七年级数学下册三角形知识点总结
七年级数学三角形知识点总结

七年级数学三角形知识点总结一、三角形的概念1. 定义由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
三角形有三条边、三个顶点和三个内角。
2. 三角形的表示方法三角形用符号“△”表示,顶点是A、B、C的三角形记作“△ABC”,读作“三角形ABC”。
二、三角形的分类1. 按角分类锐角三角形:三个角都是锐角的三角形。
直角三角形:有一个角是直角的三角形。
直角三角形可以用“Rt△”表示,直角所对的边叫做斜边,夹直角的两条边叫做直角边。
钝角三角形:有一个角是钝角的三角形。
2. 按边分类不等边三角形:三边都不相等的三角形。
等腰三角形:有两边相等的三角形。
相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,腰与底边所夹的角叫做底角。
等边三角形:三边都相等的三角形。
等边三角形是特殊的等腰三角形,它的三个角都相等,并且每个角都等于60°。
三、三角形的三边关系1. 定理三角形两边之和大于第三边。
三角形两边之差小于第三边。
2. 应用判断三条线段能否组成三角形:只需判断较短的两条线段之和是否大于最长的线段。
已知三角形的两边长,求第三边的取值范围:设三角形的两边长分别为a、b (a>b),则第三边c的取值范围是a b < c < a + b。
四、三角形的内角和1. 三角形内角和定理三角形三个内角的和等于180°。
2. 证明方法可以通过作平行线将三角形的三个内角转化为一个平角来证明。
3. 直角三角形的两个锐角关系直角三角形的两个锐角互余。
五、三角形的外角1. 定义三角形的一边与另一边的延长线组成的角,叫做三角形的外角。
2. 三角形外角的性质三角形的一个外角等于与它不相邻的两个内角之和。
三角形的一个外角大于任何一个与它不相邻的内角。
六、多边形1. 多边形的概念在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形。
如果一个多边形由n条线段组成,那么这个多边形就叫做n边形。
七年级数学下册三角形知识点总结

七年级数学下册第五章三角形知识点总结 考点一、三角形1、三角形的三边关系定理及推论1三角形三边关系定理:三角形的两边之和大于第三边. 推论:三角形的两边之差小于第三边. 2、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°. 推论:①直角三角形的两个锐角互余.②三角形的一个外角等于和它不相邻的来两个内角的和. ③三角形的一个外角大于任何一个和它不相邻的内角.注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角.4、三角形的面积三角形的面积=21×底×高 考点二、全等三角形 1、全等三角形的概念能够完全重合的两个三角形叫做全等三角形. 2、三角形全等的判定 三角形全等的判定定理:1边角边定理:有两边和它们的夹角对应相等的两个三角形全等可简写成“边角边”或“SAS”2角边角定理:有两角和它们的夹边对应相等的两个三角形全等可简写成“角边角”或“ASA”3边边边定理:有三边对应相等的两个三角形全等可简写成“边边边”或“SSS”.4角角边定理:有两角和一边对应相等的两个三角形全等可简写成“角角边”或“AAS”.直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有HL定理斜边、直角边定理:有斜边和一条直角边对应相等的两个直角三角形全等可简写成“斜边、直角边”或“HL”3、全等变换只改变图形的位置,不改变其形状大小的图形变换叫做全等变换.全等变换包括一下三种:1平移变换:把图形沿某条直线平行移动的变换叫做平移变换.2对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换.3旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换.考点三、等腰三角形1、等腰三角形的性质1等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等简称:等边对等角推论1:等腰三角形顶角平分线平分底边并且垂直于底边.即等腰三角形的顶角平分线、底边上的中线、底边上的高重合.推论2:等边三角形的各个角都相等,并且每个角都等于60°.2、三角形中的中位线连接三角形两边中点的线段叫做三角形的中位线.1三角形共有三条中位线,并且它们又重新构成一个新的三角形.2要会区别三角形中线与中位线.三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半.三角形中位线定理的作用:位置关系:可以证明两条直线平行.数量关系:可以证明线段的倍分关系.常用结论:任一个三角形都有三条中位线,由此有:结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半.