(完整版)实际问题与一元一次方程(常见题型)
完整版)人教版七年级上册数学一元一次方程应用题及答案

完整版)人教版七年级上册数学一元一次方程应用题及答案一元一次方程大练列一次方程(组)或分式方程解应用题的基本步骤是:审、设、列、解、答。
常见题型有以下几种情形:1.和、差、倍、分问题,即两数和等于较大的数加上较小的数,较大的数等于较小的数乘以倍数加上增(或减)数;2.行程类问题,即路程等于速度乘以时间;3.工程问题,即工作量等于工作效率乘以工作时间;4.浓度问题,即溶质质量等于溶液质量乘以浓度;5.分配问题,即调配前后总量不变,调配后双方有新的倍比关系;6.等积问题,即变形前后的质量(或体积)不变;7.数字问题,即若个位上数字为a,十位上的数字为b,百位上的数字为c,则这三位数可表示为100c+10b+a等等;8.经济问题,即利息等于本金乘以利率乘以期数;本息和等于本金加上利息等于本金加上本金乘以利率乘以期数;税后利息等于本金乘以利率乘以期数乘以(1减利息税率);商品的利润等于商品的售价减去商品的进价;商品的利润率等于商品的利润除以商品的进价乘以100%等等。
一元一次方程应用题知能点1:市场经济、打折销售问题1.商品利润等于商品售价减去商品成本价;商品利润率等于商品利润除以商品成本价乘以100%;商品销售额等于商品销售价乘以商品销售量;商品的销售利润等于(销售价减成本价)乘以销售量;商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售。
下面是几道应用题:1.某商店开张,为了吸引顾客,所有商品一律按八折优惠出售。
已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?2.一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为:A。
清单03一元一次方程(五大考点梳理题型解读解决实际问题12种题型)(原卷版)

清单03 一元一次方程(五大考点梳理+题型解读+解决实际问题12种题型)【知识导图】【知识清单】考点一、一元一次方程的概念1.方程:含有未知数的等式叫做方程.【例1】(2022秋•颍州区期末)下列各式中,是方程的个数为()①x=0;②3x﹣5=2x+1;③2x+6;④x﹣y=0;⑤=5y+3;⑥a2+a﹣6=0.A.2个B.3个C.5个D.4个2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.细节剖析:判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1;②未知数所在的式子是整式,即分母中不含未知数.【例2】(2022秋•汉台区期末)已知(m﹣3)x|m|﹣2=18是关于x的一元一次方程,则()A.m=2B.m=﹣3C.m=±3D.m=13.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.【例3】(2023春•蒸湘区校级期末)若x=﹣1是方程2x+m﹣6=0的解,则m的值是()A.﹣4B.4C.﹣8D.8【变式】(2022秋•宁阳县期末)若一元一次方程ax+b=0的解是x=1,则a,b的关系为()A.相等B.互为相反数C.互为倒数D.互为负倒数4.解方程:求方程的解的过程叫做解方程.考点二、等式的性质与去括号法则1.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.【例4】(2022秋•雅安期末)下列等式变形错误的是()A.若,则x﹣1=2xB.若x﹣1=3,则x=4C.若x﹣3=y﹣3,则x﹣y=0D.若3x+4=2x,则3x﹣2x=﹣42.合并法则:合并时,把系数相加(减)作为结果的系数,字母和字母的指数保持不变.3.去括号法则:(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反.考点三、一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的最小公倍数.(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号.(3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax=b(a≠0)的形式.(5)系数化为1:方程两边同除以未知数的系数得到方程的解bxa(a≠0).(6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.【例5】(2022秋•东宝区期末)解方程:(1)4﹣2x=﹣3(2﹣x);(2).考点四、列方程解应用题的步骤:①审:审题,分析题中已知什么,求什么,明确各数量之间关系②设:设未知数(一般求什么,就设什么为x)③找:找出能够表示应用题全部意义的一个相等关系④列:根据这个相等关系列出需要的代数式,进而列出方程⑤解:解所列出的方程,求出未知数的值⑥答:检验所求解是否符合题意,写出答案(包括单位名称)【例6】(2022秋•汇川区期末)如图,已知数轴上有A,B两点,它们分别表示数a,b,且(a+6)2+|b﹣12|=0.(1)填空:a=,b=;(2)点C以2个单位长度/秒的速度从点A向点B运动,到达点B后停止运动.若点D为AC中点,点E为BC中点,在点C运动过程中,线段DE的长度是否发生改变?若不变,求线段DE的长度,若变化,请说明原因;(3)在(2)的条件下,点P以1个单位长度/秒的速度同时从原点O向点B运动,P点到达B点后停止运动,问点P运动多少秒后,点P与点C相距2个单位长度?【例7】(2022秋•秦淮区期末)根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2015年5月1日起对居民生活用电实施“阶梯电价”收费,具体收费标准见下表:一户居民一个月用电量的范围电费价格(元/千瓦时)不超过150千瓦时的部分a 超过150千瓦时,但不超过300千瓦时的部分b 超过300千瓦时的部分a +0.32015年5月份,该市居民甲用电100千瓦时,交费60元;居民乙用电200千瓦时,交费125元. (1)求上表中a 、b 的值;(2)实施“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月交费285元?【例8】.(2022秋•常州期末)列方程解决问题:小华和妈妈一起玩成语竞猜游戏,商定如下规则:小华猜中1个成语得2分,妈妈猜中1个成语得1分,结果两人一共猜中了30个成语,得分恰好相等.请问小华猜中了几个成语?考点五、用一元一次方程解决实际问题的常见类型 1.行程问题:路程=速度×时间2.和差倍分问题:增长量=原有量×增长率3.利润问题:商品利润=商品售价-商品进价4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+ 7.数字问题;8.分配问题; 9.比赛积分问题;10.水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度水流速度).题型1.配套问题1.某生产教具的厂家准备生产正方体教具,教具由塑料棒和金属球组成(一条棱用一根塑料棒,一个顶点由一个金属球镶嵌),安排一个车间负责生产这款正方体教具,该车间共有34名工人,每个工人每天可生产塑料棒100根或金属球75个,如果你是车间主任,你会如何分配工人成套生产正方体教具?2.某车间有62个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?题型2.销售问题销售问题中有四个基本量:成本(进价)、销售价(收入)、利润、利润率。
专题13 利用一元一次方程解决实际问题(知识点串讲)(原卷版)

专题13 利用一元一次方程解决实际问题【重点突破】用方程解决实际问题的步骤:审:理解并找出实际问题中的等量关系;设:用代数式表示实际问题中的基础数据;列:找到所列代数式中的等量关系,以此为依据列出方程;解:求解;验:考虑求出的解是否具有实际意义;答:实际问题的答案.【考查题型】常见题型一配套问题和工程问题【配套问题解题关键】配套问题的物品之间具有一定的数量关系,依次作为列方程的依据.【工程问题解题关键】常把总工作量看做1,并利用“工作量=人均效率×人数×时间”的关系考虑问题1.(2019·绿园区期末)20个工人生产螺栓和螺母,已知一个工人天生产3个螺栓或4个螺母,且一个螺栓配2个螺母,如何分配工人生产螺栓和螺母?如果设生产螺栓的工人数为x个,根据题意可列方程为:_____.2.(2019·双阳区期末)某车间有36名工人,生产餐桌桌面和桌腿,每张餐桌由一张桌面和四条腿组成.每人每天平均生产桌面12张或桌腿60根.要使每天生产的桌面和桌腿正好配套,则应安排________名工人生产桌面;________名工人生产桌腿.3.(2019·哈尔滨市期末)服装厂要生产一批某型号学生服,已知每米长的布料可做上衣件或裤子条,一件上衣和一条裤子为一套,计划用米长的这种布料生产学生服,共能生产_____套.4.(2019·哈尔滨市期末)做一批零件,如果每天做8个,将比每天做6个提前1天完成.这批零件共有__________个.5.(2019·哈尔滨市期末)9人14天完成一件工作的,则剩下的工作要在4天内完成,若每个人的效率相同,则需要增加_______人6.(2018·涟源市期末)制造一批零件,按计划18天可以完成它的,如果工作3天后,工作效率提高了,那么完成这批零件的,一共需要_____天.常见题型二销售盈亏问题销售金额=售价×数量利润= 商品售价-商品进价利润率=(利润÷商品进价)×100%现售价 = 标价×折扣售价 = 进价×(1+利润率)7.(2019·哈尔滨市期末)某商品按成本增加20%定出价格,由于库存积压,现将该商品按定价九折出售,那么出售该商品最终是______(填“盈利”或“亏损”),利润率或亏损率为______.8.(2018·长沙市期中)若某商品提价又降价后的售价为150元,那么商品原售价是______. 9.(2018·吕梁市期末)某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为_____.常见题型三比赛积分问题比赛总场数=胜场数+负场数+平场数比赛总积分=胜场积分+负场积分+平场积分10.(2019·庆阳市期末)某电台组织知识竞赛,共设置道选择题,各题分值相同,每题必答,下表记录了个参赛者的得分情况.若参赛者得分,则他答对了__________道题.11.甲、乙两队开展足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分.若甲队胜场是平场的2倍,平场比负场多一场,共得了21分,则甲队胜了______场,平了______场,负了______场. 12.校园足球联赛规则规定:胜一场得3分,平一场得1分,负一场得0分.某队比赛8场保持不败,得18分,则该队共胜几场?若设该队胜了x场,则可列方程为__________________.常见题型四方案选择问题结合实际,分情况讨论,给出合理建议。
