高加疏水端差大原因分析

合集下载

高压加热器疏水水位波动大原因分析及处理

高压加热器疏水水位波动大原因分析及处理

电工技术·理论与实践2015年9月下 215高压加热器疏水水位波动大原因分析及处理陈粤军广东粤嘉电力有限公司,广东 梅州 514000摘要:高压加热器作为火电厂给水系统的重要设备,其运行稳定性直接关系机组的安全性和经济性。

高压加热器疏水水位异常波动的状况,将会降低其交换效率,加剧相关设备的冲蚀程度,成为机组安全运行和经济运行的严重威胁。

笔者通过分析高压加热器水位异常波动的原因,采取了使高压加热器优化运行的措施。

通过实践发现,明显改善了高热加热器输水水位异常波动的问题。

关键词:高压加热器;水位波动;原因;措施 中图分类号:TK264.9 文献标识码:A 文章编号:1002-1388(2015)09-0215-01在火力发电中,为了充分利用蒸汽余热,高压加热器以汽轮机的抽汽余热作为供热源来加热锅炉给水,并使之达到要求温度。

这样的结构设计不仅降低了整个循环系统的冷源损失,提高了热效率,还增加机组运行的经济性及安全性。

1 高压加热器工作原理高压加热器以汽轮机的抽汽余热作为供热源,蒸汽先降低其过热度,进而通过凝结段凝结成液相状态,然后在疏水冷却段进一步释放热量,降低其温度,以至降低疏水温度,减少疏水的汽化程度。

疏水经过汽液两相流控制后,由压力较高部件排入到压力较低部件。

压力较低的高压加热器疏水接口是采用虹吸管结构形式使疏水向上流动,经疏水调节阀排至除氧器。

2 机组安全运行面临的问题高压加热器疏水系统的运行工况比较复杂,对其设计安装质量要求十分严格。

在机组日常运行过程中,最近经常出现高压加热器疏水水位异常波动现象,一般在0~400mm 之间。

此种状况出现时,受条件限制,操作工人只能使用手动调节疏水阀,水位不能有效地精确控制,这将导致汽水混合物进入循环系统而分担了部分热量,致使蒸汽无法有效加热给水,并且严重冲刷损坏了整个循环系统的给水管道及其附件设备。

日积月累,这样将严重威胁机组的安全和经济运行。

3 高压加热器水位异常波动的原因分析通过实践发现,高压加热器疏水水位出现异常波动状况对整个机组安全运行至关重要。

8号高压加热器疏水温度高原因分析及处理

8号高压加热器疏水温度高原因分析及处理
后果 :
表 1 不 同 工 况 下 8号 高 加 各 项 参 数
维普资讯
华 北 电 力 技 术
NO H C NA E E TR C P W E RT HI L C I O R
5 3
77 5 6
出 水口
进汽口


( .Sa he Po e n r to 1 n w rGe e ai n Co. d Lt .,S n 6 2 1, i a he 0 5 0 Chna;2 No t i a El crc . r h Ch n e ti
P we s a c n t u eC . d ,B in 0 0 5 Chn ) o rRe e rh I si t o Lt . e ig 1 0 4 , ia t j
维普资讯
5 2
华 北 电 力 技 术
NOR H HI L C I OWE T C NA E E TR C P R
8 高压加热器疏水温度高原 因分析及处理 号
王 旭 彰金 宝 乔建 民 , , , 宋建 军
(. 河发 电有 限 责任 公 司 , 北 三 河 05 0 ;. 北 电 力 科 学 研 究院 有 限 责任 公 司 , 京 1 0 4 ) 1三 河 6212华 北 0 0 5
机组 投 产 以来 , 直 存 在 8号高 加 疏 水 温 度 一 偏 高 的 问题 , 5 3 0Mw 时疏 水 温度 高 于设 计 值 约
2 接近 于对应 抽汽 压力 下 的饱和 温度 , 2C, 。 同时 其
菱 重 工高砂 制作所 提供 。汽 轮机 的型 号为 T 2 一 C F
4. , 0 5 系单 轴 、 缸 、 排 汽 、 临 界 一 次 中 间再 双 双 亚 热 、 背压 凝汽式 。 轮 饥共 设 置有八段 非 调整抽 单 汽

高压加热器端差大原因分析

高压加热器端差大原因分析

高压加热器端差大原因分析【摘要】文章对本厂600MW亚临界空冷机组高压加热器下端差大的问题进行深入分析,重点介绍了造成#3高加下端差异常的原因。

【关键词】高加下端差、高加传热、高加疏水温度一、府谷电厂简介陕西省府谷电厂煤电一体一期(2×600MW)工程位于陕西省榆林市府谷县境内,规划容量(2×600MW+4×1000MW)机组,全部采用空冷机组。

二、给水回热系统存在的问题府谷电厂600MW的给水加热系统共设有3台高加、一台除氧器,3台低加,运行中我们发现,#1机的#1、2高加,端差偏大,#3高加下端差不正常的偏低;#2机组的#1、2、3高加下端差均偏大,尤其#2机#3高加一直在18℃以上。

高加端差有上端差:加热器进汽压力下的饱和温度与出水温度的差值称为上端差;下端差:正常疏水温度与进水温度的差值称为下端差。

造成高加下端差增大的原因一般有以下几个方面:1、高加长期低水位运行,使高加疏水不能充分冷却;2、高加的水侧的水室存在短路现象;3、高加内部积聚空气使传热效率降低;4、高加入口三通旁路电动门泄漏或进口联程阀开不到位造成小旁路泄漏,表现为#1高加出口给水温度比高加后给水母管温度高;5、给水品质不合格,高加管束表面积盐,影响换热效果6、温度测点是否准确。

