风力发电并网对电网的影响概述

合集下载

风电场并网对电网的影响有哪些

风电场并网对电网的影响有哪些

风电场并网对电网的影响有哪些在当今能源转型的大背景下,风力发电作为一种清洁、可再生的能源形式,得到了快速发展。

风电场的规模不断扩大,其与电网的并网运行也成为了电力系统中的一个重要环节。

然而,风电场的并网并非一帆风顺,它给电网带来了一系列的影响,需要我们深入了解和研究。

风电场的输出功率具有间歇性和波动性。

这是由于风能的随机性和不确定性所决定的。

风速的变化会直接导致风电机组输出功率的波动,而且这种波动在短时间内可能会相当剧烈。

当大量的风电机组并网时,这种功率波动会在电网中叠加和传播,给电网的频率稳定带来挑战。

电网频率是衡量电力系统运行稳定性的重要指标,如果频率偏差过大,可能会导致电网中的设备故障,甚至引发停电事故。

风电场的无功功率特性也对电网产生重要影响。

风电机组在运行过程中需要从电网吸收或向电网注入无功功率,以维持自身的电压稳定。

然而,不同类型的风电机组在无功功率的控制和调节能力上存在差异。

一些早期的风电机组可能无法有效地进行无功调节,这就可能导致电网局部电压的波动和偏差。

电压的不稳定不仅会影响电力设备的正常运行,还可能降低电能质量,给用户带来不良影响。

风电场的接入还会改变电网的潮流分布。

传统电网的潮流分布是基于固定的电源和负荷分布计算的。

但风电场的接入位置和出力大小是不确定的,这就使得电网中的潮流不再是固定不变的。

新的潮流分布可能会导致某些线路过载,而另一些线路则轻载,从而影响电网的输电效率和经济性。

为了应对这种变化,电网需要加强规划和改造,增加输电线路的容量或者调整电网的结构。

另外,风电场的故障穿越能力也关系到电网的安全稳定运行。

当电网发生故障时,风电机组需要具备一定的故障穿越能力,即在短时间内保持不脱网,并向电网提供一定的无功支持,以帮助电网恢复正常运行。

如果风电机组的故障穿越能力不足,大量风电机组在故障时脱网,将进一步加剧电网的故障程度,甚至可能引发连锁故障,导致大面积停电。

风电场的并网还对电网的电能质量产生影响。

浅析风电并网对电网影响

浅析风电并网对电网影响

浅析风电并网对电网影响风电并网是指将风能转换成电能后,通过电网输送到用户端使用的过程。

风电并网的发展对电网运行和电力系统产生了诸多影响,本文将对其影响进行浅析。

首先,风电并网对电网结构和运行方式产生了影响。

传统的电力系统主要由大型火电、水电等发电厂构成,而风电发电机组通常较小,数量众多。

因此,在风电并网后,电网结构发生了变化,由传统的中心集中式电源向分布式电源转变,相应地也改变了电网的运行方式。

风电的并网使得电网的安全性和可靠性进一步增强,可以更好地应对单个电厂发生故障的情况。

其次,风电并网对电网供电能力和负荷均衡产生了影响。

风电的发电能力与风速相关,受自然因素的限制,风电的发电能力存在不稳定性和不可预测性。

这使得电网供电能力变得更为复杂,需要进行合理规划和管理。

同时,风电的并网也会对电网的负荷均衡产生影响。

风电的不稳定性和波动性使得电网容易出现频繁的负荷波动,需要通过电网调度来保持负荷均衡,提高电网的稳定性。

第三,风电并网对电网电压和频率稳定性产生了影响。

风电并网后,由于其产生的风能转换为电能的过程中存在一定的变频和变压,可能导致电网的电压和频率波动。

这对电网的电压和频率稳定性造成了一定的影响。

因此,需要在电网中引入相应的控制策略,如有功功率控制、无功功率控制等,来保持电网的电压和频率稳定。

最后,风电并网对电网的电力质量产生了影响。

由于风电的输出功率具有波动性和不稳定性,其并网可能导致电网的电压波动和谐波问题。

这对电网的电力质量造成一定的影响,可能引起电器设备的损坏或故障。

因此,需要采取相应的措施和技术手段来改善电网的电力质量,如采用STATCOM(静止补偿装置)等有源功率过滤技术来控制电压和谐波。

总的来说,风电并网对电网的影响是多方面的,涉及到电网结构、运行方式、供电能力、负荷均衡、电压稳定性、频率稳定性和电力质量等方面。

为了更好地适应风电并网的影响,需要加强对电网的规划和管理,引入相应的技术手段和控制策略,以提高电网的可靠性、稳定性和经济性。

风电机组并网对电网稳定性的影响研究

风电机组并网对电网稳定性的影响研究

风电机组并网对电网稳定性的影响研究随着清洁能源的应用不断推广和普及,风电场的规模越来越大,风电机组并网对电网稳定性的研究也成为人们关注的焦点。

目前,风力发电已经成为国内外清洁能源发电领域的重要组成部分,具有环保、可再生、资源丰富等特点,但同时也存在一定的问题,如与电网的接口问题、电压和频率调节问题等。

本文将从风电机组并网对电网稳定性的影响角度,探讨这些问题及对策。

风电机组并网后,将会对电网的频率稳定性产生一定的影响,这是因为风力发电具有不可控的随机性,容易影响电网的频率。

在风电机组并网过程中,要协调风力发电与电网的负荷之间的关系,合理地调控风电机组的出力,以保持电网的稳定运行。

因此,对于风电机组并网的电站来说,首先需要对电网的频率稳定性进行认真分析,从而采取恰当的措施来维护电网的稳定性。

风电机组和电网在并网过程中,容易造成电压波动和电压失控等问题。

这是由于风电机组的出力不稳定,会对电网的电压产生影响,导致电压波动频繁发生。

因此,为了保证电网的电压稳定性,风电机组并网时需要通过检测电压的变化,并及时调整风电机组的出力,以使电网处于良好的电压稳定状态。

短路电流是指在电网故障的情况下,电流通过短路路径流经电压源之间的最大值。

风电机组并网后,由于其直接并入电网,会对电网的短路电流产生影响。

在风电机组并网时,需要进行充足的短路电流计算,以确定风电机组的并网能力,同时采取相应的措施来保证电网的短路电流及安全运行。

为了保证风电机组并网后不对电网造成不良影响,需要采取以下措施:1、严格执行风电机组与电网相互作用的标准和规范,监测和维护机组的技术参数,确保风电机组能够安全地并入电网。

