平面图形面积的整理和复习PPT课件

合集下载

苏教版小学数学六年级下学期精品课件-《周长和面积整理与复习》(2个课时)

苏教版小学数学六年级下学期精品课件-《周长和面积整理与复习》(2个课时)
周长和面积的复习和整理(1)
苏教版六年级下册 数学
看到这组互相垂直的线段,
你想到了哪些平面图形?
学生作品:
★什么是周长?
周长就是围成的平面图形一周边线的长度。
h
b
a
a
a
a
h
a
h
o
b
★什么是面积?
面积是指围成的平面图形的大小。
b
h
a
a
a
a
h
a
h
b
o
★周长的计算公式
h
a
C =2(a+b)
=982÷2
=486(平方米)
总面积×每平方米的重量=总重量
486×0.5=243(千克)
答:一共可以收茶叶243千克。
2.(3)一个梯形茶园,上底是24米,下底是30米,
高18米。如果这个茶园共收茶叶243千克,那么平均每
平方米可以收茶叶多少千克?
(24+30)×18÷2
=54×18÷2
=982÷2
如果用24根1米长的木条来围,怎样围面积最大?
(可以不靠墙,也可以一面靠墙)
★不靠墙: 24÷2=12(米)
当长和宽最接近时,面积最大。
即长和宽都是6米时,面积最大。
此时,是特殊的长方形。
6×6=36(平方米)
★一面靠墙:当长靠墙时,且长是宽的2倍时,面积最大。
24÷4=6(米)
1份
1份
即宽6米,长12米。
9×6÷2=27( )
S大长方形=27×18=486( )
转化
★探究面积和周长的关系。
画出面积相等的长方形、三角形、平行四边形和梯形各一个。
2
12×2=24

六年级下册数学整理和复习图形与几何第2课时平面图形的认识与测量(2)PPT

六年级下册数学整理和复习图形与几何第2课时平面图形的认识与测量(2)PPT
=2×3.14×16
2 m =100.48(米) 答:这条道路的面积是188.4平方米,
外沿周长是100.48米。
6.草地上有一间房子,占地形状是边长4米的正方形。
一只羊被拴在房子的外墙角处,已知栓羊的绳子长6
米,这只羊能吃到草的面积是多少平方米?
如图,羊能吃到草的面积由三个扇形组成。
2m
3.14×62×-34 +3.14×(6-4)2×-12
6
6 a
h b
10.5
周长:6×2+10.5+7.5=30(m)
面积: (6+10.5)×6÷2 =16.5×6÷2 =49.5(m2)
1.计算下面各图形的周长和面积。(单位:m)
周长: 3.14×6÷2+6+5×2
6
=9.42+ 6 +10
=25.42(m)
面积: 3.14×(6÷2)2÷2 +5×3
平面图形的面积计算公式 圆的面积=圆周率×半径的平方 把一个圆分成若干份,剪拼成一个近似的长方形, 这个长方形的长相当于圆周长的一半,宽相当于 圆的半径。
r
πr
平面图形的面积计算公式
长方形的面积=长×宽 S=ab 正方形的面积=边长×边长 S=a2
平行四边形的面积=底×高 S=ah 三角形的面积=底×高÷2 S=ah÷2
x cm
梯形面 积减扇 形面积
扇形面积 减三角形 面积
(10+x)×10÷2=107 10+x=21.4 x=11.4
答:x的值是11.4。
课后作业
01 课后练习第6题。 02 相关练习。
a
把正方形看作长和宽相等的长方形。 a
平行四边形的面积=底×高
通过割补、平移转化为长方形。