初一数学一元一次方程应用题(完整版)

一元一次方程应用题归类列方程解应用题,是初中数学的重要内容之一。
许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;下面老师就从以下几个方面分门别类的对常见的数学问题加以阐述,希望对同学们有所帮助.各题型一般模型:(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。
根据2001年3月28日新华社公布的第五次人口普查统计数据,截止到2001年11月1日0时,全国每10万人中具有小学文化程度的人口为35701人,比1990年7月1日减少了3.66%,1990年6月底每10万人中约有多少人具有小学文化程度?分析:等量关系为:1、某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%,求这个月的石油价格相对上个月的增长率。
2、某县城为鼓励居民节约用水,对自来水用户按分段计费方式收取水费:若每月用水不超过7m³,则按每立方米1元收费;若每月用水超过7m³,则超过部分按每立方米2元收费。
如果某居民今年5月缴纳了17元水费,那么这户居民今年5月的用水量为多少m³?3、芜湖供电公司分时电价执行时段分为平、谷两个时段,平段为8:00-22:00,14个小时;谷段为22:00-次日8:00,10个小时。
平段用电价格在原销售电价基础上每千瓦时上浮0.03元,谷段电价在原销售电价基础上每千瓦时下浮0.25元。
小明家5月份实用平段电量40千瓦时,谷段电量60千瓦时,按分时电价付费42.73元。
(1)问小明该月支付的平段、谷段电价每千瓦时各为多少元?(2)如不使用分时电价结算,5月份小明家将多支付电费多少元?4、某工厂食堂第三季度一共节煤7400斤,其中八月份比七月份多节约20%,九月份比八月份多节约25%,问该厂食堂九月份节约煤多少公斤?“等积变形”是以形状改变而体积不变为前提。
苏教版七年级上册数学[实际问题与一元一次方程(一)(基础)知识点整理及重点题型梳理]
![苏教版七年级上册数学[实际问题与一元一次方程(一)(基础)知识点整理及重点题型梳理]](https://img.taocdn.com/s3/m/1c96498c69dc5022aaea00ad.png)
苏教版七年级上册数学重难点突破知识点梳理及重点题型巩固练习实际问题与一元一次方程(一)(基础)知识讲解【学习目标】1.熟练掌握分析解决实际问题的一般方法及步骤;2.熟悉行程,工程,配套及和差倍分问题的解题思路.【要点梳理】知识点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类 题的一般步骤为:审、设、列、解、检验、答.要点诠释:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系;(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数;(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一;(4)“解”就是解方程,求出未知数的值;(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可;(6)“答”就是写出答案,注意单位要写清楚.知识点二、常见列方程解应用题的几种类型(待续)1.和、差、倍、分问题(1)基本量及关系:增长量=原有量×增长率,现有量=原有量+增长量,现有量=原有量-降低量.(2)寻找相等关系:抓住关键词列方程,常见的关键词有:多、少、和、差、不足、剩余以及倍,增长率等.2.行程问题(1)三个基本量间的关系: 路程=速度×时间(2)基本类型有:①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×相遇时间Ⅱ.寻找相等关系:甲走的路程+乙走的路程=两地距离. ②追及问题:Ⅰ.基本量及关系:追及路程=速度差×追及时间Ⅱ.寻找相等关系:第一, 同地不同时出发:前者走的路程=追者走的路程;第二, 第二,同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,顺水速度-逆水速度=2×水速;Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,并且还常常借助画草图来分析.3.工程问题如果题目没有明确指明总工作量,一般把总工作量设为1.基本关系式:(1)总工作量=工作效率×工作时间;(2)总工作量=各单位工作量之和.4.调配问题寻找相等关系的方法:抓住调配后甲处的数量与乙处的数量间的关系去考虑.【典型例题】类型一、和差倍分问题1.(2016•黄冈)在红城中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇?【思路点拨】设七年级收到的征文有x篇,则八年级收到的征文有(118﹣x)篇.结合七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,即可列出关于x的一元一次方程,解方程即可得出结论.【答案与解析】解:设七年级收到的征文有x篇,则八年级收到的征文有(118﹣x)篇,依题意得:(x+2)×2=118﹣x,解得:x=38.答:七年级收到的征文有38篇.【总结升华】本题考查了一元一次方程的应用,解题的关键是列出方程(x+2)×2=118﹣x.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.举一反三:【变式】(2015•南充)学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,今年购置计算机的数量是()A. 25台B. 50台C. 75台D. 100台【答案】C.解:设今年购置计算机的数量是x台,去年购置计算机的数量是(100﹣x)台,根据题意可得:x=3(100﹣x),解得:x=75.类型二、行程问题1.一般问题2.小山娃要到城里参加运动会,如果每小时走4千米,那么走完预订时间离县城还有0.5千米,如果他每小时走5千米,那么比预订时间早半小时就可到达县城.试问学校到县城的距离是多少千米?【答案与解析】解:设小山娃预订的时间为x 小时,由题意得:4x+0.5=5(x-0.5),解得x =3.所以4x+0.5=4×3+0.5=12.5(千米).答:学校到县城的距离是12.5千米.【总结升华】当直接设未知数有困难时,可采用间接设的方法.即所设的不是最后所求的,而是通过求其它的数量间接地求最后的未知量.举一反三:【变式】某汽车在一段坡路上往返行驶,上坡的速度为10千米/时,下坡的速度为20千米/时,求汽车的平均速度.【答案】解:设这段坡路长为a 千米,汽车的平均速度为x 千米/时,则上坡行驶的时间为10a 小时,下坡行驶的时间为20a 小时.依题意,得:21020a a x a ⎛⎫+= ⎪⎝⎭, 化简得: 340ax a =.显然a ≠0,解得1133x =. 答:汽车的平均速度为1133千米/时.2.相遇问题(相向问题) 【实际问题与一元一次方程(一) 388410 相遇问题】3. A 、B 两地相距100km ,甲、乙两人骑自行车分别从A 、B 两地出发相向而行,甲的速度是23km/h ,乙的速度是21km/h ,甲骑了1h 后,乙从B 地出发,问甲经过多少时间与乙相遇?【答案与解析】解:设甲经过x 小时与乙相遇.由题意得:()2312321(1)100x ⨯++-=.解得,x=2.75.答:甲经过2.75小时与乙相遇.【总结升华】等量关系:甲走的路程+乙走的路程=100km举一反三:【变式】甲、乙两人骑自行车,同时从相距45km 的两地相向而行,2小时相遇,每小时甲比乙多走2.5km ,求甲、乙每小时各行驶多少千米?【答案】解:设乙每小时行驶x 千米,则甲每小时行驶(x +2.5)千米,根据题意,得:2( 2.5)245x x ++=.解得:10x =.2.510 2.512.5x +=+=(千米)答:甲每小时行驶12.5千米,乙每小时行驶10千米3.追及问题(同向问题)4.一队学生去校外进行军事野营训练,他们以5千米/时的速度行进,走了18分钟时,学校要将一紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员用多少分钟可以追上学生队伍?【答案与解析】解:设通讯员x 小时可以追上学生队伍,则根据题意, 得18145560x x =⨯+. 得:16x =, 16小时=10分钟. 答:通讯员用10分钟可以追上学生队伍.【总结升华】追及问题:路程差=速度差×时间,此外注意:方程中x 表示小时,18表示分钟,两边单位不一致,应先统一单位.4.航行问题(顺逆流问题)5.一艘船航行于A 、B 两个码头之间,轮船顺水航行需3小时,逆水航行需5小时,已知水流速度是4千米/时,求这两个码头之间的距离.【答案与解析】解法1:设船在静水中速度为x 千米/时,则船顺水航行的速度为(x+4)千米/时,逆水航行的速度为(x-4)千米/时,由两码头的距离不变得方程:3(x+4)=5(x-4),解得:x=16,(16+4)×3=60(千米).答:两码头之间的距离为60千米.解法2:设A 、B 两码头之间的距离为x 千米,则船顺水航行时速度为3x 千米/时,逆水航行时速度为5x 千米/时,由船在静水中的速度不变得方程:4435x x -=+,解得:60x =. 答:两码头之间的距离为60千米.【总结升华】顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度,根据两个码头的距离不变或船在静水中的速度不变列方程.类似地,当物体在空中飞翔时,常会遇到顺风逆风问题,解题思路类似顺逆流问题.类型三、工程问题6.一个水池有两个注水管,两个水管同时注水,10小时可以注满水池;甲管单独开15小时可以注满水池,现两管同时注水7小时,关掉甲管,单独开乙管注水,还需要几小时能注满水池?【思路点拨】视水管的蓄水量为“1”,设乙管还需x 小时可以注满水池;那么甲乙合注1小时注水池的110,甲管单独注水每小时注水池的115,合注7小时注水池的710,乙管每小时注水池的111015⎛⎫- ⎪⎝⎭. 【答案与解析】解:设乙管还需x 小时才能注满水池.由题意得方程:1171101510x ⎛⎫-=- ⎪⎝⎭. 解此方程得:x =9.答:单独开乙管,还需9小时可以注满水池.【总结升华】工作效率×工作时间=工作量,如果没有具体的工作量,一般视总的工作量为“1” .举一反三:【变式】修建某处住宅区的自来水管道,甲单独完成需14天,乙单独完成需18天,丙单独完成需12天,前7天由甲、乙两人合作,但乙中途离开了一段时间,后两天由乙、丙合作完成问乙中途离开了几天?【答案】解:设乙中途离开x 天,由题意得:1117(72)21141812x ⨯+-++⨯=. 解得:3x =.答:乙中途离开了3天.类型四、调配问题(比例问题、劳动力调配问题)7.(2015春•衡阳校级月考)某班分两组去两处植树,第一组22人,第二组26人.现第一组在植树中遇到困难,需第二组支援.问从第二组调多少人去第一组才能使第一组的人数是第二组的2倍?设抽调x 人,则可列方程( )A . 22+x=2×26B . 22+x=2(26﹣x )C . 2(22+x )=26﹣xD . 22=2(26﹣x )【思路点拨】设抽调x 人,则调后一组有(22+x )人,第二组有(26﹣x )人,根据关键语句:使第一组的人数是第二组的2倍列出方程即可.【答案】B .【解析】解:设抽调x 人,由题意得:(22+x )=2(26﹣x ),【总结升华】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,表示出调后两个组的人数.举一反三:【实际问题与一元一次方程(一) 388410调配问题】【变式】甲队有72人,乙队有68人,需要从甲队调出多少人到乙队,才能使甲队恰好是乙队人数的34. 解:设从甲队调出x 人到乙队.由题意得, ()372684x x -=+. 解得,x=12. 答:需要从甲队调出 12人到乙队,才能使甲队恰好是乙队人数的34 .。