2、采取适当的优化控制算法,协调风电机组输出功率与电网负荷需求之间的关系,实现稳定的电力输出,保持电网的稳定运行。

3、对于新建的风电场,应对其电源电缆、配电设备及通信系统进行规划和设计,保证电能的可靠供应、运行的安全性和监测系统的有效性。

浅谈风力发电并网对电网系统的影响

浅谈风力发电并网对电网系统的影响

浅谈风力发电并网对电网系统的影响风力发电是一种绿色能源,能够有效改善我国的能源结构,同时有助于我国环保经济的发展,风电将成为未来电力发展的一个重要趋势,然而在风力发电过程中还有着众多需要解决的问题。

本篇文章将从风力发电对电力系统产生的相关影响入手,对风电网并入电网产生的相关技术问题进行阐述,同时提出了相关的解决途径。

标签:风力发电,电能质量,稳定性,解决方案随着社会和经济的快速发展,环境问题,资源问题成为人们不得不面对的问题。

风力发电能够有效满足环保以及节能的客观要求,因而得到了广泛的推广与使用。

与其他相应可再生能源发电形式之中,风电有着相应的技术优势和成本优势,是一种最具有规模化商业开发前景的新能源发电模式。

然而在风能发电产业的发展过程中,也暴露出大量的问题,特别是“并网难”问题,已经严重制约着新能源的大力推广。

1 我国风力发电及并网发展情况至今,我国并网风电建设已经有20多年的历史。

风力电网的建设在的发展初期较为缓慢,项目规模也较小,相应的装机容量也较小,一些主要的生产设备都需要进口,建设成本较高,市场竞争力也较弱。

近年来,随着我国风电技术的进步,同时加之有国家相关产业政策的扶持,风电在我国得到了快速发展。

然而,与此同时,我国的大多数风电基地都么有建设完备的并网输出工程,面临着“车多路少”的尴尬。

近些年来,我国风电装机容量高速增长,同时风电并网容量也保持者较快的增长速度,然而相应的建设速度已经远远超出了风力电网进行规划和建设的速度,致使国内并网容量远远落后于风电装机容量。

2 风力发电及其并网运行具有的相关特点2.1 风力发电的运行原理总结起来,风力发电其实是一个能量转换的过程。

具体能量转换过程为:风能→机械能→电能。

当风速小于Vcut-in时,则产生的功率为零;当风速大于Vcut-in时,功率随着风速增大而增加;而当风速达到Vr时,功率达到最大,而且在一定范围内保持恒定状态。

而当风速大于Vcut-out时,风机将处于停机状态。

风电并网对电网影响

风电并网对电网影响

风电并网对电网影响1.1电压闪变风力发电机组大多采用软并网方式,但是在启动时仍然会产生较大的冲击电流。

当风速超过切出风速时,风机会从额定出力状态自动退出运行。

如果整个风电场所有风机几乎同时动作,这种冲击对配电网的影响十分明显。

不但如此,风速的变化和风机的塔影效应都会导致风机出力的波动,而其波动正好处在能够产生电压闪变的频率范围之内(低于25Hz),因此,风机在正常运行时也会给电网带来闪变问题,影响电能质量。

已有的研究成果表明,闪变对并网点的短路电流水平和电网的阻抗比(也有说是阻抗角)十分敏感。

1.2谐波污染风电给系统带来谐波的途径主要有两种:一种是风力发电机本身配备的电力电子装置,可能带来谐波问题。

对于直接和电网相连的恒速风力发电机,软启动阶段要通过电力电子装置与对我的相连,因此会产生一定的谐波,不过因为过程很短,发生的次数也不多,通常可以忽略。

但是对于变速风力发电机则不然,因为变速风力发电机通过整流和逆变装置接入系统,如果电力电子装置的切换频率恰好在产生谐波的范围内,则会产生很严重的谐波问题,不过随着电力电子器件的不断改进,这一问题也在逐步得到解决。

另一种是风力发电机的并联补偿电容器可能和线路电抗发生谐振,在实际运行中,曾经观测到在风电场出口变压器的低压侧产生大量谐波的现象。

与电压闪变问题相比,风电并网带来的谐波问题不是很严重。

1.3电压稳定性大型风电场及其周围地区,常常会有电压波动大的情况。

主要是因为以下三种情况。

风力发电机组启动时仍然会产生较大的冲击电流。

单台风力发电机组并网对电网电压的冲击相对较小,但并网过程至少持续一段时间后(约为几十秒)才基本消失,多台风力发电机组同时直接并网会造成电网电压骤降。

因此多台风力发电机组的并网需分组进行,且要有一定的间隔时间。

当风速超过切出风速或发生故障时,风力发电机会从额定出力状态自动退出并网状态,风力发电机组的脱网会产生电网电压的突降,而机端较多的电容补偿由于抬高了脱网前风电场的运行电压,从而引起了更大的电网电压的下降。

浅谈风力并网对电力系统的影响

浅谈风力并网对电力系统的影响

浅谈风力并网对电力系统的影响摘要:近年来,随着人们环保意识的增强,绿色新能源如雨后春笋蓬勃发展,风电作为一种可永久续用的清洁能源也随之发展起来,越来越多的风电场接入电网。

但是因为风度的不可控性和难预测性,大规模的风电接入给电力系统正常运行带来巨大压力和诸多问题。

因此,本文探询研究了风电并网对电网的影响,并提出几点解决方法。

关键词:风电并网;电能质量;电网安全1 风电对电网的影响1.1影响电网稳定性一是风电并网影响电网电压稳定性较为明显。

风力发电的特点是有随机性,发电量大小随风速大小变化,同时因为风能资源丰富的位置大多比较偏僻,在电网末端,网架结构都比较薄弱,风电并网运行时势必影响电网电压稳定性。

二是大型风电厂的风力发电机大都是异步发电机,并网运行时要从电网中吸收大量的无功功率,增加电网的无功消耗,可能会导致小型电网电压失去稳定。

三是原来的电网规划和设计时,大都都不考虑风电并网后配电网功率、潮流的改变,所以随着的风电越来越多地注入,风电场周围小电网的电压和联络线功率会越过安全运行范围,将对系统的稳定性造成影响。