《平面图形的面积总复习》PPT课件

《平面图形的面积总复习》PPT课件
平行四边形面积的推导
h
a 转化 h
a S=ah
返回
b a S=ab
一、回顾与整理
三角形面积的推导 h a
转化 h
a S=ah÷2
返回
h a
S=ah
一、回顾与整理
a 梯形面积的推导
h
a
b
转化
h
b S=(a+b)h÷2
返回
a
h b S=ah
一、回顾与整理
圆面积的推导r转化S=πr²返回
r S=ab
练习3: (1)、用篱笆围一块梯形菜地,如下图所示,一面 利用围墙不用篱笆,这样共用去33米篱笆,这块菜 地有多大呢?
(33-8)×8÷2=100(㎡) 答:这块菜地的面积是100㎡
练习4: 现有一张长40厘米、宽20厘米的长方形铁皮。分别
在它每个角剪一个边长为5厘米的正方形铁片后,这时 铁皮周长和面积各是多少?
一、回顾与整理
平面图形之间的关系
b a S= ab
a S= a²
h a S=ah
r
S=πr²
h a S= ah÷2
a h
b S= (a+b)h÷2
一、回顾与整理
平面图形之间可以相互转化 ɑ =b
h
ɑb
S= ɑ21h (ɑ + b) h
ɑ =b
h
b
ɑb
S= ɑb1 2
(ɑ + ɑb) h
ɑ
h
b
S=
C: (40+20) ×2=120(㎝) S: 40 ×20-5×5×4= 700 (cm2)
答:这时铁皮周长是123cm;面积 是700cm2。
你能计算出这个图形 中绿色部分的面积吗?

新总复习平面图形的面积整理与复习课件(共23张PPT)

新总复习平面图形的面积整理与复习课件(共23张PPT)

ɑ =b
h
b
ɑb
S= ɑb1 2
( ɑ + )ɑb
h
ɑ =0
h
ɑ
ɑb
S=
1 2
(ɑɑh+ b)
h
h
b
S= 21(ɑ+b)h
a=b=h
S=( a + )b×a ÷2ha
S= a ××2 a
Байду номын сангаас
÷2
转化
转化 转化
第一关
1、一个平行四边形和一个三角形等底等高,已知平行四边形的面 积是25平方厘米,三角形的面积是( )平方厘米。 ① 25 ② ② 12.5 ③ 50
÷2
S=(a+b)h÷2
返回
一、回顾与整理
长方形面积的推导
1平方厘米
5 厘米
小正方形的个数
= 每排个数 × 排数
返回
长方形的面积 S
=

×宽
=
a
×
b
半径r
圆周长的一半
πr

近似的长方形
S=πr×r 返回 =πr 2
转化 转化
转化 转化
转化
平面图形的面积公式之间可以相互转化
ɑ =b
h
b
S= ɑ21h ( ɑ + )ɑb h
第 一 单 元 第 一课 踏 上强 国之路 走向共同富裕
到 今 天 , 改 革 开 放 已 经 取 得 了 巨 大 的 成 就 , 改 革 开 放 还 要 继 续 吗 ? 全面深化改革
一 、 改 革 进 行 时 1、什么是全面深化改革?
(1)内 涵 : 我 国 推 行 的 改 革 是 一 场 全 面 而 深 刻 的 社 会 变 革 ,不 仅 指 经 济 体 制 改 革 ,而 且 包 括 政 治 、 文 化 、 社 会 、 生 态 文 明 以 及 国 防 和 军 队 等 各 个 领 域 的 体 制 改 革 。 (2)总 目 标 : 完 善 和 发 展 中 国 特 色 社 会 主 义 制 度 ,推 进 国 家 治 理 体 系 和 治 理 能 力 现 代 化 。

五年级上册数学课件- 平面图形的整理与复习ppt苏教版(共20页)

五年级上册数学课件- 平面图形的整理与复习ppt苏教版(共20页)

