传染病的数学模型-数学建模-论文Word版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

班级:商英1002班

学号:14号

姓名:谭嘉坤

指导老师:周爱群

由于人体的疾病难以控制和变化莫测,医学中的数学模型也是较为复杂的。在研究传染病传播问题时,人们发现传染病传播所涉及的因素很多,例如,传染病人的多少,易受感染者的多少,免疫者(或感染后痊愈者)的多少等。在将某一地区,某种传染病的统计数据进行处理和分析后,人们发现了以下的规律性:

设S k表示在开始观察传染病之后第k天易受感染者的人数,H k表示在开始观察后第k天传染病人的人数,I k表示在开始观察后第k天免疫者(或感染后痊愈者)的人数,那么

S k+1=S k-0.01S k (1)

H k+1=H k-0.2H k+0.01S k (2)

I k+1=I k+0.2H k (3)

其中(1)式表示从第k天到第k+1天有1%的易受感染者得病而离开了易受感染者的人群;(2)式表示在第k+1天的传染病人的人数是第k天的传染病人的人数减去痊愈的人数0.2H k(假设该病的患病期为5

(3)式表示在第k+1天免疫者的人数是第k天免疫者的人数加上第k 天后病人痊愈的人数。

将(1),(2)和(3)式化简得

如果已知S0,H0,I0的值,利用上式可以求得S1,H1,I1的值,将这组值再代入上式,又可求得S2,H2,I2的值,这样做下去,我们可以逐个地,递推地求出各组S k,H k,I k的值。因此,我们把S k+1,H k+1,I k+1和S k,H k,I k之间的关系式叫做递推关系式。

现在假设开始观察时易受感染者,传染病人和免疫者的人数分别为

将上述数据(5)代入(4)式右边得

利用递推关系式(4)反复计算得表30-1。

在建立上述数学模型的过程中,如果还要考虑该地区人员的迁入和迁出,人口的出生和死亡所引起的总人数的变化等因素,那么传染病传播的数学模型变得非常复杂。所以必须舍去次要因素,抓住主要因素,把问题简化,建立相应的数学模型。如果将由该数学模型计算的结果与实际比较后,与传染病传播的情况大致吻合,那么我们就可以利用该模型对得病人数进行预测和估计。例如,可以预测若干天后传染病人的人数等等,便于有关的医疗卫生部门作出相应的决策。

在上述模型中,易受感染者每天的发病率是1%,它只与易受感染者的人数S k有关。对于有些传染病,情形更为复杂,它不仅与易受感染者的人数有关,也与传染病人的人数H k有关,因为传染病人的人数越多,传染病的发病率也就越高。这样,就必须将由(1),(2)和(3)式所给出的模型加以修改。这里,我们假设该地区人口总数为N,是一个常数。于是,

S k=N-(H k+I k) (7)

其中I k为在开始观察后第k天免疫者(或感染后痊愈者)的人数。设传染病人每天的痊愈率为α,则

I k+1=I k+αH k (8)

最后,假设每天发病人数与易受感染者的人数S k和传染病人的人数

H k均成正比,且其比例因子为β,那么

H k+1=H k+βS k H k-αH k (9)

将(7),(8)和(9)组合起来,就得到关于S k,H k,I k的递推关系式:

如果已知N,α和β,并给定S0,H0和I0,那么利用上式就可以计算H1和I1,利用H1和I1,由(7)式,可以计算S1,然后计算H2和I2,再计算S2,……这样,(10)式就给出了关于传染病传播的第2个数学模式。

利用数学模型(4)或(10)式可以对该传染病传播的情形作一些定性的分析。

设ΔS k=S k+1-S k表示从第k天到第k+1天易受感染者人数的变化,Δ

I k=I k+1-I k表示从第k天到第k+1天免疫者(或感染后痊愈者)人数的变化。从数学模型(4)式可以看到

ΔS k=-0.01S k≤0

ΔI k=0.2H k≥0

所以易受感染者人数只可能减少不会增加,而免疫者人数只可能增加不会减少。现问对数学模型(10)式来说,易受感染者的人数,免疫者的人数以及传染病人的人数各有什么变化规律?

分析:类似于数学模式(4)式的情形,分别计算ΔS k,ΔI k与Δ

H k(=H k+1-H k),然后加以分析。

解由(10)式得:

ΔS k=N-(H k+1+I k+1)-[N-(H k+I k)]

=(I k-I k+1)+(H k-H k+1)

=-αH k-βS k H k+αH k

=-βS k H k

所以ΔS k≤0,k=1, 2,…,即易受感染者人数只可能减少不会增加。

因为

ΔI k=I k+αH k-I k

=αH k

所以ΔI k≥0,k=1,2,…,即免疫者人数只可能增加不会减少。

现在设ΔH k=H k+1-H k表示从第k天到第k+1天传染病人的人数的变化,则由(10)式得

H k=βS k H k-αH k

=(βS k-α)H k,

所以当(βS k-α)>0时,传染病人的人数第k+1天比第k天增加;当(βS k-α)<0时,传染病人的人数相应地减少,也就是说,当易受感染者人数S k“大”时,可使(βS k-α)>0,从而传染病人的人数增加;当易受感染者的人数S k“小”时,可使(βS k-α)<0,从而传染病人的人数减少。解一元一次不等式

βS k-α>0(或βSk-α<0)

如,打预防针等),那么可以降低发病率从而降低β值。如果发明了一种好的药品可以缩短患病期,那么就可以提高传染病人每天的痊愈率α。

现在有这样的一个实际问题,有一个药物研究小组提出需要100万元的科研经费在一年内试制某种预防针剂,可使发病率降低从而使β值降低25%,而另一个药物研究小组提出需要100万元的科研经费在一年内试制某种药品,可使痊愈率α提高30%。如果仅有一笔100万元的科研基金可供申请,那么这笔基金应提供给哪一个小组?

对于用药物的方法,α2=(1+30%)α,β2=β,所以

由于C1>C2,所以这笔基金应提供给试制预防针剂的小组。

注:从传染病传播的数学模型的研究过程中,可以看到建立数学模型的一般过程。

相关文档
最新文档