七年级数学三角形复习

合集下载

北师大版七年级数学下册 第四章 三角形 复习(26张PPT)

北师大版七年级数学下册  第四章    三角形 复习(26张PPT)

解:(1)△BPD≌△CQP,理由如下:∵t=1s, ∴BP=CQ=3×1=3(cm), ∵AB=10cm,点D为AB的中点,∴BD=5cm. 又∵PC=BC﹣BP,BC=8cm, ∴PC=8﹣3=5(cm),∴PC=BD. 又∵AB=AC,∴∠B=∠C, 在△BPD和△CQP中
∴△BPD≌△CQP(SAS);
第四章 三角形
由不在同一直线上的三条线段首尾顺次 相接所组成的图形叫做三角形。
三角形有三条边、三个内角和三个顶点。 “三角形”可以用符号“△”表示。
A
记为:△ABC
B
C
的三
边角

三 角
的三 角角
形形
1、三角形任意两边之和大于第三边。 2、三角形任意两边之差小于第三边。
3、三角形三个内角的和等于180度。 4、直角三角形的两个锐角互余。
∵CE是∠ACB的平分线 ∴∠ECD=70°﹣50°
∴∠ACE=50°
= 20°
1、如图AB=CD,AC=BD,则 △ABC≌△DCB吗?说明理由。
解:△ABC≌△DCB
A 在△ABC与△DCB中
{∵ AB=CD(已知) AC=BD (已知)
B
BC=CB(公共边)
∴△ABC≌△DCB(SSS)
D C
2.如图,已知△ABC中, AB=AC=10cm,BC=8cm, 点D为AB的中点.如果点P在 线段BC上以3cm/s的速度由 B点向C点运动,同时,点Q在 线段CA上由C点向A点运动. (1)若点Q的运动速度与点P的运动速度相等,经 过1s后,△BPD与△CQP是否全等,请说明理由; (2)若点Q的运动速度与点P的运动速度不相等, 当点Q的运动速度为多少时,能够使△BPD与△CQP 全等?

七年级下册数学 三角形和不等式的复习 知识点讲解【精编】

七年级下册数学 三角形和不等式的复习 知识点讲解【精编】

三角形和不等式复习温故而知新(一)三角形知识梳理1、等腰三角形的性质:①等腰三角形的两底角相等(等边对等角)②等腰三角形“三线合一”的性质:顶角平分线、底边上的中线、底边上的高互相重合。

③等腰三角形两底角的平分线相等,两腰上的高、中线也相等等腰三角形的判定:有两个角相等的三角形是等腰三角形(等角边对等边)2、等边三角形是特殊的等腰三角形,作一条等边三角形的三线合一线,将等边三角形分成两个全等的直角三角形,其中一个锐角等于30º,这它所对的直角边必然等于斜边的一半。

等边三角形的判定:有一个角等于60º的等腰三角形是等边三角形。

3、如果知道一个三角形为直角三角形首先要想的定理有:①勾股定理:222+=(注意区分斜边与直角边)a b c②在直角三角形中,如有一个内角等于30º,那么它所对的直角边等于斜边的一半③在直角三角形中,斜边上的中线等于斜边的一半4、线段垂直平分线上的点到这一条线段两个端点距离相等。

线段垂直平分线逆定理:到一条线段两端点距离相等的点,在这条线段的垂直平分线上。

三角形的三边的垂直平分线交于一点,并且这个点到三个顶点的距离相等。

5、角平分线上的点到角两边的距离相等。

角平分线逆定理:在角内部的,如果一点到角两边的距离相等,则它在该角的平分线上。

三角形三条角平分线交于一点,并且交点到三边距离相等,交点即为三角形的内心。

6、互逆命题和互逆定理7、全等三角形课堂复习等腰三角形1、已知,等腰三角形的一条边长等于6,另一条边长等于,则此等腰三角形的周长是()A.9 B.12 C.15 D.12或152. 等腰三角形的底角为15°,腰上的高为16,那么腰长为______ ____3、等腰三角形的一个角是80度,则它的另两个角是4、等腰三角形的顶角为120°,腰长为4,则底边长为__________C EA D B等边三角形1、如图:等边三角形ABC 中,D 为AC 的中点,E 为BC 延长线上一点,且DB=DE,若△ABC 的周长为12,则△DCE 的周长为___________. 垂直平分线1、如图1,在△ABC 中,已知AC=27,AB 的垂直平分线交AB 于点D ,交AC 于点E ,△BCE 的周长等于50,求BC 的长.2、如图:△ABC 中,AB=AC,∠BAC=1200,EF 垂直平分AB, EF=2,求AB 与BC 的长。