5×3÷2=7.5(d㎡) S=(a+b)×h÷2
计算下面图形的面积。
10m
7m 5m
8m
100cm 60cm
120cm
(5+7)×8÷2=48(㎡) 60×100=6000(c㎡)
计算下面图形的面积。
10dm 5dm
4dm
8dm
8dm
5dm 4dm
5dm
3dm
10×4÷2=20(d㎡) (3+8)×4÷2=22(d㎡) 8×5÷2=20(d㎡)
12m
6×4÷2=12(棵白菜占地12平方分米,一共可以种多少棵?
6×4=24(㎡) 24㎡=2400d㎡ 2400÷12=200(棵)
答:一共可以种200棵白菜。
五年级上册数学课件- 平面图形的整理与复习ppt苏教版( 共20页)
五年级上册数学课件- 平面图形的整理与复习ppt苏教版( 共20页)
5.自然作为环境与自然作为其自身是 完全不 一样的 。自然 作为其 自身以 自身为 本位, 与人无 关。而 自然作 为环境 ,它就 失去了 自己的 本体性 ,成为 人的价 值物。 一方面 ,它是 人的对 象,相 对于实 在的人 ,它外 在于人 。
6.对于当今人类来说,重要的是要将 自然看 成我们 的家。 家,不 只是物 质性的 概念, 还是精 神性的 概念。
梯形面积: 8+8=16(dm) (8+24)×16÷2=256(d㎡) 正方形面积: 8×8=64(d㎡) 256-64=192(d㎡)
五年级上册数学课件- 平面图形的整理与复习ppt苏教版( 共20页) 五年级上册数学课件- 平面图形的整理与复习ppt苏教版( 共20页)
五年级上册数学课件- 平面图形的整理与复习ppt苏教版( 共20页)

人教版小学六年级数学下册第六单元2《图形与几何》PPT课件

人教版小学六年级数学下册第六单元2《图形与几何》PPT课件

旋转 45°
放大
旋转 45°
旋转 45°
放大
二 巩固练习
1. ⑤号图形是③号长方形放大后的图形,它 是按( 3 )∶( 1 )放大的。
二 巩固练习
2.
二 巩固练习
3.
二 巩固练习
二 巩固练习
二 巩固练习
人教版小学六年级数学下册
第六单元 整理和复习 2. 图形与几何
第5课时 图形与位置
一 复习导入
一 复习导入
平面图形的测量
周长 面积
一 复习导入
周长
围成一个图形所有边长 的总和,叫做这个图形 的周长。
一 复习导入
常见的周长公式
图形
长方形
正方形
周长 (长+宽)×2 边长×4

2πr
一 复习导入
面积
物体的表面或 围成的平面图 形的大小。
一 复习导入
常见的面积公式
图 形
正方形
长方形
平行四 边形
立体图形的表面积和体积
表面积
一个立体图形所有面的 面积的总和,叫做它的 表面积。正方体的表面 积是它6个面的面积和。 用平方单位表示。
一 复习导入
立体图形的表面积和体积
体积
一个立体图形所占空间的 大小叫做它的体积。正方 体的体积用底面积×高。 用立方单位表示。
一 复习导入
二 巩固练习
1.在一个长60㎝、宽32㎝、高22㎝的长方体 箱子里,最多可以装多少个棱长为4㎝的 正方体物品?
沿长的方向一行能摆60÷4=15(个) 沿宽的方向一行能摆32÷4=8(个) 沿高的方向一行能摆22÷4≈5(个) (去尾法) 15×8×5=600(个) 答:最多能装600个棱长为4㎝的正方体物品。