高加下端差过大带来的问题:加热器下端差增大、疏水温度未得到应有的冷却,致使蒸汽在本级加热器中的放热程度降低,加热用汽量增大;同时,疏水温度的提高及加热用汽量的增大又导致下一级加热器用汽量的减少,即形成高品位抽汽增加,低品位抽汽减少,带来机组经济性的降低。

三、对高加运行中存在问题的分析府谷电厂高加采用哈尔滨锅炉厂生产的型号为单列卧式U型管表面加热。

下面我们对于#1、2机高加下端差大的问题,我们逐一对原因进行分析排除:1、由于#1、2机投产以来就一直存在这种问题,且两台机大修过程中对高加进行彻底检查,均未发现异常情况,基本可以排除,高加结垢和内部损坏的原因。

300MW机组高加下端差大原因分析

300MW机组高加下端差大原因分析

Company Logo

高压加热器技术参数
项 目 高加HP-1 2.3 -1.7 5.6 7.3 86 卧式U形管 焊接&胀接 1188 Ф16×1.8 5% 高加HP-2 2.1 0 5.6 4.7 96 卧式U形管 焊接&胀接 1186 Ф16×1.8 5% 高加HP-3 2.05 0 5.6 2.16 75 卧式U形管 焊接&胀接 1186 Ф16×1.8 5% 管内流速(m/s) 给水端差(℃) 疏水端差(℃) 设计压力(MPa) 二根管子泄漏抽汽管道 满水时间(秒) 加热器型式 管子与管板的连接方式 管子数量(根) 尺寸/壁厚(mm) 备用管子
Company Logo

减小端差、防止泄漏预防措施
检修维护要点
4.及时观察前臵泵电流情况,运行中观察两台前臵泵电流变化情况, 如果超电流运行,就是高加泄露了(如2013年11月20日,#11机前臵泵 超电流27A,平时约22A) 5.高加每次停运查漏堵焊时,加强检修质量关。 (1)查漏,将泄漏的U型管必须全部找出来,否则堵焊仍无效; (2)堵焊,即焊接接工艺要精。在高加U型钢管堵焊时,堵头 与木材材质不同,同样给高加运行带来隐患。建议采用机 械封堵,避免由于焊接应力集中造成周围管板其它管束泄漏。 6.高加停运后保养措施要有利 在高加每次停运后,没有按要求采取蒸汽侧充氮和水侧充经过 加氨的除盐水来进行保养。我公司六期高加均有连接的氮气管道, 不能形同虚设,真正利用起来。 7. 加强管理,强化培训,提高运行值班人员的责任心及技术素质。 加强疏水水位监控,及时采取措施调整。不能习惯性地把高加疏水 的水位控制值设定在很低的位臵,这样的操作习惯容易造成疏水的 汽液两相流现象,从而加剧端差值,加剧损伤管壁。

高加故障原因分析与对策

高加故障原因分析与对策

高加故障原因分析与对策一、简介:目前,大容量火电机组普遍采用具有中间再热的回热循环,以提高整个机组的热经济性。

回热加热器是回热系统的重要设备,它对热经济性的影响很大。

由于设计、安装、检修和运行等方面原因,高加的投入率并不是很高。

高加的故障原因很多,最多的就是漏泄。

二、漏泄的位置:1、管子端口〔管子与管板连接处〕;2、管子本身漏泄;3、汽侧与水侧阀门;4、水室隔板〔进、出水室之间〕漏泄;三、漏泄的原因:1、管子端口〔管子与管板连接处〕漏泄大多是由于起停过程中热应力过大、管板变形。

热应力过大:高加在与主机正常启停过程中,或在主机故障而高加停运时,或在主机正常运行中因高加故障而使高加停运及在启动时,高加的温升率、温降率超过规定,使高加的管子和管板受到较大热应力,使管子和管板相连接的焊缝或胀接处发生损坏,引起端口漏泄。

主机或高加故障而骤然停运时,如果汽侧停止供汽过快,或汽侧停止供汽后,水侧仍然继续给水,在这两种情况下,因管子的管壁薄,所以在管板管孔内的那端管子收缩很快。

而管板的厚度大,收缩慢,常导致管子与管板的焊缝或胀接处损坏。

这就是规定的温降率允许值只有1.7~2.0℃/分钟,比温升率允许值2~5℃/分钟要严格的原因。

不少发电厂常常发生下属情况,主机运行中高加运行是正常的,但在停机后或停高加后再开机或再投运高加时,却发现高加管系泄漏。

实际上,泄漏不是在停机后,也不是在开机或正确投运高加时引起,而是在停机或停运高加过程中,由于高加温降率过快导致管子和管板连接焊缝或胀接处发生损坏而造成漏泄。

管板变形:管板与管子相连,管板变形会使管子的端口发生漏泄。

高加管板水侧压力高、温度低,汽侧压力低、温度高,尤其有内置式疏水冷却段,温差更大。

如果管板厚度不够,则管板会有一定的变形。

管板中心会向压力低、温度高的汽侧鼓凸,在水侧,管板发生中心凹陷。

在主机负荷变化时,高加汽侧压力和温度相应变化。

尤其在调峰幅度大,调峰速度过快或负荷突变时,在使用定速给水泵的条件下,水侧压力也会发生较大变化,甚至可能超过高加给水的额定压力。

高压加热器疏水端差偏大原因分析及应对策略

高压加热器疏水端差偏大原因分析及应对策略
均 为 5 6℃ , . 国内某 些 已投运 的高压 加热 器 , 际运 实
行 时 的 疏 水 端 差 较 设 计 端 差 偏 大 。 卧 式 高 压 加 热 器
与 进入 管侧 的给 水温 度之 差 。以卧式 高压 加热 器 为
低压 加 热器 除氧 器 高 压加 热器