(完整版)一元一次方程经典题型

一元一次方程经典题型1.以y 为未知数的方程c bay 52=()0,0≠≠b a 的解是 ( ) A .a bc y 10= B .c bc y 52= C .a bc y 25= D .cbc y 10= 2.要使415+m 与⎪⎭⎫ ⎝⎛+415m 互为相反数,那么m 的值是 ( ) A .0 B .203 C .201 D .203- 3.已知05432=+-n x 是关于x 的一元一次方程,则.____________=n4.若79b a x 与12437---y x b a 是同类项,则.___________,__________==y x5.若2-是关于x 的方程a x x -=+243的解,则._________1100100=-a a 6、若关于x 的方程230m mx m --+=是一元一次方程,则这个方程的解是 .6、已知:()2135m --有最大值,则方程5432m x -=+的解是 .7、方程456,x y -=用含x 的代数式表示y 得 ,用含y 的代数式表示x 得 。
3、解方程20.250.1x 0.10.030.02x -+=时,把分母化为整数,得 。
2、方程23(1)0x -+=的解与关于x 的方程3222k x k x +--=的解互为倒数,求k 的值 。
7..222.01.05.0=+-x x6.3.1从实际问题到方程一、本课重点,请你理一理列方程解应用题的一般步骤是:(1)“找”:看清题意,分析题中及其关系,找出用来列方程的____________;(2)“设”:用字母(例如x )表示问题的_______;(3)“列”:用字母的代数式表示相关的量,根据__________列出方程;(4)“解”:解方程;(5)“验”:检查求得的值是否正确和符合实际情形,并写出答案;(6)“答”:答出题目中所问的问题。
二、基础题,请你做一做1. 已知矩形的周长为20厘米,设长为x 厘米,则宽为( ).A. 20-xB. 10-xC. 10-2xD. 20-2x2.学生a 人,以每10人为一组,其中有两组各少1人,则学生共有( )组.A. 10a -2B. 10-2aC. 10-(2-a)D.(10+2)/a1. 在课外活动中,张老师发现同学们的年龄大多是13岁.就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”2. 小明的爸爸三年前为小明存了一份3000元的教育储蓄.今年到期时取出,得到的本息和为3243元,请你帮小明算一算这种储蓄的年利率.3.小赵去商店买练习本,回来后问同学:“店主告诉我,如果多买一些就给我八折优惠.我就买了20本,结果便宜了1.60元.”你能列出方程吗?四、易错题,请你想一想1.建筑工人浇水泥柱时,要把钢筋折弯成正方形.若每个正方形的面积为400平方厘米,应选择下列表中的哪种型号的钢筋?思路点拨:解出方程有两个值,必须进行检查求得的值是否正Array确和符合实际情形,因为钢筋的长为正数,所以取x=80,故应选折C型钢筋.2.你在作业中有错误吗?请记录下来,并分析错误原因.6.3.2 行程问题一、本课重点,请你理一理1.基本关系式:_________________ __________________ ;2.基本类型:相遇问题; 相距问题; ____________ ;3.基本分析方法:画示意图分析题意,分清速度及时间,找等量关系(路程分成几部分).4.航行问题的数量关系:(1)顺流(风)航行的路程=逆流(风)航行的路程(2)顺水(风)速度=_________________________逆水(风)速度=_________________________二、基础题,请你做一做1、甲的速度是每小时行4千米,则他x小时行()千米.2、乙3小时走了x千米,则他的速度是().3、甲每小时行4千米,乙每小时行5千米,则甲、乙一小时共行()千米,y小时共行()千米.4、某一段路程x 千米,如果火车以49千米/时的速度行驶,那么火车行完全程需要()小时.三、综合题,请你试一试1.甲、乙两地路程为180千米,一人骑自行车从甲地出发每时走15千米,另一人骑摩托车从乙地出发,已知摩托车速度是自行车速度的3倍,若两人同时出发,相向而行,问经过多少时间两人相遇?2. 甲、乙两地路程为180千米,一人骑自行车从甲地出发每时走15千米,另一人骑摩托车从乙地出发,已知摩托车速度是自行车速度的3倍,若两人同向而行,骑自行车在先且先出发2小时,问摩托车经过多少时间追上自行车?3.一架直升机在A,B两个城市之间飞行,顺风飞行需要4小时,逆风飞行需要5小时.如果已知风速为30km/h,求A,B两个城市之间的距离.四、易错题,请你想一想1.甲、乙两人都以不变速度在400米的环形跑道上跑步,两人在同一地方同时出发同向而行,甲的速度为100米/分乙的速度是甲速度的3/2倍,问(1)经过多少时间后两人首次遇(2)第二次相遇呢?思路点拨:此题是关于行程问题中的同向而行类型。
(完整)初一一元一次方程应用题八种类型解析与练习

初一一元一次方程应用题八种类型解析与练习列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.1.和、差、倍、分问题:(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现.(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现.(3)增长量=原有量×增长率现在量=原有量+增长量2. 等积变形问题:“等积变形”是以形状改变而体积不变为前提.常用等量关系为:①形状面积变了,周长没变;②原料体积=成品体积.常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式 V=底面积×高=S·h= r2h②长方体的体积 V=长×宽×高=abc3. 劳力调配问题:这类问题要搞清人数的变化,常见题型有:(1)既有调入又有调出;(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变4. 数字问题(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9)则这个三位数表示为:100a+10b+c.(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n 表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示.然后抓住数字间或新数、原数之间的关系找等量关系列方程.5.商品销售问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.6.行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.7.工程问题:工作量=工作效率×工作时间完成某项任务的各工作量的和=总工作量=18. 储蓄问题⑴顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率.利息的20%付利息税⑵利息=本金×利率×期数本息和=本金+利息利息税=利息×税率(20%)1、一个两位数,十位上的数字与个位上的数字之和为11,如果把十位上的数字与个位上的数字对调,那么得到的新数就比原数大63,求原来的两位数。
第09讲-用一元一次方程解决问题(12种题型)(解析版)精选全文

第09讲用一元一次方程解决问题(12种题型)一、配套问题配套问题在考试中十分常见,比如合理安排工人生产、按比例选取工程材料、调剂人数或货物等。
解决配套问题的关键是要认识清楚部分量、总量以及两者之间的关系。
每套所需各零件的比与生产各零件总数量成反比.二、工程问题工程问题的基本量有:工作量、工作效率、工作时间。
关系式为:①工作量=工作效率×工作时间;②工作时间=,③工作效率=。
工程问题中,一般常将全部工作量看作整体1,如果完成全部工作的时间为t,则工作效率为。
还要注意有些问题中工作量给出了明确的数量,这时不能看作整体1,此时工作效率也即工作速度。
三. 销售问题销售问题中有四个基本量:成本(进价)、销售价(收入)、利润、利润率。
(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打6折出售,即按原标价的60%出售.四、比赛积分问题①.获取信息(找出胜、平、负的场数和积分,胜、平、负1场的积分,该队的总积分)②.能用字母表示数(常设胜/平/负的场数为x)③.寻找等量关系胜场数×胜1场的积分+平局场数×平1场的积分+负场数×负1场的积分=这个队的总积分五、方案选择问题1.借助方程先求出相等的情况。
2.再考虑什么情况下一种方案比另一种方案好,从而进行决策。
六、数字问题1、多位数的表示方法:①若一个两位数的个位上的数字为a,十位上的数字为b,则这个两位数是10b+a②若一个三位数的个位上的数字为a,十位上的数字为b,百位上的数字为c,则这个三位数是100c+10b+a③四、五…位数依此类推。
2、连续数的表示方法:①三个连续整数为:n-1,n,n+1(n为整数)②三个连续偶数为:n-2,n,n+2(n为偶数)或2n-2,2n,2n+2(n为整数)③三个连续奇数为:n-2,n,n+2(n为奇数)或2n-1,2n+1,2n+3(n为整数)七、几何问题1.将几何图形赋予了代数元素,便产生了一类新问题,2.解决这类问题时,通常要用到图形的性质以及几何量之间的关系.八、和差倍分问题1.和、差关系:通过关键词语“多、少、和、差、不足、剩余……”来体现.2.倍、分关系:通过关键词语“是几倍、增加几倍、增加到几倍、增加百分之几、增长率……”来体现.3.比例问题:全部数量=各种成分的数量之和.此类题目通常把一份设为x.解题的关键是弄清“倍、分”关系及“和、差”关系.九、分段计费问题分段计费问题解题思路1.明确分段区间2.明确不同区间的计费标准3.分区间讨论计算十. 行程问题1.行程问题中有三个基本量:路程、时间、速度。