人教版六年级数学 下册第6单元《整理和复习》2图形与几何【全单元】课件

人教版六年级数学 下册第6单元《整理和复习》2图形与几何【全单元】课件
12、用圆规画一个周长12.56厘米的圆,圆规两脚之间 的距离是( 2 )厘米,所画圆的面积是( 12.56 ) 平方厘米。
13、圆的半径扩大3倍,直径扩大( 3 )倍,周长扩 大(3 )倍;面积扩大( 9 )倍。
14、小铁环直径6分米,大铁环直径8分米。小铁环和大 铁环半径的比是( 3:4 );周长的比是( 3:4 ); 面积的比是( 9:16 )。如果它们滚过相同的路程, 则转动的圈数的比是( 3:4 )。
(二)复习平面图形的特点及关系
提问:我们先复习平面图形。那对于这些平面图形你又有哪些了解 呀?那这样吧,你可以结合这几个问题,先自己想一想,再和 小伙伴商量商量,建议大家做好相应的记录。如果有困难可以 向老师举手示意。
课件出示: (1)直线、射线和线段有什么联系和区别?同一平面内的两条直
线有哪几种位置关系? (2)我们学过哪些角?在放大镜下看角,它的大小会变化吗? (3)关于三角形,你知道些什么? (4)关于平行四边形,你知道些什么? (5)圆与上面的平面图形有什么不同?圆有哪些特点?
监控:长、正方体的棱长总和 长方体、正方体和圆柱的表面积 长方体、正方体、圆柱和圆锥的体积、容积
(教师随着学生的发言在黑板上梳理出表格)
二、回顾梳理 构建联系
(三)复习立体图形的特征、联系及公式
立体图形 棱长总和 表面积
体积(容积)
长方体
正方体
圆柱
圆锥
二、回顾梳理 构建联系
(三)复习立体图形的特征、联系及公式
课件出示:
二、回顾梳理 构建联系
(三)复习立体图形的特征、联系及公式
提问9:这些图形有没有一个共同的体积计算公式呢? (长方体、正方体和圆柱的体积都可以用底面积乘高,圆锥的体积再 乘 1 即可。)

六年级上数学整理和复习图形与几何PPT课件

六年级上数学整理和复习图形与几何PPT课件

其他学科中的图形与几何应用
物理:力学、光学中都有广泛的应用。 化学:分子结构、晶体结构与空间几何关系密切。 地理:地球形状、地貌形态都与图形和几何有关。 艺术:建筑设计、雕塑绘画都离不开图形与几何。
07
复习巩固与提高
基础练习题
基础练习题是针对学生已经学过的知识设计的,旨在帮助学生巩固基础知识
添加标题
与其他知识点的联系:观察物体和图形的测量是几 何学中的基础知识点,对于后续学习立体几何、解 析几何等知识点有着重要的影响
组合图形的分析和计算
定义:组合图形是由两个或两个以上的基本图形组成的图形 难点:如何分解组合图形为基本图形,并求出其面积或周长 易错点:忽视组合图形的整体性,直接求出各基本图形的面积或周长 解决方法:采用“分治”策略,将组合图形分解为基本图形后再分别计算
图形与几何初步知识
图形认识:长方体、正方体、圆柱、球等立体图形的认识 图形测量:长方体、正方体、圆柱、球的测量方法及单位换算 图形与变换:平移、旋转等图形的变换方法及实际应用 图形与位置:东、南、西、北等方向的认识及坐标的使用方法
03
梳理与拓展
直线、射线、线段
定义:直线是两 端无限延伸的线, 射线是无限延伸 的线,线段是有 限长度的线。
回顾知识点:回顾图形的认识、周长、面积等知识点 图形分类:根据图形的特点,将图形分为平面图形和立体图形 图形特点:介绍每种图形的特点,如三角形、正方形、长方形等 图形周长与面积:回顾图形的周长和面积的计算方法
几何量及其测量
长度、角度、周长、面积、体积等是几何学中常见的量。 长度、角度、周长、面积、体积等的测量方法和工具各不相同。 对于不同的几何图形,需要采用不同的测量方法来获取相应的几何量。 测量时需要注意单位的统一和精度要求。