结论2:三条中位线将原三角形分割成四个全等的三角形.结论3:三条中位线将原三角形划分出三个面积相等的平行四边形.结论4:三角形一条中线和与它相交的中位线互相平分.结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等.解直角三角形考点一、直角三角形的性质1、直角三角形的两个锐角互余2、在直角三角形中,30°角所对的直角边等于斜边的一半.3、直角三角形斜边上的中线等于斜边的一半4、直角三角形两直角边a,b 的平方和等于斜边c 的平方,即222c b a =+5、摄影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项∠ACB=90° BD AD CD •=2⇒AB AD AC •=2CD ⊥AB AB BD BC •=2 6、常用关系式由三角形面积公式可得: AB •CD=AC •BC考点二、锐角三角函数的概念 3~8分 1、如图,在△ABC 中,∠C=90° ①c asin =∠=斜边的对边A A②c bcos =∠=斜边的邻边A A③batan =∠∠=的邻边的对边A A A④abcot =∠∠=的对边的邻边A A A2、一些特殊角的三角函数值3、各锐角三角函数之间的关系1互余关系:sinA=cos90°—A,cosA=sin90°—A,tanA=cot90°—A,cotA=tan90°—A2平方关系:1cos sin 22=+A A 3倒数关系:tanA •tan90°—A=1 4弦切关系:tanA=AAcos sin 三角形相似考点一、比例线段 1、比例的性质 1基本性质①a :b=c :d ⇔ad=bc ②a :b=b :c ac b =⇔22更比性质交换比例的内项或外项dbc a =交换内项 ⇒=d c b a acb d =交换外项 abc d =同时交换内项和外项3反比性质交换比的前项、后项:cd a b d c b a =⇒= 4合比性质:ddc b b ad c b a ±=±⇒= 5等比性质:ba n f db m ec a n fd b n m fe d c b a =++++++++⇒≠++++==== )0( 3、黄金分割把线段AB 分成两条线段AC,BCAC>BC,并且使AC 是AB 和BC 的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AC=215-≈ 考点二、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例. 考点三、相似三角形 1、相似三角形的概念对应角相等,对应边成比例的三角形叫做相似三角形.相似用符号“∽”来表示2、相似三角形的基本定理平行于三角形一边的直线和其他两边或两边的延长线相交,所构成的三角形与原三角形相似.相似三角形的等价关系:1反身性:对于任一△ABC,都有△ABC∽△ABC;2对称性:若△ABC∽△A’B’C’,则△A’B’C’∽△ABC3传递性:若△ABC∽△A’B’C’,并且△A’B’C’∽△A’’B’’C’’,则△ABC∽△A’’B’’C’’.3、三角形相似的判定1三角形相似的判定方法①定义法:对应角相等,对应边成比例的两个三角形相似②平行法:平行于三角形一边的直线和其他两边或两边的延长线相交,所构成的三角形与原三角形相似③判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似.④判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似.⑤判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似2直角三角形相似的判定方法①以上各种判定方法均适用②定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似4、相似三角形的性质1相似三角形的对应角相等,对应边成比例2相似三角形对应高的比、对应中线的比与对应角平分线的比都等于相似比3相似三角形周长的比等于相似比4相似三角形面积的比等于相似比的平方.5、相似多边形1如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比或相似系数2相似多边形的性质①相似多边形的对应角相等,对应边成比例②相似多边形周长的比、对应对角线的比都等于相似比③相似多边形中的对应三角形相似,相似比等于相似多边形的相似比④相似多边形面积的比等于相似比的平方6、位似图形如果两个图形不仅是相似图形,而且每组对应点所在直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,此时的相似比叫做位似比.性质:每一组对应点和位似中心在同一直线上,它们到位似中心的距离之比都等于位似比.由一个图形得到它的位似图形的变换叫做位似变换.利用位似变换可以把一个图形放大或缩小.。
七年级数学《三角形》知识点

一、三角形定义及性质:1.三角形是由三条边和三个夹角组成的多边形。
