2019年江苏省常州市中考数学试卷-(解析版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年江苏省常州市中考数学试卷
参考答案与试题解析
一、选择题(本大题共8小题,每小题2分,共16分。)
1.﹣3的相反数是()
A.B.C.3D.﹣3
【分析】根据相反数的定义:只有符号不同的两个数称互为相反数计算即可.
【解答】解:(﹣3)+3=0.
故选:C.
【点评】本题主要考查了相反数的定义,根据相反数的定义做出判断,属于基础题,比较简单.
2.若代数式有意义,则实数x的取值范围是()
A.x=﹣1B.x=3C.x≠﹣1D.x≠3
【分析】分式有意义的条件是分母不为0.
【解答】解:∵代数式有意义,
∴x﹣3≠0,
∴x≠3.
故选:D.
【点评】本题运用了分式有意义的条件知识点,关键要知道分母不为0是分式有意义的条件.
3.如图是某几何体的三视图,该几何体是()
A.圆柱B.正方体C.圆锥D.球
【分析】通过俯视图为圆得到几何体为圆柱或球,然后通过主视图和左视图可判断几何体为圆锥.
【解答】解:该几何体是圆柱.
【点评】本题考查了由三视图判断几何体:由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助.
4.如图,在线段P A、PB、PC、PD中,长度最小的是()
A.线段P A B.线段PB C.线段PC D.线段PD
【分析】由垂线段最短可解.
【解答】解:由直线外一点到直线上所有点的连线中,垂线段最短,可知答案为B.故选:B.
【点评】本题考查的是直线外一点到直线上所有点的连线中,垂线段最短,这属于基本的性质定理,属于简单题.
5.若△ABC~△A′B'C′,相似比为1:2,则△ABC与△A'B′C'的周长的比为()A.2:1B.1:2C.4:1D.1:4
【分析】直接利用相似三角形的性质求解.
【解答】解:∵△ABC~△A′B'C′,相似比为1:2,
∴△ABC与△A'B′C'的周长的比为1:2.
故选:B.
【点评】本题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等.相似三角形(多边形)的周长的比等于相似比;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比.相似三角形的面积的比等于相似比的平方.
6.下列各数中与2+的积是有理数的是()
A.2+B.2C.D.2﹣
【分析】利用平方差公式可知与2+的积是有理数的为2﹣;
【解答】解:∵(2+)(2﹣)=4﹣3=1;
【点评】本题考查分母有理化;熟练掌握利用平方差公式求无理数的无理化因子是解题的关键.
7.判断命题“如果n<1,那么n2﹣1<0”是假命题,只需举出一个反例.反例中的n可以为()
A.﹣2B.﹣C.0D.
【分析】反例中的n满足n<1,使n2﹣1≥0,从而对各选项进行判断.
【解答】解:当n=﹣2时,满足n<1,但n2﹣1=3>0,
所以判断命题“如果n<1,那么n2﹣1<0”是假命题,举出n=﹣2.
故选:A.
【点评】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.
8.随着时代的进步,人们对PM2.5(空气中直径小于等于2.5微米的颗粒)的关注日益密切.某市一天中PM2.5的值y1(ug/m3)随时间t(h)的变化如图所示,设y2表示0时到t时PM2.5的值的极差(即0时到t时PM2.5的最大值与最小值的差),则y2与t的函数关系大致是()
A.B.
C.D.
【分析】根据极差的定义,分别从t=0、0<t≤10、10<t≤20及20<t≤24时,极差y2随t的变化而变化的情况,从而得出答案.
【解答】解:当t=0时,极差y2=85﹣85=0,
当0<t≤10时,极差y2随t的增大而增大,最大值为43;
当10<t≤20时,极差y2随t的增大保持43不变;
当20<t≤24时,极差y2随t的增大而增大,最大值为98;
故选:B.
【点评】本题主要考查极差,解题的关键是掌握极差的定义及函数图象定义与画法.二、填空题(本大题共10小题,每小题2分,共20分。不需写出解答过程,请把答案直接填写在答题卡相应位置上)
9.计算:a3÷a=a2.
【分析】直接利用同底数幂的除法运算法则计算得出答案.
【解答】解:a3÷a=a2.
故答案为:a2.
【点评】此题主要考查了同底数幂的除法运算,正确掌握运算法则是解题关键.
10.4的算术平方根是2.
【分析】根据算术平方根的含义和求法,求出4的算术平方根是多少即可.
【解答】解:4的算术平方根是2.
故答案为:2.
【点评】此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.
11.分解因式:ax2﹣4a=a(x+2)(x﹣2).
【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.
【解答】解:ax2﹣4a,
=a(x2﹣4),
=a(x+2)(x﹣2).
【点评】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
12.如果∠α=35°,那么∠α的余角等于55°.