人教版六年级数学上册第五单元《整理和复习》上课课件

人教版六年级数学上册第五单元《整理和复习》上课课件

(2)如果在喷水池周围每隔5 m安装一个喷嘴,一共 要安装多少个喷嘴?
3.14×40÷5≈25(个) 答:一共要安装25个喷嘴。
点拨:本题的关键是要求出喷水池的周长。已知直径 是40 m,圆形喷水池的周长是3.14×40=125.6 m,再 根据题意用除法计算,求出可以安装的喷嘴的数量: 125.6÷5≈25(个)。
(4)用3根同样长的绳子分别围成长方形、正方形和 圆,正方形的面积最大。( )
点拨:说法错误。
3.一个圆形喷水池的直径是40 m。 (1)它的占地面积是多少平方米? 3.14×(40÷2)2=1256(m2) 答:它的占地面积是1256 m2。
点拨:已知直径是40 m,则半径是20 m,代入面 积公式求出面积:3.14×202=1256(m2)。
你能根据题意画出示意图吗?
1m
3.14×(8÷2+1)²=78.5(m²)
8m
答:这块场地的占地面积是78.5 m²。
一个羊圈依墙而建,呈半圆形,半径是5 m。 (1)修这个羊圈需要多长的栅栏?
2×3.14×5÷2=15.7(m) 答:修这个羊圈需要15.7 m的栅栏。
一个羊圈依墙而建,呈半圆形,半径是5 m。
如下图,街心公园有两块半圆形的草坪,它们的周长都是 128.5 m,这两块草坪的总面积是多少?
128.5÷(3.14+2)=25(m) 3.14×25²=1962.5(m²)
答:这两块草坪的总面积是1962.5平方米。
如下图,中间是边长为1cm的正方形,与这个正方形每一条 边相连的都是圆心角为90°的扇形,整个图形的面积是多少?
(2)如果要扩建这个羊圈,把它的直径增加2m。
羊圈的面积增加了多少?
1m 5m

人教版六年级数学下册整理和复习《图形与几何》课件(共3课时)

人教版六年级数学下册整理和复习《图形与几何》课件(共3课时)
(三)复习平面图形的计算公式
提问1:刚才,有的同学还提到了这些图形的周长和面积,那你能举例说 说什么是周长?什么是面积吗?(学生自由发言,教师适时点拨) 提问2:你还记得这些平面图形的公式吗?那好,请你在这些平面图形 上面写出它们的周长和面积公式,看谁写得又对又快!写完的 同学,继续思考一下:这些公式是怎么推导出来的呀?
C=2(a+b) S=ab
C = 4a
S=a²
S=ah÷2
S=ah
S=(a+b)h÷2
C=2πr=πd S=πr²
二、回顾梳理 构建联系
(三)复Байду номын сангаас平面图形的计算公式
提问3:你们都说它们之间面积是有联系的,那你能借助这些学具, 把它们之间的这种联系想办法摆一摆,使人一眼就能看出它 们之间的这种联系吗? 根据学生的实际情况,教师可以适时提示: 想一想,我们最早研究的是哪个图形的面积? 预设: (教师行间巡视并进行指导)
二、回顾梳理 构建联系
(三)复习立体图形的特征、联系及公式
提问3:刚才有的同学把长、正方体归为一类,那你觉得它们之间有 联系吗?如果有,那有怎样的联系?
监控:1. 它们之间有什么相同点和不同点呀?
2. 为什么说正方体是特殊的长方体? 提问4:刚才有的同学把圆柱和圆锥归为一类,那你觉得它们之间有 联系吗?如果有,那有怎样的联系? 提问5:圆柱和圆锥分别是由什么平面图形旋转而成的呀?
三角形 梯形 圆 不封闭图形:直线 射线 线段 角
圆锥
平行线 相交线 立体图形:长方体 正方体 圆柱
二、回顾梳理 构建联系
(二)复习平面图形的特点及关系
提问:我们先复习平面图形。那对于这些平面图形你又有哪些了解 呀?那这样吧,你可以结合这几个问题,先自己想一想,再和 小伙伴商量商量,建议大家做好相应的记录。如果有困难可以 向老师举手示意。

平面图形的面积整理复习

平面图形的面积整理复习
平面图形面积的整理复习
王冬梅
潍坊日向友好学校
装着一些片断的、没有联系的 知识的头脑,就像一个乱七八糟的 仓库,主人从那里是什么也找不出 来的。
——乌申斯基(俄国)
物体的表面或围成的平面图 形的大小,叫做它们的面积。
我国古代数学家刘徽利 用出入相补原理来计算平面 图形的面积。出入相补原理 就是把一个图形经过分割、 移补,而面积保持不变,来 计算出它的面积。
a
b
h 是从一个长1.2米,宽0.6 米的长方形木板上切割下来 的一个最大的圆。
请你描述这个小圆桌有多大?