人教版数学七年级上册3.4实际问题与一元一次方程1(劳动力调配与工程问题 )

实际问题与一元一次方程1(配套问题与工程问题)一、要点探究探究点1:产品配套问题填一填:1.某厂欲制作一些方桌和椅子,1张方桌与4把椅子刚好配成一套,为了使桌椅刚好配套,商家应制作椅子的数量是桌子数量的倍. 方桌与椅子的数量之比是.2.一个油桶由两个圆形铁片和一个长方形铁片相配套.某车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.设安排x名工人生产圆形铁片,可使圆形铁片和长方形铁片刚好配套,请填写下表:人数每小时生产铁片的数量生产的套数生产圆形铁片x生产长方形铁片等量关系:(1)每小时生产的圆形铁片=_____×每小时生产的长方形铁片.(2)生产的套数相等.方法总结:生产调配问题通常从调配后各量之间的倍、分关系寻找相等关系,建立方程.解决配套问题的思路:1.利用配套问题中物品之间具有的数量关系作为列方程的依据;2.利用配套问题中的套数不变作为列方程的依据.典型例题例1:机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?针对训练1.某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)?2.包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120片,或长方形铁片80片,将两张圆形铁片与和一张可配套成一个密封圆桶,问如何安排工人生产圆形或长方形铁片能合理地将铁片配套?3.用白铁皮做罐头盒,每张铁皮可制作盒身25个,或40个盒底,一个盒身与两个盒底配成一套盒。
现有36张白铁皮,用多少张制作盒身,多少张制作盒底可以使盒身与盒底正好配套?4.某车间加工机轴和轴承,一个工人每天平均可加工15个机轴或10个轴承。
该车间共有80人,一根机轴和两个轴承配成一套,问应分配多少个工人加工机轴或轴承,才能使每天生产的机轴和轴承正好配套。
人教版七年级数学上册第三章实际问题与一元一次方程解答题复习题四(含答案) (30)

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习题四(含答案) 我们知道分数13写为小数即0.3,反之,无限循环小数0.3写成分数即13。
一般地,任何一个无限循环小数都可以写成分数形式.现在就以0.5为例进行讨论:设:0.5=x ,由:0.5=0.5555⋅⋅⋅,得:=0.5555x ⋅⋅⋅,10=5.555x ⋅⋅⋅,于是:10=5.5550.5555x x -⋅⋅⋅-⋅⋅⋅=,即:10=5x x -,解方程得:59x =,于是得:•50.59=. 请仿照上述例题完成下列各题:(1)请你把无限循环小数0˙写成分数,即•0.07= ;(2)你能化无限循环小数••3.47为分数吗?请完成你的探究过程.【答案】(1)790;(2)••473.47=399 【解析】试题分析:(1)设•0.07=x ,找出规律公式100x-10x=7,解方程即可;(2)设••0.47=x ,找出规律公式100x-x=57,解方程即可.试题解析:(1)设•0.07=x,由•0.07=0.0777…,易得100x=7.777….,10x=0.777….可知,100x −10x=7.777…−0.777…=7,即100x −10x=7, 解得:x=790, 故答案为:790; (2)设••0.47=x ,由••0.47=0.474747…,易得100x=47.4747….可知100x −x=47.4747…−0.474747…=47,即100x −x=47,解得:x=4799. 故无限循环小数••3.47化为分数是47399.点睛:此题主要考查了一元一次方程的应用,解答本题的关键是找出其中的规律,即通过方程形式,把无限小数化为整式形式.92.某中学计划从荣威公司购买A,B两种型号的小黑板,经洽谈,购买一块A型小黑板比购买一块B型小黑板多用20元,且购买5块A型小黑板和4块B型小黑板共需820元.求购买一块A型小黑板、一块B型小黑板各需多少元.【答案】一块A型小黑板需要100元,一块B型小黑板需要80元.【解析】试题分析:设购买一块A型小黑板需要x元,则购买一块B型小黑板需要(x-20)元,那么设购买5块A型小黑板需要5x元,则购买4块B型小黑板需要4(x-20)元,根据等量关系一共需要820元列方程即可.解:设购买一块A型小黑板需要x元,则购买一块B型小黑板需要(x-20)元,依题意有5x+4(x-20)=820,解得x=100,则x-20=80.答:购买一块A型小黑板需要100元,一块B型小黑板需要80元.点睛:本题考查了列一元一次方程解应用题,一般步骤是:①审题,找出已知量和未知量;②设未知数,并用含未知数的代数式表示其它未知量;③找等量关系,列方程;④解方程;⑤检验方程的解是否符合题意并写出答案.93.小明从今年1月初起刻苦练习跳远,每个月的跳远成绩都比上一个月有所增加,而且增加的距离相同.2月份,5月份他的跳远成绩分别为4.1 m,4.7 m.请你算出小明1月份的跳远成绩以及每个月增加的距离.【答案】小明1月份的跳远成绩是3.9 m,每个月增加的距离是0.2 m.【解析】试题分析:本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.设小明1月份的跳远成绩为xm,则5月份﹣2月份=3(2月份﹣1月份),据此列出方程并解答.试题解析:设小明1月份的跳远成绩为xm,则根据题意得:4.7﹣4.1=3(4.1﹣x),解得x=3.9.则每个月的增加距离是4.1﹣3.9=0.2(m).答:小明1月份的跳远成绩是3.9m,每个月增加的距离是0.2m.考点:一元一次方程的应用94.某校有一长方形花圃,里面有一些杂草需要处理.小聪单独完成这项杂草清除任务需要150分钟,小聪单独施工30分钟后,小明加入清理,两人又.共同工作了15分钟,完成总清理任务的13(1)小明单独完成这项清理任务需要多少分钟?(2)为了加快清理,二人各自提高工作效率,设小明提高后的工作效率是m,小聪提高后的工作效率是小明提高后的工作效率的k倍(1≤k≤2),若两人合作40分钟后完成剩余的杂草清除任务,则m的最大值为.【答案】(1)小明队单独完成这项清理任务需要450分钟;(2)当k=1时,m最大值为1120【解析】(1)设小明单独完成这项清理任务需要x 分钟,(1分) 根据题意得:()111301515=1503x ⨯++⨯,解得450x =,经检验450x =是方程的根,答:小明队单独完成这项清理任务需要450分钟.(2)根据题意得:()2403km m +⨯=,()1601m k =+,当1≤k ≤2时,m 随k 的增大而减小,当k=1时,m 最大值为112095.我国古代《算法统宗》里有这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每间客房住7人,那么有7人无房可住;如果每间客房住9人,那么就空出一间房.求该店有客房多少间?房客多少人?【答案】客房8间,房客63人【解析】【分析】设该店有x 间客房,以人数相等为等量关系列出方程即可.【详解】设该店有x 间客房,则7799x x +=-解得8x =7778763x +=⨯+=答:该店有客房8间,房客63人.【点睛】本题考查的是利用一元一次方程解决应用题,根据题意找到等量关系式是解题的关键.96.冬至过后,昼夜温差逐渐加大,山城的市民们已然感受到了深冬的寒意.在还未普遍使用地暖供暖设备的山城,小型电取暖器仍然深受市民的青睐.某格力专卖店销售壁挂式电暖器和卤素/石英式取暖器(俗称“小太阳”),其中壁挂式电暖器的售价是“小太阳”售价的5倍还多100元,2016年12月份壁挂式电暖器和“小太阳”共销售500台,壁挂式电暖器与“小太阳”销量之比是4∶1,销售总收入为58.6万元.(1)分别求出每台壁挂式电暖器和“小太阳”的售价;(2)随着“元旦、春节”双节的来临和气温的回升,销售进入淡季,2017年1月份,壁挂式电暖器的售价比2016年12月下调了4m﹪,根据经验销售量将比2016年12月下滑6m﹪,而“小太阳”的销售量和售价都维持不变,预计销售总收入将下降到16.04万元,求m的值.【答案】(1)每台壁挂式电暖器和小太阳的售价为:1400元,260元;(2)10.【解析】试题分析:(1)设每台小太阳为x元,则每台壁挂式电暖器的售价为(5x+100)元,根据销售总收入为58.6万列出方程即可解决问题(2)根据题意表示出羽绒服的销量与价格,进而结合销售总收入下降为16.04万元得出等式求出即可.试题解析:(1)设每台小太阳为x元,则每台壁挂式电暖器的售价为(5x+100)元,∵2014年1月份(春节前期)共销售500件,每台壁挂式电暖器与小太阳销量之比是4:1,∴每台壁挂式电暖器与小太阳销量分别为:400件和100件,根据题意得出:400(5x+100)+100x=586000,解得:x=260,∴5x+100=1400(元),答:每台壁挂式电暖器和小太阳的售价为:1400元,260元;(2)∵2014年2月份每台壁挂式电暖器销量下滑了6m%,售价下滑了4m%,小太阳销量和售价都维持不变,结果销售总收入下降为16.04万元,∴400(1-6m%)×1400×(1-4m%)+100×260=160400解得:m 1=10,m 2=953(不合题意舍去), 答:m 的值为10.【点睛】此题主要考查了一元一次方程的应用,以及利润、售价、销售数量之间关系,解题的关键是学会设未知数,找等量关系列方程,属于中考常考题型.97.某人要在规定的时间内开车从甲地到乙地,如果他以50km/h 的速度行驶,就会迟到12分钟;如果他以75km/h 的速度行驶,则可提前24分钟到达乙地.问规定的时间是多少?【答案】规定的时间是96分钟.【解析】设规定时间是x 小时,甲、乙两地相距y 千米,根据5060×(规定时间+12)=7560×(规定时间-24),列出方程,求出方程的解即可. 解:设规定的时间是x 分钟,则()()507512246060x x +=-,解得x=96.答:规定的时间是96分钟.“点睛”此题考查了二元一次方程组的应用,解答此题的关键是读懂题意,找出之间的等量关系,列出方程组,本题的等量关系是:98.一个装满稻谷的圆柱形粮屯,底面积是3.2平方米,高是1.8米.若把这些稻谷堆成高是0.9米的圆锥形谷堆,占地面积是多少平方米?【答案】19.2【解析】【试题分析】根据体积相等列方程.【试题解析】设圆锥形谷堆占地面积为x则3.2×1.8=x×0.9÷3x=19.2,还剩下48千克,这桶油原来重多少千克?99.一桶油用去25【答案】80【解析】试题分析:设原来重xkg,把这桶油的总重量看成单位“1”,剩下了总重量的,它对应的数量是48千克,列方程解答即可;1-25试题解析:设这桶油原来重x 千克,依题意得: x(1-25)=48 解得x=80答:这桶油原来重80千克.100.如图,是2016年11月月历(1)用一正方形在表中随意框住4个数,把其中最小的记为x ,则另外三个 数可用含x 的式子表示出来,从小到大依次为 , , ;(2)在(1)中被框住的4个数之和等于76时,则被框住的4个数分别是多少?【答案】(1)1x +,7x +,8x +;(2) 15,16,22,23.【解析】分析:(1)根据日历可直接得这三个数分别为x+1、x+7、x+8;(2)根据题意可得方程x+x+1+x+7+x+8=76,再解即可.本题解析:(1)1x +,7x +,8x +.(2)根据题意,得:17876x x x x ++++++=解得:15x =所以:116x +=,722x +=,823x +=.所以被框住的4个数分别是15,16,22,23.。