图 1 汽 轮 机 回热 系统 示 意 图
水 端差 、 疏水 端 差及 管 、 壳程 介 质压 降等 , 中疏 水 其
端差( 又称下 端 差) 指离 开加 热器 壳 侧 的疏水 温度 是
组, 在汽 轮机 热平 衡 图 中高 压 加 热 器 设计 疏 水端 差
W ANG i i LI Ru me J we 。 U i i
( abn B i rPln . Lt H r i ol a tCo , d,Habn,H eo gin e ri ln j g,1 0 4 ,Ch n ) a 506 ia
Ab ta t H i e s r e d a e a e s sr c : gh pr s u e f e w t r he t r i ke a xiir q pm e n a xtaci n t a y t m f s e m t r ne y u la y e ui nti n e r to se m s s e o t a u bi ge r in un t ne ato i ,w hih c n r ie t e pe a ur e d a e O bo lr a e uc he e r o s The ha m f ne s c a as he t m r t e off e w t rt ie nd r d e t ne gy l s . r ul s a d c us a ge d an s n a e oflr r i ubc l ra r a h ha e nayz d a t ie o oo e pp o c vebe n a l e nd de al d c unt r e s e a e tf w a d i e m a ur s h vebe n pu or r n t tc e om bi d he aril c ne w ih he t t pe f r a e ro m nc de i sgn, s r t e r a e e , f b ia i p o e r tuc ur a r ng m nt a rc ton r c du e, op r ton nd e a i a m ant n nc i e a e.w hih i e u O t sg c s us f lt he de i n。f rc ton an pe a in o P e t r . ab ia i d o r to f H h a e s Ke r s: w e y wo d po r uni;hi e s r t gh pr s u e;he t r;dr i s bc olr a pr c ae an; u o e p oa h;l ge ; c s ar r au e;c nt r e s e ou e m a ur

高压加热器疏水端差大原因分析及对策71

高压加热器疏水端差大原因分析及对策71

高压加热器疏水端差大原因分析及对策摘要:高压加热器是汽轮机发电机组回热系统中的重要辅机设备,运行高压加热器可提高锅炉给水温度,降低机组能耗。

本文从运行角度分析,根据系统运行参数、疏水装置、控制仪表附件以及操作人员水平等因素,分析了高压加热器疏水端差偏大的原因和危害,并提出详尽的应对策略,对高压加热器的设计、制造及电厂运行具有借鉴意义。

关键词:机组;高压;加热器;疏水;端差;偏大;原因;对策前言高压加热器是电厂回热系统中的重要组成设备,其运行性能的好坏,与机组的经济性密切相关。

衡量高压加热器性能参数主要有给水温升、给水端差、疏水端差及管、壳程介质压降等,其中疏水端差(又称下端差)是指离开加热器壳侧的疏水温度与进入管侧的给水温度之差。

本厂高压加热器实际运行时的疏水端差较设计值偏差较大,最高达22℃,大大降低了回热系统的经济性和安全性。

因此,找出导致疏水端差过大的原因并采取措施降低疏水端差显得尤为重要。

设备简介:申皖公司一期两台汽轮机均采用上海汽轮机有限公司与德国西门子联合制造的产品,该机组四台高压加热器均为上海动力设备有限公司生产,其结构为卧式U型管管板式。

A9(调整抽汽)、A8、A7(高压缸排汽)、A6级抽汽分别供给四台高压加热器,高压加热器疏水在正常运行时采用逐级串联疏水方式,最后一级(A6高加)疏至除氧器。

一、高压加热器疏水端差偏大的影响本厂自2016年投产以来,#1机组四台高加疏水端差均不同程度的高于设计值(5.6℃),其中A8加热器疏水端差最高达22℃。

疏水端差过大会导致以下三方面问题:一是高压加热器的实际换热量低;二是疏水端差过大意味着疏水温度过高,因此疏水温度更接近饱和温度,在疏水管中容易产生汽液两相流,疏水容积流量增加,流速加快,造成疏水管道振动。

由于流速增加,流体将对管道产生很大得冲刷力,严重的会使疏水管道弯头吹损、破裂、危及加热器及回热系统的安全;三是疏水温度过高会加重下级高加的工作负荷,造成下级疏水端差进一步增大。

高加故障原因分析与对策

高加故障原因分析与对策

高加故障原因分析与对策一、简介:目前,大容量火电机组普遍采用具有中间再热的回热循环,以提高整个机组的热经济性。

回热加热器是回热系统的重要设备,它对热经济性的影响很大。

由于设计、安装、检修和运行等方面原因,高加的投入率并不是很高。

高加的故障原因很多,最多的就是漏泄。

二、漏泄的位置:1、管子端口(管子与管板连接处);2、管子本身漏泄;3、汽侧与水侧阀门;4、水室隔板(进、出水室之间)漏泄;三、漏泄的原因:1、管子端口(管子与管板连接处)漏泄大多是由于起停过程中热应力过大、管板变形。