各个地方风力发电发展迅速,风力发电规模越来越大,风电装机容量在系统中比重一直增加,风电输出的不稳定性对电网的冲击也一直增大,对系统稳定性的影响就变得更加明显。

情1.2影响系统运行成本风力发电的运行成本同火电机组对比来说,低到可以忽略不计。

然而风力发电时的波动和间歇导致风电场的功率输出具有很大的不确定性,目前,风电的功率输出预报水平满足不了电力系统的运行要求。

为保证风电并网后电力系统能够可靠运行,电力系统除了确保原有运行方式基础,还需要额外安排一定容量的旋转备用,以确保功率能够平衡。

所以风电并网对整个电力系统运行成本的影响表现在两个方面:一方面,风电承担了一部分负荷,降低了电力系统的燃料成本,另一方面却需要增加整个系统的备用容量,加大了可靠性成本。

1.3 影响电网频率随着风速的变化,风电机组的出力也会变化,当风速比切入风速大时,风电机组启动然后挂网运行;当风速比切入风速小时时,风电机组停将机,并与电网解列运行;当风速比切出风速大时,考虑安全,风电机将停机。

论风电并网对电网的影响及应对措施

论风电并网对电网的影响及应对措施

论风电并网对电网的影响及应对措施近些年来,由于风力发电十分环保,因此风力发电受到了全世界各国的重视。

由于我国经济的快速发展,对电力的需求与应用也越来越大,致使电能的超负荷使用,电力能源的短缺,提升了电力行业对可再生能源的重视。

风能作为一种可再生的清洁能源,是指把风的动能转化为电能,因此越来越多的国家开始着手开发应用风力发电。

标签:风电并网;电网影响;应对策略风力发电是利用风来带动风车叶片的转动,通过旋转的速度提升产生的机械动能转化为电能,从而来促进发电机的发电。

由于风能是一种无公害能源,风力发电不需要燃料,不会造成空气的污染。

因此受到许多国家的广泛应用。

将发电机并入电网运行称为风电并网,但由于风力存在着不可控性,大规模的运用风电并网也对电力系统产生着越来越大的影响。

因此本文主要对风电并网对电网产生的影响以及所要采取的措施进行分析讨论。

1什么是风电并网由于风速具有随机性,不稳定性,为了保证电网的正常供电,要对风进行充分的利用,则需要风力发电机及相应的储能装置,来保障电网供电正常运行。

除此之外,风速的大小也影响着风力发电的状态及对电能输送的功率大小,采用风电并网的形式则会有效地提高电网运行的稳定。

风电并网是指将几十台甚至上千台的风力机同时并网运行,对风能源进行充分的开发利用,统一的对产生的强大电力进行配送。

由于风电并网存在着许多优点,不仅在能源利用以及环境保护方面,而且在工程建造,工作管理方面也十分的方便。

所以在全世界范围内得到了快速的发展。

2风力发电机的类型风力发电机是将风能转化为机械功,从而使电力输出的设备。

但由于风电并网的不同,发电机的类型也存在着差异。

2.1异步型发电机异步型发电机,由于它的结构简单,操作方便。

是我国现今采用的主力发电机。

它可以由定子直接向电网输送交流电,再由变频器控制转子,向电网间接输送功率。

从而满足用电需求。

2.2同步型发电机我国还有采用同步型发电机。

相较于异步风力发电机来说,它可以在额定的风速下进行运转。

风电场并网运行及其电网影响分析

风电场并网运行及其电网影响分析

风电场并网运行及其电网影响分析第一章风电场并网运行及其电网影响概述风电场并网运行是指将风能转化为电能,并将电能送入电网进行输送和利用的过程。

风电场的并网运行不仅可以满足社会对清洁能源的需求,还可以提高电网的可靠性和稳定性。

然而,风电场的并网运行也会对电网产生一定的影响,包括对电网稳定性、电压质量和电能质量的影响。

第二章风电场并网运行的关键技术风电场并网运行的关键技术包括风机与电网的匹配、风电场电能质量控制、风电场频率响应以及风电场电网保护等。

首先,风电场的风机与电网需要匹配,才能确保风电场正常并网运行。

其次,风电场需要控制电能的质量,包括电压波动、谐波和闪变等参数的控制。

另外,风电场还需要具备一定的频率响应能力,以使风电厂能够参与电网频率调节。

最后,为了保护风电场和电网的安全运行,风电场还需要建立起完善的电网保护系统。

第三章风电场并网对电网稳定性的影响分析风电场并网对电网稳定性的影响主要体现在以下几个方面。

首先,风电场的接入会改变电网的供需关系,可能导致电网的不平衡,进而影响电网的稳定性。

其次,风电场的发电功率具有间断性和波动性,这也会对电网的频率和电压稳定性产生影响。

此外,大规模风电场并网还可能引起电网的电磁振荡问题,进一步影响电网的稳定性。

因此,风电场并网运行需要合理地考虑电网稳定性,并采取相应的措施进行调整和优化。

第四章风电场并网对电压质量的影响分析风电场并网对电压质量的影响主要表现在电压波动和电压谐波两个方面。

风电场的并网运行会引起电压波动,这是因为风电场的发电功率具有间断性和波动性,而电网需要根据负荷的需求进行调整,从而导致电压的波动。

此外,风电场的并网运行还会引入电压谐波,这是因为风机的电子器件和电力电子器件会引入谐波电流,从而对电网电压质量产生影响。

因此,风电场并网运行时需要做好电压质量控制,以防止对电网产生不利影响。

第五章风电场并网对电能质量的影响分析风电场并网对电能质量的影响主要包括功率因数、谐波和闪变等方面。

风力发电机组并网运行对电网运行的影响

风力发电机组并网运行对电网运行的影响

风力发电机组并网运行对电网运行的影响摘要:在风电场接入电网的容量愈来愈大的背景下,风力发电机组并网运行会对电网安全稳定运行带来不同程度的影响。

关键词:风力发电机组;并网运行;电网运行;影响1风力发电机的并网方式分析1.1异步发电机组的并网现阶段,在我国电网并联运行的风力发电机组中,大部分运用异步发电机,但异步发电机在并网瞬间会出现较大的冲击电流(约为异步发电机额定电流的4~7倍),并使电网电压瞬时下降。

随着风力发电机组单机容量的不断增大,这种冲击电流对发电机自身部件的安全及对电网的影响也愈加严重。

过大的冲击电流,有可能使发电机与电网连接主回路中的自动开关断开;而电网电压的较大幅度下降,则可能会使电压保护回路动作,导致异步发电机根本不能并网。

1.2双速异步发电机的并网当下,在与电网运行的风力发电体系中,因为风能的随机性,风速的大小经常变化,为满足风速的变化,充分利用低速时的风能,增加全年的发电量,近年来广泛采用双速异步发电机。

