人教版初中数学三角形知识点

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版初中数学三角形知识点

一、选择题

1.如图,已知A ,D,B,E在同一条直线上,且AD = BE, AC = DF,补充下列其中一个条件后,不一定能得到△ABC≌△DEF 的是()

A.BC = EF B.AC//DF C.∠C = ∠F D.∠BAC = ∠EDF 【答案】C

【解析】

【分析】

根据全等三角形的判定方法逐项判断即可.

【详解】

∵BE=CF,

∴BE+EC=EC+CF,

即BC=EF,且AC = DF,

∴当BC = EF时,满足SSS,可以判定△ABC≌△DEF;

当AC//DF时,∠A=∠EDF,满足SAS,可以判定△ABC≌△DEF;

当∠C = ∠F时,为SSA,不能判定△ABC≌△DEF;

当∠BAC = ∠EDF时,满足SAS,可以判定△ABC≌△DEF,

故选C.

【点睛】

本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.

2.如图,在△ABC中,AC=BC,D、E分别是AB、AC上一点,且AD=AE,连接DE并延长交BC的延长线于点F,若DF=BD,则∠A的度数为()

A.30 B.36 C.45 D.72

【答案】B

【解析】

【分析】

由CA=CB,可以设∠A=∠B=x.想办法构建方程即可解决问题;

【详解】

解:∵CA=CB,

∴∠A=∠B,设∠A=∠B=x.

∵DF=DB,

∴∠B=∠F=x,

∵AD=AE,

∴∠ADE=∠AED=∠B+∠F=2x,

∴x+2x+2x=180°,

∴x=36°,

故选B.

【点睛】

本题考查等腰三角形的性质、三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.

3.如图,在▱ABCD中,E为边AD上的一点,将△DEC沿CE折叠至△D′EC处,若∠B=48°,∠ECD=25°,则∠D′EA的度数为()

A.33°B.34°C.35°D.36°

【答案】B

【解析】

【分析】

由平行四边形的性质可得∠D=∠B,由折叠的性质可得∠D'=∠D,根据三角形的内角和定理可得∠DEC,即为∠D'EC,而∠AEC易求,进而可得∠D'EA的度数.

【详解】

解:∵四边形ABCD是平行四边形,∴∠D=∠B=48°,

由折叠的性质得:∠D'=∠D=48°,∠D'EC=∠DEC=180°﹣∠D﹣∠ECD=107°,

∴∠AEC=180°﹣∠DEC=180°﹣107°=73°,

∴∠D'EA=∠D'EC﹣∠AEC=107°﹣73°=34°.

故选:B.

【点睛】

本题考查了平行四边形的性质、折叠的性质、三角形的内角和定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键.

4.把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为()

A.115°B.120°

C.145°D.135°

【答案】D

【解析】

【分析】

由三角形的内角和等于180°,即可求得∠3的度数,又由邻补角定义,求得∠4的度数,然后由两直线平行,同位角相等,即可求得∠2的度数.

【详解】

在Rt△ABC中,∠A=90°,

∵∠1=45°(已知),

∴∠3=90°-∠1=45°(三角形的内角和定理),

∴∠4=180°-∠3=135°(平角定义),

∵EF∥MN(已知),

∴∠2=∠4=135°(两直线平行,同位角相等).

故选D.

【点睛】

此题考查了三角形的内角和定理与平行线的性质.注意两直线平行,同位角相等与数形结合思想的应用.

5.如图,已知AB∥CD,直线AB,CD被BC所截,E点在BC上,若∠1=45°,∠2=35°,则∠3=()

A.65°B.70°C.75°D.80°

【答案】D

【解析】

【分析】

由平行线的性质可求得∠C,在△CDE中利用三角形外的性质可求得∠3.

【详解】

解:∵AB∥CD,

∴∠C=∠1=45°,

∵∠3是△CDE的一个外角,

∴∠3=∠C+∠2=45°+35°=80°,

故选:D.

【点睛】

本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b ∥c⇒a∥c.

6.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列

结论:①∠CEG=2∠DCB;②∠ADC=∠GCD;③CA平分∠BCG;④∠DFB=1

2

CGE.其中正确的结论是( )

A.②③B.①②④C.①③④D.①②③④

【答案】B

【解析】

【分析】

根据平行线的性质、角平分线的定义、垂直的性质及三角形内角和定理依次判断即可得出答案.

【详解】

①∵EG∥BC,

∴∠CEG=∠ACB,

又∵CD是△ABC的角平分线,

∴∠CEG=∠ACB=2∠DCB,故正确;

②∵∠A=90°,

∴∠ADC+∠ACD=90°,

∵CD平分∠ACB,

∴∠ACD=∠BCD,

∴∠ADC+∠BCD=90°.

∵EG∥BC,且CG⊥EG,

∴∠GCB=90°,即∠GCD+∠BCD=90°,

∴∠ADC=∠GCD,故正确;

③条件不足,无法证明CA平分∠BCG,故错误;

相关文档
最新文档