第1章三角形期末复习训练2022-2023七年级上学期鲁教版数学

第1章三角形期末复习训练2022-2023七年级上学期鲁教版数学

2022-2023七年级上学期鲁教版数学(第1章三角形)期末复习训练一、选择题1.如图,在△ABC中,画出AC边上的高,正确的图形是( )A. B.C. D.2.如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能判断△ABC≌△DEF的是( )A. AB=DEB. ∠A=∠DC. AC=DFD. AC//FD3.现有以下说法:①等边三角形是等腰三角形;②三角形的两边之差大于第三边;③三角形按边分类可分为不等边三角形、等腰三角形、等边三角形;④三角形按角分类可分为锐角三角形、直角三角形和钝角三角形.正确的有( )A. 1个B. 2个C. 3个D. 4个4.下列说法:(1)周长相等的两个三角形是全等三角形;(2)周长相等的两个圆是全等图形;(3)如果两个三角形是全等三角形,那么这两个三角形的面积相等;(4)所有的正方形是全等图形;(5)在△ABC中,当∠A=12∠C,∠B=13∠C时,这个三角形是直角三角形.正确的有( )A. 1个B. 2个C. 3个D. 4个5.如图,在△ABC和△DCB中,∠ACB=∠DBC,添加一个条件,不能证明△ABC和△DCB全等的是( )A. ∠ABC=∠DCBB. AB=DCC. AC=DBD. ∠A=∠D6.如图,AD是△ABC的中线,点E是AD的中点,若△ABC的面积为24cm2,则△CDE的面积为( )A. 8cm2B. 6cm2C. 4cm2D. 3cm27.下列叙述中,正确的是.( )A. 三角形一个角的平分线与这个角的对边相交,这个角的顶点与交点之间的射线,叫做三角形的角平分线B. 连接三角形一个顶点和它对边中点的直线,叫做三角形的中线C. 从三角形一个顶点向它的对边画垂线,这条垂线叫做三角形的高D. 三角形的三条中线总在三角形的内部8.根据下列条件,不能画出唯一△ABC的是( )A. AB=5,BC=3,AC=6B. AB=4,BC=3,∠A=50°C. ∠A=50°,∠B=60°,AB=4D. AB=10,BC=20,∠B=80°9.如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于点G,交BE于点H,下面说法正确的是( )①△ABE的面积=△BCE的面积;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.A. ①②③④B. ①②③C. ②④D. ①③10.为了测量池塘两侧A,B两点间的距离,在地面上找一点C,连接AC,BC,使∠ACB=90°,然后在BC的延长线上确定点D,使CD=BC,得到△ABC≌△ADC,通过测量AD的长,得AB 的长.那么△ABC≌△ADC的理由是( )A. SASB. AASC. ASAD. SSS二、填空题11.如图,Rt△ABC和Rt△EDF中,BC//DF,在不添加任何辅助线的情况下,请你添加一个条件,使Rt△ABC和Rt△EDF全等.12.如图,在△ABC中,已知点D,E,F分别为边AC,BD,CE的中点,且阴影部分图形面积等于3平方厘米,则△ABC的面积为_________平方厘米13.如图,两根旗杆间相距20米,某人从点B沿BA走向点A,一段时间后他到达点M,此时他分别仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM.已知旗杆BD的高为12米,该人的运动速度为2米/秒,则这个人运动到点M所用时间是秒.14.如图,在锐角三角形ABC中,AB=4,△ABC的面积为10,BD平分∠ABC,若M、N分别是BD、BC上的动点,则CM+MN的最小值为______.15.如图,已知线段a,b,c,求作△ABC,使BC=a,AC=b,AB=c,下面作法中: ①分别以B,C为圆心,c,b为半径作弧,两弧交于点A; ②作线段BC=a; ③连接AB,AC,△ABC 为所求作的三角形.正确顺序应为(填序号).16.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,EF=6,BG=3,DH=4,计算图中实线所围成的图形的面积S是.三、解答题17.请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:如图,∠α,直线l及l上两点A,B.求作:△ABC,使点C在直线l的上方,且∠ABC=90∘,∠BAC=∠α.18.如图,在△ABC中,D是边BC上的一点,AB=DB,BE平分∠ABC,交AC边于点E,连接DE.(1)求证:∠AEB=∠DEB;(2)若∠A=100∘,∠C=50∘,求∠AEB的度数.19.如图,在△ABC中,∠A=60°,角平分线BD,CE交于点O.(1)求∠BOC的度数;(2)点F在BC上,BF=BE,试说明:△COD≌△COF;(3)BE,CD,BC三条线段之间有怎样的数量关系?请直接写出结果.20.如图,在△ABC中,∠BAD=∠CAD.(1)如图,若DE⊥AB,DF⊥AC,垂足分别为E,F,请你说明DE=DF;(2)如图 ②,若G是AD上一点(A、D除外),GE⊥AB,GF⊥AC,垂足分别为E,F,请问:GE=GF成立吗?并说明理由;(3)如图 ③,若(2)中GE,GF不垂直于AB,AC,要使GE=GF,需添加什么条件?并在你添加的条件下说明GE=GF.21.如图,BD、CE分别是△ABC的边AC、AB上的高,P在BD的延长线上,且BP=AC,点Q 在CE上,CQ=AB.求证:(1)AP=AQ;(2)AP⊥AQ.22.在△ABC中,AB=AC,点D是BC上一点(不与B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,若∠BAC=90°,①试说明:△ABD≌△ACE;②求∠BCE的度数;(2)设∠BAC=α,∠BCE=β.如图2,则α,β之间有怎样的数量关系?请直接写出你的结论.答案D C B B B B D B B A11. AB=ED(答案不唯一)12. 1213. 414. 515. ② ① ③16. 5017.略18.(1)证明:∵BE平分∠ABC,∴∠ABE=∠DBE.在△ABE和△DBE中,{AB=DB,∠ABE=∠DBE, BE=BE,∴△ABE≌△DBE(SAS),∴∠AEB=∠DEB.(2)∵BE平分∠ABC,∴∠ABE=∠DBE,∵∠A=100∘,∠C=50∘,∴∠ABC=30∘,∴∠ABE=15∘,∴∠AEB=180∘−∠A−∠ABE=180∘−100∘−15∘=65∘.19.解:(1)在△ABC中,∠A=60°,BD和CE分别平分∠ABC和∠ACB,所以∠OBC+∠OCB=12(∠ABC+∠ACB)=12×(180∘−60∘)=60∘.所以∠BOC=180°−60°=120°.(2)因为BD平分∠ABC,所以∠EBO=∠FBO.在△OBE和△OBF中,{OB=OB,∠OBE=∠OBF, BE=BF,所以△OBE≌△OBF(SAS).所以∠BOE=∠BOF.因为∠BOC=120°,所以∠BOE=60°.所以∠BOF=∠COF=∠COD=60°.在△COD和△COF中,{∠COD=∠COF, OC=OC,∠OCD=∠OCF,所以△COD≌△COF(ASA).(3)BC=BE+CD.20.(1)∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD,在△AED和△AFD中,{∠DAE=∠DAF,∠AED=∠AFD, AD=AD,∴△AED≌△AFD,∴DE=DF.(2)GE=GF成立.理由如下:∵GE⊥AB,GF⊥AC,∴∠AEG=∠AFG,在△AEG和△AFG中,{∠EAG=∠FAG,∠AEG=∠AFG, AG=AG,∴△AEG≌△AFG,∴GE=GF.(3)(答案不唯一)添加AE=AF,理由如下:在△AEG和△AFG中,{AE=AF,∠EAG=∠FAG, AG=AG,∴△AEG≌△AFG,∴GE=GF.21.证明:(1)∵BD、CE分别是△ABC的边AC、AB上的高,∴BD⊥AC,CE⊥AB,∴∠ADB=∠AEC=90°,∴∠ABD+∠BAC=90°,∠ACE+∠BAC=90°,∴∠ABD=∠ACE,在△ABP和△QCA中,{BP=AC,∠ABP=∠ACQ, AB=CQ,∴△ABP≌△QCA(SAS),∴AP=AQ.(2)由(1)知△ABP≌△QCA,∴∠P=∠CAQ,∵BD⊥AC,∴∠P+∠CAP=90°,∴∠CAQ+∠CAP=90°,即∠QAP=90°,∴AP⊥AQ.22.解:(1)①因为∠BAC=∠DAE,所以∠BAC−∠DAC=∠DAE−∠DAC,即∠BAD=∠CAE.在△ABD和△ACE中,{AB=AC,∠BAD=∠CAE, AD=AE,所以△ABD≌△ACE(SAS).②由①可得△ABD≌△ACE,所以∠B=∠ACE.所以∠B+∠ACB=∠ACE+∠ACB.所以∠BCE=∠B+∠ACB.因为∠B+∠ACB=180°−∠BAC=90°,所以∠BCE=90°.(2)α+β=180°,理由:因为∠BAC=∠DAE,所以∠BAC−∠DAC=∠DAE−∠DAC,即∠BAD=∠CAE,在△ABD和△ACE中,{AB=AC,∠BAD=∠CAE, AD=AE,所以△ABD≌△ACE(SAS).所以∠B=∠ACE.所以∠B+∠ACB=∠ACE+∠ACB.所以∠B+∠ACB=β.因为α+∠B+∠ACB=180°,所以α+β=180°.。

七年级数学下册北师大版第五章《三角形》知识点总结

七年级数学下册北师大版第五章《三角形》知识点总结

七年级数学下册北师大版第五章《三角形》知识点总结第一篇:七年级数学下册北师大版第五章《三角形》知识点总结第五章《三角形》知识点总结(北师大版七年级下)一、三角形及其有关概念1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。

2、三角形的表示:三角形用符号“△”表示,顶点是A、B、C的三角形记作“△ABC”,读作“三角形ABC”。

3、三角形的三边关系:(1)三角形的任意两边之和大于第三边。

(2)三角形的任意两边之差小于第三边。

(3)作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。

③证明线段不等关系。

4、三角形的内角的关系:(1)三角形三个内角和等于180°。

(2)直角三角形的两个锐角互余。

5、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。

6、三角形的分类:(1)三角形按边分类:不等边三角形三角形等腰三角形底和腰不相等的等腰三角形等边三角形(2)三角形按角分类:直角三角形(有一个角为直角的三角形)锐角三角形(三个角都是锐角的三角形)钝角三角形(有一个角为钝角的三角形)把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。

它是两条直角边相等的直角三角形。

7、三角形的三种重要线段:(1)三角形的角平分线:定义:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