其并网方法是当风速传感器测量的风速达到启动风速,(一般为3.0~4.0 m/s以上),并连续维持达5~10 min时,控制系统计算机发出启动信号,风力机开始启动,此时发电机被切换到小容量低速绕组,根据预定的启动电流,当转速接近同步转速时,通过晶闸管接入电网,异步发电机进入低功率发电状态。

若风速传感器测量的1 min平均风速远超过启动风速,则风力机启动后,发电机被切换到大容量高速绕组,当发电机转速接近同步转速时,根据预定的启动电流,通过晶闸管接入电网,异步发电机进入高功率发电状态。

1.3同步发电机的并网1)因为采选频率变换装置实施输出控制,所以并网时没有电流冲击,对系统几乎没有影响。

2)采用交-直-交转换方式,同步发电机组工作频率与电网频率是彼此独立的,风轮及发电机的转速可以变化,不必担心发生同步发电机直接并网运行可能出现的失步问题。

3)由于频率变换装置采用静态自励式逆变,虽然可以调节无功功率,但是有高频电流流向电网。

浅述风电并网对电网影响

浅述风电并网对电网影响

浅述风电并网对电网影响风电场出力的主要特点是随机性、间歇性及不可控性,主要随风速变化。

因此,风电并网运行给电网带来诸多不利影响。

随着风电场的容量越来越大,对系统的影响也越来越明显,研究风电并网对系统的影响已成为重要课题,本文将就风电并网研究中的一些问题进行浅述。

1、风力发电机主要形式分析风电并网的影响,首先要考虑风力发电机类型的不同。

不同风电机组工作原理、数学模型都不相同,因此,分析方法也有差异。

目前国内风电场选用机组主要有3种:1.1异步风力发电机目前是我国主力机型,国内已运行风电场大部分机组是异步风力发电机。

主要特点是结构简单,运行可靠,此种发电机为定速恒频机组,运行中转速基本不变,风力发电机组运行在风能转换最佳状态下的机率比较小,因而,发电能力比新型机组低。

同时,运行中需要从电力系统中吸收无功功率。

为满足电网对风电场功率因素的要求,采用在机端并联补偿电容器的方法,其补偿策略是异步发电机配有若干组固定容量电容器。

由于风速大小随机变化,驱动异步发电机的风机不可能经常在额定风速下运转。

1.2双馈异步风力发电机兆瓦级风力发电机普遍采用双馈异步发电机形式,是目前世界主力机型,该机型称为变速恒频发电系统。

由于风力机变速运行,其运行速度能在一个较宽的范围内调节,使风机风能利用系数Cp得到优化,获得高的系统效率;可以实现发电机较平滑的电功率输出;与电网连接简单,发电机本身不需要另外附加的无功补偿设备,可实现功率因素一定范围内的调节,例如从0.95领先到0.95滞后范围内,因而具有调节无功功率出力的能力。

1.3直驱式交流永磁同步发电机从大型风电机组实际运行经验中,齿轮箱是故障率较高部件。

采用无齿轮箱结构则避免了这种故障的出现,可以大大提高风电机组的可利用率、可靠性,降低风电机组载荷,提高风力机组寿命。

该机组采用直接驱动永磁式同步发电机,全部功率经A-D-A变换,接入电力系统并网运行。

与其他机型比较,需考虑谐波治理问题。

风力发电并网对电网的影响概述

风力发电并网对电网的影响概述

风力发电并网对电网的影响概述作为一种清洁能源的风能,愈来愈受到全球世界国家的关注。

世界区域内一直在增加风电装机容量。

随着增加的装机容量,风力发电对电网的影响也愈来愈显著。

因为电网常规设计与运行中没有特别思考风电接入的影响,所以为了顺应风电接入并让之前的电网运行规范得到满足,需要对电网的运行控制实施一些相关的调整。

研究风电接入对电网运行的影响和相关方法,对于更好运用风力发电有关键的意义。

标签:风力发电;并网;电网0 引言随着风电电源的规模在全网容量的比例上相对大幅度的提高,造成在电网运行中常规电源,削弱了控制和调整的能力,而风电电源在调压任务、实施系统调配与控制系统功率震荡等工作上,非常难和常规电源相持平,所以造成在电网运行中风力发电就相对容易形成很多问题。

所以我们有必要认识风力发电对电网的影响,研究有效的应对方法,维护电网系统的安全运行。

1 风电并网对电网运行的影响1.1 电力电量平衡因为不确定性的风电,造成日电力电量平衡与电源安排特别困难,随着增加的风电容量,这些问题将愈来愈明显。

在风电预测正确率相对低的状况下,假如风电功率思考太高也许会导致全网备用不足,假如思考太低又也许会增加别的常规火电机组深度调峰容量,甚至造成被迫启停火电机组调峰,从而带来火电机组大幅度上升煤耗指标。

还直接关系到跨省联络线计划执行的是风电预测偏差。

至于对风电本身的影响,假如偏小的风电预测,在电网调节能力不足的状况下,将直接导致风电出力受限。

1.2 电压控制难度相对高风电机组发电的经过中,因为风速非常难掌握,并且具备不确定性和不可控性,因此,大规模的风电机组会对风电并网形成相对大的影响,风电并网中会超过指定区域的电压,这容易引发电网电压波动或者闪络情况。

在持续扩大电网的规模,假如风电出力发生大幅度波动,会引发输电通道枢纽部位电压的波动,会关系到电压的控制能力,也会影响风电并网安全运行的能力。

风力发电具备随机性,在电网中,中枢点的电压通常波动相对大,这让中枢点电压越限的概率增加了,并且会关系到中枢点之间的间距,让其发生不均等,通常离风电场接入点部位愈近的中枢点,发生电压波动的概率和影响愈大。

风力发电并网对电力系统造成的影响及其应对措施

风力发电并网对电力系统造成的影响及其应对措施

风力发电并网对电力系统造成的影响及其应对措施风力发电是一种清洁的可再生能源它能够带来显著的环境效益和社会效益合理有效地利用风能源对我国实现高速可持续发展具有极其重要的意义随着风电装机容量在电网中所占比例的增长风力发电对电网的影响范围从局部逐渐扩大目前风电接入电网出现了与以往不同的特点表现为单个风力发电场容量增大风电场接入电网的电压等级更高增加的风电接入容量与接入更高的电压等级使得电网受风电影响的范围更广在风电穿透功率较大的电网中由于风电注入改变了电网原有的潮流分布线路传输功率与整个系统的惯量并且由于风电机组与传统同步发电机组有不同的稳态与暂态特性因此风电接入后电网的电压稳定性暂态稳定性及频率稳定性都会发生变化所以在风电场建设与接入电网之前进行必要的包含风电场的电力系统分析计算研究风电场并网后系统运行的稳定性变化情况无论是对于风电场业主还是电网部门而言都是非常必要的。