2.三角形的内角和为180°。
3.三角形的外角等于其不相邻内角之和。
二、三角形分类:根据边长分类:1.等边三角形:三条边长度相等。
2.等腰三角形:两条边长度相等。
3.普通三角形:三条边长度都不相等。
根据角分类:1.直角三角形:一个角为90°,另外两个角为锐角或钝角。
2.钝角三角形:三个角都是钝角。
3.锐角三角形:三个角都是锐角。
4. obtuse-angled triangle: A triangle with one obtuse angle.三、三角形的图形性质:1.三角形内任意两边之差小于第三边的长度,任意两边之和大于第三边的长度。
2.等边三角形的三个内角都是60°。
3.等腰三角形的两个内角相等。
4.在直角三角形中,长边对应的角是直角,短边对应的角是锐角或钝角。
四、特殊的角与边关系:1.三角形的中线:连接一个角的顶点和对边中点的线段。
三条中线交于一点,这个点叫做三角形的重心。
2.三角形的高:从三角形的顶点向底边引垂线,垂足到底边的距离叫做三角形的高。
3.三角形的外心:三角形的三条外角的平分线交于一点,这个点叫做三角形的外心。
4.三角形的内心:三角形的三条内角的平分线交于一点,这个点叫做三角形的内心。
五、三角形的计算公式:1.三角形的面积公式:S=1/2*底边长*高。
2.海伦公式(三角形周长和面积的关系):S=√(p*(p-a)*(p-b)*(p-c)),其中p为三角形的半周长,a、b、c为三角形的边长。
3. 正弦定理:a/sinA = b/sinB = c/sinC,其中a、b、c为三角形的边长,A、B、C为三角形的角度。
4. 余弦定理:c² = a² + b² - 2abcosC,其中a、b、c为三角形的边长,C为三角形的夹角。
六、相似三角形:1.相似三角形具有相等的对应角,并且对应边的比例相等。
七年级数学下册第四章三角形知识归纳

第四章三角形三角形三边关系三角形三角形内角和定理角平分线三条重要线段中线高线全等图形的概念全等三角形的性质SSS三角形SAS全等三角形全等三角形的判定ASAAASHL(适用于RtΔ)全等三角形的应用利用全等三角形测距离作三角形一、三角形概念1、不在同一条直线上的三条线段首尾顺次相接所组成的图形,称为三角形,可以用符号“Δ”表示.2、顶点是A、B、C的三角形,记作“ΔABC”,读作“三角形ABC”.3、组成三角形的三条线段叫做三角形的边,即边AB、BC、AC,有时也用a,b,c来表示,顶点A所对的边BC用a表示,边AC、AB分别用b,c来表示;4、∠A、∠B、∠C为ΔABC的三个内角。
二、三角形中三边的关系1、三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边.用字母可表示为a+b〉c,a+c〉b,b+c〉a;a—b<c,a-c<b,b-c 〈a.2、判断三条线段a,b,c能否组成三角形:(1)当a+b>c,a+c>b,b+c〉a同时成立时,能组成三角形;(2)当两条较短线段之和大于最长线段时,则可以组成三角形。
3、确定第三边(未知边)的取值范围时,它的取值范围为大于两边的差而小于两边的和,即a b c a b-<<+.三、三角形中三角的关系1、三角形内角和定理:三角形的三个内角的和等于1800。
2、三角形按内角的大小可分为三类:(1)锐角三角形,即三角形的三个内角都是锐角的三角形;(2)直角三角形,即有一个内角是直角的三角形,我们通常用“RtΔ”表示“直角三角形”,其中直角∠C所对的边AB称为直角三角表的斜边,夹直角的两边称为直角三角形的直角边.注:直角三角形的性质:直角三角形的两个锐角互余。
(3)钝角三角形,即有一个内角是钝角的三角形。
3、判定一个三角形的形状主要看三角形中最大角的度数.4、直角三角形的面积等于两直角边乘积的一半.5、任意一个三角形都具备六个元素,即三条边和三个内角.都具有三边关系和三内角之和为1800的性质。
初中数学三角形知识点总结

初中数学三角形知识点总结初中数学三角形知识点总结等边三角形⑴等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。
⑵等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一)⑶等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或对角的平分线所在的直线。
⑷等边三角形的重要数据角和边的数量 3内角的大小60°⑸等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。
(四心合一)⑹等边三角形内任意一点到三边的距离之和为定值(等于其高)三角形的垂心锐角三角形垂心在三角形内部。
直角三角形垂心在三角形直角顶点。
钝角三角形垂心在三角形外部。
垂心是从三角形的各个顶点向其对边所作的三条垂线的交点。
三角形三个顶点,三个垂足,垂心这7个点可以得到6组四点共圆。
三角形上作三高,三高必于垂心交。