热应力过大:高加在与主机正常启停过程中,或在主机故障而高加停运时,或在主机正常运行中因高加故障而使高加停运及在启动时,高加的温升率、温降率超过规定,使高加的管子和管板受到较大热应力,使管子和管板相连接的焊缝或胀接处发生损坏,引起端口漏泄。

主机或高加故障而骤然停运时,如果汽侧停止供汽过快,或汽侧停止供汽后,水侧仍然继续给水,在这两种情况下,因管子的管壁薄,所以在管板管孔内的那端管子收缩很快。

而管板的厚度大,收缩慢,常导致管子与管板的焊缝或胀接处损坏。

这就是规定的温降率允许值只有1.7~2.0℃/分钟,比温升率允许值2~5℃/分钟要严格的原因。

不少发电厂常常发生下属情况,主机运行中高加运行是正常的,但在停机后或停高加后再开机或再投运高加时,却发现高加管系泄漏。

实际上,泄漏不是在停机后,也不是在开机或正确投运高加时引起,而是在停机或停运高加过程中,由于高加温降率过快导致管子和管板连接焊缝或胀接处发生损坏而造成漏泄。

管板变形:管板与管子相连,管板变形会使管子的端口发生漏泄。

高加管板水侧压力高、温度低,汽侧压力低、温度高,尤其有内置式疏水冷却段,温差更大。

如果管板厚度不够,则管板会有一定的变形。

管板中心会向压力低、温度高的汽侧鼓凸,在水侧,管板发生中心凹陷。

在主机负荷变化时,高加汽侧压力和温度相应变化。

尤其在调峰幅度大,调峰速度过快或负荷突变时,在使用定速给水泵的条件下,水侧压力也会发生较大变化,甚至可能超过高加给水的额定压力。

MW机组高加下端差大原因分析

MW机组高加下端差大原因分析
加热器水位控制不当
加热器的水位控制不当,如水位过高或过低,都可能影响加热器的热交换效率, 从而导致高加下端差增大。
其他原因
水质问题
进入加热器的水质不良,如水中的杂质、硬度过高或氯离子 含量过高,都可能对加热器的热交换效率产生影响,从而导 致高加下端差增大。
设备老化
长时间运行的设备可能发生老化现象,如管束腐蚀、壳体变 形等,这些都会影响加热器的性能,从而导致高加下端差增 大。
案例二:某核电站高加下端差大的原因
在此添加您的文本17字
总结词:热力系统老化
在此添加您的文本16字
详细描述:水质问题可能导致加热器管束结垢或腐蚀,影 响加热器的换热效果,从而使高加下端差增大。
在此添加您的文本16字
详细描述:该核电站高加下端差大主要是由于热力系统老 化,导致加热器换热效率下降,端差增大。
改进热力系统设计
通过改进热力系统设计, 降低高加下端差,提高热 力系统的效率。
优化热力系统布局
合理布置热力系统中的设 备,减少热量损失和阻力 损失,提高热力系统的整 体效率。
强化热力系统监控
通过加强热力系统的监控, 及时发现和解决潜在问题, 确保热力系统的稳定运行。
加强设备维护和检修
定期检查设备
对热力系统中的设备进行定期检 查,确保设备处于良好的工作状
02
运行参数调整不当,如加热蒸汽 压力、温度和流量等,也可能影
响端差的变化。
高加水位过高或过低,以及水侧 空气滞留,也会对端差产生影响 。
03
设备老化、腐蚀和磨损等机械问 题也可能导致端差增大。
04
对未来研究的建议
01
02
03
04
进一步研究高加内部换热管的 结垢和堵塞机理,寻求有效的

高加疏水端差大分析与处理

高加疏水端差大分析与处理

高加疏水端差大分析与处理(深能合和电力(河源)有限公司广东河源 517000)高压加热器是火力发电厂回热系统中的重要设备,它利用汽轮机的抽汽来加热锅炉给水,使其达到要求的给水温度,从而提高电厂的热效率。

高加是电厂内最高压力下运行的设备,在运行中需要承受机组负荷突变,给水泵故障等引起的压力突变和温度突变,这些都会给高加带来损害。

某火力发电厂采用三高四低一除氧的给水回热系统,3号高加疏水端差长期维持15-20度,远远高于设计至5.6度。

相对于1号高加和2号高加,3号高加由于水侧进水温度最低,抽汽温度最高,温差最大,运行工况最恶劣,所以最容易出现泄漏等故障。

高加内部结构如图1所示。

图1:高加机构图示引起高加疏水端差大的原因有几个:高加汽侧水位低、高加内部聚集空气、高加疏水冷却段隔板泄漏。

高加汽侧水位低,部分抽汽未凝结即进入下一级,抽汽放热时间不足,抽汽未与给水充分换热就随同疏水被带走,导致疏水温度高。

加热器中积聚过多空气同样严重影响换热,因为空气是不可凝结气体,它排挤一部分凝结放热量,降低高加换热效果。

高加疏水冷却段隔板泄漏同样会导致疏水端差增大。

高加按照抽汽流程,可分为三段,分别为过热蒸汽冷却段、过热蒸汽凝结段、疏水冷却段。

疏水冷却段在长时间的汽液两相流闪蒸冲刷下,隔板等部位容易出现穿孔泄漏,穿孔后部分抽汽未经冷却凝结,通过隔板穿孔部位直接进入到疏水段,导致疏水温度升高,疏水端差增大。

通过分析排查,排除了高加水位低、高加内部聚集空气的可能。

为排除高加水位低导致疏水端差大,调整校验了高加的就地液位计与远传液位计,保证就地液位计与远传液位计的一致性,通过提高高加运行水位,经长时间观察,高加疏水端差并没有明显变化,这就排除了高加液位低导致疏水端差大的可能。