一元一次方程练习题(完整版)

一元一次方程练习题基本题型:一、选择题:1、下列各式中是一元一次方程的是( ) A. y x -=-54121 B. 835-=--C. 3+xD.146534+=-+x x x 2、方程x x 231=+-的解是( ) A. 31- B. 31 C. 1 D. -13、若关于x 的方程m x 342=-的解满足方程m x =+2,则m 的值为( )A. 10B. 8C. 10-D. 8-4、下列根据等式的性质正确的是( )A. 由y x 3231=-,得y x 2=B. 由2223+=-x x ,得4=xC. 由x x 332=-,得3=xD. 由753=-x ,得573-=x5、解方程16110312=+-+x x 时,去分母后,正确结果是( ) A. 111014=+-+x x B. 111024=--+x xC. 611024=--+x x C. 611024=+-+x x6、电视机售价连续两次降价10%,降价后每台电视机的售价为a 元,则该电视机的原价为( )A. 0.81a 元B. 1.21a 元C. 21.1a 元 D. 81.0a 元8、某商店卖出两件衣服,每件60元,其中一件赚25%,另一件亏25%,那么这两件衣服卖出后,商店是 ( )A.不赚不亏B.赚8元C.亏8元D. 赚8元9、下列方程中,是一元一次方程的是( )(A );342=-x x (B );0=x (C );12=+y x (D ).11xx =-10、方程212=-x 的解是( )(A );41-=x (B );4-=x (C );41=x (D ).4-=x11、已知等式523+=b a ,则下列等式中不一定...成立的是( ) (A );253b a =- (B );6213+=+b a(C );523+=bc ac (D ).3532+=b a12、方程042=-+a x 的解是2-=x ,则a 等于( )(A );8- (B );0 (C );2 (D ).813、解方程2631x x =+-,去分母,得( ) (A );331x x =-- (B );336x x =--(C );336x x =+- (D ).331x x =+-14、下列方程变形中,正确的是( )(A )方程1223+=-x x ,移项,得;2123+-=-x x(B )方程()1523--=-x x ,去括号,得;1523--=-x x(C )方程2332=t ,未知数系数化为1,得;1=x(D )方程15.02.01=--x x 化成.63=x 15、儿子今年12岁,父亲今年39岁,( )父亲的年龄是儿子的年龄的4倍.(A )3年后; (B )3年前; (C )9年后; (D )不可能.16、重庆力帆新感觉足球队训练用的足球是由32块黑白相间的牛皮缝制而成的,其中黑皮可看作正五边形,白皮可看作正六边形,黑、白皮块的数目比为3:5,要求出黑皮、白皮的块数,若设黑皮的块数为x ,则列出的方程正确的是( )(A );323x x -= (B )();3253x x -=(C )();3235x x -= (D ).326x x -=17、珊瑚中学修建综合楼后,剩有一块长比宽多5m 、周长为50m 的长方形空地. 为了美化环境,学校决定将它种植成草皮,已知每平方米草皮的种植成本最低是a 元,那么种植草皮至少需用( )(A )a 25元; (B )a 50元; (C )a 150元; (D )a 250元.18、赢行教育储蓄的年利率如右下表:小明现正读七年级,今年7月他父母为他在赢行存款30000元,以供3年后上高中使用. 要使3年后的收益最大,则小明的父母应该采用( )(A )直接存一个3年期;(B )先存一个1年期的,1年后将利息和自动转存一个2年期;(C )先存一个1年期的,1年后将利息和自动转存两个1年期;(D )先存一个2年期的,2年后将利息和自动转存一个1年期.二. 填空题:1、4|2|=x ,则=x ________.2、已知0)3(|4|2=-++-y y x ,则=+y x 2__________.3、关于x 的方程0)1(2=--a x 的解是3,则a 的值为________________.4、现有一个三位数,其个位数为a ,十位上的数字为b ,百位数上的数字为c ,则这个三位数表示为__________________.5、甲、乙两班共有学生96名,甲班比乙班多2人,则乙班有____________人.6、某数的3倍比它的一半大2,若设某数为y ,则列方程为____.7、当=x ___时,代数式24+x 与93-x 的值互为相反数.8、在公式()h b a s +=21中,已知4,3,16===h a s ,则=b ___.9、如右图是2003年12月份的日历,现用一长方形在日历中任意框出4个数,请用一个等式表示d c b a ,,,之间的关系______________.10、一根内径为3㎝的圆柱形长试管中装满了水,现把试管中的水逐渐滴入一个内径为8㎝、高为1.8㎝的圆柱形玻璃杯中,当玻璃杯装满水时,试管中的水的高度下降了____㎝.11、国庆期间,“新世纪百货”搞换季打折. 简爽同学以8折的优惠价购买了一件运动服节省16元,那么他购买这件衣服实际用了___元.12、成渝铁路全长504千米. 一辆快车以90千米/时的速度从重庆出发,1小时后,另有一辆慢车以48千米/时的速度从成都出发,则慢车出发__小时后两车相遇(沿途各车站的停留时间不计).13、都知道乌龟最后战胜了小白兔. 如果在第二次赛跑中,小白兔知耻而后勇,在落后乌龟1千米时,以101米/分的速度奋起直追,而乌龟仍然以1米/分的速度爬行,那么小白兔大概需要___分钟就能追上乌龟.14、一年定期存款的年利率为1.98%,到期取款时须扣除利息的20%作为利息税上缴国库. 假若小颖存一笔一年定期储蓄,到期扣除利息税后实得利息158.4元,那么她存入的人民币是____元15、52辆车排成两队,每辆车长a 米,前后两车间隔3a/2米,车队平均每分钟行50米,这列车队通过长为546米的广场需要的时间是16分钟,则a =__________.三、解方程:1、4)1(2=-x2、11)121(21=--x 3、()()x x 2152831--=-- 4、23421=-++x x 5、1)23(2151=--x x 6、152+-=-x x 7、1835+=-x x 8、0262921=---x x 9、已知21=x 是方程32142m x m x -=--的根,求代数式()⎪⎭⎫ ⎝⎛---+-121824412m m m 的值. 四、列方程解应用题:1、敌军在离我军8千米的驻地逃跑,时间是早晨4点,我军于5点出发以每小时10千米的速度追击,结果在7点追上.求敌军逃跑时的速度是多少?2、期中考查,信息技术课老师限时40分钟要求每位七年级学生打完一篇文章. 已知独立打完同样大小文章,小宝需要50分钟,小贝只需要30分钟. 为了完成任务,小宝打了30分钟后,请求小贝帮助合作,他能在要求的时间打完吗?3、在学完“有理数的运算”后,实验中学七年级各班各选出5名学生组成一个代表队,在数学方老师的组织下进行一次知识竞赛. 竞赛规则是:每队都分别给出50道题,答对一题得3分,⑴如果㈡班代表队最后得分142分,那么㈡班代表队回答对了多少道题?⑵㈠班代表队的最后得分能为145分吗?请简要说明理由.4、某“希望学校”修建了一栋4层的教学大楼,每层楼有6间教室,进出这栋大楼共有3道门(两道大小相同的正门和一道侧门). 安全检查中,对这3道门进行了测试:当同时开启一道正门和一道侧门时,2分钟内可以通过400名学生,若一道正门平均每分钟比一道侧门可多通过40名学生.(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤,出门的效率降低20%. 安全检查规定:在紧急情况下全大楼的学生应在5分钟内通过这3道门安全撤离. 假设这栋教学大楼每间教室最多有45名学生,问:建造的这3道门是否符合安全规定?为什么?5、黑熊妈妈想检测小熊学习“列方程解应用题”的效果,给了小熊19个苹果,要小熊把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加一个,第三堆减少两个,第四堆减少一倍后,这4堆苹果的个数又要相同. 小熊捎捎脑袋,该如何分这19个苹果为4堆呢?6、学校准备拿出2000元资金给22名“希望杯”竞赛获奖学生买奖品,一等奖每人200元奖品,二等奖每人50元奖品,求得到一等奖和二等奖的学生分别是多少人?7、一家商店将某种商品按成本价提高40%后标价,元旦期间,欲打八折销售,以答谢新老顾客对本商厦的光顾,售价为224元,这件商品的成本价是多少元?8、甲乙两人从学校到1000米远的展览馆去参观,甲走了5分钟后乙才出发,甲的速度是80米/分,乙的速度是180米/分,问乙多长时间能追上甲?追上甲时离展览馆还有多远?较高要求:1、已知431)119991(441=++x ,那么代数式19991999481872+⋅+x x 的值。
实际问题与一元一次方程行程问题

还有别的 方法吗?
类型一:行程追击问题(同向)---同地不同时
例1:兄弟两人进行晨练,欲从家门口出发到公园去, 哥哥每分钟跑250米,弟弟每分钟跑200米,哥哥因找跑 鞋比弟弟晚出发3分钟,最终两人同时到达终点,求两 人所跑的路程. 【分析】 设弟弟跑的时间为a分钟 则哥哥跑的时间为(a-3)分钟
弟弟跑的路程为 200a 米 哥哥跑的路程为250(a-3)米
弟弟跑的路程=哥哥跑的路程
200a=250(a-3)
例1:兄弟两人进行晨练,欲从家门口出发到公园去,哥 哥每分钟跑250米,弟弟每分钟跑200米,哥哥因找跑鞋比 弟弟晚出发3分钟,最终两人同时到达终点,求两人所跑 的路程. 解:设弟弟的时间为a分钟,则哥哥的时间为(a-3)分钟.
例1:兄弟两人进行晨练,欲从家门口出发到公园去, 哥哥每分钟跑250米,弟弟每分钟跑200米,哥哥因 找跑鞋比弟弟晚出发3分钟,最终两人同时到达终点, 求两人所跑的路程. 【分析】设两人所跑的路程为x米,则
x 弟弟所用的时间为:200
x 哥哥所用的时间为:250
弟弟所用的时间
哥哥所用的时间
3
x x 3 200 250
解:设飞机在无风时的速度为x km/h,则在顺风中的速 度为(x+24) km/h ,在逆风中的速度为(x-24)km/h.
根据题意,得 17 ( x+24)=3( x-24) .
6
解得
x=840.
两城市的距离为3×(840-24)=2448 (km).
答:两城市之间的距离为2448 km.