高线分割三角形,出现直角三对整,直角三角有十二,构成九对相似形,四点共圆图中有,细心分析可找清,三角形垂心的性质设△ABC的三条高为AD、BE、CF,其中D、E、F为垂足,垂心为H,角A、B、C的对边分别为a、b、c,p=(a+b+c)/2.1、锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外.2、三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心;3、垂心H关于三边的对称点,均在△ABC的外接圆上。
4、△ABC中,有六组四点共圆,有三组(每组四个)相似的直角三角形,且AH·HD=BH·HE=CH·HF。
5、 H、A、B、C四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一—垂心组)。
6、△ABC,△ABH,△BCH,△ACH的外接圆是等圆。
7、在非直角三角形中,过H的直线交AB、AC所在直线分别于P、Q,则AB/AP·tanB+AC/AQ·tanC=tanA+tanB+tanC。
七年级下册数学 三角形和不等式的复习 知识点讲解【精编】

三角形和不等式复习温故而知新(一)三角形知识梳理1、等腰三角形的性质:①等腰三角形的两底角相等(等边对等角)②等腰三角形“三线合一”的性质:顶角平分线、底边上的中线、底边上的高互相重合。
③等腰三角形两底角的平分线相等,两腰上的高、中线也相等等腰三角形的判定:有两个角相等的三角形是等腰三角形(等角边对等边)2、等边三角形是特殊的等腰三角形,作一条等边三角形的三线合一线,将等边三角形分成两个全等的直角三角形,其中一个锐角等于30º,这它所对的直角边必然等于斜边的一半。
等边三角形的判定:有一个角等于60º的等腰三角形是等边三角形。
3、如果知道一个三角形为直角三角形首先要想的定理有:①勾股定理:222+=(注意区分斜边与直角边)a b c②在直角三角形中,如有一个内角等于30º,那么它所对的直角边等于斜边的一半③在直角三角形中,斜边上的中线等于斜边的一半4、线段垂直平分线上的点到这一条线段两个端点距离相等。
线段垂直平分线逆定理:到一条线段两端点距离相等的点,在这条线段的垂直平分线上。
三角形的三边的垂直平分线交于一点,并且这个点到三个顶点的距离相等。
5、角平分线上的点到角两边的距离相等。
角平分线逆定理:在角内部的,如果一点到角两边的距离相等,则它在该角的平分线上。
三角形三条角平分线交于一点,并且交点到三边距离相等,交点即为三角形的内心。
6、互逆命题和互逆定理7、全等三角形课堂复习等腰三角形1、已知,等腰三角形的一条边长等于6,另一条边长等于,则此等腰三角形的周长是()A.9 B.12 C.15 D.12或152. 等腰三角形的底角为15°,腰上的高为16,那么腰长为______ ____3、等腰三角形的一个角是80度,则它的另两个角是4、等腰三角形的顶角为120°,腰长为4,则底边长为__________C EA D B等边三角形1、如图:等边三角形ABC 中,D 为AC 的中点,E 为BC 延长线上一点,且DB=DE,若△ABC 的周长为12,则△DCE 的周长为___________. 垂直平分线1、如图1,在△ABC 中,已知AC=27,AB 的垂直平分线交AB 于点D ,交AC 于点E ,△BCE 的周长等于50,求BC 的长.2、如图:△ABC 中,AB=AC,∠BAC=1200,EF 垂直平分AB, EF=2,求AB 与BC 的长。
(完整版)人教版七年级数学三角形知识点归纳和常见题型总结,推荐文档

P,若∠A=500,求∠BPC 的度数。
A
20.已知,如图 8,∠ABD=∠DBC,∠ACD=∠DCE (1) ∠A=500, 求∠D 的度数。 (2)∠D 与∠A 有什么关系,并说明理由。
D B
P (图 6)
E C
7.3 多边形及其内角和 在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。 连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
7.2.2 三角形的外角
三角形的一边与另一边的延长线组成的角,叫做三角形的外角。
三角形的一个外角等于与它不相邻的两个内角的和。
三角形的一个外角大于与它不相邻的任何一个内角。
1.在△ABC 中,若∠A=∠B= 1 ∠C,则∠C 等于(
)
2
A.45° B.60° C.90°
D.120°
2.如图所示,∠1+∠2+∠3+∠4 的度数为(
)
A100° B.180° C.360°
D.无法确定
3.如图所示,AB∥CD,AD,BC 交于 O,∠A=35°,∠BOD= 76°,则∠C 的度数是( )
A.31°
B.35° C.41° D.76°
4.如图所示,∠1+∠2+∠3+∠4 的度数为
.
第 2 题图
第 4 题图
第 3 题图
第 6 题图
5.一幅三角板,如图所示叠放在一起,则 图中 a 的度数为(
11.如图 11 所示,在△ABC 中,∠A=70°,BO,CO 分别平分∠ABC 和∠ACB,求∠BOC 的度数.
