:为了便于快速找出不等式组的解集,结合数轴将其总结为朗朗上口的四句口诀:同大取大、同小取小、大小小大中间找,大大小小无解了.举一反三:【变式】(2015•江西样卷)解不等式组,并把解集在数轴上表示出来.【答案】解:,∵解不等式①得:x≤1,解不等式②得:x>﹣2,∴不等式组的解集为:﹣2<x≤1.在数轴上表示不等式组的解集为:类型三、一元一次不等式组的应用3. “六·一”儿童节,学校组织部分少先队员去植树.学校领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有多少棵.【思路点拨】设有x名学生,则由第一种植树法,知道一共有(4x +37)棵树;第二种植树法中,前(x-1)名学生中共植6(x-1)棵树;最后一名学生植树的数量是:[(4x +37)- 6(x-1)]棵,这样,我们就探求到第一个不等量关系:最后一人有树植,说明第二种植树法中前(x-1)名学生植树的数量要比树木总数少,即(4x +37)>6(x-1);第二种植树法中,最后一名学生植树的数量不到3棵,也就是说[(4x +37)- 6(x-1)]<3,或者理解为:[(3x +8)- 5(x-1)]≤2,这样,我们就又找到了第二个不等量关系式. 到此,不等式组即建立起来了,接下来就是解不等式组.【答案与解析】解:设有x 名学生,根据题意,得:4376114376132x x x x +>-⎧⎨+--<⎩()()()()(), 不等式(1)的解集是:x <2121;不等式(2)的解集是:x >20,所以,不等式组的解集是:20<x <2121,因为x 是整数,所以,x=21,4×21+37=121(棵)答:这批树苗共有121棵.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系. 举一反三:【变式】一件商品的成本价是30元,若按原价的八八折销售,至少可获得10%的利润;若按原价的九折销售,可获得不足20%的利润,此商品原价在什么范围内?【答案】解:设这件商品原价为x 元,根据题意可得: 88%303010%90%303020%x x ≥+⨯⎧⎨<+⨯⎩解得:37.540x ≤<答:此商品的原价在37.5元(包括37.5元)至40元范围内.4.(2015•桂林)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.【思路点拨】(1)设每本文学名著x 元,动漫书y 元,根据题意列出方程组解答即可;(2)根据学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,列出不等式组,解答即可.【答案与解析】解:(1)设每本文学名著x 元,动漫书y 元,可得:,解得:,答:每本文学名著和动漫书各为40元和18元;(2)设学校要求购买文学名著x 本,动漫书为(x+20)本,根据题意可得:, 解得:,因为取整数,所以x 取26,27,28;方案一:文学名著26本,动漫书46本;方案二:文学名著27本,动漫书47本;方案三:文学名著28本,动漫书48本.【总结升华】此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.【高清课堂:实际问题与一元一次不等式组409416 例2】举一反三:【变式】A 地果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆,将这批水果全部运往B 地. 已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨.(1)若要安排甲、乙两种货车时有几种方案?请你帮助设计出来.(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,那么选择哪种方案使运费最少?运费最少是多少?【答案】解:(1)设租甲种货车x 辆,则租乙种货车(10x -)辆,依题意得:42(10)302(10)13x x x x +-≥⎧⎨+-≥⎩,解得57x ≤≤, 又x 为整数,所以5x =或6或7,∴有三种方案:方案1:租甲种货车5辆,乙种货车5辆;方案2:租甲种货车6辆,乙种货车4辆;方案3:租甲种货车7辆,乙种货车3辆.(2)运输费用:方案1:2000×5+1300×5=16500(元);方案2:2000×6+1300×4=17200(元);方案3:2000×7+1300×3=17900(元).∴方案1运费最少,应选方案1.。
人教版初中数学中考复习 一轮复习 —一元一次不等式(组)解法及含字母(参数)问题
8
4
.
解:(2)去分母,得:8﹣(7x﹣1)>2(3x﹣2),
去括号,得:8﹣7x+1>6x﹣4,
移项,得:﹣7x﹣6x>﹣4﹣1﹣8,
合并同类项,得:﹣13x>﹣13,
系数化1,得:x<1.