类型六:环形跑道问题
根据题意列方程,得:
200a=250(a-3)
解得:a=15
所以:15×200=3000(米)
一元一次方程的实际应用题(含详细答案)

一元一次方程的实际应用题题型一:利率问题利率问题利息=本金×利率×期数本利和=本金十利息=本金×(1+利率×期数)利息税=利息×税率税后利息=利息一利息税=利息×(1-税率)税后本利和=本金+税后利息【总结】若利率是年利率,期数以“年”为单位计数,若是月利率,则期数以“月”为单位计数,解题时要注意.【例1】某人把若干元按三年期的定期储蓄存入银行,假设年利率为3. 69%,到期支取时扣除所得税实得利息2 103.3元,求存入银行的本金.(利息税为5%)【答案】设存入银行的本金为x元,根据题意,得()()%%3 3.69152103.3x⨯⨯⨯-=x⨯=0.1051652103.3x=,20000因此,存入银行的本金是20000元.【总结】利息=本金×利率×期数×利息税题型二:折扣问题利润额=成本价×利润率售价=成本价+利润额新售价=原售价×折扣【例2】小丽和小明相约去书城买书,请你根据他们的对话内容(如图),求出小明上次所买书籍的原价.--图641【分析】设小明上次购买书籍的原价是x元,由题意,得0.82012+=-,x xx=.解得160因此,小明上次所买书籍的原价是160元,【答案】160元.1:一件衣服按标价的八折出售,获得利润18元,占标价的10%,问该衣服的买入价?分析:本金:标价利率:-20%利息:成交价-标价=买入价+利润-标价解:设该衣服的买入价为x元x+18-18/10%=18/10%×(80%-1)当然,这道题这样解是一种方法,还可以按照我们常规的算术方法解来,倒也简单,因此,列方程解应用题是针对过程清楚的问题比较简单方便。
2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?[分析]探究题目中隐含的条件是关键,可直接设出成本为X元进价折扣率标价优惠价利润X元8折(1+40%)X元80%(1+40%)X 15元等量关系:(利润=折扣后价格—进价)折扣后价格-进价=15解:设进价为X元,80%X(1+40%)—X=15,X=125答:进价是125元。
初中数学微课专题 第三章一元一次方程“实际问题和一元一次方程”

第三章一元一次方程“实际问题和一元一次方程”
(电话计费问题)
一.解答题(共3小题)
1.我市为了鼓励广大市民节约用水,规定自来水的收费标准如下表:
每月各户用水量每吨价格(元/吨)
不超过10吨部分 2.50
超过10吨部分 3.50
(1)已知王老师家11月份用水12吨,那么应缴水费多少元?
(2)如果王老师家12月份的水费为46元,那么12月份用水多少吨?
2.某市电力部门对一般照明用电实行“阶梯电价”收费,具体收费标准如下:第一档:月用电量不超过240度的部分的电价为每度0.6元;
第二档:月用电量超过240度但不超过400度部分的电价为每度0.65元;
第三档:月用电量超过400度的部分的电价为每度0.9元.
(1)已知老王家去年5月份的用电量为380度,则老王家5月份应交电费 元;
(2)若去年6月份老王家用电的平均电价为0.70元,求老王家去年6月份的用电量;
(3)已知老王家去年7、8月份的用电量共500度(7月份的用电量少于8月份的用电量),两个月的总电价是303元,求老王家7、8月的用电量分别是多少?
第1页(共1页)。
非常全面】实际问题与一元一次方程(十大题型总结)

非常全面】实际问题与一元一次方程(十大题型总结)第三章一元一次方程3.4 实际问题与一元一次方程用一元一次方程解决实际问题的一般步骤为:审、设、列、解、检、答。
具体解释如下:1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系。
2)“设”就是设未知数,一般求什么就设什么为x,但有时也可以间接设未知数。
3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一。
4)“解”就是解方程,求出未知数的值。
5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可。
6)“答”就是写出答案,注意单位要写清楚。
常见列方程解应用题的几种类型:题型一:和、差、倍、分问题常见以下四种题型:一般和差倍分问题、年龄问题、等积变形问题、比赛积分问题。
例题1:某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元?解:设去年该单位捐款钱数为x。
=2x+1000=2xx=(元)例题2:旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?解:设油箱里原有的汽油为x升。
x(1-25%)(1-40%)=25%x+x(1-25%)*40%-1x=10题型二:年龄问题例题3:兄弟二人今年分别为25岁和9岁,多少年后兄的年龄是弟的年龄的2倍?解:设x年后,兄的年龄是弟的年龄的2倍,则x年后兄的年龄是25+x,弟的年龄是9+x。
由题意,得2×(9+x)=25+x。
x=7答:7年后兄的年龄是弟的年龄的2倍。
例题4:三位同学甲乙丙,甲比乙大1岁,乙比丙大2岁,三人的年龄之和是41,求甲同学的年龄?解:设甲得年龄是x,乙得年龄是x-1,丙得年龄是x-1-2.x+x-1+x-1-2=41求解得x=15所以甲得年龄是15岁。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实际问题与一元一次方程(一)基础【学习目标】1.熟练掌握分析解决实际问题的一般方法及步骤;2.熟悉行程,工程,配套及和差倍分问题的解题思路.【要点梳理】知识点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类 题的一般步骤为:审、找、设、列、解、检、答.要点诠释:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系。
(2)“找”寻找等量关系;(3)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数;(4)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一;(5)“解”就是解方程,求出未知数的值.(6)“检”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可;(7)“答”就是写出答案,注意单位要写清楚. 知识点二、常见列方程解应用题的几种类型1.和、差、倍、分问题(1)基本量及关系:增长量=原有量×增长率,现有量=原有量+增长量,现有量=原有量-降低量.(2)寻找相等关系:抓住关键词列方程,常见的关键词有:多、少、和、差、不足、剩余以及倍,增长率等.2.行程问题(1)三个基本量间的关系: 路程=速度×时间(2)基本类型有:①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×相遇时间Ⅱ.寻找相等关系:甲走的路程+乙走的路程=两地距离. ②追及问题:Ⅰ.基本量及关系:追及路程=速度差×追及时间Ⅱ.寻找相等关系:第一, 同地不同时出发:前者走的路程=追者走的路程;第二, 同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,顺水速度-逆水速度=2×水流速度;Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.3.工程问题如果题目没有明确指明总工作量,一般把总工作量设为1.基本关系式:(1)总工作量=工作效率×工作时间;(2)总工作量=各单位工作量之和.4.调配问题寻找相等关系的方法:抓住调配后甲处的数量与乙处的数量间的关系去考虑.【典型例题】类型一、和差倍分问题1.2011年北京市生产运营用水和居民家庭用水的总和为5.8亿立方米,其中居民家庭用水比生产运营用水的3倍还多0.6亿立方米,问生产运营用水和居民家庭用水各多少亿立方米?【答案与解析】设生产运营用水x 亿立方米,则居民家庭用水(5.8-x )亿立方米.依题意,得5.8-x =3x+0.6解得x =1.35.8-x =5.8-1.3=4.5(亿立方米)答:生产运营用水1.3亿立方米,居民家庭用水4.5亿立方米.【总结升华】本题要求两个未知数,不妨设其中一个未知数为x ,另外一个用含x 的式子表示.本题的相等关系是生产运营用水量+居民家庭用水总量=5.8亿立方米.举一反三:【变式】(麻城期末考试)麻商集团三个季度共销售冰箱2800台,第一个季度销售量是第二个季度的2倍.第三个季度销售量是第一个季度的2倍,试问麻商集团第二个季度销售冰箱多少台?【答案】解:设第二个季度麻商集团销售冰箱x 台,则第一季度销售量为2x 台,第三季度销售量为4x 台,依题意可得:x+2x+4x =2800,解得:x =400答:麻商集团第二个季度销售冰箱400台.类型二、行程问题1.一般问题2.小山娃要到城里参加运动会,如果每小时走4千米,那么走完预订时间离县城还有0.5千米,如果他每小时走5千米,那么比预订时间早半小时就可到达县城.试问学校到县城的距离是多少千米?【答案与解析】解:设小山娃预订的时间为x 小时,由题意得:4x+0.5=5(x -0.5),解得x =3.所以4x+0.5=4×3+0.5=12.5(千米).答:学校到县城的距离是12.5千米.【总结升华】当直接设未知数有困难时,可采用间接设的方法.即所设的不是最后所求的,而是通过求其它的数量间接地求最后的未知量.举一反三:【变式】某汽车在一段坡路上往返行驶,上坡的速度为10千米/时,下坡的速度为20千米/时,求汽车的平均速度.【答案】解:设这段坡路长为a 千米,汽车的平均速度为x 千米/时,则上坡行驶的时间为10a 小时,下坡行驶的时间为20a 小时.依题意,得:21020a a x a ⎛⎫+= ⎪⎝⎭, 化简得: 340ax a =.显然a ≠0,解得1133x =答:汽车的平均速度为1133千米/时. 2.相遇问题(相向问题)【高清课堂:实际问题与一元一次方程(一) 388410 相遇问题】3. A 、B 两地相距100km ,甲、乙两人骑自行车分别从A 、B 两地出发相向而行,甲的速度是23km/h ,乙的速度是21km/h ,甲骑了1h 后,乙从B 地出发,问甲经过多少时间与乙相遇?【答案与解析】解:设甲经过x 小时与乙相遇.由题意得:()2312321(1)100x ⨯++-= 解得,x=2.75答:甲经过2.75小时与乙相遇.