A
A
A
D
O
B
O
C
D
E
图9
七年级下册数学专题10 三角形(知识点串讲)(解析版)

专题10 三角形知识网络重难突破知识点一三角形角和边1、三角形的有关概念名称内容图形三角形由不在同一条直线上的三条线段首尾依次相接所组成的图形叫作三角形.边三角形有三条边.三角形的边可以用一个小写字母或两个大写字母表示,如:a,b,c或BC,CA,AB.顶点相邻两边的公共端点叫作三角形的顶点.三角形有三个顶点.角相邻两条边所组成的角,叫作三角形的内角,简称三角形的角.三角形有三个内角.三角形的记法三角形用符号“”来表示,顶点是A ,B ,C 的三角形记作ABC ,读作“三角形ABC ”.2、三角形的分类三个角都是锐角的三角形叫作锐角三角形,有一个角是直角的三角形叫作直角三角形,有一个角是钝角的三角形叫作钝角三角形.3、三角形内角和定理三角形三个内角的和等于180°. 4、三角形的边(1)对于任意的ABC ,如果把其中任意两个顶点看成定点(假设B 、C 为定点),由“两点之间,线段最短”可得:b c a +>.同理可得:a b c +>,a c b +>. 即:三角形任意两边之和大于第三边.推论:三角形任意两边之差小于第三边. 理论依据:两点之间,线段最短. (2)三角形三边关系的应用①已知三角形的两边长,求第三边的取值范围;②判断三条线段能否组成三角形.注意:判断三条线段能否组成三角形时,首先找出三条边中的最长边,然后计算另外两边的长度和,若两条短边的长度之和大于最长边的长度,就能组成三角形.典例1(2019春•青羊区期末)若等腰三角形的一个内角为80°,则这个等腰三角形的顶角为()A.80°B.50°C.80°或50°D.80°或20°【解答】解:当80°是等腰三角形的顶角时,则顶角就是80°;当80°是等腰三角形的底角时,则顶角是180°﹣80°×2=20°.故选:D.典例2(2019春•福田区校级期末)下列长度的三条线段能组成三角形的是()A.2cm,3cm,6cm B.3cm,4cm,7cmC.5cm,6cm,8cm D.7cm,8cm,16cm【解答】解:A、2+3<6,不能组成三角形,故此选项不符合题意;B、3+4=7,不能组成三角形,故此选项不符合题意;C、5+6>8,能组成三角形,故此选项符合题意;D、8+7<16,不能组成三角形,故此选项不符合题意;故选:C.典例3(2019春•莲湖区期末)已知三角形三边分别为2,1a-,4,那么a的取值范围是()A.15a<<B.26<<D.46<<aa<<C.37a【解答】解:依题意得:42142-<-<+,a即:216<-<,a37a ∴<<.故选:C .知识点二 三角形三条重要线段名称图形定义几何语言三角形的高从三角形的一个顶点向它的对边所在的直线画垂线.顶点与垂足之间的线段叫作三角形的高线.简称三角形的高因为AD 是ABC 的高(已知),所以AD BC ⊥于点D (或90ADC ADB ∠∠︒==)三角形的角平分线在三角形中,一个内角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段叫作三角形的角平分线因为AD 是ABC 的角平分线(已知),所以1122BAC ∠∠∠==三角形的中线在三角形中,连接一个顶点和它的对边中点的线段叫作三角形的中线.三角形的三条中线相交于一点,交点叫作三角形的重心因为AD 为ABC 的中线(已知),所以12BD DC BC ==(或22BC BD DC ==)注意:三角形的中线、角平分线、高都是一条线段;中线、角平分线都在三角形内部,三角形的高有两种特例:直角三角形中其中一条直角边的高就是另一条直角边;钝角三角形中锐角所对的边上的高在三角形的外部.典例1(2019春•商河县期末)在ABC∠是钝角,下列图中画AC边上的高线正确的是()∆中,AA.B.C.D.【解答】解:由题意可得,在ABC∠是钝角,画AC边上的高线是∆中,A故选:A.典例2(2019春•雁塔区校级期末)如图,已知BD是ABC∆的周长为11,则∆的中线,5AB=,3BC=,且ABD∆的周长是.BCD【解答】解:BD是ABC∆的中线,∴=,AD CD∆的周长为11,5ABDAB=,3BC=,--=,BCD∴∆的周长是11(53)9故答案为9.典例3(2019春•武侯区校级期中)如图,在ABC∠=∠,G为AD的中点,延长BG交AC于E.F为AB∆中,12上的一点,CF AD⊥于H.下列判断正确的有()A.AD是ABE∆边AD上的中线∆的角平分线B.BE是ABDC.CH为ACD∆的角平分线∆边AD上的高D.AH为ABC【解答】解:A、根据三角形的角平分线的概念,知AG是ABE∆的角平分线,故本选项错误;∆的边AD上的中线,故本选项错误;B、根据三角形的中线的概念,知BG是ABD∆的边AD上的高,故本选项正确;C、根据三角形的高的概念,知CH为ACDD、根据三角形的角平分线的概念,知AD是ABC∆的角平分线,故本选项错误.故选:C.典例4(2019春•福田区校级期末)如图,△ABC的中线BD、CE相交于点O,OF⊥BC,垂足为F,且AB=6,BC=5,AC=3,OF=2,则四边形ADOE的面积是()A.9 B.6 C.5 D.3【解答】解:∵BD、CE均是△ABC的中线,∴S△BCD=S△ACE S△ABC,∴S四边形ADOE+S△COD=S△BOC+S△COD,∴S四边形ADOE=S△BOC=5×2÷2=5.故选:C.