性质:三角形的三条角平分线交于一点。

交点在三角形的内部。

(2)三角形的中线:定义:在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。

性质:三角形的三条中线交于一点,交点在三角形的内部。

(3)三角形的高线:定义:从三角形一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

北师大七年级数学下第三章复习

北师大七年级数学下第三章复习

七年级第三章复习【知识梳理】1、三角形(1)概念:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形;(2)构成条件:三角形任意两边之和 第三边;三角形任意两边之差 第三边; (3)内角和定理:三角形三个内角的和等于 ;直角三角形的两个锐角 ;(4)三线:三角形的三条角平分线交于一点,它在三角形的 ;三条中线交于一点,它在三角形的 ;三角形的三条高所在的直线交于一点,锐角三角形的交点在三角形的 ,直角三角形的交点在三角形的 ,钝角三角形的交点在三角形的 .2.全等图形(1)概念:能够完全 的两个图形称为全等图形; (2)性质:全等图形的 和 都相同.3.全等三角形(1)性质:全等三角形的对应边 ,对应角 ; (2)判别方法:①三边对应相等的两个三角形全等,简写为 或“SSS”;②两角和它们的夹边对应相等的两个三角形全等,简写为 或“ASA”;③两角和其中一角的对边对应相等的两个三角形全等,简写为 或“AAS”; ④两边和它们的夹角对应相等的两个三角形全等,简写为 或“SAS”. 直角三角形一直角边和一斜边对应想等的两个三角形全等,简写为 或“HL ”考点一 三角形的有关概念1、下列各组长度的线段为边,能构成三角形( )A .7 cm 、5 cm 、12 cmB .6 cm 、8 cm 、15 cmC .8 cm 、4 cm 、3 cmD .4 cm 、5 cm 、6 cm 2、 已知等腰三角形的周长是10,且三边长都是整数,求三边长.考点二 三角形的内角和定理3、已知△ABC 中,∠B -∠C =20°,∠A -∠C =40°,求△ABC 各角度数,并从角的分类看,△ABC 属于哪一类三角形.考点三 三角形的角平分线4、 如图在△ABC 中,∠B =44°,∠C =72°,AD 是△ABC 的角平分线,(1)求∠BAC 的度数; (2)求∠ADC 的度数. 5、已知,如图,在△ABC 中,BO 平分∠ABC ,CO 平分∠ACB , 则∠BOC 与∠A 的数量关系为________________.考点四 三角形全等的判别6、如图3-3所示,已知AB =CD ,AE =DF ,CE =FB .试说明:AF =DE .全等三角形证明题精选1.四边形ABCD中,AD∥BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF;(2)若AC与BD相交于点O,求证:AO=CO.2.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.3.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.4.如图,点O是线段AB和线段CD的中点.(1)求证:△AOD≌△BOC;(2)求证:AD∥BC.5.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.6.如图,已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC.求证:AE=BC.7.如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF.8.如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.9.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB求证:AE=CE.10.如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.11.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.12.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.13.如图,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC.14.如图,在△ABC和△CED中,AB∥CD,AB=CE,AC=CD.求证:∠B=∠E.15.如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若AD=2,∠DAC=30°,求AC的长.16.如图,Rt△ABC≌Rt△DBF,∠ACB=∠DFB=90°,∠D=28°,求∠GBF的度数.17.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△ABC≌△BAD.18.已知:如图,点B、F、C、E在一条直线上,BF=CE,AC=DF,且AC∥DF.求证:△ABC≌△DEF.19.已知:点A、C、B、D在同一条直线,∠M=∠N,AM=CN.请你添加一个条件,使△ABM≌△CDN,并给出证明.(1)你添加的条件是:;(2)证明:.20.如图,AB=AC,AD=AE.求证:∠B=∠C.21.如图,在△ABC中,AD是△ABC的中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F.求证:BE=CF.22.一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.23.在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设(条件),另一个作为结论,组成一个真命题,并给予证明.题设:;结论:.(均填写序号)证明:24.如图,在△ABC和△DEF中,AB=DE,BE=CF,∠B=∠1.求证:AC=DF.(要求:写出证明过程中的重要依据)25.如图,已知AB=DC,AC=DB.求证:∠1=∠2.26.如图,D、E分别为△ABC的边AB、AC上的点,BE与CD相交于O点.现有四个条件:①AB=AC;②OB=OC;③∠ABE=∠ACD;④BE=CD.(1)请你选出两个条件作为题设,余下的两个作为结论,写出一个正确的命题:命题的条件是和,命题的结论是和(均填序号);(2)证明你写出的命题.27.如图,已知AB∥DE,AB=DE,AF=DC,请问图中有哪几对全等三角形并任选其中一对给予证明.28.如图所示,在梯形ABCD中,AD∥BC,∠B=∠C,点E是BC边上的中点.求证:AE=DE.29.如图,给出下列论断:①DE=CE,②∠1=∠2,③∠3=∠4.请你将其中的两个作为条件,另一个作为结论,构成一个真命题,并加以证明.30.已知:如图,∠ACB=90°,AC=BC,CD是经过点C的一条直线,过点A、B分别作AE⊥CD、BF⊥CD,垂足为E、F,求证:CE=BF.31如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.(1)求证:ABE≌△CAD; (2)求∠BFD的度数.32如图, 已知: 等腰Rt△OAB中,∠AOB=900, 等腰Rt△EOF中,∠EOF=900, 连结AE、BF. 求证:(1) AE=BF; (2) AE⊥BF.33如图(1), 已知△ABC中, ∠BAC=900, AB=AC, AE是过A的一条直线, 且B、C在A、E的异侧, BD⊥AE于D, CE⊥AE于E 。

2022-2023学年初中数学北师大版七年级下册第四章三角形单元复习课课件

2022-2023学年初中数学北师大版七年级下册第四章三角形单元复习课课件
第四章 三角形
本章知识梳理
/
目 录
1.
目录
2.
课标要求
3.
知识梳理
课标要求
1. 理解三角形相关概念(内角、外角、中线、高、角平分线),会 画出任意三角形的中线、高线和角平分线,了解三角形的稳定性 . 2. 掌握三角形的内角和定理(三角形的内角和等于180度),掌握 “三角形任意两边之和大于第三边”. 3. 了解全等图形的概念,理解全等三角形的概念,能识别全等三 角形的对应边、对应角.
3. 如图M4-3,已知△ABC≌△CDE,其中AB=CD,那么下列 结论中,不正确的是(C )
A. AC=CE
B. ∠BAC=∠ECD
C. ∠ACB=∠ECD
D. ∠B=∠D
4. 如图M4-4,全等的三角形是( D )
A. Ⅰ和Ⅱ
B. Ⅱ和Ⅳ C. Ⅱ和Ⅲ D. Ⅰ和Ⅲ
三、SSA是指两个三角形的两边对应相等及一边的对角对应相
等,但是这种判断方法是不能判定这两个三角形全等的,SAS
是指两个三角形的两条对应边相等且两边的夹角对应相等.
【例3】如图M4-5,已知∠ABC=∠DCB,下列所给条件不能
证明△ABC≌△DCB的是( )
A. ∠A=∠D
B. AB=DC
C. ∠ACB=∠DBC D. AC=BD
易错条件都是两条边及一个角对应相等,但是选项B是以 SAS来判定两个三角形全等,而选项D是SSA. 正解:A. 添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选 项不合题意;B. 添加AB=DC可利用SAS定理判定 △ABC≌△DCB,故此选项不合题意;C. 添加∠ACB=∠DBC可利 用ASA定理判定△ABC≌△DCB,故此选项不合题意;D. 添加 AC=BD不能判定△ABC≌△DCB,故此选项符合题意. 答案:D

人教版七年级下数学三角形知识点归纳、典型例题及考点分析

人教版七年级下数学三角形知识点归纳、典型例题及考点分析

BC三角形知识点归纳、典型练习题及考点分析一、三角形相关概念 1.三角形的概念由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形 要点:①三条线段;②不在同一直线上;③首尾顺次相接.2.三角形的表示通常用三个大写字母表示三角形的顶点,如用A 、B 、C 表示三角形的三个顶点时,此三角形可记作△ABC ,其中线段AB 、BC 、AC 是三角形的三条边,∠A 、∠B 、∠C 分别表示三角形的三个内角.3.三角形中的三种重要线段三角形的角平分线、中线、高线是三角形中的三种重要线段.(1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.注意:①三角形的角平分线是一条线段,可以度量,而角的平分线是经过角的顶点且平分此角的一条射线.②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部.③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画.(2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线. 注意:①三角形有三条中线,且它们相交三角形内部一点.②画三角形中线时只需连结顶点及对边的中点即可.(3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高.注意:①三角形的三条高是线段②画三角形的高时,只需要向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.练习题:1、图中共有( A :5 B :6 C :7 D :82、如图,AE ⊥BC ,BF ⊥AC ,CD ⊥AB ,则△ABC 中AC 边上的高是( ) A :AE B :CD C :BF D :AF 3、三角形一边上的高( )。

A :必在三角形内部B :必在三角形的边上C :必在三角形外部D :以上三种情况都有可能 4、能将三角形的面积分成相等的两部分的是( )。

北师大版七年级数学下册教案(含解析):第四章三角形章末复习

北师大版七年级数学下册教案(含解析):第四章三角形章末复习

北师大版七年级数学下册教案(含解析):第四章三角形章末复习一. 教材分析北师大版七年级数学下册第四章《三角形》章末复习部分,主要对三角形的相关知识进行总结和复习。

内容包括:三角形的性质、三角形的分类、三角形的判定、三角形的角的性质、三角形的边的关系等。

这部分内容是学生进一步学习几何的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。

二. 学情分析学生在学习本章内容前,已经掌握了平面几何的基本知识,如线的性质、角的性质等。

但部分学生对于三角形的性质和判定仍存在理解上的困难,对于三角形的角的性质和边的关系掌握不够扎实。

因此,在复习过程中,需要注重巩固基础知识,提高学生的应用能力。

三. 教学目标1.知识与技能:使学生掌握三角形的性质、分类、判定等基本知识,提高学生的空间想象能力和逻辑思维能力。

2.过程与方法:通过复习,培养学生独立思考、合作交流的能力,提高学生分析问题和解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心,使学生感受到数学的价值。

四. 教学重难点1.重点:三角形的性质、分类、判定等基本知识。

2.难点:三角形的角的性质和边的关系的运用。

五. 教学方法采用问题驱动法、案例分析法、小组合作法等,引导学生主动参与课堂,提高学生的学习兴趣和积极性。

六. 教学准备1.教师准备:整理和准备相关的教学案例、习题等资源。

2.学生准备:完成本章的学习任务,准备好相关的学习资料。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾三角形的基本概念,激发学生的学习兴趣。