【总结升华】等量关系:甲走的路程+乙走的路程=100km举一反三:【变式】甲、乙两人骑自行车,同时从相距45km 的两地相向而行,2小时相遇,每小时甲比乙多走2.5km ,求甲、乙每小时各行驶多少千米?【答案】解:设乙每小时行驶x 千米,则甲每小时行驶(x +2.5)千米,根据题意,得:2( 2.5)245x x ++=解得:10x =2.510 2.512.5x +=+=(千米)答:甲每小时行驶12.5千米,乙每小时行驶10千米3.追及问题(同向问题)4.一队学生去校外进行军事野营训练,他们以5千米/时的速度行进,走了18分钟时,学校要将一紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员用多少分钟可以追上学生队伍?【答案与解析】解:设通讯员x 小时可以追上学生队伍,则根据题意,得18145560x x =⨯+, 得:16x =, 16小时=10分钟. 答:通讯员用10分钟可以追上学生队伍.【总结升华】追及问题:路程差=速度差×时间,此外注意:方程中x 表示小时,18表示分钟,两边单位不一致,应先统一单位.4.航行问题(顺逆风问题)5.一艘船航行于A 、B 两个码头之间,轮船顺水航行需3小时,逆水航行需5小时,已知水流速度是4千米/时,求这两个码头之间的距离.【答案与解析】解法1:设船在静水中速度为x 千米/时,则船顺水航行的速度为(x+4)千米/时,逆水航行的速度为(x -4)千米/时,由两码头的距离不变得方程:3(x+4)=5(x -4),解得:x=16,(16+4)×3=60(千米)答:两码头之间的距离为60千米.解法2:设A 、B 两码头之间的距离为x 千米,则船顺水航行时速度为3x 千米/时,逆水航行时速度为5x 千米/时,由船在静水中的速度不变得方程:4435x x -=+,解得:60x = 答:两码头之间的距离为60千米.【总结升华】顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度,根据两个码头的距离不变或船在静水中的速度不变列方程.类型三、工程问题6.一个水池有两个注水管,两个水管同时注水,10小时可以注满水池;甲管单独开15小时可以注满水池,现两管同时注水7小时,关掉甲管,单独开乙管注水,还需要几小时能注满水池? 【思路点拨】视水池的蓄水量为“1”,设乙管还需x 小时可以注满水池;那么甲乙合注1小时注水池的110,甲管单独注水每小时注水池的115,合注7小时注水池的710,乙管每小时注水池的111015⎛⎫- ⎪⎝⎭. 【答案与解析】解:设乙管还需x 小时才能注满水池.由题意得方程:1171101510x ⎛⎫-=- ⎪⎝⎭解此方程得:x =9答:单独开乙管,还需9小时可以注满水池.【总结升华】工作效率×工作时间=工作量,如果没有具体的工作量,一般视总的工作量为“1” . 举一反三:【变式】修建某处住宅区的自来水管道,甲单独完成需14天,乙单独完成需18天,丙单独完成需12天,前7天由甲、乙两人合作,但乙中途离开了一段时间,后两天由乙、丙合作完成问乙中途离开了几天?【答案】解:设乙中途离开x 天,由题意得1117(72)21141812x ⨯+-++⨯= 解得:3x =答:乙中途离开了3天类型四、调配问题(比例问题、劳动力调配问题)7.星光服装厂接受生产某种型号的学生服的任务,已知每3m 长的某种布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用750m 长的这种布料生产学生服,应分别用多少布料生产上衣和裤子才能恰好配套?共能生产多少套?【思路点拨】每3米布料可做上衣2件或裤子3条,意思是每1米布料可做上衣32 件,或做裤子1条,此外恰好配套说明裤子的数量应该等于上衣的数量.【答案与解析】解:设做上衣需要xm ,则做裤子为(750-x )m ,做上衣的件数为23x ⨯件,做裤子的件数为75033x -⨯,则有:23(750)33x x -= 解得:x =450, 750-x =750-450=300(m ),45023003⨯=(套) 答:用450m 做上衣,300m 做裤子恰好配套,共能生产300套.【总结升华】用参数表示上衣总件数与裤子的总件数,等量关系:上衣总件数=裤子的总件数. 举一反三:【高清课堂:实际问题与一元一次方程(一) 调配问题】【变式】甲队有72人,乙队有68人,需要从甲队调出多少人到乙队,才能使甲队恰好是乙队人数的34. 解:设从甲队调出x 人到乙队.由题意得, ()372684x x -=+ 解得,x=12. 答:需要从甲队调出 12人到乙队,才能使甲队恰好是乙队人数的34 .实际问题与一元一次方程(二)(提高)【学习目标】1.熟练掌握分析解决实际问题的一般方法及步骤;2.熟悉行程,工程,配套及和差倍分问题的解题思路.【要点梳理】要点一、用一元一次方程解决实际问题的一般步骤要点二、常见列方程解应用题的几种类型(待续)1.和、差、倍、分问题(1)基本量及关系:增长量=原有量×增长率,现有量=原有量+增长量,现有量=原有量-降低量.(2)寻找相等关系:抓住关键词列方程,常见的关键词有:多、少、和、差、不足、剩余以及倍,增长率等.2.行程问题(1)三个基本量间的关系: 路程=速度×时间(2)基本类型有:①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×相遇时间Ⅱ.寻找相等关系:甲走的路程+乙走的路程=两地距离.②追及问题:Ⅰ.基本量及关系:追及路程=速度差×追及时间Ⅱ.寻找相等关系:第一,同地不同时出发:前者走的路程=追者走的路程;第二,同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,顺水速度-逆水速度=2×水速;Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.3.工程问题如果题目没有明确指明总工作量,一般把总工作量设为1.基本关系式:(1)总工作量=工作效率×工作时间;(2)总工作量=各单位工作量之和.4.调配问题寻找相等关系的方法:抓住调配后甲处的数量与乙处的数量间的关系去考虑.【典型例题】类型一、和差倍分问题1.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?【答案与解析】解:设油箱里原有汽油x 公斤,由题意得:x(1-25%)(1-40%)+1=25%x+(1-25%)x×40%解得:x=10答:油箱里原有汽油10公斤.【点评】等量关系为:油箱中剩余汽油+1=用去的汽油.举一反三:【变式】某班举办了一次集邮展览,展出的邮票若平均每人3张则多24张,若平均每人4张则少26张,这个班有多少学生?一共展出了多少张邮票?【答案】解:设这个班有x 名学生,根据题意得:3x+24=4x -26解得:x =50所以3x+24=3×50+24=174答:这个班有50名学生,一共展出了174张邮票.类型二、行程问题1.车过桥问题2. 某桥长1200m ,现有一列匀速行驶的火车从桥上通过,测得火车从上桥到完全过桥共用了50s ,而整个火车在桥上的时间是30s ,求火车的长度和速度.【思路点拨】正确理解火车“完全过桥”和“完全在桥上”的不同含义.【答案与解析】解:设火车车身长为xm ,根据题意,得: 120012005030x x +-=, 解得:x =300,所以12001200300305050x ++==. 答:火车的长度是300m ,车速是30m/s .【点评】火车“完全过桥”和“完全在桥上”是两种不同的情况,借助线段图分析如下(注:A 点表示火车头):(1)火车从上桥到完全过桥如图(1)所示,此时火车走的路程是桥长+车长.(2)火车完全在桥上如图(2)所示,此时火车走的路程是桥长-车长.由于火车是匀速行驶的,所以等量关系是火车从上桥到完全过桥的速度=整个火车在桥上的速度.举一反三:【变式】某要塞有步兵692人,每4人一横排,各排相距1米向前行走,每分钟走86米,通过长86米的桥,从第一排上桥到排尾离桥需要几分钟?【答案】解:设从第一排上桥到排尾离桥需要x 分钟,列方程得: 6928611864x ⎛⎫=-⨯+ ⎪⎝⎭, 解得:x =3答:从第一排上桥到排尾离桥需要3分钟.2.相遇问题(相向问题)3.小李骑自行车从A 地到B 地,小明骑自行车从B 地到A 地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12点,两人又相距36千米.求A 、B 两地间的路程.【答案与解析】解:设A 、B 两地间的路程为x 千米,由题意得:363624x x -+= 解得:x =108.答:A 、B 两地间的路程为108千米.【点评】根据“匀速前进”可知A 、B 的速度不变,进而A 、B 的速度和不变.利用速度和=小李和小明前进的路程和/时间可得方程.举一反三:【高清课堂:实际问题与一元一次方程(一)388410二次相遇问题】【变式】甲、乙两辆汽车分别从A 、B 两站同时开出,相向而行,途中相遇后继续沿原路线行驶,在分别到达对方车站后立即返回,两车第二次相遇时距A 站34km ,已知甲车的速度是70km/h ,乙车的速度是52km/h ,求A 、B 两站间的距离.【答案】解:设A 、B 两站间的距离为x km ,由题意得:234347052x x -+= 解得:x=122答: A 、B 两站间的距离为122km. 3.追及问题(同向问题)4.一辆卡车从甲地匀速开往乙地,出发2小时后,一辆轿车从甲地去追这辆卡车,轿车的速度比卡车的速度每小时快30千米,但轿车行驶一小时后突遇故障,修理15分钟后,又上路追这辆卡车,但速度减小了13,结果又用两小时才追上这辆卡车,求卡车的速度. 【答案与解析】 解:设卡车的速度为x 千米/时,由题意得:1122(30)(1)(30)243x x x x x x +++=++-⨯+⨯ 解得:x=24答:卡车的速度为24千米/时.【点评】采用“线示”分析法,画出示意图.利用轿车行驶的总路程等于卡车行驶的总路程来列方程,理清两车行驶的速度与时间.4.航行问题(顺逆风问题)5.盛夏,某校组织长江夜游,在流速为2.5千米/时的航段,从A 地上船,沿江而下至B 地,然后溯江而上到C 地下船,共乘船4小时.已知A 、C 两地相距10千米,船在静水中的速度为7.5千米/时,求A 、B 两地间的距离.【思路点拨】由于C 的位置不确定,要分类讨论:(1)C 地在A 、B 之间;(2)C 地在A 地上游.【答案与解析】解:设A 、B 两地间的距离为x 千米.(1)当C 地在A 、B 两地之间时,依题意得.1047.5 2.57.5 2.5x x -+=+- 解这个方程得:x =20(千米)(2)当C 地在A 地上游时,依题意得:1047.5 2.57.5 2.5x x ++=+- 解这个方程得:203x = 答:A 、B 两地间的距离为20千米或203千米. 