考点二:解不等式(组)并在数轴上表示解(集)
5.(2021•武汉)解不等式组
2x x 1 ① 4x 10 x 1 ②
考点一:不等式的性质
C 1.(2021•常德)若a>b,下列不等式不一定成立的是( )
A.a﹣5>b﹣5
B.﹣5a<﹣5b
C. a b
cc
D.a+c>b+c
考点一:不等式的性质
2.(2021•临沂)已知a>b,下列结论:①a2>ab;②a2>b2;③若b<0,
A 则a+b<2b;④若b>0,则 1 1 ,其中正确的个数是( ) ab
性质3:不等式两边同时乘或除同一个负数,不等号的。方向改变
知识点梳理:
二、一元一次不等式(组)及其解法
一元一次不等 含有一个未知数,未知数的次数是
1
式定义
的不等式
解一元一次不 等式的步骤
去分母→去括号→移项→合并同类项→系数化为1
一元一次 一般地,关于同一个未知数的几个一元一次不等式合在一起,
不等式组 就组成一个一元一次不等式组
3.(2021•南京)解不等式1+2(x﹣1)≤3,并在数轴上表示解集. 解: 1+2(x﹣1)≤3, 去括号,得1+2x﹣2≤3. 移项、合并同类项,得2x≤4. 化系数为1,得x≤2.
表示在数轴上为:
考点二:解不等式(组)并在数轴上表示解(集)
Hale Waihona Puke 4.(2021•泰安)(2)解不等式: 1- 7x 1 3x 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级一元一次不等式(组)复习
一、知识点回顾及典型例题 (一)、不等式的定义: (二)、不等式的基本性质:
1.(2012广州市)已知a >b,c 为任意实数,则下列不等式中总是成立的是( ) A. a+c <b+c B. a -c >b -c C. ac <bc D. ac >bc
2.①若3<x ,则x 3; ②若-2<x ,则0 x +2; ③若-2a ≥8,则a 4; ④若x >y ,则m 2 x m 2 y 。
(三)、不等式的解和不等式的解集的定义:
⑴能使不等式成立的未知数的值(一个或几个),叫做不等式的解。
⑵一个含有未知数的不等式的所有解,组成这个不等式的解集。
1.(2014衢州)不等式2x -1>1
2
x 的解集是 .
2:不等式53-x <x +3的正整数解有( ) 3. (2014攀枝花)下列说法中,错误..
的是( ) A. 不等式2<x 的正整数解中有一个 B. 2-是不等式012<-x 的一个解 C. 不等式93>-x 的解集是3->x D. 不等式10<x 的整数解有无数个
(四)、一元一次不等式的定义和解法:
⑴不等式的左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫一元一次不等式。
其标准形式:ax+b <0或ax+b ≤0,ax+b >0或ax+b ≥0(a ≠0).
⑵解一元一次不等式的一般步骤: 例:13
132
1≤---x x 解不等式: 4
12
33523+>--
x x ; 3252132x x x -≤--
(五)、一元一次不等式组:
⑴关于同一个未知数的几个一元一次不等式合在一起就组成一个一元一次不等式组。
⑵一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
⑶一元一次不等式组的解法:先解出各个不等式的解集,然后再找出它们的公共部分。
可以利用数轴来找。
例1:解不等式组,并将其解集在数轴上表示出来.23112.2x x x -<⎧⎪
⎨-+-⎪⎩, ①
≥ ②
例2:求不等式组中字母的取值:已知不等式组321
x x a +⎧⎨-<⎩,≥无解,则a 的取值范围是
1.(2012河北省)下列各数中,为不等式组⎩⎨⎧<->-040
32x x 解的是( )
A.-1 B.0 C.2 D.4 2.解不等式组
()6152432112
323x x x x ++⎧⎪⎨--⎪
⎩> ≥② ①
()461,315,x x x x +>-⎧⎪⎨-≤+⎪⎩ ⎪⎪⎩
⎪⎪⎨⎧
>+---+>--)
() (23
2)6
54
2(21225
69x x x x
(六)、列不等式(组)解应用题:
1. (2012陕西 )小宏准备用50元钱买甲、乙两种饮料共10瓶.已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买几瓶甲饮料?