2.呈现(10分钟)教师利用多媒体展示三角形的相关性质、分类和判定等知识,引导学生总结和归纳。

3.操练(10分钟)教师提出问题,学生分组讨论,通过实际操作和举例来巩固三角形的相关知识。

4.巩固(10分钟)教师给出一些练习题,学生独立完成,检验自己对三角形知识的掌握程度。

5.拓展(10分钟)教师提出一些综合性的问题,引导学生运用所学的三角形知识解决问题,提高学生的应用能力。

苏科版数学七年级下期末复习提优专题三角形word版含解析

苏科版数学七年级下期末复习提优专题三角形word版含解析

本文由一线教师精心整理/word可编辑初一期末复习专题-三角形模块一:三角形三边关系1.如果一个三角形的两边长分别是1cm,2cm,那么这个三角形第三边长可能是()A.1cm B.2.5cm C.3cm D.4cm【解答】解:设第三边长为x,则由三角形三边关系定理得2﹣1<x<2+1,即 1<x<3.故选:B.2.如果三角形的两边长分别为5 和 7,第三边长为偶数,那么这个三角形的周长可以是A.10 B.11 C.16 D.26【解答】解:设第三边为acm,根据三角形的三边关系知,2<a<12.由于第三边的长为偶数,则 a 可以为 4cm 或 6cm 或 8cm 或 10cm.∴三角形的周长是5+7+4=16cm或5+7+6=18cm或5+7+8=20cm或5+7+10=22cm.故选:C.3.一个等腰三角形的边长分别是4cm 和 7cm,则它的周长是 15cm 或 18cm .【解答】解:①当腰是4cm,底边是 7cm 时,能构成三角形,则其周长=4+4+7=15cm;②当底边是 4cm,腰长是 7cm 时,能构成三角形,则其周长=4+7+7=18cm.故答案为:15cm 或 18cm.4.一个三角形的三边长分别是 xcm、(x+1)cm、(x+2)cm,它的周长不超过10cm,则 x 的取值范围是()A.x≤133B.1< x≤133C.D.1< x≤73【解答】解:∵三角形的三边长分别是xcm、(x+1)cm、(x+2)cm,它的周长不超过10cm,∴x+2<x+x+1,x+x+1+x+2≤10,解得:x>1,,所以 x 的取值范围是 1<x≤73,故选:D.5.一个三角形的三边长分别为 xcm、(x+2)cm、(x+4)cm,它的周长不超过39cm,则 x 的取值范围是 2<x≤11 .【解答】解:∵一个三角形的3 边长分别是 xcm,(x+2)cm,(x+4)cm,它的周长不超过 39cm,解得 2<x≤11.故答案为:2<x≤11.6.已知一个三角形中两条边的长分别是a、b,且a>b,那么这个三角形的周长L 的取值范围是()A.3b<L<3a B.2a<L<2(a+b)C.a+2b<L<2a+b D.3a﹣b<L<3a+b 【解答】解:设第三边长x.根据三角形的三边关系,得a﹣b<x<a+b.∴这个三角形的周长m 的取值范围是a﹣b+a+b<L<a+b+a+b,即2a<L<2a+2b.故选:B.7.现有长为 57cm 的铁丝,要截成n(n>2)小段,每小段的长度为不小于1cm 的整数,如果其中任意 3 小段都不能拼成三角形,则n 的最大值为 8 .【解答】解:因为 n 段之和为定值 57cm,故欲 n 尽可能的大,必须每段的长度尽可能的小.又由于每段的长度不小于1cm,且任意 3 段都不能拼成三角形,因此这些小段的长度只可能分别是 1,1,2,3,5,8,13,21,34,55,但 1+1+2+3+5+8+13+21=54<57,1+1+2+3+5+8+13+21+34=88>57,所以 n 的最大值为 8.故答案为 8.模块二:三角形中求角度8.如图,△A BC 的角平分线AD 交 BD 于点D,∠1=∠B,∠C=66°,则∠BAC 的度数是 76° .【解答】解:∵△ABC 的角平分线 AD 交 BD 于点 D,∴∠C AD=∠1=1∠BAC,2∵∠1=∠B,∴∠ADC=∠1+∠B=2∠1,在△ABC 中,∠B+2∠1+∠C=180°,∴3∠1=180°﹣∠C=114°,∴∠1=38°,∴∠BAC=2∠1=76°.故答案为76°9.将一副直角三角板如图放置,使含 30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为 75 度.【解答】解:如图.∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=75°.故答案为:75.10.在锐角△ABC 中,三条高交于点H,若∠BHC=110°,则∠BAC= 70 °.【解答】解:如图所示,∵CF⊥AB,B E⊥AC,∴∠AFC=∠AEB=90°,∵∠E HF=∠BHC=110°,∴∠A=360°﹣∠AFC﹣∠AEB﹣∠EHF=360°﹣90°﹣90°﹣110°=70°.故答案为:70.11.一个正三角形和一副三角板(分别含30°和45°)摆放成如图所示的位置,且AB∥CD,则∠1+∠2= 75° .【解答】解:连接 AC,∵A B∥CD,∴∠BAC+∠ACD=180°.∵∠BAG=30°,∠EC D=60°,∴∠E AC+∠ACE=180°﹣30°﹣60°=90°.∵∠CE D=60°,∴∠GEF=180°﹣90°﹣60°=30°.同理∠E GF=180°﹣∠1﹣90°=90°﹣∠1,∠GFE=180°﹣45°﹣∠2=135°﹣∠2,∵∠GEF+∠EGF+∠GFE=180°,即30°+90°﹣∠1+135°﹣∠2=180°,解得∠1+∠2=75°.故答案为:75°.12.如图,方格中的点A,B 称为格点(格线的交点),以AB 为一边画△A BC,其中是直角三角形的格点 C 的个数为()A.3 B.4 C.5 D.6【解答】解:如图所示:以AB 为一边画△A BC,其中是直角三角形的格点C 共有 4 个,故选:B.13.我们都知道“三角形的一个外角等于与它不相邻的两个内角的和”,据此,请你叙述四边形的一个外角与它不相邻的三个内角的数量关系与它不相邻的三个内角的和减去180° .【解答】解:四边形的一个外角与相邻的内角互补,而四个内角的和是360 度,则四边形的一个外角等于:与它不相邻的三个内角的和减去180°.故答案是:与它不相邻的三个内角的和减去180°.模块三:三角形模型14.已知△A BC 中,∠A=α.在图(1)中∠B、∠C的角平分线交于点O1,则可计算得∠BO1C=90°+12α ;在图(2)中,设∠B 、∠C 的两条三等分角线分别对应交于 O 1、O 2,则∠BO 2C= 60°+23α ;请你猜想,当∠B 、∠C 同时 n 等分时,(n ﹣1)条等分角线分别对应交于 O 1、 O 2,…,O n ﹣1,如图(3),则∠BO n ﹣1C= (用含 n 和α的代数式表 示).【解答】解:在△ABC 中,∵∠A=α,∴∠ABC+∠ACB=180°﹣α,∵O 2B 和 O 2C 分别是∠B 、∠C 的三等分线,∴∠O 2BC+∠O 2CB=23(∠ABC+∠ACB )=23(180°﹣α)=120°﹣23α; ∴∠BO 2C=180°﹣(∠O 2BC+∠O 2CB )=180°﹣(120°﹣23α)=60°+23α;在△ABC 中,∵∠A=α,∴∠ABC+∠ACB=180°﹣α,∵O n ﹣1B 和 O n ﹣1C 分别是∠B 、∠C 的 n 等分线,∴ ∠ O n ﹣ 1BC+ ∠ O n ﹣ 1CB= 1n n -( ∠ ABC+ ∠ ACB ) = 1n n-( 180 ° ﹣ α ) = 0180(1)n n -﹣(1)n nα-. ∴ ∠ BO n ﹣ 1C=180 ° ﹣ ( ∠ O n ﹣ 1BC+ ∠ O n ﹣ 1CB ) =180 ° ﹣ (0180(1)n n -﹣(1)n nα- )故答案为:60°+23 α;(1)n nα-+0180n 15.如图,在△ABC 中,∠A =m°,∠ABC 和∠ACD 的平分线交于点 A 1,得∠A 1;∠A 1BC 和 ∠A 1CD 的平分线交于点 A 2,得∠A 2;…∠A 2021BC 和∠A 2021CD 的平分线交于点 A 2021,则∠ A 2021= 20132m度.【解答】解:∵A 1B 平分∠ABC ,A 1C 平分∠ACD ,∴∠A 1BC=12∠ABC ,∠A 1CA=12∠ACD , ∵∠A 1CD=∠A 1+∠A 1BC , 即12∠ACD=∠A 1+12∠ABC , ∴∠A 1=12(∠ACD ﹣∠ABC ), ∵∠A+∠ABC=∠ACD ,∴∠A=∠ACD ﹣∠ABC ,∴∠A 1=12∠A , ∴∠A 1=12m °, ∵∠A 1=12∠A ,∠A 2=12∠A 1=212∠A, 以此类推∠A 2021=201312∠A=20132m °. 故答案为:20132m.16.如图,在△ABC 中,∠A=40°,D 点是∠ABC 和∠ACB 角平分线的交点,则∠BDC= 110° .【解答】解:∵D点是∠ABC 和∠ACB 角平分线的交点,∴∠C BD=∠ABD=12∠ABC,∠BCD=∠ACD=12∠ACB,∴∠ABC+∠ACB=180°﹣40°=140°,∴∠DBC+∠DCB=70°,∴∠BDC=180°﹣70°=110°,故答案为:110°.