巩固训练一、单选题(共6小题)1.(2019春•皇姑区期末)若三角形的两个内角的和是85︒,那么这个三角形是() A.钝角三角形B.直角三角形C.锐角三角形D.不能确定【解答】解:第三个角是1808595︒-︒=︒,则该三角形是钝角三角形.故选:A.2.(2019春•光明区期末)下列各组数作为三条线段的长,使它们能构成三角形的一组是()A.2,3,5 B.9,10,15 C.6,7,14 D.4,4,8【解答】解:A、3+2=5,不能构成三角形,故此选项不合题意;B、9+10>15,能构成三角形,故此选项符合题意;C、6+7<14,不能构成三角形,故此选项不合题意;D、4+4=8,不能构成三角形,故此选项不合题意.故选:B.3.(2019春•福田区期末)已知三角形三边的长度分别是6cm,10cm和xcm,若x是偶数,则x可能等于()A.8cm B.16cm C.5cm D.2cm【解答】解:根据三角形的三边关系定理得:10﹣6<x<10+6,解得:4<x<16,∵x是偶数,∴x可以为6、8、10、12、14,所以只有选项A符合,选项B、C、D都不符合,故选:A.4.(2019春•西岗区期末)等腰三角形的一条边长为4,一条边长为5,则它的周长为()A.13B.14C.13或14D.15【解答】解:当5为底,4为腰时,能构成三角形,此时周长44513=++=;当5为腰,4为底时,能构成三角形,此时周长55414=++=.故它的周长为为13或14.故选:C.5.(2019•常州二模)如图,一位同学用直尺和圆规作出了△ABC中BC边上的高AD,则一定有()A .P A =PCB .P A =PQC .PQ =PCD .∠QPC =90°【解答】解:由作法得AD 垂直平分CQ , 所以PQ =PC . 故选:C .6.(2019春•莲湖区期末)如图,在ABC ∆中,点D 、E 、F 分别是BC 、AD 、EC 的中点,若ABC ∆的面积是16,则BEF ∆的面积为( )A .4B .6C .8D .10【解答】解:如图,E 为AD 的中点,:2:1ABC BCE S S ∆∆∴=,同理可得,:2:1BCE EFB S S ∆∆=, 16ABC S ∆=,1116444EFB ABC S S ∆∆∴==⨯=.故选:A .二、填空题(共5小题)7.(2019春•武侯区校级期中)ABC ∆中,2A B C ∠=∠=∠,那么C ∠= . 【解答】解:设C x ∠=︒,则2A B x ∠=∠=︒,22180x x x ++=︒,解得:36x =︒, 故答案为:36︒.8.(2019春•平阴县期末)等腰三角形的两边长为4和6,则此等腰三角形的周长为 . 【解答】解:当腰为4时,则三角形的三边为4、4、6,满足三角形三边关系,此时三角形的周长为14; 当腰为6时,则三角形的三边为6、6、4,满足三角形三边关系,此时三角形的周长为16; 综上可知该等腰三角形的周长为14或16. 故答案为:14或16. 9.(2018秋•青羊区校级月考)ABC ∆的三边分别是a ,b ,c ,试化简||||||a b c b c a c b a --+-+---= ;【解答】解:因为ABC ∆的三边分别是a ,b ,c , 所以0a b c --<,0b c a -+>,0c b a --<,所以||||||a b c b c a c b a a b c b c a c b a a b c --+-+---=-+++-++--=-++. 故答案为:a b c -++.10.(2019春•通川区期末)如图,AD 是ABC ∆中BC 边上的高,AE 是BAC ∠的平分线,若44B ∠=︒,76C ∠=︒,则DAE ∠= .【解答】解:44B ∠=︒,76C ∠=︒,18060BA B C ∴∠=︒-∠-∠=︒,AE 平分BAC ∠,1302CAE BAC ∴∠=∠=︒,AD 是BC 边上的高,90ADC ∴∠=︒, 76C ∠=︒,18014CAD ADC C ∴∠=︒-∠-∠=︒, 301416DAE CAE CAD ∴∠=∠-∠=︒-︒=︒,故答案为:16︒.11.(2019春•皇姑区期末)如图,在ABC ∆中,A m ∠=︒,ABC ∠和ACD ∠的平分线交于点1A ,得1A ∠;1A BC∠和1ACD ∠的平分线交于点2A ,得2A ∠;2018A BC ⋯∠和2018A CD ∠的平分线交于点2019A ,得2019A ∠,则2019A ∠= ︒.【解答】解:1A B 平分ABC ∠,1A C 平分ACD ∠,112A BC ABC ∴∠=∠,112ACA ACD ∠=∠, 111ACD A A BC ∠=∠+∠, 即11122ACD A ABC ∠=∠+∠, 11()2A ACD ABC ∴∠=∠-∠,A ABC ACD ∠+∠=∠, A ACD ABC ∴∠=∠-∠,112A A ∴∠=∠,2121122A A A ∠=∠=∠,⋯,以此类推可知201920192019122m A A ︒∠=∠=, 故答案为:20192m .三、解答题(共2小题)12.(2019春•西岗区期末)如图,ABC ∆中,ABC ∠和ACB ∠的平分线相交于点D ,过点D 作BC 的平行线交AB 的于点E ,交AC 于点,且130BDC ∠=︒,AFE ∠比ABC ∠大20︒,求EDB ∠的度数.