针对高加内部聚集空气的可能,利用停机机会,对高加连续排气管及管路上手动门逆止门进行全面检查,未发现有堵塞的情况,且机组运行时高加连续排气管路上阀门能听到气流流过的声音,排除高加内部聚集空气的可能。

金堂电厂600MW#2高加下端差偏大的原因及处理

金堂电厂600MW#2高加下端差偏大的原因及处理

金堂电厂600MW#2高加下端差偏大的原因及处理摘要:针对金堂电厂600 MW亚临界燃煤火力发电机组,分析#2高压加热器下端差偏大的原因和系统缺陷,提出改进优化措施,提高高加运行的热经济性和安全稳定性。

关键词:高压加热器;端差;经济性高压加热器,简称高加,是在火力发电厂中利用回热抽汽对锅炉给水进行加热的表面式换热装置,可以提高锅炉给水温度,降低机组能耗,从而提高机组热效率。

我厂机组为N600-16.7/538/538-2型汽轮机,系东方汽轮机厂与日立公司合作设计生产的亚临界、一次中间再热、凝汽式、单轴、双背压、三缸四排汽、冲动式汽轮机。

其中我厂#2高压加热器型号为JG-2300-2。

一、高压加热器的原理和结构1、高压加热器的工作原理一台加热器内部可分为蒸汽冷却段、凝结段、疏水冷却段三个换热部分,其每个阶段的具体工作原理如下:蒸汽冷却段是利用从汽轮机抽出的蒸汽的一部分显热来提高给水温度的。

它位于给水出口流程侧,并有包壳板密闭。

采用蒸汽冷却段可以提高离开加热器的给水温度,使其接近或略超过该抽汽压力下的饱和温度。

从进口管进入的过热蒸汽在一组隔板的导向下,以适当的线速度和质量速度均匀地流过管子,并使蒸汽保留有足够的过热度以保证蒸汽离开该段时呈干燥状态。

这样,当蒸汽离开该段进入凝结段时,可以防止湿蒸汽冲蚀和水蚀的危害。

凝结段是利用蒸汽冷凝时的潜热来加热给水的。

一组隔板使蒸汽沿着加热器长度的方向均匀分布,起支撑传热管的作用。

进入该段的蒸汽,根据汽体冷却原理,自动平衡,直至由饱和蒸汽冷凝成饱和的凝结水,并汇集在加热器的底部,收集非凝结气体的排气管必须置于管束最低压力处以及壳内容易聚集非冷凝气体处。

非冷凝气体的聚集影响了传热,因而降低了效率并造成腐蚀。

疏水冷却段是把离开凝结段的疏水的热量传给进入加热器的给水,而使疏水温度降低到饱和温度以下。

疏水冷却段位于给水进口流程侧,并有包壳密闭。

疏水温度降低后,当流向下一个压力较低的加热器时,减弱了在管道内发生汽化的趋势。

一次#7高加疏水端差大处理过程分析

一次#7高加疏水端差大处理过程分析

一次#7高加疏水端差大处理过程分析一、#7高加疏水端差大时运行情况:6月12日,5号机开机温态开机投人高加后,发现#7高加疏水端差(即平常我们讲的加热器下端差)与开机同比偏大,当时#7高加水位设定值为670mm,水位模拟量显示680 mm左右,#7高加水位调整门开度为99%,#7高加事故放水门稍开,#6高加外置蒸冷器入口温度为200℃,而#7高加疏水温度居然也有202℃,而此时#7高加的人口温度为170℃,下端差为32℃,而且下端差有进一步增大的趋势。

这一情况的出现肯定是不正常的,监盘人员立即认真分析查找原因以进行处理。

二、疏水端差大的原因分析与调整导致#7高加下端差增大原因无非就是加热器水位低或者是相关表计显示异常,从上面#7高加运行情况看:#7高加水位调整门开度为99%,还有就是#7高加事故放水门有一定的开度,但是其水位显示正常,而加热器的下端差却偏大,只能说明加热器的水位显示与实际水位存在着一定的偏差,经就地核对一次水位计,显示#7高加无水位运行,根据这一情况及时将#将#7高加事故放水门关闭并将水位设定值增至700mm后,下端差逐渐变小,“#7高加水位OK”信号发信,此后高加工作正常。

下图为处理过程趋势图:(红线:#7高压加热器入口温度;黄线:#7高加疏水温度;绿线:#6高加外置四蒸冷器入口水温;白线:#7高压加热器水位。

)下表为#7高加投入后的相关参数:三、处理心得从这次高加的下端差偏大问题处理情况看,我们不难看出处理异常情况的方法有下面三方面:1)检查相关参数并进行核对,确定原因。

2)根据原因进行处理。

3)检查处理效果并验证分析的原因。

这次处理过程中,我们首先发现下端差大,继而分析#7高加运行的水位,疏水门的开度,就地核对等确定了真正原因,顺利的将问题处理了,高加的运行情况对机组的经济性有着举足轻重的作用,它的作用体现在两方面,其一是对锅炉运行的影响,其二是对汽轮机运行的影响。