模块四:多边形17.在一个 n(n>3)边形的 n 个外角中,钝角最多有()A.2 个B.3 个C.4 个D.5 个【解答】解:∵一个多边形的外角和为360°,∴外角为钝角的个数最多为3个.故选:B.18.若 n 边形的内角和是它外角和的2 倍,则 n= 6 .【解答】解:设所求多边形边数为n,则(n﹣2)•180°=360°×2,解得 n=6.19.如图是由射线 AB、BC、CD、DE、EA 组成的图形,∠1+∠2+∠3+∠4+∠5=360° .【解答】解:由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案为:360°.20.一个多边形的内角和等于1080°,这个多边形是 8 边形.【解答】解:设所求正n 边形边数为 n,则1080°=(n﹣2)•180°,解得n=8.故答案为:8.模块五:面积问题21.如图,△A BC 三边的中线 AD、BE、CF 的公共点为 G,若 S△ABC=12,则图中阴影部分的面积是 4 .【解答】方法 1解:∵△ABC 的三条中线 AD、BE,CF 交于点 G,∴S△CGE=S△AGE=13S△A CF,S△BGF=S△BGD=13S△BCF,∵S△ACF=S△BCF=12S△ABC =12×12=6,∴S△CGE=13S△ACF=13×6=2,S△BGF=13S△BCF=13×6=2,∴S阴影=S△CGE+S△BGF=4.故答案为 4.方法 2设△AFG,△BFG,△BDG,△CDG,△CEG,△AEG 的面积分别为S1,S2,S3,S4,S5,S6,根据中线平分三角形面积可得: S1=S2 , S3=S4 , S5=S6 , S1+S2+S3=S4+S5+S6 ①,S2+S3+S4=S1+S5+S6②由①﹣②可得 S1=S4,所以S1=S2=S3=S4=S5=S6=2,故阴影部分的面积为4.22.如图,A、B、C 分别是线段 A1B,B1C,C1A 的中点,若△A BC 的面积是 1,那么△A1B1C1的面积 7 .【解答】解:如图,连接AB1,BC1,CA1,∵A、B 分别是线段 A1B,B1C 的中点,∴S△ABB1=S△ABC=1,S△A1AB1=S△ABB1=1,∴S△A1BB1=S△A1AB1+S△ABB1=1+1=2,同理:S△B1CC1=2,S△A1AC1=2,∴△A1B1C1 的面积=S△A1BB1+S△B1CC1+S△A1AC1+S△ABC=2+2+2+1=7.故答案为:7.23.如图,在△ABC 中,C1,C2 是 AB 边上的三等分点,A1,A2,A3 是 BC 边上的四等分点,AA1 与 CC1 交于点 B1,CC2 与 C1A2 交于点 B2,记△AC1B1,△C1C2B2,△C2BA3 的面积为 S1,S2,S3.若 S1+S3=9,S2= 4 .【解答】解:根据图形和已知条件发现:S1=12S△ACC1,S2=13S△CC1C2,S3=14S△CC2B,S△ACC1=S△CC1C2=S△CC2B,∴S1=32S2,S3=34S2,若 S1+S3=9,S2=4.24.(1)如图①,AD 是△ABC 的中线,△A BD 与△A CD 的面积有怎样的数量关系?为什么?(2)若三角形的面积记为S,例如:△ABC 的面积记为 S△ABC,如图②,已知S△ABC=1,△ABC 的中线 AD 、CE 相交于点 O ,求四边形 BDOE 的面积. 小华利用(1)的结论,解决了上述问题,解法如下:连接 BO ,设 S △BEO =x ,S △BDO =y , 由(1)结论可得:1122BCE ABD ABC S S S ∆∆∆===, S △BCO =2S △BDO =2y ,S △BAO =2S △BEO =2x .则有BEO BCO BCE BAO BDO BADS S S S S S ∆∆∆∆∆∆+=⎧⎨+=⎩, 即122122x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩. 所以13x y +=. 即 四边形 BDOE 的面积为13请仿照上面的方法,解决下列问题:①如图③,已知 S △ABC =1,D 、E 是 BC 边上的三等分点,F 、G 是 AB 边上的三等分点,AD 、 CF 交于点 O ,求四边形 BDOF 的面积.②如图④,已知 S △ABC =1,D 、E 、F 是 BC 边上的四等分点,G 、H 、I 是 AB 边上的四等分 点,AD 、CG 交于点 O ,则四边形 BDOG 的面积为110. 【解答】解:(1)S △ABD =S △ACD .∵AD 是△A BC 的中线∴BD=CD ,又∵△ABD 与△A CD 高相等,∴S △ABD =S △ACD .(2)①如图 3,连接 BO ,设 S △BFO =x ,S △BDO =y ,S △BCF =S △ABD =13S △ABC =13S △BCO =3S △BDO =3y ,S △BAO =3S △BFO =3x .则有BFO BCO BCF BDO BAO BAD S S S S S S ∆∆∆∆∆∆+=⎧⎨+=⎩即133133x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩. , 所以 x+y=16,即四边形 BDOF 的面积为16; ②如图,连接 BO ,设 S △BDO =x ,S △BGO =y ,,S △BCG =S △ABD =14S △ABC =14, S △BCO =4S △BDO =4x ,S △BAO =4S △BGO =4y .则有BGO BCO BCG BDOBAO BAD S S S S S S ∆∆∆∆∆∆+=⎧⎨+=⎩, 即144144x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩, 所以 x+y=110,即四边形 BDOG 的面积为110, 故答案为:110. 模块六:综合题25.证明:三角形三个内角的和等于180°. 已知: △A BC .求证: ∠BAC+∠B+∠C =180° .【解答】解:已知:△ABC , 求证:∠BAC+∠B+∠C =180°, 证明:过点 A 作 EF ∥BC ,∵E F ∥B C ,∴∠1=∠B ,∠2=∠C ,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°. 即知三角形内角和等于 180°. 故答案为:△ABC ;∠BAC+∠B+∠C =180°.26.如图①,在 Rt△ABC 中,∠ACB=90°,D 是 AB 上一点,且∠ACD=∠B.(1)求证:CD⊥AB;(2)如图②,若∠BAC 的平分线分别交 BC,CD 于点 E,F,求证:∠AEC=∠C FE.【解答】(1)证明:∵∠ACB=∠ACD+∠BCD=90°,∠B=∠ACD,∴∠B+∠BCD=90°,又∵∠CDB+∠B+∠BCD=180°,∴∠C DB=90°,∴CD⊥AB;(2)在△A CE 中,∠AEC+∠C AE=90°,在△AFD 中,∠FAD+∠AFD=90°,∵AE 平分∠BAC,∴∠C AE=∠FAD,∴∠AEC=∠AFD,又∵∠CFE=∠AFD,∴∠AEC=∠C FE.27.在△ABC 中,点 D、E 分别在边 AC、BC 上(不与点 A、B、C 重合),点 P 是直线 AB 上的任意一点(不与点A、B 重合).设∠PDA=x,∠PEB=y,∠DPE=m,∠C=n.(1)如图,当点 P 在线段 AB 上运动,且 n=90°时①若PD∥BC,PE∥AC,则m= 90° ;②若 m=50°,求 x+y 的值.(2)当点 P 在直线 AB 上运动时,直接写出x、y、m、n 之间的数量关系.【解答】解:(1)①如图1,∵PD∥B C,PE∥AC,∴四边形 DPEC 为平行四边形,∴∠DPE=∠C,∵∠DPE=m,∠C=n=90°,∴m=90°;②∵∠ADP=x,∠PEB=y,∴∠C DP=180°﹣x,∠CEP=180°﹣y,∵∠C+∠C DP+∠DPE+∠CE P=360°,∠C=90°,∠DPE=50°,∴90°+180°﹣x+50°+180°﹣y=360°,∴x+y=140°;(2)分五种情况:①y﹣x=m+n,如图2,理由是:∵∠DFP=n+∠FEC,∠FEC=180°﹣y,∴∠DFP=n+180°﹣y,∵x+m+∠DFP=180°,∴x+m+n+180°﹣y=180°,∴y﹣x=m+n;②x﹣y=m﹣n,如图3,理由是:同理得:m+180°﹣x=n+180°﹣y,∴x﹣y=m﹣n;③x+y=m+n,如图4,理由是:由四边形内角和为 360°得:180°﹣x+m+180°﹣y+n=360°,∴x+y=m+n;④x﹣y=m+n,如图5,理由是:同理得:180°=m+n+y+180°﹣x,∴x﹣y=m+n;⑤y﹣x=m﹣n,如图6,理由是:同理得:n+180°﹣x=m+180°﹣y,∴y﹣x=m﹣n.。