【解答】证明://EF BC ,AFE ACB ∴∠=∠,20AFE ABC ∠-∠=︒,20ACB ABC ∴∠-∠=︒, BD 、CD 分别ABC ∠和ACB ∠,2220DCB DBC ∴∠-∠=︒,10DCB DBC ∴∠-∠=︒,又130BDC ∠=︒,50DCB DBC ∴∠+∠=︒,30DCB ∴∠=︒,//EF BC ,30FDC DCB ∴∠=∠=︒,1801801303020EDB BDC FDC ∴∠=︒-∠-∠=︒-︒-︒=︒.13.(2019春•商河县期末)问题情景:如图1,ABC ∆中,有一块直角三角板PMN 放置在ABC ∆上(P 点在ABC ∆内),使三角板PMN 的两条直角边PM 、PN 恰好分别经过点B 和点C ,试问ABP ∠与ACP ∠是否存在某种确定的数量关系?(1)特殊探究:若40A ∠=︒,则ABC ACB ∠+∠= 度,PBC PCB ∠+∠= 度,ABP ACP ∠+∠= 度.(2)类比探索:请探究ABP ACP ∠+∠与A ∠的关系;(3)类比延伸:如图2,改变直角三角板PMN 的位置:使P 点在ABC ∆外,三角板PMN 的两条直角边PM 、PN 仍然分别经过点B 和点C ,(2)中的结论是否仍然成立?若不成立,请直接写出你的结论.【解答】解:(1)40A ∠=︒,140ABC ACB ∴∠+∠=︒,90P ∠=︒,90PBC PCB ∴∠+∠=︒,1409050ABP ACP ∴∠+∠=︒-︒=︒,故答案为140,90,50.(2)结论:90∠+∠=︒-∠.ABP ACP A证明:90()180︒+∠+∠+∠=︒,ABP ACP AABP ACP A∴∠+∠+∠=︒,90∴∠+∠=︒-∠.90ABP ACP A(3)不成立;存在结论:90∠-∠=︒-∠.ACP ABP A理由:设AB交PC于O.∠=∠,AOC POBACO A P PBO∴∠+∠=∠+∠,∴∠-∠=︒-∠.90ACP ABP A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学下册第五章《三角形》知识点总结
考点一、三角形
1、三角形的三边关系定理及推论
(1)三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
2、三角形的内角和定理及推论
三角形的内角和定理:三角形三个内角和等于180°。
推论:
①直角三角形的两个锐角互余。
②三角形的一个外角等于和它不相邻的来两个内角的和。
③三角形的一个外角大于任何一个和它不相邻的内角。
注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。
4、三角形的面积
三角形的面积=21
×底×高
考点二、全等三角形
1、全等三角形的概念
能够完全重合的两个三角形叫做全等三角形。
2、三角形全等的判定三角形全等的判定定理:
(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS ”)
(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA ”)
(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS ”)。
(4)角角边定理:有两角和一边对应相等的两个三角形全等(可简写成“角
角边”或“AAS ”)。
直角三角形全等的判定:
对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、
直角边”或“HL”)
3、全等变换
只改变图形的位置,不改变其形状大小的图形变换叫做全等变换。
全等变换包括一下三种:
(1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。
(2)对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。
(3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫
做旋转变换。
考点三、等腰三角形
1、等腰三角形的性质
(1)等腰三角形的性质定理及推论:
定理:等腰三角形的两个底角相等(简称:等边对等角)
推论1:等腰三角形顶角平分线平分底边并且垂直于底边。
即等腰三角形的
顶角平分线、底边上的中线、底边上的高重合。
推论2:等边三角形的各个角都相等,并且每个角都等于60°。
2、三角形中的中位线
连接三角形两边中点的线段叫做三角形的中位线。
(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。
(2)要会区别三角形中线与中位线。
三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。
三角形中位线定理的作用:
位置关系:可以证明两条直线平行。
数量关系:可以证明线段的倍分关系。
常用结论:任一个三角形都有三条中位线,由此有:
结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。
结论2:三条中位线将原三角形分割成四个全等的三角形。
结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。
结论4:三角形一条中线和与它相交的中位线互相平分。
结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。