墙上一块装饰板的形状 如下图。
20厘米
请你计算出这个图形中绿色部分 的面积。
20厘米
要求:
想一想面积公式推导的过程, 找出各图形之间的联系,用网 络图的形式表示出来。
S=a2 转化 转化 推导 转化
S=(a+b) h ÷ 2 S=ah÷ 2
S=ab
推导
S=ah
S=πr
2
S=ah÷ 2
S=(a+b) h ÷ 2
转化
S=a2
推导 S=ah
转化
S=πr2
推导 转化 S=ab
h 当b=0时 b

《平面图形面积复习》课件

《平面图形面积复习》课件

图形面积的应用
实际问题解决
通过计算图形面积,能够解决实际问题,如土地面积计算。
日常生活中的应用
图形面积在设计、建筑和艺术等领域有广泛的应用。
平面图形面积计算的技巧
1 准确计算面积
学习如何准确计算各种
2 避免常见错误
介绍常见的计算错误,
3 使用公式计算面积
的步骤
不规则形状的图形面积。
并提供避免错误的技巧。
演示使用面积公式计算
图形的步骤。
解答常见问题和疑惑
如何选择合适的公 式计算面积?
根据图形的形状和特征选择 对应的面积计算公式。
பைடு நூலகம்
图形面积是否和周 长有关?
图形的面积和周长是两个不 同的概念,面积关注的是图 形的大小,而周长关注的是 边的长度。
如何计算复杂图形 的面积?
对于复杂图形,可以将其分 解为简单的形状,然后分别 计算它们的面积,最后将面 积相加。
《平面图形面积复习》 PPT课件
本课程将介绍平面图形的基础知识和面积计算方法,以及应用和解答常见问 题。让我们一起来探索平面图形面积的奥秘吧!
什么是平面图形
1 定义
平面图形是指二维空间中的形状和结构。
2 辨别方法
可以通过边的数量和角的特征来辨别不同的平面图形。
平面图形的面积计算方法
正方形和长方形的面积公式 三角形的面积公式 圆的面积公式

人教版五年级下册数学《长方体和正方体整理与复习》课件

人教版五年级下册数学《长方体和正方体整理与复习》课件
(1)(30×20+30×15+20×15)×2=2700(平方厘米)
(2)(30÷5)×(20÷2)×(15÷3)=300(块)
4.一个长方体底面是一个边长为20厘米的正方 形,高为40厘米,如果把它的高增加5厘米,它 的表面积会增加多少?
6.至少要(8 )个小正方体才能拼成一个大正方体,小正方体的 棱长是2cm,那么大正方体的表面积(96c)m,2 体积是(64c)m3
7.一根长20分米的长方体钢材,沿横截面截成两段后,表面积 增加0.8dm2,这段钢材的体积是(8dm)3。
8.一个长10厘米,宽8厘米,高12厘米的长方体木块放在桌面上, 占桌面的面积最大是( )平方厘米。
长方体和正方体 整理与复习
知识树
意义 计算
表面积
棱 面
顶点
特征
意义 单位、进率 计算

体积






长方体和正方体的特征
相同点
不同点
联系
形体
面 棱 顶点
面的 形状
面的 面积
棱长
长方体
6 12 个条
正方体
6个面都是长 相对的 方形,有时相 两个面
相对的棱
的长度相 等
正方体
对的两个面是 的面积 棱长和 是一种
2.用一段铁丝,正好可以做一个长7厘米、宽6 厘米、高5厘米的长方体框架。如果用这段铁丝 做一个正方体的框一根长52厘米的铁丝,恰好可以焊接成 一个长6厘米,宽4厘米,高多少厘米的长方 体?
4、用96厘米长的铁丝焊接成一个正方体的框 架,然后用纸给它的表面包裹起来,至少需 要多少平方厘米的纸?
=71.4+50.4 =121.8(米²) 粉刷面积=51+121.8―35.8=137(米²)