风能发电的特点是:a)风能的稳定性差。

风能属于过程性能源,是不可控的,具有随机性、间歇性、不稳定性的特点,风速和风向决定了风力发电机的发电状态以及出力的大小。

b)风能不能储存。

对于单机独立运行的风力发电机组,要保证不间断供电,必须配备相应的储能装置。

c)风电场的分布位置通常比较偏远。

我国的风电场多数集中在风能资源比较丰富的西北、华北和东北地区。

由于风能发电具有以上特点,使得风电的开发和利用较之水力发电困难得多。

风电的最大缺点是稳定性差,若风电系统所产生的电能直接并入电网,将影响局部电网运行的稳定。

影响一、对系统稳定性的影响大规模风电场接人电力系统时,风电场对无功功率的需求是导致电网电压稳定性降低的主要原因。

研究表明:一方面,风电场的有功出力使负荷特性极限功率增大,增强了静态电压稳定性;另一方面,风电场的无功需求使负荷特性的极限功率减少,降低了静态电压稳定性。

目前,风力发电多采用异步发电机,需要外部系统提供无功支持。

变速恒频风电系统在向电网注入功率的同时需要从电网吸收大量的无功功率,风电场的无功仍可看作是一个正的无功负荷,因此,当风电场的容量较大且无功控制能力不足时,易影响电压的稳定性,严重时会造成电压崩溃。

风力发电并网对电网的影响概述

风力发电并网对电网的影响概述

风力发电并网对电网的影响概述摘要:智能电网建设中的一个重要方面是解决以风能为代表的可再生能源发电的接入问题。

风力发电逐渐以大型风电场的形式并入电网,给电网带来各种影响。

下文就风力发电并网对电网的影响进行了探讨关键词:风力发电并网;电网;影响引言在各种可再生能源发电形式中,风力发电因其技术成熟和成本优势成为最具规模化商业开发前景的新能源发电形式。

一、风力发电基本原理风力发电机组是一种将风能转化为电能的能量转换装置,包括风力机和风力发电机两大部分,工作过程:空气流动的动能作用在风力机风轮上,推动风轮旋转起来,将空气动力能转变为风轮旋转机械能,风轮的轮固定在风力机轴上,通过传动系统驱动风力发电机轴及转子旋转,风力发电机将机械能转变成电能输送给负荷或电力系统。

二、风力发电并网运行的分析随着风力发电的快速发展,风电场的并网已成为必然的途径。

从风电问世以来,风力发电经历了独立运行方式、恒速恒频运行方式、变速恒频运行方式。

当今变速恒频发电系统已成为主流,但风力发电并网仍是热点的研究话题。

不管是哪一种发电类型,并网总是以保证电力系统稳定性为基本原则。

风力发电相比于火力发电和水力发电,由于其不稳定性需要更精确的并网控制技术。

并网运行时,需满足:电压幅值与电网侧电压幅值相等;频率与电网侧频率相同;电压相角差为零;电压波形及相位与电网侧的电压波形及相位保持一致。

这样保证了并网时冲击电流理想值为零。

否则,若并网产生很大的瞬时冲击电流,不仅损坏电力设备,更严重的是使电力系统发生震荡,威胁到电力系统稳定性。

从大的方向看,风力发电系统并网分为恒速恒频风力发电机并网和变速恒频风力发电机并网。

恒速恒频并网运行方式为风力发电机的转子转速不受风速的影响,始终保持与电网频率相同的转速运行。

虽然其结构简单、运行可靠,但是对风能的利用率不高,机械硬度高,而且发电机输出的频率完全取决与转速,如控制不好,并网时会发生震荡、失步,产生很大的冲击电流。

大规模风电并网对电网的影响课件

大规模风电并网对电网的影响课件

02
CATALOGUE
大规模风电并网对电网的影响
对电网稳定性的影响
电压稳定性
风电并网可能导致电压波 动,影响电网的稳定运行 。
频率稳定性
风电并网的随机性可能对 电网的频率稳定性造成影 响。
暂态稳定性
风电并网可能增加电网暂 态不稳定的风险,如突然 的风电机组脱网等。
对电网调度的影响
调度难度增加
调度灵活性要求提高
加强风电并网的监管与评估
建立风电并网的监管机制
对风电场的建设和运营过程进行监管,确保其符合相关法规和标准。
开展风电并网的技术评估
对风电场的并网测试、运行数据等进行技术评估,确保其技术性能和安全性能符 合要求。
提升风电并网的运营管理水平
要点一
加强风电场运维人员的培训和管 理
提高运维人员的技能水平和专业素养,确保风电场能够安 全、稳定地运行。
成熟阶段
21世纪以来,风电成为全 球范围内快速发展的可再 生能源产业。
风电并网的优势与挑战
优势
风能是一种清洁、可再生的能源,大规模开发利用有助于减 少化石能源的消耗和温室气体排放;风电场的建设周期短, 投资回报率高;风能散布广泛,可就地开发利用,减少对输 电线路的依赖。
挑战
风电并网会对电网的稳定性、安全性、经济性等方面产生影 响;风电场的建设需要占用大量土地资源,可能引发土地资 源、生态保护等方面的问题;风电的间歇性和随机性会对电 网调度和运行带来困难。
风电并网是实现风能大规模利用的关键技术之一,也是风能开发利用的主要方向。
风电并网技术涉及到多个领域,包括电力电子、控制理论、通讯技术等。
风电并网的发展历程
01
02
03
早期阶段

风电场并网对电力系统的影响及其分析

风电场并网对电力系统的影响及其分析

风电场并网对电力系统的影响及其分析近年来,随着能源的不断开发,风能作为一种新型的清洁能源备受关注。

为了有效利用风能资源,风电场并网已成为风电发展的必然趋势。

然而,风电场并网不仅给电网带来了各种优势,同时也带来了一些问题和挑战。

本文将从多个角度分析风电场并网对电力系统的影响。

一、对电力系统安全稳定运行的影响1. 电网短路电流问题风电场并网后,其接口点的电网等效电容值降低,转而增加了电网短路电流,会使电力系统的稳定性受到影响。

因此,在风电场的设计和设置上,需要考虑到电网短路电流问题,以确保电力系统的安全稳定运行。

2. 电网故障问题风电场并网后,电力系统的故障处理将变得更加困难,因为电力系统中任何一个节点的故障都会影响整个电网的运行。

如果风电场的故障诊断和恢复能力没有及时跟进,容易导致电网故障扩散,从而影响到电力系统的运行。

因此,为了保持电力系统的稳定运行,风电场并网需要有一个可靠的故障诊断和恢复系统。

二、对电力系统能源结构的影响1. 电力系统可再生能源比例提高随着风电场的逐步普及,其并网信息与维护技术越来越成熟,风电场的电力贡献比例也不断提高,从而实现了电力系统可再生能源比例的增加。