解直角三角形
考点一、直角三角形的性质
1、直角三角形的两个锐角互余
2、在直角三角形中,30°角所对的直角边等于斜边的一半。
3、直角三角形斜边上的中线等于斜边的一半
4、直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即2
2
2
c
b
a 5、摄影定理
在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项
∠ACB=90°
BD
AD CD
2
AB
AD
AC
2
CD ⊥AB AB
BD BC
2
6、常用关系式
由三角形面积公式可得:AB CD=AC BC
考点二、锐角三角函数的概念
(3~8分)
1、如图,在△ABC 中,∠C=90°①c a sin 斜边的对边A A
②c b cos 斜边的邻边A A
③b
a tan 的邻边
的对边A A A
④a
b cot 的对边
的邻边A A A
2、一些特殊角的三角函数值三角
函数
0°
30°
45°
60°
90°
sin α
212223 1
cos α
1
232
22
10 tan α0
3
3 1
3
不
存在
cot α不存在
3
1
3
30
3、各锐角三角函数之间的关系
(1)互余关系:sinA=cos(90°—A),cosA=sin(90°—A),tanA=cot(90°—A),cotA=tan(90°—A)
(2)平方关系:1
cos sin 2
2
A
A
(3)倒数关系:tanA tan(90°—A)=1 (4)弦切关系:tanA=
A
A cos sin 三角形相似考点一、比例线段1、比例的性质(1)基本性质①a :b=c :d ad=bc
②a :b=b :c
ac
b
2
(2)更比性质(交换比例的内项或外项)
d
b c
a (交换内项)
d
c b
a a c
b d (交换外项)
a
b c
d (同时交换内项和外项)
(3)反比性质(交换比的前项、后项):c d a
b d
c b a (4)合比性质:
d d
c b
b a d
c b
a (5)等比性质:
b
a n
f
d
b
m e c a n
f
d
b
n m f
e d
c b
a )
0(3、黄金分割
把线段AB 分成两条线段AC ,BC (AC>BC ),并且使AC 是AB 和BC 的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中
AC=
21
5AB 0.618AB
考点二、平行线分线段成比例定理
三条平行线截两条直线,所得的对应线段成比例。
考点三、相似三角形
1、相似三角形的概念
对应角相等,对应边成比例的三角形叫做相似三角形。
相似用符号“∽”来表示
2、相似三角形的基本定理
平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三
角形与原三角形相似。
相似三角形的等价关系:
(1)反身性:对于任一△ABC,都有△ABC∽△ABC;
(2)对称性:若△ABC∽△A’B’C’,则△A’B’C’∽△ABC
C’’
,则△ABC
B’’(3)传递性:若△ABC∽△A’B’C’,并且△A’B’C’∽△A’’。
C’’
∽△A’’
B’’
3、三角形相似的判定
(1)三角形相似的判定方法
①定义法:对应角相等,对应边成比例的两个三角形相似
②平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,
所构成的三角形与原三角形相似
③判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。
④判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。
⑤判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似(2)直角三角形相似的判定方法
①以上各种判定方法均适用
②定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜
边和一条直角边对应成比例,那么这两个直角三角形相似
4、相似三角形的性质
(1)相似三角形的对应角相等,对应边成比例
(2)相似三角形对应高的比、对应中线的比与对应角平分线的比都等于相
似比
(3)相似三角形周长的比等于相似比
(4)相似三角形面积的比等于相似比的平方。
5、相似多边形
(1)如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两
个多边形叫做相似多边形。
相似多边形对应边的比叫做相似比(或相似系数)(2)相似多边形的性质
①相似多边形的对应角相等,对应边成比例
②相似多边形周长的比、对应对角线的比都等于相似比
③相似多边形中的对应三角形相似,相似比等于相似多边形的相似比
④相似多边形面积的比等于相似比的平方
6、位似图形
如果两个图形不仅是相似图形,而且每组对应点所在直线都经过同一个点,
那么这样的两个图形叫做位似图形,这个点叫做位似中心,此时的相似比叫做位似比。
性质:每一组对应点和位似中心在同一直线上,它们到位似中心的距离之比都等于位似比。
由一个图形得到它的位似图形的变换叫做位似变换。
利用位似变换可以把一个图形放大或缩小。