高加退出运行,使进入锅炉的给水温度下降,如果要维持蒸发量不变,无疑要相应加强燃烧,使同比情况下锅炉的不可逆损失增加,同时排烟温度上升造成排烟损失增加;对于汽轮机而言,要严禁高加无水位和高水位运行,无水位运行不仅会造成排挤低能级抽汽,造成汽轮机效率下降,同时由于疏水管道两相流造成对加热器和管道的冲刷加剧严重影响加热器的使用寿命;高水位运行会有可能造成汽轮机进水事故的发生;因此,我们在平时的工作中要时刻关注它的运行情况,加强仪表分析和就地巡查工作,提高高加的投入率,为我厂330MW机组经济指标尽快赶上对标机组而贡献力量。

校对--加热器疏水端差分析

校对--加热器疏水端差分析

7.17运行分析加热器端差,一般分为上端差和下端差。

一般不加特别说明时,加热器端差都是指出口端差(加热器汽侧压力下的饱和水温度与出口水温度的差值)又称为上端差;我们在这里提到的端差则是指离开疏水冷却器的疏水温度与进口水温度间的差值,又称下端差。

加热器疏水端差大,对机组影响主要是:降低经济性,并且可能会造成下一级加热器过热或冲刷,损坏加热器.自七月十一日以来,#3机组#7高加下端差逐步增大,最高达到24℃(进水温度210℃,疏水温度234℃)为此,我们主要从以下几个方面进行分析和调整:1、受热面污垢,汽侧空气排气不畅,使传热系统值减小,集聚空气,造成抽汽没有充分利用,从而造成端差增大。

这样,我们从关小加热器连续排空一二次门入手,逐步进行开关试验。

2. 水位过低:大量抽汽经疏水管进入下一级加热器,大量排挤下一段抽汽,使热经济性下降,并可能使下级加热器汽侧超压,尾部管束冲蚀加大等,同时加速对本级疏水管道及阀门的冲刷,引起疏水管振动和疲劳破坏。

所以我们从建立加热器疏水水位着手,关小加热器正常疏水汽液两相流前手动门,在调整过程中,应缓慢进行,避免加热器水位大幅波动,从而造成保护动作,高加解列。

3、正常疏水旁路门未关严,部分疏水走旁路,造成疏水水位过低。

我们对加热器正常疏水汽液两相流旁路电动门进行了校紧处理。

4、事故疏水调节阀不严,造成疏水大量泄漏,造成疏水水位过低。

我们首先关闭事故疏水调节阀前后手动门,然后进行观察,从端差是否改变及管道阀门温度有无变化,来判定改阀门是否泄漏,根据泄漏量联系检修处理。

从试验的情况来看,我们的成果还是比较好的,疏水端差从24℃逐步降低到8℃,主要原因为#7高加正常疏水前截门漏量较大所致,通过关小正常疏水前截门减小疏水量,#7高加由250mm上升至262mm,下端差逐步回到正常值。

高加水位运行不稳定的原因分析及改进措施

高加水位运行不稳定的原因分析及改进措施

韶关发电厂#8机组是采用哈尔滨汽轮机厂制造的型号为N200-230/535/535、一次中间再热、凝汽式单轴三缸三排汽口汽轮机,1985年投产使用。

全机共有8段非调整抽汽。

其中1、2、3段分别为3台高加抽汽用汽。

回热加热系统的配置方式为“3大2小”,即3台高加、1台前置式蒸汽冷却器和1台外接式疏水冷却器。

3台高加均为“U”型管表面式加热器,疏水采用逐级自流的方式,#1高加疏水最终至除氧器。

疏水装置为电动式调节装置。

高加水位运行不稳定,据运行日记统计,最多时一个月高加动作8次,高加投入率不高。

1原因分析1.1疏水装置调整性能差高加疏水系统中的疏水装置仍采用KDJ式电动调节装置,这种装置属于80年代的产品,由于其执行机构机械元件多,迟缓率大,很容易出现刹车失灵,产生过调现象。

当高加水位偏高需增大调整门开度时,由于执行机构的过调现象,会使水位降低过多;而当高加水位偏低需减小调整门开度时,往往会使水位又上升过多。

由于水位不稳定,调整门频繁动作,对高加内部及其疏水系统的管道冲蚀增大,甚至会产生振动,调节阀也易冲蚀磨损,经常出现故障,以至造成高加水位调整失灵,引起高加保护动作,或高加无水位运行,特别是汽轮机变工况运行时,高加水位就更加难以控制。

1.2高加疏水至除氧器管道布置不合理投入#2、#3高加疏水,调整至正常后投#1高加时,随即出现水位不断升高甚至满水现象。

而疏水管道为∮219 mm×7 mm,疏水调节阀窗口通流面积79.4 cm2,通流面积足够,造成#1高加疏水不畅的原因是疏水管路压力损失太大,使疏水调节阀压差减小,影响了通流能力。

图1为改造前的高加疏水至除氧器管道布置。

1.3高加疏水至除氧器管道管壁偏薄由于长期被冲蚀,高加疏水至除氧器管道管壁已由原来的8 mm减至4~5 mm,特别是疏水管道弯头处,由于高加水位的波动,磨损特别严重,以致管道及弯头处泄漏而造成高加停运。

2改进措施据上述分析,在2002年#8机组大修时,采取了以下改进措施。

燃煤火电机组高压加热器端差大的分析与优化

燃煤火电机组高压加热器端差大的分析与优化

燃煤火电机组高压加热器端差大的分析与优化摘要:针对600 MW亚临界燃煤火力发电机组,分析高压加热器疏水端差偏大的原因和系统缺陷,提出改进优化措施,提高高加运行的热经济性和安全稳定性。