七年级数学《三角形-复习》教学设计

七年级数学《三角形-复习》教学设计

B 、 3cm, 5cm, 9cmC 、 14cm, 9cm, 6cmD 、 5cm, 6cm, 11cm2.下面四个图形中,线段BE 是⊿ABC 的高的图是( )3.三角形一个外角小于与它相邻的内角,这个三角形是( )A .直角三角形B .锐角三角形C .钝角三角形D .属于哪一类不能确定4.如图,在直角三角形ABC 中,AC ≠AB ,AD 是斜边上的高,DE ⊥AC ,DF ⊥AB ,垂足分别为E 、F ,则图中与∠C(∠C 除外)相等的角的个数是( )第4题图第2A B CD于O,则∠AOC+∠DOB=()第6题图A、900B、1200C、1600D、1800题组三:1、已知两条线段的长分别是3cm、8cm ,要想拼成一个三角形,且第三条线段a的长为奇数,问第三条线段应取多少长?2、有两边相等的三角形一边的长是5 cm,另一边的长是8cm,求它的周长3、指导复习题7第3、6、7、9、10拓展思维1、如图:D是△ABC中BC 边上一点,试说明2AD<AB+BC+AC。

2、有一六边形,截去一三角形,内角和会发生怎样变化?请画图说明。

活动5推荐作业,补充升华必做题:习题复习题7第2、8题选做题:习题:设计出多边形镶嵌的图案吗?【师生互动】提示:由AC+CD>AD与AB+BD>AD相加可得。

【课件展示】六边形,截去一三角形,内角和会发生怎样变化?【设计意图】鼓励学生能用所学知识,解决实际问题。

【设计意图】为使学生的主体作用得以有效发挥,尊重学生的个体差异,为不同学生的发展创造条件,作业层推荐、分类要求。

B AD CB。

七年级数学全等三角形复习

七年级数学全等三角形复习

全等三角形复习一、知识点梳理及示例一重新认识“全等形”与“全等三角形”.全等形和全等三角形,其实质是“完全重合”,也就是“形状相同,大小相等”,全等三角形是全等形中的一种,因此,从这个意义上,不难得到全等三角形的性质,对应边和对应角分别相等.在这里,要特别注意“对应”的问题,当我们用“≌”表示两个三角形全等时;对应字母一定要写在对应的位置,这样便于看出对应的元素是什么。

在学习了第十四章(轴对称)后,对全等形应有一个新的认识:成轴对称的两个图形一定是全等形,只是这时两个图形的位置特殊罢了.我们在解数学中的“折叠问题”时,用全等形的性质往往是个关键.二掌握证明三角形全等的分析要领,会用综合法书写证明过程.证明三角形全等时的分析方法与步骤:(1)仔细观察图形,找出欲证的两个全等三角形已知的直接相等条件,并把已知条件标注在图上,使条件在图上一目了然.(2)注意挖掘图形中的隐含条件,如公共边(角)、对顶角、等腰(边)三角形或正方形中的等角(边)等,这些条件虽然没有直接告诉,它们却是证明三角形全等必不可少的条件。

(3)对照判定三角形全等的五种方法(SSS,SAS,ASA,AAS,HL),看看三角形全等的条件是否具备了,如果不够,还需要找出哪些条件或创造哪些条件.有时,两个三角形全等的某些条件是必须证明的.常会遇到以下几种情况:①利用中点的定义证明线段相等;②利用角平分线的定义证明角相等;③利用垂直的定义证明角相等;④利用平行线的性质证明角相等;⑤利用三角形的内角和为180°证明角相等;⑥利用图形的和、差证明线段或角相等.经过正确分析之后,要把论证过程规X地写出来.本章要求我们能用综合法书写证明过程,这也是本章的一个重点.什么叫“综合法证明格式”?就是按照从题设(已知条件)出发,经过一步步推理论证,最后得到结论的格式来书写证明过程.例l如下图,四边形ABCD是正方形,△ECF是等腰直角三角形,其中CE=CF,连接BF,DE,你能证明BF=DE吗?分析:①找出欲证的两个全等三角形:从图形及要证的结论来看,可考虑证明△BCF≌△DCE;②找出并标上已知条件:CE=CF,∠ECF=90°;③有没有隐含条件?有:BC=DC,∠BCD=90°,它们是正方形的边和角;④对照判定三角形全等的方法,还差什么条件?因为BF=DE是要证的,所以,可证∠BCF=∠DCE,而这个结论很容易证得.至此,分析过程顺利完成,书写格式如下:证明:∵四边形ABCD是正方形,∴BC=DC,∠BCD=90°,∴∠BCD-∠DCF=∠ECF-∠DCF即∠BCF=∠DCE在△BCF和△DCE中,∵∴△BCF≌△DCE,∴BF=DE三理解“SSA”为什么不能判定两个三角形全等,防止误用SSA.在学习新课时,探究并得到了判定两个三角形全等的五种方法.并且知道判断两个三角形全等至少需要3个条件,其中至少有—个条件是边.但SSA却是个假命题,有些同学自觉或不自觉地应用它来证明三角形全等,这是不对的.例2如图,AC、BD交于E,AD=BC,∠C=∠D,试说明AC=BD.错解:在△ABD和△BAC中∴△ABD≌△BAC,∴AC=BD正确解法,在△ADE和△BCE中∴△ADE≌△BCE(AAS)∴AE=BE,DE=CE∴AE+CE=BE+DE,即AC=BDSSA为什么不能判定两个三角形全等呢?我们可以从下图中看出来,你能根据下图说明为什么吗?其实,HL中的3个条件就是SSA,为什么HL是正确的呢?这是由直角三角形的特殊性决定的.下面留一个问题请你解决,这样有助于我们更进一步地理解与掌握全等三角形的判定.探究:我们知道:“有两边和其中一边的对角对应相等的两个三角形全等”是个假命题.请你对三个条件或三角形的形状给些必要的限制,使得具备“SSA”三个条件的两个三角形全等.四你会判定两个特殊三角形全等吗?我们课本主要研究了一般三角形全等的4种判定方法,只有“HL”,是关于特殊三角形(即直角三角形)全等的判定;课本为什么不探究特殊三角形的全等条件呢?这是因为一般的方法适用特殊,这样也是为了减少我们的学习负担,集中精力学会一般的方法.我们共同来看下面一个例子.例3.下列说法:①一边相等的两个等腰直角三角形全等;②—腰和底对应相等的两个等腰三角形全等;③周长相等的两个等腰三角形全等;④一个钝角和它的一条邻边对应相等的两个等腰三角形全等.其中,正确的说法有( ).A.0个.B.1个C.2个D.3个分析与解:①的说法中相等的这—对边,没有指明是对应腰还是对应底,如果一个是底与另一个的腰相等,则不能得到两个等腰直角三角形全等.②的说法中,一腰和底对应相等,这就有两对边相等了,第三对边是不是相等呢?当然相等了,因为第三对边是腰,也应该相等,这样就符合“SSS”了。

初一数学知识点梳理归纳

初一数学知识点梳理归纳

初一数学知识点梳理归纳知识是取之不尽,用之不竭的。

只有限度地挖掘它,才能体会到学习的乐趣。

任何一门学科的知识都需要大量的记忆和练习来稳固。

虽然辛苦,但也伴随着快乐!下面是小编给大家整理的一些初一数学知识点,希望对大家有所帮助。

七年级数学知识点【三角形】1、三角形→由不在同一直线上的三条线段首尾顺次相接所组成的图形。

2、判断三条线段能否组成三角形。

①a+b c(ab为最短的两条线段)②a-b3、第三边取值范围:a-b4、对应周长取值范围假设两边分别为a,b那么周长的取值范围是2a如两边分别为5和7那么周长的取值范围是145、三角形中三角的关系(1)、三角形内角和定理:三角形的三个内角的和等于1800。

n边行内角和公式(n-2)(2)、三角形按内角的大小可分为三类:(1)锐角三角形,即三角形的三个内角都是锐角的三角形;(2)直角三角形,即有一个内角是直角的三角形,我们通常用“RtΔ〞表示“直角三角形〞,其中直角∠C所对的边AB称为直角三角表的斜边,夹直角的两边称为直角三角形的直角边。