北师大版五年级数学《整理与复习》课件

北师大版五年级数学《整理与复习》课件
第三阶段
对学生的学习情况进行检测和评估,进行针对性 的指导和补充(2-3天)。
调整计划
根据学生的学习情况和反馈,灵活调整教学计 划,确保教学效果最佳化。
对于一些学习困难的学生,要适当增加辅导时 间和内容,帮助他们更好地掌握数学知识。
对于一些学习程度较好的学生,可以适当提高 教学难度和速度,让他们在复习过程中获得更 多的收获。
小组合作
通过小组合作的方式进行学习和讨论,培养学生的协作意识和合作能力。
课堂互动
通过课堂互动的方式,鼓励学生积极参与,培养学生的积极性和主动性,提 高他们的学习效果和课堂参与度。
05
教学评价与反馈
学生表现评价
课堂参与度
学生是否积极参与课堂活动,能否主动思考和回 答问题。
知识掌握程度
学生是否理解和掌握了数学知识点,能否正确解 题和应用。
改进建议
增加课堂互动环节
通过游戏、小组讨论等方式增 强学生的参与度和学习积极性

个性化辅导
针对不同学生的水平和需求, 制定个性化的辅导方案,因材
施教。
创新评价方式
采用多种评价方式,如小组讨 论、课堂小测验等,及时了解 学生的学习情况并作出相应的
教学策略。
06教Biblioteka 计划与进度教学计划教学内容
北师大版五年级数学上册第一单元“倍数与因数”、第二单元“ 分数加减法”和第三单元“分数乘法”的复习与整理。
实战应用
综合运用知识解决实际问题
通过复习所学的数学知识,能够运用所学知识解决生活中的实际问题。
拓展延伸
通过拓展延伸,进一步提高学生的数学素养和能力。
03
教学重点与难点
教学重点
掌握整数乘法运算 定律和用简便方法 计算;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(√ )
(4)两个梯形可以拼成一个平行四边形。
( X)
(5)边长是4米的正方形,它的周长和面积是相等的。
(X )
-
8
三.对号入座
(1)一个平行四边形和一个三角形等底等高,已知平行四边形的
面积是25平方厘米,那么三角形面积是( B )平方厘米。
A. 5
B. 12.5
C. 25
D. 50
(2)一个平行四边形的底扩大2倍,高缩小2倍,它的面积(C )
A. 扩大2倍 B. 缩小2倍
-

C. 不变
9
老王家有一块菜地,宽5米,长是宽的2倍, 老王家的菜地有多大?老王要给菜地四周插
上篱笆,至少准备多少米的篱笆?
长:5×2=10(米)
面积:10×5=50(平方米) 周长:(10+5)×2=100(平方米)
答:老王家的菜地是50平方米,至少 准备100米的篱笆。
-
10
小组合作:计算下面各平面图形的周长和面积。(单位:米)
20
1
9
3 9亭 7

空地
喷泉 3
3
小 路
鱼池 3
9
小路
1
21
9
1
10
草地
12
儿 童
2
12.5
乐 园
3.5
花 10

2.5
17
-
5.5
7.5 11
-
12
-
1
喷泉

鱼池



空地
小路
草地
-






2
这些平面图形的公式是怎样推导出来呢? 你还记得这些公式吗?
-
3
-
4
-
5
-
6
·
-
7
二.金睛火眼
X (1) 一个三角形,底6分米,高5分米,它的面积是30平方分米。 ( )
(2)一个圆,直径是2厘米,它的面积是12.56平方厘米
(X )
(3)两个等底等高的三角形,它们的面积肯定相等。
相关文档
最新文档