结果表明,高压加热器内部换热包括过热蒸汽冷却段、冷凝段和疏水冷却段,合理控制各段的比例,以减小高加的疏水端差和上端差,提高其热经济性。

高加系统常见的缺陷包括阀门、法兰泄漏,高加水位测点故障,阀门机务卡涩、手轮或支架故障,外部保温缺失和电动阀故障。

高加端差偏大的原因包括受热面结垢、积存空气、高加水位实际过高或过低、高加管束有效换热面积下降、保温不足、汽水外漏、事故疏水阀内漏、疏水回路不通畅或通流截面积不够。

降低高加端差的优化措施包括高加汽侧管束化学碱清洗、系统排气、控制合理的高加水位,更换水位测量仪表,加强巡检和排查高加保温不足、汽水泄漏和恢复部分被封堵的管束。

关键词:燃煤火力发电机组;高压加热器;疏水端差;事故放水水位;降低端差1.引言高压加热器(简称高加)为燃煤火力发电机组回热系统的主要设备,高加疏水端差大不仅导致热经济性降低,同时还会引起疏水管道振动增高,威胁汽轮机系统的安全运行[1-5]。

因此,有必要对高压加热器的系统工作原理和故障原因进行分析,研究降低疏水端差和管道振动的处理方法,优化运行。

本研究拟针对燃煤火力发电机组,分析高压加热器疏水端差偏大的原因和系统缺陷,提出改进优化措施,提高高加运行的热经济性和安全稳定性。

本文的分析有助于了解高加疏水端差偏大的原因,提出运行优化措施和设备缺陷技改方案,提高高加设备的运行安全性和经济性。

2.高加系统的结构和工作原理以北仑电厂600 MW亚临界湿冷燃煤火力发电机组2号机为例进行分析。

抽汽回热系统设有3台表面式、U型管高压加热器,全部为卧式结构,分别布置在汽机房19.8 m层、13.7 m层和6.1 m层,均由法国阿尔斯通公司设计制造。

高压加热器内部换热包括过热蒸汽冷却段、冷凝段和疏水冷却段,合理控制各段的比例,以减小高加的疏水端差和上端差,提高其热经济性。

关于高加端差经济分析

关于高加端差经济分析

关于高加端差经济分析
高加端差直接影响给水温度,进而影响机组的经济性运行。

影响高加端差大的直接原因为高加的水位。

水位高,虽然端差减小,但事故疏水启动调阀易全开;水位低,高加端差增大。

均影响机组经济性。

设计中,高加端差:#1高加5.0℃、#2高加5.5℃、#3高加5.6℃。

实际中,负荷在450MW时,#1高加7~8℃左右、#2高加7~8℃左右、#3高加7~16℃左右。

尤其是#3高加,正常疏水调阀调节线性不好,调节较缓慢,造成了高加水位波动较大。

在升负荷时,水位偏差较大(50mm),造成端差大或水位高。

#1、#2高加水位偏差在20mm左右。

建议:
1、#3高加远传水位计需进一步校对。

2、#3高加正常疏水调阀线性查,调节速度太慢,调节性能需加强。

高低压加热器疏水系统运行问题分析

高低压加热器疏水系统运行问题分析

高低压加热器疏水系统运行问题分析摘要:高低压加热器疏水系统一旦发生故障,将会造成疏水不畅,给机组的运行于工作人员造成安全风险,而且这样也会大大降低工作效率,给企业造成经济损失,本文主要通过分析高低压加热器疏水系统运行中常见的问题以及造成问题的原因,并提出相应的对策,以降低高低压加热器疏水系统运行问题的发生率,提高经济效益。

关键词:高低压加热器;疏水系统;运行问题引言现阶段,火电厂为了提高经济效益,普遍使用高低压加热器,因此,高低压加热器在运行过程中的可靠性也直接关系到火电厂的经济效益,但是,目前,高低压加热器疏水系统运行问题是一个急需解决的难题,高低压加热器疏水系统一旦发生疏水不畅等运行不正常问题,都可能造成火电厂需要停机维修,这样就大大降低了工作效率,给火电厂带来一定的经济损失,所以对高低压加热器疏水系统运行问题进行分析并提出必要的解决措施是很有必要的。

1.高低压加热器疏水系统运行问题1.1疏水管道振动问题疏水管道发生振动可能对整个疏水系统和操作人员的人身安全造成威胁。

造成.疏水管道振动的原因主要有一下几点:一是,疏水汽化。

在机组启动之前,疏水管道内有大量的冷水,在高低压加热器运行之后,冷水会发生汽化,造成疏水管道发生振动。

二是,汽体与液体两相流。

在机组启动过程中,加热器汽侧处于低水位或者无水位,在疏水过程中,下级加热器中的水可能会发生汽化,这样将造成汽体与液体同时流动,给疏水管道造成冲击,引起疏水管道发生振动,同时汽体与液体同时流动也可能给加热器疏水管道的管壁、弯头、阀门造成冲击或者腐蚀,引起疏水管道发生故障。

三是,高低压加热器两相流。

高压加热器与低压加热器的疏水管道是同时相互流通的,在疏水系统运行过程中,高低压加热器的疏水系统阀门管道会受到严重的冲刷,从而造成疏水管道出现振动。

四是,系统设计、安装不合理。

加热器正常的疏水调节门和事故疏水调节门是分开的,如果加热器正常的疏水调节门和事故疏水调节门安装位置存在不合理之处或者疏水管道的管径尺寸不符合实际要求,在加热器运行过程中也会造成疏水管道振动问题。