【点评】这是航行问题,本题需分类讨论,采用“线示”分析法画出示意图(如下图所示),然后利用“共乘”4小时构建方程求解.5.环形问题6.环城自行车赛,最快的人在开始48分钟后遇到最慢的人,已知最快的人的速度是最慢的人速度的3倍,环城一周是20千米,求两个人的速度.【答案与解析】解;设最慢的人速度为x 千米/时,则最快的人的速度为x 千米/时, 由题意得:x×-x×=20 解得:x=10答:最快的人的速度为35千米/时,最慢的人的速度为10千米/时.【点评】这是环形路上的追及问题,距离差为环城一周20千米.相等关系为:最快的人骑的路程 - 最慢人骑的路程=20千米.举一反三:【变式】两人沿着边长为90m 的正方形行走,按A →B →C →D →A …方向,甲从A 以65m/min 的速度,乙从B 以72m/min 的速度行走,如图所示,当乙第一次追上甲时,在正方形的哪一条边上?【答案】解:设乙追上甲用了x 分钟,则有:72x -65x =3×90 2707x =(分) 答:乙第一次追上甲时走了2707227777⨯≈(m ) 此时乙在AD 边上 类型三、工程问题7.一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?【答案与解析】解:设再过x 小时可把水注满.由题意得:11111()2()168689x +⨯++-= 解得:30421313x ==. 答:打开丙管后4213小时可把水放满. 【点评】相等关系:甲、乙开2h 的工作量+甲、乙、丙水管的工作量=1.举一反三: 【变式】收割一块水稻田,若每小时收割4亩,预计若干小时完成,收割23后,改用新式农机,工作效率提高到原来的112倍,因此比预计时间提早1小时完成,求这块水稻田的面积.【答案】解:设这块水稻田的面积为x 亩,由题意得: 21331144142x x x =++⨯ 解得:36x =.答:这块水稻田的面积为36亩.类型四、配套问题(比例问题、劳动力调配问题)8.某工程队每天安排120个工人修建水库,平均每天每个工人能挖土5 m 3或运土3 m 3,为了使挖出的土及时被运走,问:应如何安排挖土和运土的工人?【答案与解析】解:设安排x 人挖土,则运土的有(120-x )人,依题意得:5x =3(120-x ),解得x =45.120-45=75(人).答:应安排45人挖土,75人运土.【点评】用参数表示挖土数与运土数,等量关系:挖土与运土的总立方米数应相等.举一反三:【高清课堂:实际问题与一元一次方程(一) 配制问题】【变式】某商店选用A 、B 两种价格分别是每千克28元和每千克20元的糖果混合成杂拌糖果后出售,为使这种杂拌糖果的售价是每千克25元,要配制这种杂拌糖果100千克,问要用这两种糖果各多少千克?【答案】解:设要用A 种糖果x 千克,则B 种糖果用(100-x)千克.依题意,得:28x+20(100-x)=25×100解得:x=62.5.当x=62.5时,100-x=37.5.答:要用A 、B 两种糖果分别为62.5千克和37.5千克.实际问题与一元一次方程(三)(基础)【学习目标】(1)进一步提高分析实际问题中数量关系的能力,能熟练找出相等关系并列出方程;(2)熟悉利润,存贷款,数字及方案设计问题的解题思路.【要点梳理】要点一、用一元一次方程解决实际问题的一般步骤要点三、常见列方程解应用题的几种类型(续)1.利润问题(1)=100% 利润利润率进价(2) 标价=成本(或进价)×(1+利润率)(3) 实际售价=标价×打折率(4) 利润=售价-成本(或进价)=成本×利润率注意:“商品利润=售价-成本”中的右边为正时,是盈利;当右边为负时,就是亏损.打几折就是按标价的十分之几或百分之几十销售.2.存贷款问题(1)利息=本金×利率×期数(2)本息和(本利和)=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数)(3)实得利息=利息-利息税(4)利息税=利息×利息税率(5)年利率=月利率×12(6)月利率=年利率×121 3.数字问题已知各数位上的数字,写出两位数,三位数等这类问题一般设间接未知数,例如:若一个两位数的个位数字为a ,十位数字为b ,则这个两位数可以表示为10b+a . 4.方案问题选择设计方案的一般步骤:(1)运用一元一次方程解应用题的方法求解两种方案值相等的情况.(2)用特殊值试探法选择方案,取小于(或大于)一元一次方程解的值,比较两种方案的优劣性后下结论. 【典型例题】类型一、利润问题【高清课堂:实际问题与一元一次方程(二) 利润问题例2】1.以现价销售一件商品的利润率为30%,如果商家在现有的价格基础上先提价40%,后降价50%的方法进行销售,商家还能有利润吗?为什么? 【答案与解析】解:设该商品的成本为a 元,则商品的现价为(1+30%)a 元,依题意其后来折扣的售价为(1+30%)a ·(1+40%)(1-50%)=0.91a .∵0.91a -a =-0.09a ,∴0.09aa-·100%=-9%. 答:商家不仅没有利润,而且亏损的利润率为9%.【总结升华】解答此类问题时,一定要弄清题意.分清售价、进价、数量、利润之间的关系很重要. 举一反三:【高清课堂:实际问题与一元一次方程(二)388413利润问题例3】【变式1】某个商品的进价是500元,把它提价40%后作为标价.如果商家要想保住12%的利润率搞促销活动,请你计算一下广告上可写出打几折? 【答案】解:设该商品打x 折,依题意,则: 500(1+40%)·10x=500(1+12%). x=10 1.121.4⨯=8. 答:该商品的广告上可写上打八折.【变式2】张新和李明相约到图书大厦去买书,请你根据他们的对话内容(如图所示),求出李明上次所买书籍的原价.【答案】解:设李明上次购买书籍的原价为x元,由题意得:0.8x+20=x-12,解这个方程得:x=160.答:李明上次所买书籍的原价是160元.类型二、存贷款问题2.爸爸为小强存了一个五年期的教育储蓄,年利率为2.7%,五年后取出本息和为17025元,爸爸开始存入多少元.【答案与解析】解:设爸爸开始存入x元.根据题意,得x+x×2.7%×5=17025.解之,得x=15000答:爸爸开始存入15000元.【总结升华】本息和=本金+利息,利息=本金×利率×期数.类型三、数字问题3.一个三位数,十位上的数是百位上的数的2倍,百位、个位上的数的和比十位上的数大2,又个位、十位、百位上的数的和是14,求这个三位数.【答案与解析】解:设百位上的数为x,则十位上的数为2x,个位上的数为14-2x-x由题意得:x+14-2x-x=2x+2解得:x=3∴ x=3, 2x=6,14-2x-x=5答:这个三位数为365【总结升华】在数字问题中应注意:(1)求的是一个三位数,而不是三个数;(2)这类应用题,一般设间接未知数,切勿求出x就答;(3) 三位数字的表示方法是百位上的数字乘以100,10位上的数字乘以10,然后把所得的结果和个位数字相加.举一反三:【变式】一个两位数,个位上的数字比十位上的数字大4,这个两位数又是这两个数字的和的4倍,求这个两位数.【答案】x+),由题意得:解:设十位上的数字为x,则个位上的数字为(4++=++⨯x x x x10(4)[(4)]4x=解得:4∴⨯++=410(44)48答:这两位数是48.类型四、方案设计问题4.为鼓励学生参加体育锻炼.学校计划拿出不超过1600元的资金再购买一批篮球和排球.已知篮球和排球的单价比为3:2,单价和为80元.(1)篮球和排球的单价分别是多少元?(2)若要求购买的篮球和排球的总数量是36个,且购买的篮球数量不少于26个.请探究有哪几种购买方案?【答案与解析】解:(1)设篮球和排球的单价分别为3x元和2x元.依题意3x+2x=80,解得x=16即 3x=48,2x=32答:篮球和排球的单价分别为48元和32元.(由列表可知,共有三种购买方案:方案一:购买篮球26个,排球10个;方案二:购买篮球27个,排球9个;方案三:购买篮球28个,排球8个.【总结升华】本例设未知数的方法很独特,值得借鉴.采用列表的方法探索方案,值得学习.举一反三:【变式】(武昌区期末调考)某校组织10位教师和部分学生外出考察,全程票价为25元,对集体购票,客运公司有两种优惠方案可供选择:方案一:所有师生按票价的88%购票;方案二:前20人购全票,从第21人开始,每人按票价的80%购票.(1)若有30位学生参加考察,问选择哪种方案更省钱?(2)参加考察的学生人数是多少时,两种方案车费一样多?【答案】解:设有x位学生参加考察.按方案一购票费用为:25×88%(10+x)=22x+220按方案二购票费用为:20×25+25×80%(x+10-20)=20x+300(1)当x=30时:22x+220=660+220=880(元)20x+300=600+300=900(元)答:当有30位学生参加考察,选择方案一更省钱.(2)设22x+220=20x+300,解得:x=40答:参加考察的学生人数为40人时,两种方案车费一样多.实际问题与一元一次方程(四)(提高)【学习目标】(1)进一步提高分析实际问题中数量关系的能力,能熟练找出相等关系并列出方程; (2)熟悉利润,存贷款,数字及方案设计问题的解题思路. 【要点梳理】要点一、用一元一次方程解决实际问题的一般步骤 要点三、常见列方程解应用题的几种类型(续) 1.利润问题 (1)=100% 利润利润率进价(2) 售价= (1+利润率). 成本 (3) 售价=标价×打折率(4) 利润=售价-成本(或进价) 利润= 成本×利润率注意:“商品利润=售价-成本”中的商品利润为正时,是盈利;当为商品利润负时,就是亏损.打几折就是按标价的十分之几或百分之几十销售. 2.存贷款问题(1)利息=本金×利率×期数(2)本息和(本利和)=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数) (3)实得利息=利息-利息税 (4)利息税=利息×利息税率 (5)年利率=月利率×12 (6)月利率=年利率×1213.数字问题已知各数位上的数字,写出两位数,三位数等这类问题一般设间接未知数,例如:若一个两位数的个位数字为a ,十位数字为b ,则这个两位数可以表示为10b+a . 4.方案问题选择设计方案的一般步骤:(1)运用一元一次方程解应用题的方法求解两种方案值相等的情况.(2)用特殊值试探法选择方案,取小于(或大于)一元一次方程解的值,比较两种方案的优劣性后下结论. 【典型例题】类型一、利润问题1.文星商店以每支4元的价格进100支钢笔,卖出时每支的标价6元,当卖出一部分钢笔后,剩余的打9折出售,卖完时商店赢利188元,其中打9折的钢笔有几支? 【答案与解析】解:设打折的钢笔有x 支,则有: 6(100-x )+6×90%x =100×4+188 解得x =20答:打9折的钢笔有20支.。