2. 某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车共10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.
⑴请你帮助学校设计所有可行的租车方案; ⑵如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?
3.(2014年四川资阳)某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y1(元/台)与采购数量x1(台)满足y1=﹣20x1+1500(0<x1≤20,x1为整数);冰箱的采购单价y2(元/台)与采购数量x2(台)满足y2=﹣10x2+1300(0<x2≤20,x2为整数).
(1)经商家与厂家协商,采购空调的数量不少于冰箱数量的,且空调采购单价不低于1200元,问该商家共有几种进货方案?
(2)该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.在(1)的条件下,问采购空调多少台时总利润最大?并求最大利润.
能力提高
一、选择题
1.(2012山东泰安)将不等式组
841
163
x x
x x
+<-
⎧
⎨
≤-
⎩
的解集在数轴上表示出来,正确的是()
A B C D
2.若不等式
x b
x a
-<
⎧
⎨
+>
⎩
的解集为2<x<3,则a,b的值分别为()
A.-2,3 B.2,-3 C.3,-2 D.-3,2
3. 若不等式组
1+
240
x a
x
>
⎧
⎨
-
⎩≤
有解,则a的取值范围是
A .a ≤3
B .a <3
C .a <2
D .a ≤2
4.( 2014•广西)在等腰△ABC 中,AB =AC ,其周长为20cm ,则AB 边的取值范围是( )
A . 1cm <A
B <4cm
B . 5cm <AB <10cm
C . 4cm <AB <8cm
D . 4cm <AB <10cm
5.如果不等式 ⎩
⎨⎧><m x x 8
无解,那么m 的取值范围是( ) A .m >8 B .m ≥8 C .m <8 D .m ≤8
二、填空题
1.若关于x 的一元一次不等式组0
122x a x x ->⎧⎨
->-⎩
无解,则a 的取值范围是( )
2、若关于x 、y 的二元一次方程组⎩
⎨⎧-=+-=+221
32y x k y x 的解满足y x +﹥1,则k 的取值范围是 .
3. 不等式组21432x x x x +>⎧⎨≤+⎩的解集是 .
4.不等式组⎪⎩
⎪
⎨⎧<-≤+4
21121x x 的整数解是 .
5.若不等式组{
3
x x m >>的解集是x>3,则m 的取值范围是______.
三、解不等式组,并把解集在数轴上表示出来.
四、解决问题
1. (2014福州市)现有A ,B 两种商品,买2件A 商品和1件B 商品用了90元,买3件A 商品和2件B 商品
共用了160元
(1)求A ,B 两种商品每件多少元?
(2)如果小亮准备购买A ,B 两种商品共10件,总费用不超过350元,且不低于300元,问有几种购买方案,
哪种方案费用最低?
2. (2012贵州黔西南州)某工厂计划生产A、B两种产品共10件,其生产成本和利润如下表.
(1)若工厂计划获利14万元,问A、B两种产品应Array分别生产多少件?
(2)若工厂计划投入资金不多于44万元,且获利多
于14万元,问工厂有哪几种生产方案?
(3)在(2)的条件下,哪种生产方案获利最大?并求出最大利润.
3.(2014•孝感)我市荸荠喜获丰收,某生产基地收获荸荠40吨.经市场调查,可采用批发、零售、加工销售三种销
售方式,这三种销售方式每吨荸荠的利润如下表:
销售方式批发零售加工销售
利润(百元/吨)12 22 30
设按计划全部售出后的总利润为y百元,其中批发量为x吨,且加工销售量为15吨.
(1)求y与x之间的函数关系式;
(2)若零售量不超过批发量的4倍,求该生产基地按计划全部售完荸荠后获得的最大利润.。