这是电力系统实现清洁能源发展的非常重要的一步。

2. 反问题发电由于风电场的发电量和消费负载之间难以保证完全匹配,因此容易造成风电场的发电功率与消费负载之间的失衡,产生反问题发电。

这意味着发电功率无法被调节,更加明显的反问题发电情况会影响电力系统的稳定性,甚至可能导致电力系统失去稳定运行状态。

三、对电价的影响随着风电场逐渐普及,电力系统的电价也将会受到影响。

风电场的发电成本相对传统的火电等能源要低得多,这意味着风电场的并网将对电价产生一定程度的影响。

四、对能效的影响风电场并网后,对于电力系统的能效也发生了变化。

风电场的巨大容量意味着可以充分地利用风能资源,从而使能源利用效率更高,降低燃料消耗量和温室气体排放量,实现电力系统的绿色低碳化。

风力发电并网对电网的影响概述

风力发电并网对电网的影响概述

机 容量的增加 , 风 力发 电对 电网的影响也越来越明显。介绍风 力发 电的并网条件及并 网特点, 不同风力发电机 与电 网的并入方 式; 介 绍风 电并入电网对 电网的影响和我 国的电网结构及 内蒙古地 区电 网的大概结构。
关键词: 风 力 发 电 并 网 风 电场 中 图 分 类号 : T M6 1 4 文 献标 识 码 : A 文 章编 号 : 1 0 0 7 . 3 9 7 3 ( 2 0 1 3 ) 0 0 2 . 0 7 6 . 0 2
设备供 电。
2 不同类型风力发电机组 的并网方式 在风 力发 电上应用 到同步发 电机有两种机 械联结方式 :
( 1 ) 取 消变 速 齿 轮箱 , 把 风轮 轴 与 发 电机 直 联 , 并且 把 发 电机 做
( 3 ) 给水加热: 这种 系统 多用于私人住宅 。典型的用法是 将风力发 电机直接与浸 没式现方式做保护处理对用户上传分享的文档内容本身不做任何修改或编辑并不能对任何下载内容负责
风力发 电并 网对 电网的影响概述
口 吴 疆 江 兴 胡媛媛
0 7 1 0 0 3 ) ( 华北电力大学( 保定 ) 机械工程 系 河北 ・ 保定

要: 风能作为一种 清洁能源 , 越来越受到各个 国家 的重视 。世界范围 内风 电装机容量一直在增加。随着装
国 的 风 力 发 电 还 处于 试 点 阶 段 , 并 网 发 电 的技 术 不 够成 熟 。 比 且 其 额 定 功 率低 于 1 0 0 0 w。独 立 的 风 电系 统 主要 建 造 在 电 网
较成熟的是北欧和美 国。并 网并不是一件很简单的事情 ,能 不易到达的边远地区 。 够并网的电流具备正弦波交流 5 0 H Z, 另外还有电压和功率等 。 1 . 2 风 力发 电 的特 点 风机的离网应用有 多种多样, 主要可 以分 为以下几类 :