注:直角三角形的性质:直角三角形的两个锐角互余。

(3)钝角三角形,即有一个内角是钝角的三角形。

(3)、判定一个三角形的形状主要看三角形中角的度数。

(4)、直角三角形的面积等于两直角边乘积的一半。

6、三角形的三条重要线段(1)、三角形的角平分线:1、三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

2、任意三角形都有三条角平分线,并且它们相交于三角形内一点。

(内心) (2)、三角形的中线:1、在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线。

2、三角形有三条中线,它们相交于三角形内一点。

(重心)3、三角形的中线把这个三角形分成面积相等的两个三角形(3)、三角形的高线:1、从三角形的一个顶点向它的对边所在的直线做垂线,顶点和垂足之间的线段叫做三角形的高线,简称为三角形的高。

最新北师大版七年级下册数学期末复习三角形全等证明练习试题以及答案

最新北师大版七年级下册数学期末复习三角形全等证明练习试题以及答案

七年级下册数学期末复习试题1、已知:如图,∠A=∠B,∠3=∠4,求证:AC=BD.2、如图,D在AB上,E在AC上,BD、CE交于O,若AB=AC,∠B=∠C.求证:AD=AE.3、已知:如图,D是△ABC的边AB上一点,DF交AC于点E,DE=FE,FC∥AB。

求证:AE=CE。

5、已知:如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C .求证:AF=DE。

6、将两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC,求证:(1)DC=BE;(2)(2)DC⊥BE。

7、已知:如图,AD=AE,点D、E在BC上,BD=CE,∠1=∠2。

求证:△ABD≌△ACE.8、已知:如图,△ABC中,∠BAC=90°,AB=AC,直线DE经过点A,BD⊥DE,CE⊥DE,垂足为D、E.求证:BD=AE。

9、如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E.AD⊥CE于点D.求证:BE+DE=AD.10、已知:如图3,AB∥CD,AD∥BC.求证:AB=CD,AD=BC.11、如图,已知AB=CD,AC=BD,求证:∠A=∠D.12、已知:如图,在△ABC和△DBC中,∠1=∠2,∠3=∠4,P是BC上任意一点.求证:PA=PD.13、14、15、16、如图所示,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE.(1)试说明:△ACD≌△BCE;(2)若∠D=50°,求∠B的度数.17、把两个含有45°角的直角三角板如图放置,点D在AC上连接AE、BD,试判断AE与BD的关系,并说明理由。

18、如图:E在线段CD上,EA、EB分别平分∠DAB和∠CBA, 点F在线段AB上运动,AD=4㎝,BC=3㎝, 且AD∥BC(1)你认为AE和BE有什么位置关系?并验证你的结论;(2)当点F运动到离点A多少㎝时,△ADE才能和△AFE全等?为什么?(3)在(2)的情况下,此时BF=BC吗?为什么?并求出AB的长。

初中数学_全等三角形(复习)教学设计学情分析教材分析课后反思

初中数学_全等三角形(复习)教学设计学情分析教材分析课后反思

《全等三角形(复习)》教学设计教学目标1.熟练掌握全等三角形的性质与判定定理;2.会用全等三角形性质与判定定理解决实际问题;3.通过复习,领悟数形结合思想、以及构建全等三角形在解决几何问题中的重要作用。

重难点、关键1.重点:熟练掌握全等三角形的性质与判定定理,会用它解决实际问题。

2.难点与关键:会用全等三角形性质与判定定理解决实际问题,领悟数形结合思想、以及构建全等三角形在解决几何问题中的重要作用。

教学过程一、课前热身(一)判断1.面积相等的三角形一定全等. ( )2.全等三角形的对应中线一定相等. ( )3.两边及其任意一边的对角对应相等的两个三角形全等 ( )4.有一边对应相等的等边三角形一定全等. ( )5.三个角对应相等的三角形一定全等. ( )(二)、判断下面各组的两个三角形是否全等并说明理由(1)(2)已知:AB=CD AB∥CD (3)已知:AC=AD,BC=BD二、典例分析一【例1】(2016·重庆)如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.三、跟踪训练一:1.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲和乙 B.乙和丙 C.只有乙 D.只有丙2.如图,已知CD⊥AB于点D,BE⊥AC于点E,CD、BE交于点O,且AO平分∠BAC,则图中的全等三角形共有()A.1对 B.2对 C.3对D.4对3、如图,A在DE上,F在AB上,且AC=CE, ∠1=∠2=∠3,求证:DE=AB四、典例分析二【例2】(2016·济宁)如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD,CE交于点H,请你添加一个适当条件 ,使△AEH≌△CEB.并证明五、跟踪训练二4、如图:已知AB=CD, AD=BC则图中有()对全等三角形。

5、如图:已知AC=AD,只需附加一个条件,就能使△ACB≌△ADB,请写出一个符合的条件__________ 。

七年级数学三角形复习题人教版

七年级数学三角形复习题人教版

初一数学三角形复习题一.选择题1.下列给出的三条线段中,能组成三角形的是( )A. 6. 7 .2.B. 三边之比为5:6:11C. 30cm8cm10cmD. 三边之比为5:3:1 2.如图,在△ABC 中,∠C =80°,D 为AC 上一点,则x 可能是( ) A.5 B.10 C3.在△ABC 中,D ,E 分别为BC 上两点,且BD=DE=EC,则图中面积相等的三角形有( )对。

9x°CBDAAD CBE22211111(第2题) (第3题) (第4题)4.观察图和所给表格中的数据后回答: 当梯形的个数为n 时,图形周长为( ) A.3n B.3n+1 C.3n+2 D.3n+3 错误..的个数是( ) (1)钝角三角形三边上的高都在三角形的外部(2)三角形中,至少有两个锐角,最多有一个直角或钝角(3)三角形的一个外角等于它的两个内角的和(4)三角形的一个外角大于它的任何一个内角(5)三角形的三个外角(每个顶点只取一个外角)中,钝角个数至少有2个6.若一个三角形的三个内角度数之比为3:2:1,则与之相邻的三个外角度数之比为( ) A. 3:2:1 B. 1:2:3 C. 5:4:3 D. 3:4:5 7.三角形一个外角小于与它相邻的内角,这个三角形是( )A .直角三角形B .锐角三角形C .钝角三角形 D.属于哪一类不能确定 8.下面各角能成为某多边形的内角和的是( )A .430°B .4343°C .4320°D .4360°ACO B109. n 边形所有对角线的条数有( ) A. ()12n n -条 B.()22n n -条 C. ()32n n -条 D. ()42n n -条 10. 如右图,∠ABC 和∠ACB 的角平分线交于O 点,∠A=80°,则∠BOC 等于( ) A. 95° B. 120° C. 130° D. 无法确定11、如图,AB//CD//EF,那么∠BAC+∠ACE+∠CEF=( ) . A 、1800B 、2700C 、3600 D 、540012、如果∠A 和∠B 的两边分别平行,那么∠A 和∠B 的关系是( ).13、下列图形中,正确画出AC 边上的高的是( ).14、如果mn<O ,且m>O ,那么点P(m 2,m-n)在( ).A 、第一象限B 、第二象限C 、第三象限D 、第四象限15.已知点A ()2,2-,如果点A 关于x 轴的对称点是B ,点B 关于原点的对称点是C ,那么C 点的坐标是( ) A 、()2,2 B 、()2,2- C 、()1,1-- D 、()2,2--二.填空题1.已知线段 MN=4,MN ∥y 轴,若点M 坐标为(-1,2),则N 点坐标为.2、在平面直角坐标系中,点P(-4,5)到x 轴的距离为______,到y 轴的距离为________.3、若等腰三角形的边长分别为3和6,则它的周长为________.4、如果一个等腰三角形的外角为100°,则它的底角为________.5、如图,已知直线AE∥BF,∠EAC=28°,∠FBC=50°,∠ACB 的度数为.6、过钝角∠AOB 的顶点O 作CO ⊥AO ,CO 分∠AOB 为∠AOC 与∠BOC 两部分且∠AOC 是 ∠BOC 的4倍多2度,则∠AOB 的度数为.第(5)题FED C B A 11E D CB AF ADCBEFADC BE(第5题) (第7题图) (第9题)(第10题)7.如图,⊿A B C 中,∠A = 40°,∠B = 72°,CE 平分∠A CB ,CD ⊥A B 于D ,D F ⊥C E ,则∠CD F =度。