高加下端差大对机组经济性影响的分析

高加下端差大对机组经济性影响的分析

高加下端差大对机组经济性影响的分析一、分析题目高加下端差大对机组经济性影响的分析二、分析原因或背景加热器下端差增大、疏水温度未得到应有的冷却,致使蒸汽在本级加热器中的放热程度降低,加热用汽量增大;同时,疏水温度的提高及加热用汽量的增大又导致下一级加热器用汽量的减少,即形成高品位抽汽增加,低品位抽汽减少,带来机组经济性的降低。

三、分析内容1.高加长期低水位运行,高加疏水不能充分冷却。

当水位降低到一定程度,疏水冷却段水封丧失,蒸汽和疏水一起进入疏冷段,疏水得不到有效冷却,经济性降低;更严重的是,由于蒸汽冷却段的出口在疏冷段的上面,水封丧失后,造成蒸汽短路,从蒸汽冷却段出来的高速蒸汽一路冲刷蒸汽冷却段、凝结段,最后在疏水冷却段水封进口形成水中带汽的两相流,冲刷疏水冷却段,引起管子振动而损坏。

同时,由于加热器疏水逐级自流到下一级,本级疏水的汽液两相流大量串入下一级加热器,排挤了下一级加热器的抽汽量,使高能级抽汽变为低能级使用,造成机组的经济性大幅度降低。

2.高加的水侧的水室存在短路现象。

加热器水室内的进、出口水隔板损坏,进水与出水之间部分被短路,有一部分给水直接进入加热器水室出口侧而没有通过传热管,直接从加热器水室的出口出去了。

3.高加内部积聚空气使传热效率降低。

加热器中不凝结气体的来源是加热器停用、检修时滞留在加热器壳侧或水侧的空气,抽汽或疏水带入或析出的不凝结气体,不凝结气体的存在降低了传热效果,增加压力损失,使高加出口温度降低,造成高加下端差增大。

4.给水品质不合格,高加管束表面积盐,影响换热效果。

还有加热器长期运行后,会在管子内外表面形成以氧化铁为主的污垢,降低了传热效果,增加压力损失,使高加出口温度降低,造成高加给水端差大。

5.由于运行人员责任心不强,他们为了使得高加水位在骤变负荷以及事故工况下,有更多的水位上升空间,给反应处理预留更多的时间,一些运行人员习惯把高加疏水的水位控制值设定在很低的位置,这样的操作习惯容易造成疏水的汽液两相流现象,从而加剧端差值,加剧损伤管壁。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

#2机#1高加疏水端差大原因分析
一、#2机通流部分改造前后#1高加疏水温度对比
由附表可知,#2机通流部分改造前,负荷580MW时,#1高加疏水温度为253℃,进水温度为241℃,则改造前#1高加疏水端差为12℃;#2机通流部分改造后相同负荷下#1高加疏水温度约258℃,进水温度为236℃,则改造后#1高加疏水端差约22℃,同比#1高加疏水端差上升约10℃。

二、加热器疏水端差大理论原因
1、加热器运行水位低,导致疏水中带汽,疏水温度上升,疏水端差增大。

2、加热器运行中事故疏水动作,导致加热器水位下降,疏水温度及疏水端差上
升。

3、加热器进水温度降低,本级加热器吸热量自行增大(抽汽量增加),疏水温度
上升,疏水端差自行增大。

4、加热器内部汽流隔板损坏,影响蒸汽凝结,疏水段带汽,疏水温度上升,疏
水端差增大。

5、疏水温度测量有误,温度指示高。

三、目前#2机#1高加疏水端差大原因分析
1、#2机通流部分改造后,经与仪控就地核对#1高加水位,正常疏水定值定为700mm,就地实际水位约440mm,在正常水位线运行,说明#1高加正常运行水位控制正常。

为再次验证定值是否偏低,本月19日进行了#1高加水位试验,相关数据如下:
试验中发现当水位上升至773mm 时,#1高加水位高“光字牌”报警发出,说明此时液位高开关已动作,实际水位已高,因此目前水位定值700mm比较合理。

2、#2机通流部分改造后,相同负荷下主汽压力下降约1.2MPa,三台高加的抽
汽压力必然下降,抽汽量必然相应增加。

由附表可知,改造前、后#1高加抽汽压力下降约0.6MPa(改造前#2机超压运行,#1高加超压约0.4MPa),进水温度下降约5℃,温升下降约5℃,根据加热器自平衡原则,改造后#1高加的抽汽量必然增加,从而引起疏水温度上升、疏水端差增大,这也是#1高加疏水端差增大的主要原因。

同理#2
四、结论及有关建议
1、#2机通流部分改造后相同负荷下#2/#1高加温升分别下降2℃/5℃,给水温度下降约5℃,#3高加大修中已更换,温升未变化(因为大修前#3高加已堵管约15%)。

目前#2机满负荷时如#1高加抽汽门不节流,给水温度基本能达到额定值(小于设计值约2℃),但夏季因真空的下降、抽汽量的增加,#3高加事故疏水频繁动作,#1高加抽汽电动门将被迫节流,给水温度下降约7~8℃,影响经济性。

2、经试验及就地核实,目前#1高加的实际水位定值700mm正常,疏水端差约20℃,但目前水位能保证加热器的安全运行。

此外仪控部已检查#1高加疏水温度测量、显示正常。

1、建议利用检修机会,对#1高加内部汽流隔板及疏水段进行检查,消除可疑
点,同时也可确认加热器的安全状况。

五、附#2机通流部分改造前后高加运行参数。

相关文档
最新文档