风力发电并网对电力系统安全的影响及应对措施

风力发电并网对电力系统安全的影响及应对措施

一风力发电研究的意义和发展情况1.风能的发电原理。

太阳的热辐射不均匀会造成世界各地大气压力不均,这驱使空气沿着水平方向运动最后形成风。

风力发电原理是风能使发电机的风力叶轮旋转,然后通过齿轮箱使风力发电机转子高速旋转,产生感应电动势。

风力机将风能转换为机械能,然后转换成电能。

2.风力发电的历史。

1887年,第一台小型风力发电机在苏格兰的一栋别墅中安装,用于房间照明。

1888年,美国建筑师查理斯主持设计和建设一个风机转子达17米的大型风机,虽然它的功率只有12千瓦。

世界上第一座风力发电试验基地于19世纪末在丹麦建成,用于对风力发电的研究。

1931年,具有现代化身影的水平轴发电机在苏联克里米亚半岛的雅尔塔建成,它的功率为100千瓦,可以接到当地6.3千伏的电网上。

20世纪30年代的美国,风力发电机在离大城市比较远的地区,特别是西部很受欢迎。

它们不仅可以磨面和提水,还可以发电,它们对这些地区的发展和社会进程产生了非常重要的影响。

我国20世纪80年代才开始接触有关风电方面的技术。

由于风电的技术要求高,我国并未大规模发展风电,当时很多风机都需要从欧美国家进口。

1986年经政府同意,在山东建成了第一个示范性风电场,但当时的发电机组是进口的55千瓦的风电机组。

1989年新疆达阪城和广东南澳风电场成立,并于当年并网发电。

我国政府部门也认识到化石燃料日益枯竭的现状,对风力发电技术,政府也比较重视。

1996年提出大规模发展风电的《乘风计划》,主要是在鼓励发展我国自己的中型风力发电机制造技术,同时也提倡以技贸结合的形式与国外优秀企业合作。

在建设大型风电场的同时,能够吸收它们的技术并消化,从而达到自主研发、设计和制造自己的风电设施的目的。

1998年,新疆金风科技的发展在中国遥遥领先,成为当时我国最好的风力发电机厂家。

3.风力发电的意义和必要性。

由于全球温室效应、环境污染和化石燃料的日益枯竭,目前各国政府的工作之重都是如何最大效益地对各种新能源进行开发和持续利用。

风力发电对电网的影响

风力发电对电网的影响

风力发电对电网的影响:1、对电能质量影响:由于风能的随机性以及并网风组的运行特性,将影响电网的电能质量,主要表现为:电压波动,电压闪变,电压跌了及谐波。

2、对电网稳定性影响:接入电网末端,改变了配电网功率单向流动的特点;使系统潮流分布发生了变化;从而影响电网的稳定系。

3、大型风电机组,由于没有独立的励磁装置,并网时会产生5~8倍于额定电流的冲击电流;对于小容量的电网,并网瞬间会造成电网电压的较大幅度下降。

1、风电场规模问题电力系统中风电规模的大小采用以下2个指标来表征。

A)风电穿透功率极限。

风电穿透功率是指系统中风电场装机容量占系统总负荷的比例。

风电穿透功率极限定义在满足一定技术指标的前提下接入系统的最大风电场装机容量与系统最大负荷的百分比,表征系统能够承受的最大风电场装机容量。

B)风电场短路容量比。

风电场短路容量比定义为风电场额定功率与该风电场与电力系统连接点的短路容量比,表征局部电网承受风电扰动的能力。

以上2个指标的经验数据只供参考。

要确切分析电网接纳风电能力,还是应该通过对系统稳定性、电能质量、电网调峰能力等具体问题进行分析之后才能确定。

2、电压波动和系统稳定性问题在风电机组启动、退出和风速变化的情况下,往往会一起电压波动。

风电机组启动引起的电压波动可采用软并网启动方式和多台机组分组启动来解决。

但风速超过切出风速或系统发生故障时,风电机组会从额定出力状态退出并网状态,从而引起电网电压的突降。

而由于机端的电容补偿抬高了机组脱网前风电场的运行电压,因此脱网会使电网电压突降更加明显。

大型风电场的风力发电机几乎都是异步发电机,在其并网运行时需要从系统吸收大量无功,增加了电网的无功负担。

严重情况下,当系统发生三相接地短路时,有可能造成电网电压失稳。

因此在风电场接入电网之前应采用恰当的风电机组模型来计算分析系统电压稳定性问题。

同时,风电场应采取必要的措施预防此类问题,如分组投切电容器静止无功补偿装置、超导储能装置。

风电场并网对电网影响的分析

风电场并网对电网影响的分析

风电场并网对电网影响的分析随着人们对清洁能源的需求日益增长,风力发电逐渐成为一种越来越受人们欢迎的可再生能源。

而随着风电场的建设和使用规模的不断扩大,将风力发电纳入全国电网逐渐成为一个必然的趋势。

本文将从风电场并网入手,分析风电场对电网的影响,讨论如何最优地解决并网过程中所存在的问题。

一、风电场并网的基本概念风电场并网是指将一个或多个风力发电机组接入电力系统,并形成稳定的、可靠的、具备一定发电能力的电力系统。

并网的过程可以分为三个阶段:调试阶段、接入阶段和运行阶段。

在调试阶段,风电场需要逐步调试风电机组的性能参数,保证其满足电力系统的要求。

在接入阶段,需要进行技术论证和审批,并按照电网规划和定义的接入容量接入电网。

在运行阶段,需要参与电力市场的交易和调度,并按照电力系统的要求进行发电和用电的平衡控制。

二、风电场并网对电网的影响风电场并网对电网的影响主要表现在以下几个方面:(一)对电网安全有积极作用风电场的并网可以有效地减少电网的压力,提高电网的稳定性。

并网后,通过尽可能地利用不同区域间的风力资源,可以大幅度降低电网的负荷峰值,并增加供电能力和电网的抗干扰能力。

此外,风电场可以通过与其他能源源的集成,形成创新的能源系统,提高整个能源系统的稳定性和可靠性。

(二)对电网的负载均衡产生影响随着风电场的规模增大,风电产生的电量的波动越来越大,对电网的负载均衡产生越来越大的影响。

由于风力发电的特点是容量性不足,且不具备可调节性,因此风电场的并网往往会对电网的负载均衡产生负面的影响。

为了解决这个问题,需要通过合理的能源组合和储能技术,来平衡风电产生的不稳定性和电力系统的负荷。

(三)对电网调度与市场交易产生影响风电场的并网可以对电网的调度和市场交易产生影响。

由于风电发电的波动不可预知,因此在进行市场交易和电网调度时,需要合理制定风电发电的计划和调度策略,以保证电力系统的规划和调度完整实现。

三、风电场并网的应对策略要充分发挥风电场的优势,避免其带来的负面影响,需要通过采取一些应对策略来解决并网过程中所存在的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

风力发电并网对电网的影响概述
摘要:风能作为一种清洁能源,越来越受到各个国家的重视。

世界范围内风电装机容量一直在增加。

随着装机容量的增加,风力发电对电网的影响也越来越明显。

介绍风力发电的并网条件及并网特点,不同风力发电机与电网的并入方式;介绍风电并入电网对电网的影响和我国的电网结构及内蒙古地区电网的大概结构。

关键词:风力发电并网风电场
中图分类号:tm614 文献标识码:a 文章编号:1007-3973(2013)002-076-02
1 风力发电概述
1.1 风力发电形式
风力发电有两种:一是离网发电;二是并网发电。

目前中国的风力发电还处于试点阶段,并网发电的技术不够成熟。

比较成熟的是北欧和美国。

并网并不是一件很简单的事情,能够并网的电流具备正弦波交流50hz,另外还有电压和功率等。

风机的离网应用有多种多样,主要可以分为以下几类:
(1)为蓄电池充电:这种应用大多是指单一家庭住宅使用的小型风力发电机。

(2)为边缘地区提供可靠的电力,包括小型和无人值守的风力机。

风力发电机通常与蓄电池相连,而且也可以与光电池或柴油发电机等其他电源联机,为海上导航和远距离通信设备供电。

(3)给水加热:这种系统多用于私人住宅。

典型的用法是将风力发电机直接与浸没式加热器或电辐射加热器相连。

(4)边远地区的其他使用:包括为乡村供电、为小型电网系统供电,以及为商业性冷藏系统和海水淡化设备供电。

在离网风力发电系统的应用中,占主导地位的是利用风力发电机为蓄电池充电。

这类风力发电机的转子直径通常小于5m,而且其额定功率低于1000w。

独立的风电系统主要建造在电网不易到达的边远地区。

1.2 风力发电的特点
风力发电与火力发电相比,有其自身的缺点和优点,主要有:(1)装机规模灵活,可根据资金情况而决定一次装机的规模。

(2)它是一种不污染环境,也不消耗资源的清洁能源,所需的动力只是自然界中的风。

(3)投入资金少,有一台风力机的资金就可以安装一台,投产一台。

(4)建设周期短,比如说建设一个万瓦级的风电场周期不到一年。

2 不同类型风力发电机组的并网方式
在风力发电上应用到同步发电机有两种机械联结方式:(1)取消变速齿轮箱,把风轮轴与发电机直联,并且把发电机做成低速同步发电机。

同步发电机的并网比较复杂,需要一整套并网措施;(2)通过变速齿轮箱,做成高速同步发电机。

2.1 异步风力发电机并入电网的方法
调整负荷是靠异步发电机并入电网时滑差率来调整的,对机组
的调速要求不像同步发电机那么严格精确,因为其输出的功率与转速几乎成线性关系,异步并网只是需要电机转速靠近发电机同步转速时就可以并入预定电网,并没有调步的操作和同步的设备。