初一下册数学《三角形》知识点复习总结

初一下册数学《三角形》知识点复习总结

初一下册数学《三角形》知识点复习总结初一下册数学《三角形》知识点复习总结章一一、三角函数1.定义:在rt△abc中,∠c=rt∠,则sina= ;cosa= ;tga= ;ctga= .2. 特殊角的三角函数值:0° 30° 45° 60° 90°sinαcosαtgα /ctgα /3. 互余两角的三角函数关系:sin(90°-α)=cosα;…4. 三角函数值随角度变化的关系5.查三角函数表二、解直角三角形1. 定义:已知边和角(两个,其中必有一边)→所有未知的边和角。

2. 依据:①边的关系:②角的关系:a+b=90°③边角关系:三角函数的定义。

注意:尽量避免使用中间数据和除法。

三、对实际问题的处理1. 俯、仰角:2.方位角、象限角:3.坡度:4.在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。

初一下册数学《三角形》知识点复习总结章二一、目标与要求1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形。

2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系。

3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题。

4.三角形的内角和定理,能用平行线的性质推出这一定理。

5.能应用三角形内角和定理解决一些简单的实际问题。

二、重点三角形内角和定理;对三角形有关概念的了解,能用符号语言表示三条形。

三、难点三角形内角和定理的推理的过程;在具体的图形中不重复,且不遗漏地识别所有三角形;用三角形三边不等关系判定三条线段可否组成三角形。

四、知识框架五、知识点、概念总结1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2.三角形的分类3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海外公司注册 http患者,突发上腹部持续性胀痛,伴腹胀、呕吐。查体:脉率120次/分,BP90/60mmHg,血、尿淀粉酶不高,血钙降低,腹部出现Cullen征。诊断为A.急性重症胆管炎B.急性重症胰腺炎C.急性胰腺炎D.溃疡病E.肠梗阻 新装炉膛安全监控保护装置的炉膛压力取样孔间的水平距离应大于m。A、1;B、2;C、0.5;D、5。 标志着规范教育学建立的是()。A.夸美纽斯《大教学论》B.卢梭《爱弥儿》C.赫尔巴特《普通教育学》D.凯洛夫《教育学》 银行对银行账户的使用要求: 甲烷化催化剂的设计装填量是m3。A.10B.12C.20D.6 根据移动平均法,如果某只股票价格超过平均价的某一百分比时则应该。A.买入B.卖出C.清仓D.满仓 产妇产后禁止重体力劳动、久站是为了预防A、受凉B、子宫脱垂C、腰痛 共享文件夹的访问权限的类型有三种,下列不是。A.读取B.更改C.部分控制D.完全控制 伤寒的典型临床表现是A.中长程稽留高热、肝脾肿大、周围血象不高、肥达反应"H"、"O"均升高B.长程低热,肝脾肿大,周围血象不高,肥达反应阳性C.长程驰张热、肝脾不大,周围血象细胞总数、中性粒细胞升高,肥达反应"H"升高D.长程间歇高热、肝脾肿大,全血细胞减少,消化道出血E.长 关于胸神经支配的阶段性描述,何者错误A.胸2相当于胸骨角平面B.胸6相当于剑突平面C.胸8相当于肋弓平面D.胸10相当于脐平面E.胸12相当于耻骨联合上缘平面 能杀灭肝细胞内速发型和迟发型疟原虫,杀灭各种疟原虫配子体的药物是A.伯氨喹B.乙胺嘧啶C.氯喹D.奎宁E.吡喹酮 患者,男性,20岁,左眼视力渐进性下降。查远视力:右眼为0.8,左眼为0.2。检查无斜视,裂隙灯、眼底镜检查未见有明显器质性病变。对于该患者,最好的治疗方案是()A.框架眼镜B.软性接触镜C.硬性透氧性接触镜D.PMMA眼镜E.双光眼镜 热力学第一定律的实质是。A.能量守恒与转换定律在热现象上的应用B.热量不可能自发地从低温物体向高温物体传递C.绝对零度不可能达到D.第二类永动机永远不能制成 患者,女,26岁,已婚。突发尿痛、尿频、尿急,腹痛半天。检查:肾区无叩击痛,尿中白细胞(++),中段尿细菌培养为大肠杆菌。其诊断是A.急性肾盂肾炎B.肾结核C.急性膀胱炎D.肾结石E.慢性肾炎 冯&#8226;诺依曼理论的核心是存储程序和。 在我国社会主义市场经济条件下,运价具有的职能包括()。A.运输收入分配职能B.社会收入再分配的职能C.运输资源分配的职能D.促进企业加强经济核算、提高经济效益的职能E.特征运输需求规律职能 社区专职工作者的素质要求? 属于固有免疫应答的细胞是A.T淋巴细胞B淋巴细胞C.NK细胞D.脂肪细胞E.上皮细胞 人类淋巴细胞膜上富含HLA抗原,目前已检出约224个基因座位,其中下列哪组HLA可以用血清学方法检出。A,B,DQ和DRB.A,B和CC.A,B,C,DQ和DRD.A,B,C和DRE.A,B和DR 汽轮机转动部分包括、、、等部件。 在医疗行为中良心的重要作用不包括A.医疗行为之前的选择作用B.医疗行为之中的监督作用C.医疗行为之中的判断作用D.医疗行为之后的评价作用 头颈部DSA检查不能将导管置于A.颈动脉B.椎动脉C.锁骨下静脉D.锁骨下动脉E.右头臂动脉 下列疾病不属于慢性病流行病学研究范围的是A.血吸虫病B.精神病C.肿瘤D.糖尿病E.心血管病 关于罪刑法定原则,下列哪一选项是正确的?A.罪刑法定原则的思想基础之一是民主主义,而习惯最能反映民意,所以,将习惯作为刑法的渊源并不违反罪刑法定原则B.罪刑法定原则中的"法"不仅包括国家立法机关制定的法,而且包括国家最高行政机关制定的法C.罪刑法定原则禁止不利于行为人 受到《中华人民共和国著作权法》的永久保护。A.复制权B.发表权C.出租权D.署名权 关于起搏器的工作参数的表述,正确的是。AV间期通常不能被程控调整B.起搏器的输出电压通常设定为起搏阈值的2~3倍C.感知电极的极性设定为单极时可减少外界电磁干扰D.当起搏器输出电压固定时,脉宽越宽输出能量越小E.通常将起搏设定为双极,感知设定为单极 下列措施中不能有效避免铸件出现毛刺的是A.按照要求加温铸圈B.用真空包埋机进行包埋C.使包埋材料与铸模材料的膨胀率一致D.包埋前仔细去除铸模上多余的蜡E.避免铸圈反复多次焙烧 常用于淋巴瘤检测的主要标志是.A.CEAB.VMAC.NSED.&beta;2ME.AFP 下列哪一项不属于建构数学模型的步骤?A.模型建立B.模型求解C.模型检验D.模型预设 何谓护患关系?其基本模式有哪些? 测定在建投资总规模的方法有增长率法和。A.投资率法B.累计法C.倍数法D.支出法 酒店的服务对象大部分为商务和观光客人,而旅游度假村的服务对象是以休闲、、保健为目的的,这突出表现了酒店与休闲设施的差别是。A.地理环境不同B.服务内容不同C.服务对象不同D.服务范围不同 男34岁。于8月来诊,1天来腹泻,呕吐,水样便多次,不伴腹痛、发热、尿量明显减少。病前曾食海鲜。体检:T36.8℃,BP40/0mmHg,脉细速,神志淡漠,眼眶内陷,声音嘶哑。诊断应首先考虑A.中毒性痢疾B.沙门菌食物中毒C.霍乱D.嗜盐菌食物中毒E.病毒性肠炎 下述哪项是对自旋回波(SE)序列中聚相位的描述()A.纵向磁化矢量的相位一致B.180&deg;脉冲激励前的相位变化C.90&deg;脉冲激励前的相位变化D.横向磁化矢量的相位一致E.以上都不对 交互抑制也称为传入侧支性抑制。A.正确B.错误 不能用于人工增殖病毒的是A.鸡胚B.传代细胞C.原代细胞D.人体器官E.实验动物 一般混凝土浇筑完成后,应在收浆后尽快予以覆盖和洒水养护,当气温低于度时,应覆盖保温,不得洒水。 关于正常恶露,正确的是A.血性恶露约持续1周B.浆液性恶露含大量白细胞,坏死蜕膜组织C.白色恶露约持续1周D.胎盘胎膜残留或合并感染时恶露增多E.恶露含有血液、胎盘绒毛碎片、坏死蜕膜组织等 博学公司所生产的U盘使用了其品牌产品"移动硬盘"的注册商标,那么,该公司的商标专用权。A.享有了其U盘B.不享有其U盘C.享有移动硬盘和U盘D.不享有移动硬盘和U盘 百科全书的特点不包括。A.以条目为基本单元B.条目之间互不交叉但可以重复、条目释文长短基本相当,一般不超过500字C.条目一般由条头、释文和参考文献构成D.索引往往单独编为一卷
相关文档
最新文档