目前国内使用的异步发电机并入电网的方式有直接并网、降压并网和通过晶闸管软并网。

2.1.1 直接并网方式
并网时发电机的相序与电网的相序相同是这种并网方法的要求,完成自动并网是当风力驱动的异步发电机转速接近同步转速时即可,系统中的测速装置在一定的条件下发出一个信号,系统接收到信号后空气开关自动合闸,由此自动并入预定的电网。

虽然,直接并网方式相比于同步风力发电机的准同步并网是容易些,简单点,但这种并网方式只适用于异步发电机容量在百千瓦级以下。

之所以这种并网方式只适用于异步发电机容量在百千瓦级以下,是因为直接并网时会出现较大的冲击电流及电网电压下降。

2.1.2 降压并网方式
为了降低并网时候合闸瞬间冲击电流的大小,同时为了不使这时的并网的电网电压下降的幅度不要过大,这种并网方式在并网电网和异步风力发电机中间串联了或者是电抗器或者是电阻。

这种并网方法是适用于百千瓦级以上的大容量机组,因为电阻、电抗器等元件要消耗功率,在发电机进入稳态运行后将其迅速切除。

2.1.3 通过晶闸管软并网方式
要想使风电并入电网时不会对电网产生很大的冲击,就需要使并网瞬时的电网的冲击电流限制在一个很小的区间内,而通过晶闸管软并网这种并网方式可以得到一个相对平滑的并网过程,其独特之处就是严格控制晶闸管的导通角,从而实现平滑稳定的并网,不致于对电网产生很大的冲击。

让晶闸管器件的特性要一致、稳定以及触发电路可靠,这是它也对晶闸管触发电路提出了严格的要求。

要想保证可控硅导通角在0到180度范围内同步逐渐增大,要想保证发电机三相电流平衡,只有发电机主回路中的每项的双向晶闸管特性一致,并且控制极触发电压、触发电流一致,全开通后压降相同,否则会对发电机不利。

2.2 自同步并网方式
同步发电机在转子未加励磁就是自同步并网,励磁绕组经限流电阻短路的情况下,由原动机拖动将同步发电机转子转速升高到接近同步转速(约80%-90%同步转速)时,将发电机投入电网,再立即投入励磁,靠定子与转子之间的电磁力作用将发电机自动牵入同步发行。

这种并网方式尅从问题的根源排除非同步合闸的这种可能,因为同步风力发电机在并入电网时并没有加励磁电流。

这种并网操作简单,是不需要复杂的并网装置,并且并网过程迅速。

2.3 准同步并网方式
在同步风力发电中,风力发电机的转速、频率及极对数有确定的关系,这个关系式:f=pn/60。

式中:f-发电机产生的交流电频
率;n-风力发电机的转速;p-发电机的极对数。

准同步并网方式将风电并到并网电网中,需要满足几个条件:(1)发电机的电压相序与电网的电压相序相同;(2)发电机的电压等于电网电压,并且电压波形相同;(3)要求并网风力发电机的频率和并网电网的频率相同;(4)在合闸那会儿,电网电压的相角和风力发电机所发电压的相角一致;
3 风能并到电网里时对并网电网的的影响
3.1 风力发电对电能的稳定性及质量的影响
随着各地风电场的陆续上马和投产,大家广泛的关注风力发电对电网电能质量的影响。

风力发电对电网的影响主要表现为:电压波动、电压闪变、电压跌落及谐波等。

这是由于上述风电场并网运行的特点,特别是风能的随机性和并网风组的运行特性,可能影响电网的电能质量。

据研究可知并网风电机组输出的功率波动是风力发电引起的电压波动和闪变的根本原因。

由相关的知识知道,空气的密度、风速v、桨距角和叶轮转速的变化会影响机组的功率的输出。

其实,桨距角和叶轮转速,减小风电机组的波动是可以通过现代的先进的风电机组能够进行很好地控制。

由于风的随机性和波动性以及不可预知性,风电的出力是随机波动的,此时电网的的有功功率和无功功率也会发生大的波动性,这样就导致了并网电网的闪变和不稳定性。

由此,风电机组的出力变化主要是由于风速的变化而引起的。

另外,已经并入电网的风机在持续的运行中,会使
风电机组输出功率存在周期性的波动的原因有:湍流、塔影效应、偏航误差、风力机尾流效应以及风电机组的频繁启停。

随着风机电机容量的增加,风的随机波动性对风力发电的影响阅历啊月明显,当风电出力波动较大时,从而会引起较大的电压波动。

3.2 对电网稳定性的影响
由于风力发电场接入电网时会有很多问题,所以就目前风电并网的情况来看,风力发电场一般都是建在电网比较薄弱的地区,并网时是在电网末端进行并网。

并网后会对系统稳定性产生影响是由于风力发电的接入,使电网单向流动的特点被改变,电网单向流动被改变之后又导致系统潮流分子发生改变。

3.3 对电力调度与日常发电计划的影响
由于风电的不可预测性,所以并不能像我们以前使用的电源一样,对风电进行准确而又可靠地出力预测。

更不能指定出一个合理的发电计划,并将这个计划实施,这一切主要是由于自然界中的风是不可控制的,是随机的,且很难根据实际进行准确评估。

若我们把一个风力发电场看作是一个的负荷,因为风能的波动性,对于这个负的负荷我们并不能进行准确的评估;若我们把风力发电场看作是一个日常使用的电源,而它的有效性又无法得到保证。

一般一个地区,并入该地区的风力发电不能超过该地区总电力的5%~10%,否则会给整个电网带来很大的影响。

4 结论
现在全球都面临一个严重的问题——能源短缺,各国政府及自己所能在开发新能源,而风力发电则是各国争先发展的新能源产业。

风力发电没有任何污染,建设周期短,相比火力发电其成本低,对于我国来说,由于大型风力发电设备主要是进口,成本相对偏高,但随着我国大型风力发电设备国产化,将逐步降低风力发电成本。

随着科技的进步,风力发电技术越来越成熟,这也将进一步促进风电的发展,从而为新能源发展,低碳生活作出更多的贡献。

相关文档
最新文档